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Supplementary Figures

Supplementary Figure 1: Consistency in genetic effects between ABCD and UKB

(A) Correlation in effect size (regression beta from GWAS) between ABCD and UKB cohorts for all 237

genome-wide significant SNPs in the UKB: Pearson’s correlation coefficient, r =0.54 with 95% confidence

interval 0.45-0.63. (B) Genetic correlation (points) and 95% confidence intervals (lines) for 12 global phenotypes

in the UKB and ABCD cohorts. Given the relatively small size of ABCD, the intercept has been constrained as

there is no participant overlap between the UKB and ABCD and there is no inflation in test statistics due to

uncontrolled  population stratification. Consequently, estimates of genetic correlation can be above 1.
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Supplementary Figure 2: Clustering of global phenotypes using phenotypic (A) and genetic (B) correlation matrices.

Consistency of clustering approaches was assessed using 3  methods for hierarchical clustering: clustering using Ward’s criterion, complete linkage, and average linkage.
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Supplementary Figure 3: Phenotypic structural equation model

Phenotypic SEM path diagram demonstrating the underlying latent structure of 12 of the 13 global phenotypes

and the interfactor genetic correlations. Covariance relationships = double-headed arrows connecting two

variables, variance estimates = double-headed arrows connecting variable to itself, regression relationships =

one-headed arrows pointing from independent variable to dependent variable. Circles indicate latent variables,

squares indicate measured phenotypes. Abbreviations: cortical surface area (SA), grey matter volume (Vol),

folding index (FI), local gyrification index (LGI), mean curvature (MC), gaussian curvature (GC), fractional

anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), isotropic volume fraction (ISOVF),

and orientation dispersion index (ODI).
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Supplementary Figure 4: Mendelian randomisation analysis for causal relationships between genetic effects on global brain phenotypes.

Scatter plots for the bidirectional MR effects between surface area and folding index, intrinsic curvature index, and local gyrification index. A, B, and C are scatterplots where

surface area is the exposure, and D, E, and F are scatterplots where surface area is the outcome. All scatter plots are for MR analyses conducted by splitting the UKB into two

samples of similar sample sizes. All estimates were statistically significant in scatterplots A,B, and C. Inverse-variance weighted MR failed to reach statistical significance in

scatterplots D,E, and F.
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Supplementary Figure 5: Forest plots and leave-one-out plots

Forest plots (A, B, and C) and leave-one-out (D, E, and F) between surface area and folding index (FI, A and D), Intrinsic curvature index (ICI, B and E), and local gyrification

index (LGI, C and F).
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Supplementary Figure 6: Co-localisation lots of all clusters with cluster size > 30

Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with

cluster size 30 for volume and surface area. Clusters are coloured in black. For each plot, the relevant

phenotype and the SNP identified as the candidate causal variant for the cluster is provided.
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Supplementary Figure 7: Co-localisation lots of all clusters with cluster size > 30

Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with

cluster size 30 for all phenotypes except volume and surface area. Clusters are coloured in black. For

each plot, the relevant phenotype and the SNP identified as the candidate causal variant for the

cluster is provided.
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Supplementary Figure 8: Co-localisation and regional association plot for FI and ICI-

6:125424383-127540461

A: Cortical topographic plots of two co-localised loci with ICI and FI. B and E: Global GWAS for FI and

ICI respectively. C and F regional GWAS (FEF region) that was part of the co-localised cluster in FI and

ICI respectively. D and G: regional GWAS (p24 region) that was outside the co-localised cluster in FI

and ICI.
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Supplementary Figure 9: Regional heritability

A. The distribution of the SNP heritability for the regional phenotypes of the 13 neuroimaging

modalities. B. The cortical spatial topology of SNP heritability for the 13 neuroimaging modalities.
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Supplementary Figure 10: Spin permutation based enrichment of mean SNP heritability

across mesulam classes and Yeo & Krienen communities.

