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1. Abstract
Scene recognition is a core sensory capacity that enables humans to adaptively
interact with their environment. Despite substantial progress in the understanding of
the neural representations underlying scene recognition, it remains unknown how
these representations translate into behavior given different task demands. To
address this, we aimed to identify behaviorally relevant scene representations, to
characterize them in terms of their underlying visual features, and to reveal how they
vary given different tasks. We recorded fMRI data while human participants viewed
manmade and natural scenes and linked brain responses to behavior in one of two
tasks acquired in a separate set of subjects: a manmade/natural categorization task
or an orthogonal task on fixation. First, we found correlations between scene
categorization response times (RTs) and scene-specific brain responses, quantified
as the distance to a hyperplane derived from a multivariate classifier, in occipital and
ventral-temporal, but not parahippocampal cortex. This suggests that
representations in early visual and object-selective cortex are relevant for scene
categorization. Next, we revealed that mid-level visual features, as quantified using
deep convolutional neural networks, best explained the relationship between scene
representations and behavior, indicating that these features are read out in scene
categorization. Finally, we observed opposite patterns of correlations between brain
responses and RTs in the categorization and orthogonal task, suggesting a critical
influence of task on the behavioral relevance of scene representations. Together,
these results reveal the spatial extent, content, and task-dependence of the visual
representations that mediate behavior in complex scenes.

2. Significance statement
Humans rapidly process scene information, allowing them to flexibly categorize and
adaptively react to their immediate environment. Here, we sought to determine how
the neural representations of scene information translate into adaptive behavior
given different task demands. We show that scene representations in early visual
and object-selective brain regions are relevant for categorization behavior. Further,
we reveal that visual features at an intermediate level of complexity underlie those
behaviorally relevant representations. Finally, we demonstrate that depending on the
task demands scene representations may facilitate or interfere with behavior. By
characterizing the spatial extent, content, and task-dependence of behaviorally
relevant scene representations, these findings elucidate the link between neural
representations and adaptive perceptual decisions in complex scenes.
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2. Introduction
To successfully interact with the environment, humans need to translate sensory
information into appropriate actions. The visual system plays a crucial role in this
process by extracting visual features from the environment and integrating them into
increasingly complex representations through a series of hierarchically organized
brain regions in the ventral visual stream (Epstein & Baker, 2019; Grill-Spector &
Weiner, 2014; Op de Beeck et al., 2008). While these representations must
ultimately serve as the basis for different behavioral goals, their relevance for
adaptive behavior in complex scenes is poorly understood. In particular, it remains
unknown i) where in the brain scene representations relevant for behavior emerge,
ii) what visual features these representations capture, and iii) whether the relevance
of these representations for behavior varies given different behavioral goals.

Previous studies have used diverse methods to identify visual representations
of simple and complex stimuli that are relevant for behavior (DiCarlo & Maunsell,
2005; Majaj et al., 2015; Philiastides et al., 2006; Philiastides & Sajda, 2006). One
such method particularly suited for complex real-world stimuli is the neural
distance-to-bound approach (Ritchie & Carlson, 2016), which links visual
representations in the brain to behavioral responses via the distance of brain
responses from a hyperplane in a high-dimensional response space estimated by a
multivariate classifier. Using this approach, behaviorally relevant object
representations have been identified in early visual as well as high-level object
selective regions (Carlson et al., 2014; Grootswagers et al., 2018; Ritchie & de
Beeck, 2019). A recent study has extended these insights to representations of
complex scenes, demonstrating that behaviorally relevant scene representations
arise in a time window from 100-200 ms after stimulus onset (Karapetian et al.,
2023). However, where in the brain such scene representations emerge remains
unknown.

Understanding the relevance of scene representations for behavior entails not
only identifying when and where behaviorally relevant representations emerge but
also characterizing them in terms of their underlying visual features. Prior research
has suggested that representations in scene-selective regions capture a variety of
visual features, ranging from low to high level of complexity (MacEvoy & Epstein,
2011; Stansbury et al., 2013; Watson et al., 2014). Yet, scene categorization can be
accomplished using only low-level (Oliva & Torralba, 2001) or mid-level visual
features (Renninger & Malik, 2004). This highlights that not all visual features that
are captured by scene representations might be required for scene categorization
behavior and raises the question of what visual features underlie behaviorally
relevant scene representations.

While the relevance of object and scene representations for behavior has
been demonstrated for categorization tasks (Contini et al., 2021; Grootswagers et
al., 2018; Karapetian et al., 2023; Ritchie & de Beeck, 2019), this relevance might
change given task demands that do not align with the represented information. For
instance, when engaged in an orthogonal task, viewing scenes can impair
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performance (Greene & Fei-Fei, 2014; Reeder et al., 2015; Seidl-Rathkopf et al.,
2015; Wyble et al., 2013), which suggests that scene representations interfere with
behavior in certain tasks. However, how the behavioral relevance of scene
representations changes for tasks other than categorization remains unknown.

Here, we aimed to identify behaviorally relevant scene representations in the
brain, to characterize them in terms of their underlying visual features, and to
investigate how they vary given different behavioral tasks. For this, we linked fMRI
data from human participants viewing scene images to behavioral responses from a
previous study (Karapetian et al., 2023) where participants performed either a
manmade/natural categorization task on the same scene images or an orthogonal
task on the fixation cross. To identify behaviorally relevant scene representations in
the brain, we first localized scene category representations using multivariate
decoding (Haynes & Rees, 2006) and then determined which of these
representations are relevant for categorization behavior by employing the neural
distance-to-bound approach (Ritchie & Carlson, 2016). Next, to elucidate the nature
of the behaviorally relevant representations, we determined what type of visual
features, quantified as activations from different layers of deep neural networks, best
explained behaviorally relevant representations. Finally, to investigate how the
behavioral relevance of scene representations varies with the task, we related scene
representations to behavior in either a categorization task or an orthogonal task on
fixation.
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3. Materials and Methods

3.1. Participants

30 healthy adults with normal or corrected-to-normal vision participated in the
present study. All participants provided their written informed consent before taking
part in the study and were compensated for their time. One participant was excluded
from the analyses due to incidental findings consistent with a recognized
neurological disorder, resulting in a final sample of 29 participants (mean age = 24.4,
SD=3.7, 21 female, 8 male). The study was approved by the ethics committee of
Freie Universität Berlin in accordance with the Declaration of Helsinki.

