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Abstract 

Object vision is commonly thought to involve a hierarchy of brain regions processing 

increasingly complex image features, with high-level visual cortex supporting object 

recognition and categorization. However, object vision supports diverse behavioral goals, 

suggesting basic limitations of this category-centric framework. To address these limitations, 

we mapped a series of behaviorally-relevant dimensions derived from a large-scale analysis 

of human similarity judgments directly onto the brain. Our results reveal broadly distributed 

representations of behaviorally-relevant information, demonstrating selectivity to a wide 

variety of novel dimensions while capturing known selectivities for visual features and 

categories. Behaviorally-relevant dimensions were superior to categories at predicting brain 

responses, yielding mixed selectivity in much of visual cortex and sparse selectivity in 

category-selective clusters. This framework reconciles seemingly disparate findings regarding 

regional specialization, explaining category selectivity as a special case of sparse response 

profiles among representational dimensions, suggesting a more expansive view on visual 

processing in the human brain.  
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Introduction 

A central goal of visual neuroscience is to understand how the brain encodes and represents 

rich information about objects, allowing us to make sense of our visual world and act on it in 

meaningful ways. A widely studied and influential account posits that one central function of 

the visual system is to recognize objects by organizing them into distinct categories 1–4. 

According to this view, early visual cortex serves to analyze incoming visual information by 

representing basic visual features 5, which are then combined into more and more complex 

feature combinations, until higher-level visual regions in the occipitotemporal cortex and 

beyond support the recognition of object identity and category 3. In line with this view, a number 

of category-selective clusters have been identified in occipitotemporal cortex that respond 

selectively to specific object classes such as faces, scenes, body parts, tools, or text 6–11. The 

functional significance of these regions is underscored by studies demonstrating that object 

category and identity as well as performance in some behavioral tasks can be read out from 

activity in occipitotemporal cortex 12–17 and that lesions to these regions can lead to selective 

deficits in object recognition abilities 18–22. 

 

Despite the importance of object categorization and identification as crucial goals of object 

vision, it has been argued that these functions alone are insufficient for capturing how our 

visual system allows us to make sense of the objects around us 23. A more comprehensive 

understanding of object vision should account for the rich meaning and behavioral relevance 

associated with individual objects beyond discrete labels. This requires incorporating the many 

visual and semantic properties of objects that underlie our ability to make sense of our visual 

environment, perform adaptive behaviors, and communicate about our visual world 23–27. 

Indeed, others have proposed that visual cortex is organized based on continuous dimensions 

reflecting more general object properties, such as animacy 28–31, real-world size 29,32, aspect 

ratio 31,33, or semantics 34. These and other continuous dimensions reflect behaviorally-

relevant information that offers a more fine-grained account of object representations than 

discrete categorization and recognition alone. This dimensional view suggests a framework in 

which visual cortex is organized based on topographic tuning to specific dimensions that 

extends beyond category-selective clusters. Under this framework, category-selective clusters 

may emerge from a more general organizing principle 34–38, reflecting cortical locations where 

these tuning maps encode feature combinations tied to specific object categories 34,38,39. Yet, 

while previously proposed dimensions have been shown to partially reflect activity patterns in 

category-selective clusters 40–45, they cannot account fully for the response profile and are 

largely inferior to category-selectivity in explaining the functional selectivity of human visual 

cortex for objects 46,47. 
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To move beyond the characterization of individual behavioral goals underlying both the 

discrete category-centric and the continuous dimensional view and to comprehensively map 

a broad spectrum of behaviorally-relevant representations, one powerful approach is to link 

object responses in visual cortex to judgments about the perceived similarity between objects 
48–51. Indeed, perceived similarity serves as a common proxy of mental object representations 

underlying various behavioral goals, as the similarity relation between objects conveys much 

of the object knowledge and behavioral relevance across diverse perceptual and conceptual 

criteria 52–56. As such, perceived similarity is ideally suited for revealing behaviorally-relevant 

representational dimensions and how these dimensions are reflected in cortical patterns of 

brain activity. 