A. The average SNP heritability for each Mesulam class (dots) overlaid onto a null distribution of the

heritability in that class obtained by spinning the parcellation 1000 times (and computing the

average heritability within each permutation). Thus, if the real average heritability (dots) are within

the tail ends (5%) of the null distribution it could be concluded that this heritability is higher in that

class and for that feature than would be expected from a spatially random distribution of the

heritability across the cortex. Only idiotypic regions for some phenotypes (cortical thickness, volume,

mean, gaussian and intrinsic curvature, mean diffusivity and isotropic volume fraction) show this

relative spatial enrichment. B. The same type of spatial enrichment analysis for the Yeo and Krienen

communities.
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Supplementary Figure 11: Spin permutation based enrichment of mean genetic correlations

within mesulam classes and Yeo & Krienen communities.

A. The average within class genetic similarity (i.e., the average of all edges in the genetic correlation

matrix for regions belonging to the same class) for each Mesulam class (dots) overlaid onto a null

distribution obtained by spinning the parcellation 1000 times (and computing the average similarity

within each permutation). Thus, if the real genetic correlations for a given class (dots) are within the

tail ends (5%) of the null distribution it could be concluded that this genetic correlation within

regions belonging to the same class is higher in that class and for that feature than would be

expected from a spatially random distribution across the cortex. B. The same type of spatial

enrichment analysis for the Yeo and Krienen communities.
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Supplementary Figure 12: Topography of the first phenotypic principal components.

Colorscales depict the relative eigenvector ranging from -20 to +29, in all plots the midpoint is

defined as 0. It should be notes that the definition of 𝐴𝑥=𝜆𝑥 as the PCA eigenvector means that the

sign is somewhat ambiguous and that the magnitude is relative to its own scaling (in this case within

each phenotype for which the PCA is performed). Thus, in this context, the colour scale indicates to

what extent regions show more homogenous similarity (i.e., regions with more similar colour have

more similar covariance).
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Supplementary notes and associated figures

Supplementary Note 1: Phenotypic factor analysis and structural equation modelling

Using the quality controlled phenotypic dataset which was included in the GWAS, we

conducted exploratory factor analysis on half of the sample (Ntotal = 28,794, Nhalf = 14,397 ),

randomly selected. We conducted confirmatory factor analysis in the other half of the

sample. All phenotypes were scaled. Examination of the phenotypic correlation matrix

indicated that, with the exception of CT, most phenotypes exhibited a pattern of high

absolute correlation with at least one other phenotype and low correlations with others. In

contrast, CT exhibited moderate correlation with almost all phenotypes, in line with the idea

that multiple cell types underlie CT.

We next investigated if our data is amenable to factor analysis using Bartlett’s test of

sphericity Kaiser-Meyer-Olkin measure of sampling adequacy. The overall measure of

sampling adequacy was 0.5, which is the minimum acceptable for factor analysis. Inspecting

individual measures of sampling adequacy identified very low sampling adequacy for CT

(0.29), consistent with earlier findings that CT does not cluster very well with other

phenotypes. Excluding CT produced a better overall measure of sampling adequacy (0.57).

Bartlett’s test confidence was significant both before and after excluding CT.

Given the above points, we excluded CT from factor analysis and conducted exploratory

factor analysis on 12 of the 13 global phenotypes. Scree plot and parallel analysis indicated

four factors, in line with the number of clusters identified from hierarchical clustering.

Exploratory factor analysis identified four factors: 1: Cortical expansion; 2: Cortical

curvature; 3: Neurite density; and 4: Water diffusion (SF 3). There was significant and high (>

0.5) cross-loading of ICI onto two factors (cortical expansion and cortical curvature). Multiple

iterations of the confirmatory factor analyses when including ICI failed to produce

satisfactory models. After removing ICI, we identified a similar four factor model relating to

cortical expansion, cortical curvature, neurite density and water diffusion with acceptable fit

indices (CFI: 0.85, SRMR: 0.79).
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Supplementary Note 2: Identifying causal factors for folding using Mendelian Randomisation

Understanding the processes that underlie cortical folding has proven elusive. Several

theories have tried to explain folding including skull constraint, axonal tension, and

differential tangential growth1. Skull constraint and axonal tension do not account for the

uniform nature of folding across among humans. The cellular model for differential

tangential expansion posits that folding occurs through two mechanisms: first, the outer

layers expand more than the inner layers, causing the cortex to fold and second, there is

heterogeneous distribution of progenitors across the brains, leading to differences in

neurogenesis1–3. In humans, one way to test this is to investigate if genetic variants

underlying surface area increase measures of curvature. We used multiple Mendelian

Randomisation methods to investigate this.