3.2. Experimental stimuli

We used 60 individual scene images from the validation set of the large-scale scene
dataset Places365 (Zhou et al., 2018) (see Fig. 1A). Half of the images depicted
manmade scenes and the other half natural scenes. The images were further
subdivided into 6 categories (beach, canyon, forest, apartment building, bedroom,
highway), with 10 exemplars for each category. To standardize the size and aspect
ratio of the stimuli, all images were center cropped and resized to 480x480 pixels
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Figure 1. Stimulus set and experimental paradigm. A) Stimulus set used in the experiment.We
used 60 scene images from the validation set of the Places365 dataset (Zhou et al., 2018). Half of the
stimuli depicted manmade and the other half natural scenes and spanned 6 categories: beach,
canyon, forest, apartment building, bedroom, highway. B) fMRI paradigm. In a given trial, a scene
image was presented for 500ms overlaid with a white fixation cross, followed by an interstimulus
interval (ISI) of 2500ms. In 20% percent of the trials the fixation cross turned red instead of the
stimulus presentation and participants were instructed to press a button. C) Behavioral paradigm.
Behavioral data was acquired with a different set of participants in a previous experiment (Karapetian
et al., 2023). In a given trial, a scene image was presented for 500ms, overlaid with a blue or green
fixation cross (chosen randomly), followed by the presentation of a white fixation cross for a variable
time between 500-700ms. In separate blocks, participants were either instructed to report if a given
scene image was a manmade or natural scene (categorization task) or if the color of the fixation cross
was green or blue (distraction task).

3.3. Experimental design and procedure

3.3.1. fMRI experimental paradigm

During the main fMRI experiment, participants were presented with individual scene
images while fixating. Stimuli were presented for 500ms at 12 degrees of visual
angle (width & height), overlaid with a central white fixation cross subtending 1
degree of visual angle (Fig. 1B). This was followed by an interstimulus interval of
2,500ms. In 20% of the trials, the fixation cross turned red instead of a stimulus
presentation, and the participants were tasked to respond with a button press.
Stimulus order was pseudo-randomized within a given run, avoiding immediate
repetition of the same stimulus. Each participant completed either 8 or 10 runs with
each run lasting 7min 46.5s. In a given run each stimulus was presented twice,
resulting in 16 or 20 stimulus repetitions in total for a given participant.

3.3.2. Functional localizer task
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To define regions of interest (ROIs), participants completed a functional localizer run
at the beginning of the recording session. The localizer consisted of 15s blocks of
objects, scrambled objects and scenes (not used in the main experiment) interleaved
with 7.5s blocks of only the fixation cross on background as baseline. The images
were displayed at a size of 12 degrees of visual angle, at the center of the screen for
400ms, followed by a 350ms presentation of the fixation cross. Participants were
instructed to maintain fixation on the fixation cross and to press a button in case the
same image was presented in two consecutive trials. In total, the localizer run
included 8 blocks of each image type, resulting in a duration of 7min 22.5s. The
order of the blocks was pseudo-randomized, avoiding immediate repetition of the
same type of block.

3.4. fMRI acquisition, preprocessing and univariate analysis

3.4.1. fMRI acquisition

We collected MRI data using a Siemens Magnetom Prisma Fit 3T system (Siemens
Medical Solutions, Erlangen, Germany) with a 64-channel head coil. Structural scans
were acquired using a standard T1-weighted sequence (TR=1.9s, TE=2.52ms,
number of slices: 176, FOV=256mm, voxel size=1.0mm isotropic, flip angle=9°).
Functional images were acquired using a multiband 3 sequence with partial brain
coverage (TR=1s, TE=33.3ms, number of slices: 39, voxel size: 2.49x2.49mm,
matrix size=82x82, FOV=204mm, flip angle=70°, slice thickness=2.5mm, acquisition
order=interleaved, inter-slice gap=0.25mm). The acquisition volume fully covered the
occipital and temporal lobes. Due to a technical update of the scanner the voxel size
as well as the FOV was slightly changed for the sequence used in the localizer
experiment for 20 out of the 30 participants (voxel size: 2.5x2.5mm, FOV=205mm).

3.4.2. fMRI preprocessing
We preprocessed the fMRI data using SPM12 utilities
(https://www._l.ion.ucl.ac.uk/spm/) and custom scripts in MATLAB R2021a
(www.mathworks.com).

We realigned all functional images to the first image of each run, slice-time
corrected them and co-registered them to the anatomical image. Further, based on
the functional images and tissue probability maps for the white matter and
cerebrospinal fluid, we estimated noise components using the aCompCor method
(Behzadi et al., 2007) implemented in the TAPAS PhysIO toolbox (Kasper et al.,
2017). Finally, we smoothed the functional images of the localizer run with a
Gaussian kernel (FWHM=5). The functional images of the experimental runs were
not smoothed.