 

To uncover the nature of behaviorally-relevant selectivity underlying similarity judgments in 

human visual cortex, in the present study we paired functional MRI responses to thousands 

of object images 57 with core representational dimensions derived from a dataset of millions of 

human similarity judgments. In contrast to much previous research that has focused on a small 

number of hypothesis-driven dimensions or that used small, selective image sets 29,48–51,58–60, 

we carried out a comprehensive characterization of cortical selectivity in response to 66 

representational dimensions identified in a data-driven fashion for 1,854 objects 52,61. 

 

Moving beyond the view that mental object representations derived from similarity judgments 

are primarily mirrored in high-level visual cortex 48–50,57, we demonstrate that representations 

underlying core object dimensions are reflected throughout the entire visual cortex. Our results 

reveal that cortical tuning to these dimensions captures the functional topography of visual 

cortex and mirrors stimulus selectivity throughout the visual hierarchy. In this multidimensional 

representation, category selectivity stands out as a special case of sparse selectivity to a set 

of core behaviorally-relevant representational object dimensions, while other parts of visual 

cortex reflect a more mixed selectivity. A direct model comparison revealed that continuous 

object dimensions provide a better model of brain responses than categories across the visual 

system, suggesting that dimension-related tuning maps offer more explanatory power than a 

category-centric framework. Together, our findings reveal the importance of behaviorally-

relevant object dimensions for understanding the functional organization of the visual system 

and offer a broader, comprehensive view of object representations that bridges the gap 

between regional specialization and domain-general topography. 
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Results 

We first aimed at mapping core representational object dimensions to patterns of brain activity 

associated with visually-perceived objects. To model the neural representation of objects while 

accounting for their large visual and semantic variability 62,63, we used the THINGS-data 

collection 57, which includes densely sampled fMRI data for thousands of naturalistic object 

images from 720 semantically diverse objects, as well as 4.7 million behavioral similarity 

judgments of these objects (Fig. 1). 

 

As core object dimensions, we used a recent similarity embedding of behaviorally-relevant 

object dimensions, which underlie the perceived similarity of 1,854 object concepts 52,57. In this 

embedding, each object image is characterized by 66 dimensions derived from the human 

similarity judgments in an odd-one-out task. We chose this embedding for several reasons: 

First, it provides highly reproducible dimensions that together are sufficient for capturing single 

trial object similarity judgments close to the noise ceiling. Second, the use of an odd-one-out 

task supports the identification of the minimal information required to distinguish between 

different objects, and as such is sensitive not only to conceptual information, such as high-

level category (e.g., “is an animal”), but also to key visual-perceptual distinctions (e.g., “is 

round”). Thus, the object dimensions are behaviorally-relevant, in that they support the key 

factors underlying arbitrary categorization behavior and as such underlie our ability to make 

sense of our visual world, to generalize, structure our environment, and to communicate our 

knowledge. Indeed, the object dimensions capture external behavior such as high-level 

categorization and typicality judgements, underscoring their potential explanatory value as a 

model of neural responses to objects 52. Third, the object dimensions are easily interpretable, 

thus simplifying the interpretation of neural activity patterns in relation to individual dimensions. 

 

The fMRI dataset covers 8,740 unique images from 720 categories presented to three 

participants (2 female) over the course of 12 sessions 57. Given that the behavioral similarity 

embedding was trained only on one image per each of the 1,854 THINGS categories, these 

dimensions may only partially capture the visual richness of the entire image set, which may 

affect the potential for predicting image-wise brain responses. To address this challenge, we 

fine-tuned the artificial neural network model CLIP-VIT 64 to directly predict object dimensions 

for the 8,740 images in our fMRI dataset. This approach led to highly accurate cross-validated 

predictions of object similarity 65 and consistent improvements in BOLD signal predictions for 

all 66 dimensions (Suppl. Fig. 1). 
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Fig. 1. Overview: An fMRI encoding model of object dimensions underlying human similarity judgements. 