First, we split the UK Biobank into two datasets of roughly equal sample size to ensure that

there is limited participant overlap and conducted MR. Inverse-variance weighted MR

demonstrated that genetically predicted surface area increased genetically predicted local

gyrification index (LGI), intrinsic curvature index (ICI), and folding index (FI) after Bonferroni

correction. These results were statistically significant after applying methods that are robust

to various assumptions: median-weighted4 MR and MR-Presso5, and after removing outliers

by Steiger filtering6. These results also had consistent effect direction when using MR-Egger7,

which is statistically underpowered compared to other methods. However, in the reverse

direction, we did not obtain consistent results to indicate that genetic variants associated

with these measures increased genetically predicted surface area (SF 4). Visual inspection of

the forest plots and leave-one-out plots did not indicate that the results were driven by one

or two genetic variants (SF 5).

We confirmed our findings first by using a different method that can model both correlated

and uncorrelated pleiotropy (CAUSE)8 using two sets of instruments - one created from SNPs

with p < 5x10-8, and another with SNPs with p < 1x10-3, as previously demonstrated by the

developers of the method. CAUSE suggested that SA causally increased LGI, FI and ICI. In the

reverse direction, CAUSE identified a shared model between LGI, FI, and SA, and a causal

model between SA and ICI. Consistent results suggesting that genetically predicted surface

area increased genetically predicted measures of folding were obtained when MR was run

using ABCD and UKB. Altogether, MR provides support for the differential tangential growth

theory for some measures of folding, but suggests that other mechanisms may contribute to

other measures of folding.
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Supplementary Note 3: Adjusting for global phenotypes can bias regional GWAS

Following Aschard and colleagues9, we consider four scenarios in which a genetic variant

may be associated with regional phenotypes. Acyclic graphs are provided below (SF 13).

Scenario 1: A genetic variant is associated with a global phenotype but not associated with a

regional phenotype.

Scenario 2: A genetic variant is associated with a regional phenotype but not associated with

global phenotypes.

Scenario 3: A genetic variant is independently associated with both regional and global

phenotypes.

Scenario 4: The genetic effect of a variant on a regional phenotype is mediated partly or

completely by global phenotypes.

For Scenarios 2 and 4, controlling for the global phenotype will not affect the association

between the genetic variant and the regional phenotype. However, for scenarios 1 and 3,

correcting for the global phenotype will induce a correlation between the genetic variant

and the regional phenotype. The estimate will be biased by βCρCY where βC is the effect of

the genetic variant on the covariate (in this case the global phenotype), and ρCY is the

correlation between the covariate (the global phenotype) and outcome. In our study, the βC

for the standardised global phenotypes range from (-1.47) to (1.16) for the genome-wide

significant loci, and the correlations between the global phenotypes and regional

phenotypes are high and displayed in (SF 14). Therefore, correcting for the global

phenotypes will bias the regional estimates.
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Supplementary Figure 13: Acyclic graphs for the association between genetic variant and

regional phenotypes

Acyclic graphs demonstrating causal relationship between genetic variant (Xg) and regional

phenotype (YR), in the presence of the global phenotype which is the covariate (CG) and

other genetic and environmental factors (G/E) which contribute to the phenotypic

correlation between the regional phenotype and the global phenotype.
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Supplementary Figure 14: Correlation between regional phenotypes and global phenotypes

Pearson’s correlation coefficient between regional phenotypes and global phenotypes.
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