3.4.3. fMRI univariate analysis
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We used a general linear model (GLM) to model the fMRI responses to each scene
image in a given run. As the regressors of interest, we entered the onsets and
durations of each of the 60 scene images, convolved with a hemodynamic response
function (HRF). As nuisance regressors, we entered the noise components and the
movement parameters and their first and second order derivatives. In order to
account for task- and region-specific variability in the HRF (Polimeni & Lewis, 2021)
we employed an HRF-fitting procedure as described in (Prince et al., 2022). For this,
we repeated the GLM fitting 20 times, each time convolving all of the regressors of
interest with a different HRF obtained from an open-source library of HRFs derived
from the Natural Scenes Dataset (Allen et al., 2022). After fitting all the GLMs, we
extracted the beta parameter estimates for the scene image regressors from the
GLM with the HRF that had resulted in the minimum mean residual for a given voxel.
Please note that this approach does not introduce any positive bias to multivariate
decoding analyses, since it only focuses on maximizing the overall fit to the data
without using any condition-specific information. This procedure resulted in 60 beta
maps (one for each scene image) for each run and participant.

For the localizer experiment, we used a separate GLM to model the fMRI
responses. Onsets and durations of the blocks of objects, scrambled objects and
scenes defined regressors that were convolved with the canonical HRF. We only
included movement parameters as nuisance regressors in this GLM. For localizing
functionally defined brain areas, we computed three contrasts: scrambled > objects
to localize early visual brain areas, objects > scrambled to localize object-selective
cortex, and scenes > objects to localize scene-selective cortex. This yielded three
t-maps for each participant.

3.4.4. Region-of-interest (ROI) definition

As ROIs, we defined early visual cortex (EVC) i.e. V1, V2, and V3, as well as
object-selective lateral occipital complex (LOC) and scene-selective
parahippocampal cortex (PPA). For the definition of all ROIs we followed a two step
procedure. First, we used masks based on a brain atlas with anatomical criteria for
EVC (Glasser et al., 2016) and masks based on functional criteria for LOC and PPA
(Julian et al., 2012). We transformed these masks into the individual subject space.
Next, we computed the overlap between the subject-specific masks and the
corresponding t-maps from the localizer experiment and only retained the
overlapping voxels with p-values smaller than 0.0001. For EVC, we used the
scrambled > objects t-map, for LOC we used the objects > scrambled t-map and for
PPA we used the scenes > objects t-map. Finally, we excluded voxels that
overlapped between any of the ROIs. This resulted in one EVC, LOC and PPA ROI
mask for each subject.

3.5. Multivariate decoding of scene category information
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To determine the amount of scene category information present in the fMRI response
patterns we used multivariate decoding. For this, we trained and tested linear
Support Vector Machine (SVM) classifiers (Chang & Lin, 2011) to distinguish if a
given fMRI response pattern belonged to a manmade or a natural scene. For
selecting train and test data for the classifiers, we used two different approaches: an
ROI-based method targeting predefined regions and a spatially unbiased searchlight
method for further specifying the spatial extent of local effects (Haynes et al., 2007;
Kriegeskorte et al., 2006). We conducted all analyses separately for each subject
and in the subject’s native anatomical space.

We formed pattern vectors based on the beta values from the voxels in a
given ROI or searchlight. For this, we assigned all but four beta patterns for each
scene image to the train set and the remaining four beta patterns to the test set.
Please note that each beta pattern was based on data from a separate run, thereby
avoiding potential false positives due to carry-over effects (Mumford et al., 2014). In
order to improve the signal-to-noise ratio, for a given scene image we averaged
betas from multiple runs into pseudo betas (Stehr et al., 2023). For the train set we
averaged two betas into one pseudo beta and for the test set we averaged all four
betas into one pseudo beta. Depending on whether participants finished 8 or 10
main experimental runs, this resulted in either 2 or 3 pseudo betas per scene image
for the train set and one pseudo beta for the test set.

To increase the robustness of the results, we repeated the splitting of the data
into train and test sets and the pseudo beta averaging 1,000 times while randomly
shuffling the order of the betas. The resulting decoding accuracies were averaged
across repetitions.

For the ROI-based method we iterated this procedure across ROIs and for the
searchlight-based method across searchlights. This resulted in one decoding
accuracy for every ROI and one searchlight decoding map for every subject. For
later group-level statistical analyses, we normalized the searchlight decoding maps
to the MNI template brain.

3.6. Behavioral data

In order to identify behaviorally relevant scene representations, we linked the neural
data recorded in the present study to behavioral data from 30 participants recorded
in a previous study (Karapetian et al., 2023). In short, participants were presented
with the same scene images as used in the current study and performed either a
manmade/natural categorization task on the stimuli or an orthogonal color
discrimination task on the fixation cross while EEG was recorded.

The experiment consisted of 20 blocks, 10 per task, and included at least 30
trials per scene image per block. In each trial, a stimulus was presented for 500ms
overlaid with a green or blue (randomly assigned) fixation cross, followed by a
presentation of a white fixation cross for a variable time window between 500 to
700ms. Participants were instructed at the beginning of each block to either report if
the presented stimulus was a manmade or a natural scene or to report the color of
the fixation cross, as accurately and as quickly as possible.
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We first averaged the response time (RT) data from the correctly answered
trials separately for the categorization and the fixation cross task for each subject
and then obtained the mean RT for each scene image and each task across
participants. On average, for a given subject 23.2 (SD = 6.0) trials were included for
each scene for the categorization task and 26.0 (SD = 1.46) for the orthogonal task.
This resulted in one mean RT for each scene image and each task.

3.7. Distance-to-bound analysis
We used the neural distance-to-bound approach (Carlson et al., 2014; Ritchie et al.,
2015; Ritchie & Carlson, 2016) to determine if scene information represented in fMRI
response patterns is behaviorally relevant (see Fig. 2A). The neural
distance-to-bound approach links the information in brain patterns to behavior by
predicting a relationship between RTs and distances of individual brain responses to
a criterion in the high-dimensional neural response space. The concept of a criterion
is based on signal detection theory (Green & Swets, 1966) and can be formulated in
high-dimensional spaces as a hyperplane that is estimated when using multivariate
decoding. The approach assumes a negative relationship between distances of
individual brain response patterns to the hyperplane and RTs: points close to the
hyperplane have weak sensory evidence and are difficult to categorize, leading to
longer RTs. Vice versa, points far from the hyperplane have strong sensory evidence
and can be easily categorized, resulting in short RTs. If this predicted relationship
holds true for observed brain response patterns and behavioral responses, then it is
assumed that information represented in these brain patterns is relevant for
behavior.