We linked core representational dimensions capturing the behavioral relevance of objects to spatially resolved 
neural responses to thousands of object images. For this, we used the THINGS-data collection 57 which includes 

fMRI and behavioral responses to objects from the THINGS object concept and image database 66. The behavioral 

data was used to train a computational model of core object dimensions underlying human similarity judgements 
to different object concepts. We extended this embedding to the level of individual object images based on the 

computer vision model CLIP-VIT 64. The fMRI data comprises three participants who each saw 8,740 unique object 

images. We used an encoding model of the object dimension embedding to predict fMRI responses to each image 
in each voxel. The estimated encoding model weights reflect the tuning of each voxel to each object dimension. X, 

B, and Y denote the design matrix, regression weights, and outcome of the encoding mode, respectively. 
 

 

Core object dimensions are reflected in widespread fMRI activity patterns throughout 
the human visual system 

To test how these dimensions were expressed in voxel-wise brain responses, we fit an fMRI 

encoding model which predicts spatially resolved brain responses based on a weighted sum 

of these object dimensions. This allowed us to map out the contribution of the dimensions to 

the measured signal and thus link interpretable behaviorally-relevant dimensions to patterns 

of brain activity. 

 

Across all 66 object dimensions, our results revealed a widely distributed cortical 

representation of these dimensions that spans much of visual cortex and beyond (Fig. 2). The 

spatial extent of these effects was highly similar across all three subjects, underscoring the 

generality of these findings. We also tested the replicability of these results on an independent 

fMRI dataset 67, revealing a similarly extensive representation of the object dimensions (Suppl. 
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Fig. 2). Please note that, in the following, we use the terms “widespread” and “distributed” 

interchangeably and do not refer to a distributed representational coding scheme or the 

presence of continuous gradients but rather to responses that are not locally confined. 

 

Prediction accuracies peaked not only in lateral occipital and posterior ventral temporal 

regions, but also reached significant values in early visual, dorsal visual, and frontal regions 

(Suppl. Fig. 3). In contrast to previous work based on representational similarity analysis that 

found information about perceived similarity to be confined primarily to higher-level visual 

cortex 49–51,57, our dimension-based approach revealed that behaviorally-relevant information 

about objects is much more distributed throughout the visual processing hierarchy, including 

the earliest cortical processing stages. 
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Fig. 2. Prediction accuracy of the fMRI voxel-wise encoding model based on 66 core object dimensions. 
Colors indicate the proportion of explained variance (noise ceiling corrected R²) of held-out data in a 12-fold 

between-session cross-validation. White outlines indicate regions of interests defined in separate localizer 

experiments: FFA: Fusiform face area; OFA: Occipital face area; pSTS: Posterior superior temporal sulcus; EBA: 
Extrastriate body area; PPA: Parahippocampal place area; OPA: Occipitoparietal place area; MPA: Medial place 

area; V1-V3: Primary to tertiary visual cortex. A. Prediction accuracy for one example subject (S1) visualized on a 

cortical flat map (center) and inflated views of the cortical surface (corners). B. Results for the other two subjects 
visualized on cortical flat maps. 

 

 

Behaviorally-relevant object dimensions reflect the functional topography of the 
human visual system 

Having identified where information about perceived similarity is encoded, we next explored 

the spatial layout of each individual dimension underlying this representation. By using a voxel-

encoding model of interpretable object dimensions, it is possible to inspect the cortical 

distribution of the weights of each regressor separately and interpret them in a meaningful 
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fashion. This has two benefits. First, it allows us to probe to what degree behaviorally-relevant 

dimensions alone can capture the known topography of visual cortex. Second, it allows us to 

identify novel topographic patterns across visual cortex. This provides important insights into 

how the topography of visual cortex reflects object information relevant to behavior and how 

functionally specialized regions are situated in this cortical landscape. 