To test the predicted relationship between neural distances to the hyperplane
and RTs, we obtained distances for every scene image using the hyperplanes
estimated with the same decoding procedure as described above. We iterated this
procedure over ROIs and searchlights, resulting in a vector with 60 values (one for
each scene image) for each ROI, and searchlight. Finally, we correlated the vectors
of distances with the vector of mean RTs for each ROI and searchlight using
Pearson’s correlation. This yielded distance-RT correlations for each ROI,
searchlight and subject.

3.8. Model-based distance-to-bound analysis
To examine what type of visual features best explains behaviorally relevant scene
representations in the brain, we used the neural distance-to-bound approach in
combination with deep neural network (DNN) modeling and commonality analysis
(Mood, 1971; Reichwein Zientek & Thompson, 2006). The basic rationale (see Fig.
4A-C) involved first extracting activations from different DNN architectures and layers
as an approximation of visual feature representations at different levels of complexity
(Bankson et al., 2018; Groen et al., 2018; Reddy et al., 2021; Xie et al., 2020). The
assumption that these activations approximate a gradient of feature complexity is
based on demonstrations of a hierarchical correspondence between representations
in DNNs and the human brain (Cichy et al., 2016; Güçlü & Gerven, 2015). Moreover,
as processing advances in the network, representations undergo increasingly more
non-linear transformations, further supporting the claim of increasing feature
complexity in DNNs. Next, in order to link neural network activations, brain response
patterns and behavioral RTs, we derived distances to the hyperplane based on the
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neural network activations. Finally, to determine which activations best explained
behaviorally relevant scene representations, we estimated the shared variance
between model distances, neural distances and RTs using commonality analysis.

In detail, as models we used the ResNet-50, ResNet-18 (He et al., 2015),
AlexNet (Krizhevsky et al., 2012) and DenseNet161 (Huang et al., 2018)
architectures, pre-trained on the Places365 dataset (Zhou et al., 2018)
(https://github.com/CSAILVision/places365). We chose to examine different DNN
architectures to ensure that a given pattern of results is not idiosyncratic to a given
architecture but can be generalized to a given hierarchical level regardless of the
specific architecture. We extracted activations for 1,200 images from the validation
set of Places365 (Zhou et al., 2018) as well as for our experimental stimuli. The
Places365 images were sampled from 80 categories (half manmade, half natural),
including the six categories from our stimulus set, and contained 15 images per
category. For the extraction we focussed on a selection of layers including all pooling
layers and the last fully connected layer for AlexNet, the output of all residual blocks
and the last fully connected layer for the ResNets, as well as the first pooling layer,
the output of all the DenseBlocks and the last fully connected layer for DenseNet161.
For computational efficiency, we reduced the network activations for every layer
except for the fully connected layers to a dimensionality of 1,000 by using PCA on
the activations for the 1,200 images from the validation set of Places365 and
applying the parameters to these activations as well as the activations for our
experimental stimuli.

Next, we trained SVM classifiers on a manmade/natural classification task
using the reduced activations for the 1,200 Places365 validation images for every
layer and network separately. Subsequently, we tested the trained SVM classifiers on
the reduced activations for our 60 experimental stimuli and derived a distance to the
hyperplane for each scene image. This resulted in 60 distances for each layer and
network.

Finally, using commonality analysis we determined the common variance
between the network distances, neural distances and behavioral RTs. In
commonality analysis, the common variance that can be explained in a given
outcome variable by two predictor variables is defined as the amount of variance
explained by both predictors in the outcome variable minus the unique contribution of
each of the predictors. In simplified form this term can be written as:
C(AB)=R2

y.A+R2
y.B-R2

y.AB, where R2 is the explained variance in a multiple regression
model with the mean RTs as outcome variable (y) and either neural distances (A),
network distances (B) or both (AB) as predictor variables. We fitted the
corresponding multiple regression models and computed the commonality based on
the R2 values, resulting in shared variance estimates for each network, layer, ROI
and subject.

3.9. Statistical analyses
For statistical testing we used non-parametric sign permutation tests at the
group-level (Nichols & Holmes, 2002). In essence, we obtained null distributions for
a statistic (decoding accuracies, distance-RT correlations) by randomly permuting
the sign of the results at the participant level 10,000 times. Next, we obtained
p-values for the observed data by comparing their statistic to that of the null
distribution. We used one-sided tests for decoding accuracies, as well as two-sided
tests for distance-RT correlations and differences between decoding accuracies.
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To correct for multiple comparisons, we used two different approaches. In the
case of only a limited number of tests (i.e., < 10) such as multiple ROIs or neural
network layers, we used the Benjamini-Hochberg FDR-correction without
dependency (Benjamini & Hochberg, 1995). When applying a large number of tests
such as for testing across searchlights (i.e., ~ 100,000), we used a cluster-based
correction (Maris & Oostenveld, 2007). For this, we first thresholded the p-values
from the non-parametric sign permutation tests at p<0.001. Then we clustered the
thresholded p-values by spatial adjacency, and computed the maximum cluster size
for each permutation. Next, we determined the p-value for each cluster in the
observed data by comparing the cluster size of a given cluster to the maximum
cluster size distribution. Finally, we thresholded the cluster p-values at p<0.05.

To compute 95% confidence intervals for the hierarchical level, i.e. the layer
index where there was the peak R2 value obtained by the commonality analysis, we
used bootstrapping. First, we took 100,000 random samples with replacement from
the participant-specific R2 values. We computed the mean over participants for each
bootstrap sample and detected the index of the layer with the peak R2 value across
network layers. Finally, we used the 2.5% and 97.5% percentiles of the bootstrap
distribution as the lower and upper bound of confidence intervals.

3.10. Data and code availability
The raw fMRI data is available in BIDS format on OpenNeuro
(https://openneuro.org/datasets/ds004693). The beta maps obtained from the GLM,
the behavioral data, the distances derived from the DNNs, as well as all first-level
and group-level results are available via OSF (https://osf.io/y8tx2/). All code used for
the first-level and group-level analyses in this study is provided via Github
(https://github.com/Singerjohannes/visdecmak).

4. Results

4.1. Scene representations in occipital and ventral-temporal but not
parahippocampal cortex are negatively correlated to categorization
RTs
To identify scene category representations in the brain we used multivariate
decoding. For this, we trained SVM classifiers on the fMRI data to predict if a given
brain activity pattern belonged to a manmade or a natural scene and tested the
classifier on left-out data. We first performed this analysis for EVC, LOC and PPA.
We found decoding accuracies significantly above chance in all ROIs (Fig. 2B,
p<0.001, sign-permutation test, FDR-corrected), suggesting the presence of scene
category representations in these regions as expected from their central role in
processing complex visual stimuli (Epstein & Baker, 2019; Grill-Spector & Weiner,
2014; Op de Beeck et al., 2008). To further uncover scene category representations
beyond our predefined ROIs, we performed spatially-unbiased searchlight decoding
(Haynes & Rees, 2006; Kriegeskorte et al., 2006). We found that scene category
was decoded with accuracies significantly above chance (p<0.05, cluster-based
permutation test) throughout the ventral and dorsal visual stream, with peaks in
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posterior and lateral parts of the occipital cortex and decreases towards anterior
parts of cortex (Fig. 3A). Together, these results suggest a widespread presence of
scene category representations as candidates for categorization behavior-relevant
representations along both the ventral and dorsal stream (Walther et al., 2009,
2011).

Figure 2. Scene category representations and behaviorally relevant scene representations in
EVC, LOC and PPA. A) Neural distance-to-bound approach for identifying behaviorally relevant
scene representations. For each subject, we derived neural distances from the fMRI response
patterns by training SVM classifiers on part of the fMRI data and obtaining scene-specific distances
from the hyperplane of the classifier for the left-out fMRI data. Next, we obtained mean RTs (in a
manmade/natural categorization task or an orthogonal task on the fixation cross) across participants
for each scene image and linked these RTs to the neural distances using Pearson’s correlation. We
iterated this procedure over ROIs or searchlights, resulting in ROI-specific correlation values or
searchlight correlation maps. Negative correlations between neural distances and RTs at a specific
location in the brain indicate that the representations at this location are relevant for behavior. B)
Decoding of scene category in EVC, LOC and PPA. Scene category could be decoded with
accuracies significantly above chance in EVC, LOC and PPA. C) Correlations between behavioral
RTs and neural distances in EVC, LOC and PPA. There were negative correlations between
behavioral RTs and neural distances in EVC, LOC but not PPA. Error bars depict the standard error of
the mean across participants. Stars above or below the bars indicate significant results.
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Having identified scene category representations in the brain, we sought to
determine to what extent these representations are relevant for categorization
behavior. For this, we applied the neural distance-to-bound approach (Ritchie &
Carlson, 2016; for visualization see Fig. 2A). In short, we first obtained mean RTs for
the manmade/natural categorization task across participants for each scene image
recorded in a previous experiment (Karapetian et al., 2023) and derived neural
distances for each scene image from the SVM classifiers trained on the fMRI
response patterns recorded in this study. Next, we correlated the neural distances
and behavioral RTs across the 60 scene images and repeated this procedure across
ROIs and searchlights. Given a negative relationship between neural distances and
RTs at a given locus in the brain, it is assumed that representations in this area are
relevant for behavior.

We found negative distance-RT correlations in EVC, LOC (both p<0.001,
sign-permutation test, FDR-corrected, Fig. 2B) but not in PPA (p=0.487,
sign-permutation test, FDR-corrected), suggesting that scene representations in
EVC and LOC are relevant for categorization behavior, without positive evidence for
a role of PPA.

Searchlight analysis further revealed significant negative distance-RT
correlations (p<0.05, cluster-based permutation test, Fig. 3B) at the border between
occipital and ventral temporal cortex and between occipital and posterior parietal
cortex, but not in parahippocampal cortex. This corroborates the ROI-based
analyses and further specifies the locus of behaviorally relevant scene
representations in a spatially unbiased fashion.

Surprisingly, we also found significant positive distance-RT correlations
(p<0.05, cluster-based permutation test), which were confined to the right occipital
cortex only. A positive correlation between neural distances and RTs violates the
predictions of the neural distance-to-bound approach and suggests that a scene
representation with a strong category signal leads to a slow RT in the task and vice
versa. This implies interference between scene representations in the occipital
cortex and behavior in the categorization task.
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Figure 3. Scene category representations and behaviorally relevant scene representations
across the brain. A) Decoding of scene category in the visual cortex. Spatially-unbiased
searchlight decoding revealed significant decoding accuracies that were most pronounced in posterior
and lateral parts of occipital cortex, with decreasing accuracies towards anterior parts of
ventral-temporal cortex and posterior-parietal cortex. B) Correlations between behavioral RTs and
neural distances in the visual cortex. Iterating the correlation across searchlights showed negative
distance-RT correlations that were strongest at the border between occipital and ventral-temporal
cortex as well as at the border between occipital and posterior parietal cortex. There were additional
significant positive correlations which were strongest in the right occipital cortex.