 

Visualizing the voxel-wise regression weights for each object dimension on the cortical surface 

(Fig. 3) revealed a clear correspondence between numerous dimensions and characteristic, 

known topographic patterns of the visual system. For example, the “animal-related” dimension 

mirrors the well established spoke-like tuning gradient for animate versus inanimate objects 
29, while dimensions like “head-related” and “body-part related” differentiate the regional 

selectivity for faces and body parts in the fusiform face area (FFA), occipital face area (OFA), 

and extrastriate body area (EBA), respectively 6,7,68. Likewise, the implicit inclusion of natural 

scenes as object backgrounds revealed scene content-related dimensions (e.g. “house-/ 

furnishing-related”, “transportation-/ movement-related”, and “outdoors”), which were found to 

be associated with scene-selective brain regions such as parahippocampal place area (PPA), 

medial place area (MPA), and occipital place area (OPA) 8,69–73. Our approach also 

independently identified a “food-related” dimension in areas adjacent to the fusiform gyrus, in 

line with recently reported clusters responding selectively to food stimuli 74–76. A dimension 

related to tools (“tool-related/handheld/elongated”) also matched expected activation patterns 

in middle temporal gyrus 11,77,78. Further, dimensions related to low- to mid-level visual features 

(e.g. “grid/grating-related”, “repetitive/spiky”) reflected responses primarily in early visual 

cortex. 

 

Beyond these established topographies, the results also revealed numerous additional 

topographic patterns. For example, one dimension reflected small, non-mammalian animals 

(“bug-related / non-mammalian / disgusting”) that was clearly distinct from the “animal-related” 

dimension by lacking responses in face and body selective regions. Another dimension 

reflected a widely distributed pattern in response to thin, flat objects (“thin / flat / wrapping”). 

Thus, our approach allowed for the identification of candidate functional selectivities in visual 

cortex that might have gone undetected with more traditional approaches based on proposed 

categories or features 47,74. Importantly, the functional topographies of most object dimensions 

were also found to be highly consistent across the three subjects in this dataset (Suppl. Fig. 

4) and largely similar to participants of an independent, external dataset (Suppl. Fig. 2), 

suggesting that these topographies may reflect general organizing principles rather than 

idiosyncratic effects (Suppl. Fig. 4, Extended Data Fig. 1-6). 
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Fig. 3. Functional tuning maps to individual object dimensions. The figure shows example maps for 12 out of 
the 66 dimensions for Subject S1. Each panel shows the encoding model weights for one object dimension 

projected onto the flattened cortical surface. Numbers in the subtitles show the dimension number in the 

embedding. 
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Together, our results uncover cortical maps of object dimensions underlying the perceived 

similarity between objects. These maps span extensive portions of the visual cortex, capturing 

topographic characteristics such as tuning gradients of object animacy, lower-level visual 

feature tuning in early visual cortex, and category-selective, higher-level regions while 

uncovering new candidate selectivities. Thus, these findings support an organizing principle 

where multiple, superimposing cortical tuning maps for core object properties collectively 

represent behaviorally-relevant information of objects. 

 

 

Cortical tuning to behaviorally-relevant object dimensions explains regional 
functional selectivity 

Having delineated the multidimensional topographic maps across visual cortex, we next honed 

in on individual brain regions to determine their functional selectivity as defined by their 

response tuning across these behaviorally-relevant dimensions. To this end, we developed a 

high-throughput method to identify object images representative for specific brain regions. 

Specifically, we first determined a functional tuning profile across dimensions for each region 

of interest based on the region’s mean encoding model weights. Next, we identified images 

whose behavioral dimension profile best matched the functional tuning profile of the brain 

region. To this end, we used all 26,107 object images in the THINGS database 66, most of 

which were unseen by participants, and assessed the cosine similarity between the dimension 

profiles of brain regions and images. This enabled us to rank over 26,000 images based on 

their similarity to a given brain region's functional tuning profile. 