4.2. Features derived from intermediate neural network layers best
explain behaviorally relevant scene representations in the visual
cortex
While our findings so far suggest that a subset of scene representations in the visual
cortex are relevant for categorization behavior, they leave open what type of visual
features underlies these behaviorally relevant scene representations. We
investigated this question in terms of feature complexity. As a proxy for low- to high
complexity visual features, we used deep neural network activations extracted from
different layers (for similar approaches see: (Bankson et al., 2018; Greene &
Hansen, 2020; Groen et al., 2018; Reddy et al., 2021; Xie et al., 2020)) and asked to
what extent these activations can explain the link between scene representations
and behavioral responses (for a visualization of the procedure see Fig. 4A-C). We
linked network activations to RTs and fMRI data using the neural distance-to-bound
approach (Ritchie & Carlson, 2016) and determined which layer’s activations best
explain the shared variance between RTs and fMRI data using commonality analysis

14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.08.17.553708doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.17.553708
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Mood, 1971; Reichwein Zientek & Thompson, 2006). We focussed on EVC and
LOC since we found significant distance-RT correlations only there.

In EVC we found significant R2 values for most of the networks and layers (all
p<0.026, sign-permutation test, FDR-corrected, Fig. 4D) except for the first layer in
ResNet50 (p=0.051, sign-permutation test, FDR-corrected), ResNet18 (p=0.296,
sign-permutation test, FDR-corrected) and DenseNet161 (p=0.318, sign-permutation
test, FDR-corrected). In addition, for ResNet18 there were significant negative R2
values in the last layer indicating that the distances in this layer did not share
variance with the neural or behavioral distances but rather suppressed some of the
shared variance between brain and behavior. In LOC we found significant R2 values
for most networks and layers (all p<0.001, sign-permutation test, FDR-corrected, Fig.
4E) except for the first layer in DenseNet161 (p=0.773, sign-permutation test,
FDR-corrected). Similarly to EVC, R2 values for the last layer in ResNet18 were
negative, indicating that the distances in this layer did not contribute to explaining the
shared variance between brain and behavior. Together, this suggests that in both
EVC and LOC visual features from most hierarchical levels, excluding very early and
late stages, explain a part of the variance that is shared between brain and behavior.

Next, we determined which visual features explain the shared variance most
strongly between brain and behavior by determining the layers with peak shared
variance. We found that the shared variance in EVC peaked in intermediate layers
for most networks except for AlexNet (peak layer and bootstrap 95% CIs: ResNet18
= 4; [3, 4], ResNet50 = 4; [3, 4], AlexNet = 2; [2, 4], DenseNet161 = 4; [3, 5], Fig.
4D). In LOC, the shared variance peaked in intermediate layers for all networks
(peak layer and bootstrap 95% CIs: ResNet18 = 4; [4, 4], ResNet50 = 4; [3, 4],
AlexNet = 4; [4, 4], DenseNet161 = 4; [4, 4], Fig. 4E). These results demonstrate that
mid-level visual features best explain behaviorally relevant scene representations.
Furthermore, the layers best explaining the link between brain and behavior in EVC
and LOC showed substantial overlap, potentially indicating a common format of
behaviorally relevant scene representations across these regions.
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Figure 4. Visual features underlying behaviorally relevant scene representations. A) Extraction
of activations from various deep neural network layers. As an approximation of features of
different complexity from low- to high-level, we extracted activations for 1200 scene images (half
manmade, half natural) from the validation set of Places365 as well as for our experimental stimuli
from various deep neural network architectures and layers. B) Deriving scene-specific distances
from neural network activations. For linking the neural network activations to distances based on
fMRI data and behavioral RTs we first reduced the activations using PCA for every layer separately
resulting in 1,000 PCA components per scene image. Next, for every layer and network separately,
we trained SVM classifiers on a manmade/natural classification task using the Places365 activations
and then tested the classifiers on the activations for our experimental stimuli. This yielded distances
from the hyperplane for each of our experimental stimuli and every layer and network. C)
Commonality analysis approach.We asked to what extent model distances for a given network and
layer explain the shared variance between distances based on fMRI data and behavioral RTs. For
this, we assessed the shared variance between neural distances, model distances and behavioral
RTs using commonality analysis. D) Shared variance for each network and layer in EVC.We found
significant positive R2 values in all of the layers and networks except for the first layer in ResNet50,
ResNet18 and DenseNet161 and the last layer in ResNet18. R2 values peaked in intermediate layers
for all networks except for AlexNet. E) Shared variance for each network and layer in LOC. R2

values were positive and significant in all networks and layers except for the first layer in
DenseNet161 and the last layer in ResNet18. For all networks R2 values peaked in intermediate
layers. Colored dots below the lines indicate significant layers. Shaded areas represent the SEM
across participants for each layer. Horizontal error bars depict the 95% confidence intervals of the
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peak layer index. No horizontal error bar for a given layer indicates that the 95% confidence interval
included only the value of the peak layer index.

4.3. Scene representations show opposite patterns of correlation
with behavior in a categorization and an orthogonal task
While we identified and characterized scene representations relevant for one
particular type of task, i.e. categorization behavior, their impact on behavior might
differ for other tasks. To investigate this, we determined the behavioral relevance of
scene representations for a distraction task orthogonal to categorization. For this, we
correlated scene-specific distances to RTs from a distraction task on which
participants judged the color of the fixation cross, analogously to how we identified
behaviorally relevant scene representations for the categorization task.