 

Despite having been fitted solely on the 66-dimensional similarity embedding, our approach 

successfully identified diverse functional selectivities of visual brain regions (Fig. 4). For 

instance, the most representative images for early visual regions (V1, V2, V3) contained fine-

scale, colorful, and repeating visual features, consistent with known representations of 

oriented edges and color in these areas 79,80. These patterns appeared more fine-grained in 

earlier (V1 or V2) compared to later retinotopic regions (hV4), potentially reflecting increased 

receptive field size along the retinotopic hierarchy 81–83. A similar finding is reflected in 

dimension selectivity profiles (Fig. 4), revealing increased color selectivity in hV4 compared to 

early retinotopic regions V1-V3 while yielding reductions in the “repetitive/spiky” dimension. 

Notably, tuning profiles in category-selective regions aligned with images of expected object 

categories: faces in face-selective regions (FFA, OFA), body parts in body-part selective 

regions (EBA), and scenes in scene-selective regions (PPA, OPA, MPA). Closer inspection of 

the tuning profiles revealed differences between regions that respond to the same basic object 
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category, such as a stronger response to the “body-part related” dimension in OPA but not in 

other place-selective regions. Also, selectivity to faces (FFA, OFA) vs. body parts (EBA) 

appeared to be driven by the response magnitude to the “head-related” dimension, while 

tuning to the remaining dimensions was highly similar across these regions. Together, these 

findings demonstrate that the 66 object dimensions derived from behavior capture the 

selectivity across the visual processing hierarchy, highlighting the explanatory power of the 

dimensional framework for characterizing the functional architecture of the visual system. 

 

 

 
Fig. 4. Regional tuning profiles across 66 object dimensions and representative images for selectivity of 
each region of interest in visual cortex. Rose plots indicate the magnitude of tuning for each object dimension 
in a given visual brain region. Image panels show 8 images with the most similar model representation to the 

regional tuning profile. For copyright reasons, all original images have been replaced with visually similar images. 

Original images are available upon request. 
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Category-selective brain regions are sparsely tuned to behaviorally-relevant object 
dimensions 

Given that dimensional tuning profiles effectively captured the selectivity of diverse visual 

regions, we asked what factors distinguish category-selective visual brain regions from non-

category-selective regions in this dimensional framework. We reasoned that category-

selectivity reflects a sparsely tuned representation, where activity in category-selective regions 

is driven by only a few dimensions, while non-category-selective regions reflect a more mixed 

selectivity, with activity related to a larger number of dimensions. In this way, functionally 

specialized, category-selective regions might stand-out as an extreme case of 

multidimensional tuning. As a consequence, this would also make it easier to identify category-

selective regions due to their sparser selectivity. 

 

To quantify this, we estimated a measure of sparseness over the encoding model weights in 

each voxel. Large sparseness indicates regions that are selective to very few dimensions, 

while lower sparseness indicates a dense representation in regions that respond broadly to 

diverse dimensions. Our results (Fig. 5A) indeed revealed sparser tuning in category-selective 

regions compared to other parts of the visual system. This effect was most pronounced in face 

and body part selective regions (FFA, OFA, EBA), with the sparsest tuning across all subjects. 

The face-selective posterior superior temporal sulcus exhibited particularly sparse 

representation in Subjects 1 and 2, while this region was not present in Subject 3 and, as 

expected, also yielded no increase in sparseness. Scene-selective regions (PPA, MPA, OPA) 

also exhibited sparseness, though the effects were more variable across subjects, which could 

arise from the representational dimensions being derived from objects within scenes, as 

opposed to isolated scene images without a focus on individual objects. Conversely, non-

category-selective regions, such as early visual cortices, clearly exhibited dense 

representations. These findings suggest that category-selective regions, while responsive to 

multiple dimensions, may primarily respond to a small subset of behaviorally-relevant 

dimensions. Thus, in a multidimensional representational framework, category-selectivity may 

reflect a special case of sparse tuning within a broader set of distributed dimension tuning 

maps. 