In contrast to the negative correlations for the categorization task, we found
positive distance-RT correlations in EVC (p=0.004, sign-permutation test,
FDR-corrected) and LOC (p<0.001, sign-permutation test, FDR-corrected), but not in
PPA (p=0.073, sign-permutation-test, FDR-corrected, Fig. 5A). Searchlight analysis
further revealed positive distance-RT correlations that were most pronounced at the
border between occipital and ventral-temporal cortex (p<0.05, cluster-based
permutation test, Fig. 5B). These positive correlations are contrary to the predictions
of the neural distance-to-bound approach (Ritchie & Carlson, 2016) and demonstrate
that scene representations with a strong category signal are associated with slow
responses in the distraction task and vice versa for scene representations with a
weak category signal and speeded responses. This suggests that scene
representations at the border between occipital and ventral-temporal cortex interfere
with behavior in the distraction task.

Given these opposing patterns of correlations for the distraction and the
categorization task, we asked if the same representations that showed a positive
correlation with behavior in the distraction task exhibited a negative correlation with
behavior in the categorization task, or if these representations were distinct from
each other. For this, we computed the overlap between the voxels with significant
negative correlations with RTs in the categorization task (see Fig. 3B in red) and the
voxels with significant positive correlations with RTs in the distraction task (see Fig.
5B in red). Interestingly, there was a partial overlap between the significant voxels for
the categorization task and the significant voxels for the distraction task (see Fig. 5B
in blue), indicating that a subset of scene representations that are relevant for
categorization behavior showed an inverse relationship with behavior in the
distraction task.

A possible explanation for this observed inverse relationship might be that
scene representations that are relevant for categorization behavior evoke a strong
category signal in the brain which takes away processing resources from the
distraction task, thereby slowing the RT. Given this interference between scene
representations and performance in the categorization task we expected to observe
a similar relationship between the RTs in the categorization task and the distraction
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task, namely that scenes that are solved faster in the categorization task lead to
slower RTs in the distraction task and vice versa. To test this, we correlated the RTs
from the categorization task with the RTs from the distraction task. We found a
negative correlation between the RTs of the two tasks (r = -0.367, p = 0.004; Fig.
5C), indicating that scene images that are solved fast in the categorization task are
associated with long RTs when presented during the distraction task and vice versa.
This suggests that scene processing interferes with performance in the distraction
task, corroborating the interference effect between scene representations and
behavior in the distraction task.

In sum, these results provide evidence that a subset of scene representations
in the visual cortex are relevant for behavior even in tasks beyond categorization.
Yet, the relevance of these representations for behavior differed for the distraction
task and the categorization task. While scene representations facilitate
categorization behavior, they interfere with behavior in the distraction task. This
demonstrates that the task context critically affects the behavioral relevance of scene
representations.

Figure 5. Effects of task on the behavioral relevance of scene representations. A) Correlations
between RTs in the distraction task and neural distances in EVC, LOC and PPA. We found
significant positive correlations in EVC, LOC but not PPA. Error bars depict the SEM across
participants. Stars above the bars indicate significant results. B) Correlations between RTs in the
distraction task and neural distances in the visual cortex. We found positive correlations that
were strongest at the border between occipital and ventral-temporal cortex. There was a partial
overlap between the significant negative clusters of distance-RT correlations for the categorization
task and the positive clusters in the distraction task, colored in blue here. C) Correlations between
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mean RTs for the categorization and the distraction task. We found a negative correlation
between RTs in the distraction and the categorization task.

5. Discussion
In the present study we identified and characterized behaviorally relevant scene
representations as well as their dependence on the task by relating fMRI responses
to behavioral RTs using the neural distance-to-bound approach (Ritchie & Carlson,
2016). We revealed three key findings. First, while we could decode scene category
along both the ventral and dorsal streams, neural distances were negatively
correlated to categorization RTs only at the border between occipital and
ventral-temporal cortex, but not in parahippocampal cortex. This suggests that
despite a widespread presence of scene category representations only a subset of
these representations was relevant for categorization behavior. Second, distances
derived from intermediate layers of deep neural networks best explained the shared
variance between brain and behavior, suggesting that mid-level visual features best
account for behaviorally relevant scene representations. Finally, we observed
opposing patterns of correlation between neural distances and RTs for the distraction
task and the categorization task. While for categorization RTs there was a negative
correlation, suggesting facilitation of behavior, for distraction RTs we found a positive
correlation, suggesting interference with behavior. This demonstrates that the task
context critically affects the behavioral relevance of scene representations.

5.1. Behaviorally relevant scene representations emerge at the
border between occipital and ventral-temporal but not in
parahippocampal cortex
By employing the neural distance-to-bound approach (Ritchie & Carlson, 2016), we
identified scene representations relevant for categorization behavior at the border
between occipital and ventral-temporal but not in parahippocampal cortex. These
findings align with object recognition studies (Carlson et al., 2014; Grootswagers et
al., 2018; Ritchie et al., 2015; Ritchie & de Beeck, 2019) showing behaviorally
relevant representations in both early and high-level visual cortex. However, our
findings challenge the view that information for categorizing natural images is only
read out from high-level visual cortex (Majaj et al., 2015) and suggest that
representations from both early and high-level visual cortex might be read out in
perceptual decision-making (Birman & Gardner, 2019; Jagadeesh & Gardner, 2021).

Our findings complement a recent characterization of behaviorally relevant
scene representations over time (Karapetian et al., 2023) by spatially localizing these
representations in the brain. The presence of behaviorally relevant scene
representations in LOC, but not PPA, is in line with studies emphasizing the role of
LOC in scene recognition (Linsley & MacEvoy, 2014; MacEvoy & Epstein, 2011;
Stansbury et al., 2013). However, it conflicts with the pivotal role of PPA in scene
recognition (Aguirre et al., 1998; Epstein & Kanwisher, 1998) and with findings of
behaviorally relevant representations in PPA (Groen et al., 2018; King et al., 2019).
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One possible explanation for this discrepancy is that in our study, participants might
have relied on detecting objects rather than the spatial layout of a scene for
categorization. Since the representation of objects is more strongly associated with
LOC than with PPA (Park et al., 2011), and spatial layout is more strongly associated
with PPA than LOC, relying on objects during scene categorization might render
representations in LOC relevant and in PPA irrelevant for behavior. Further studies
examining categorization behavior while controlling different types of visual
information in scenes are needed to determine what type of visual information drives
categorization behavior in scenes.

Surprisingly, we found a positive correlation between neural distances in the
right occipital cortex and RTs in the categorization task. These findings are not
captured by the rationale of the neural distance-to-bound approach (Ritchie &
Carlson, 2016), which assumes a negative relationship between neural distances
and RTs, where high distances are associated with fast RTs and vice versa. Instead,
we observed the opposite: high distances were associated with slow RTs and vice
versa, suggesting interference between scene representations and behavior in the
categorization task. This interference is hard to reconcile with the role of the occipital
cortex in visual processing. However, these positive correlations might be spurious
and influenced by a bias in the classifier’s hyperplane towards a specific category
(e.g. manmade, natural). Such biases in the distance-RT correlations towards one
category of a given category division (e.g. animate over inanimate) have been
reported previously (Carlson et al., 2014; Grootswagers et al., 2017, 2018;
Karapetian et al., 2023; Ritchie et al., 2015). Fully understanding this phenomenon
requires simulations of different data regimes in combination with an in-depth
geometrical analysis of the estimated hyperplane and its relationship to individual
data points, which is an exciting avenue for future studies.

5.2. Mid-level visual features underlie behaviorally relevant scene
representations in the visual cortex
We found that mid-level visual features best explained the shared variance between
neural distances and RTs in two brain regions: EVC and LOC. These results parallel
object recognition studies that highlight the importance of mid-level visual features
for categorizing objects (Eberhardt et al., 2016) and for the organization of object
representations in occipito-temporal cortex (Long et al., 2018). Along with the
localization of behaviorally relevant representations in EVC and LOC, but not PPA,
this suggests that object information significantly influenced scene categorization.
However, our findings also conflict with previous studies, which showed that
high-level conceptual features best explain variance in behavioral similarity
judgments for scenes and objects (Greene & Hansen, 2020; King et al., 2019). One
potential reason for this divergence is that similarity judgments might be based on
different visual features than categorization. While categorization might depend on
object information related to mid-level visual features (Eberhardt et al., 2016; Long et
al., 2018), judging the similarity of scenes might involve high-level features related to
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the semantics of a scene. Contrasting different characterizations of behavior in
response to scenes and their relationship to brain data will be a fruitful path towards
better understanding the relevance of distinct types of visual features for various
behavioral goals.

Interestingly, we observed considerable similarity in the pattern of explained
variance across types of visual features in EVC and LOC. This suggests that
behaviorally relevant representations in these regions share a common format. This
similarity might be explained by feedback from higher level visual areas that shapes
visual representations in early visual areas rendering them behaviorally relevant.
Recent findings support this notion, indicating that task-relevant information in lower
level visual regions emerges only late in time after feedback from higher level visual
regions has affected lower level visual areas (Sexton & Love, 2022). Due to the
temporal sluggishness of the BOLD response, we cannot directly examine the
temporal dynamics of behaviorally relevant representations. Future studies could use
techniques such as backward masking (Fahrenfort et al., 2007) to experimentally
manipulate feedback processing and investigate its impact on behaviorally relevant
representations in the visual cortex directly.

5.3. Task context critically affects behavioral relevance of scene
representations
We found opposing patterns of correlation between neural distances and RTs in the
categorization task and the distraction task. This suggests distinct relationships
between scene representations and behavior depending on the task. In the
categorization task, strong category signals were associated with fast RTs and vice
versa, suggesting a facilitative relationship between scene representations and
behavior. In contrast, for the distraction task, strong category signals were
associated with slow RTs and vice versa, indicating interference between scene
representations and behavior. This interference could be due to automatic
processing of the content of a scene (Greene & Fei-Fei, 2014) which might have
interfered with the representation of the fixation cross color. Alternatively, attention
might have been differentially captured by the scenes and diverted away from the
fixation cross, thereby impairing performance in the distraction task (Reeder et al.,
2015; Seidl-Rathkopf et al., 2015; Wyble et al., 2013). While our findings cannot
dissociate between these alternatives, they highlight the importance of scene
recognition as a core cognitive process which cannot be easily suppressed.

5.4. Limitations
Several experimental factors potentially limit the generalizability of our findings. First,
we focussed solely on manmade/natural categorization behavior, and other types of
categorization might involve different visual representations and visual features
(Contini et al., 2021; Grootswagers et al., 2018). Second, our choice of task in the
fMRI experiment might have limited the emergence of behaviorally relevant
representations. Participants performed a task on the fixation cross in the fMRI
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experiment which differed from the categorization or the distraction task in the
behavioral experiment (Karapetian et al., 2023). Even though previous studies have
shown that task engagement is not necessary for emergence of behaviorally relevant
visual representations in the occipito-temporal cortex (Carlson et al., 2014;
Grootswagers et al., 2018), particularly representations in parietal or frontal brain
regions are affected by the task (Bracci et al., 2017; Hebart et al., 2018;
Vaziri-Pashkam & Xu, 2017). Thus, engaging participants in the same task in the
fMRI and behavioral experiment could have expanded the detectable behaviorally
relevant representations.

5.5. Conclusion
Together, our findings reveal the spatial extent of the visual representations
underlying categorization behavior for real-world scenes, identify mid-level visual
features as the main contributor to these behaviorally relevant representations, and
suggest that the task context critically affects behavioral relevance of scene
representations. These results contribute to the understanding of the neural
mechanisms and visual features enabling adaptive perceptual decisions in complex
real-world environments.
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