 

Beyond the increased sparseness in functionally selective clusters, which had been defined 

in an independent localizer experiment  57, we explored to what degree we could use 

sparseness maps for revealing additional, potentially novel functionally selective regions. To 

this end, we identified two clusters with consistently high sparseness values across subjects 

(Fig. 5B). One cluster was located in the right hemisphere anterior to anatomically-defined 
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area FG4 84 and between functionally-defined FFA and anterior temporal face patch 85, with 

no preferential response to human faces in 2 of 3 subjects in a separate functional localizer. 

The other cluster was located in orbitofrontal cortex, coinciding with anatomically defined Fo3 

between the olfactory and medial orbital sulci 86. Having identified these clusters, we extracted 

regional tuning profiles and determined the most representative object images for each cluster. 

Inspection of the tuning profiles in these sparsely tuned regions revealed that their responses 

were best captured by images of animal faces for the region anterior to FFA and sweet food 

for orbitofrontal cortex (Fig. 5C). While the results in orbitofrontal cortex are in line with the 

motivational significance of rewarding foods and food representations in frontal regions 75,87–

90, the selective response to animal faces in the cluster anterior to FFA deserves further study. 

By identifying regional response selectivity in a data-driven fashion 91, the results show that 

sparse tuning can aid in localizing functionally selective brain regions, corroborating the link 

between representational dimensions and regional selectivity. 
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Fig. 5. Representational sparseness of behaviorally-relevant object dimensions in object category selective 
brain regions. A. Inflated cortical surfaces for Subject 1 showing the sparseness over the encoding model weights 

in each voxel. Colors indicate z-values of sparseness compared to a noise pool of voxels. Statistical maps are 

thresholded at p < 0.05. B. Ventral view of the right hemisphere for all three subjects. Round outlines illustrate the 
location of two explorative, sparsely tuned regions of interest: One in the fusiform gyrus and one in orbitofrontal 

cortex. C. Functional selectivity of these explorative regions of interest demonstrated by their multidimensional 

tuning profiles and most representative object images. For copyright reasons, all original images have been 
replaced with visually similar images. Original images are available upon request. 
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Object dimensions offer a better account of visual cortex responses than categories 

If representational dimensions offer a better account of the function of ventral visual cortex 

than categorization, this would predict that they have superior explanatory power for brain 

responses to visually-perceived objects in these regions 47,92. To compare these accounts 

formally, we compiled a multidimensional and a categorical model of object responses and 

compared the amount of shared and unique variance explained by these models (for an 

exploratory comparison with object shape, see Suppl. Fig. 6 and Suppl. Methods 2). We first 

constructed a category model by assigning all objects appearing in the presented images into 

50 common high-level categories (e.g. “animal”, “bird”, “body part”, “clothing”, “food”, “fruit”, 

“vehicle”) available as part of the THINGS metadata 93. To account for the known selectivity 

to faces and body parts, we additionally labeled images in which faces or body parts appeared 

and included them as two additional categories. Then, for each category, we determined the 

most diagnostic object dimension. Since some dimensions mapped to multiple categories, this 

resulted in a model of 30 object dimensions. Based on the 52 categories and the 30 

dimensions, we fit two encoding models to the fMRI single trial responses and performed 

variance partitioning to disentangle the relative contribution of the object category and 

dimension models to the cross-validated prediction. 

 

The results (Fig. 6) demonstrate that both object dimensions and categories shared a large 

degree of variance in explaining brain responses, especially in higher-level ventro-temporal 

and lateral occipital cortices (median = 19%, maximum = 74% shared explained variance) and 

to a lesser extent in early visual regions (median = 4%, maximum = 19% shared explained 

variance). This suggests that both models are well suited for predicting responses in the visual 

system. However, when inspecting the unique variance explained by either model, object 

dimensions explained a much larger amount of additional variance than object categories 

(Suppl. Fig. 5). This gain in explained variance was not only evident in higher-level regions 

(median = 10%, maximum = 35% unique explained variance), where both models performed 

well, but extended across large parts of visual cortex, including early visual regions (median = 

8%, maximum = 35% unique explained variance), suggesting that behaviorally-relevant 

dimensions captured information not accounted for by categories. Conversely, category 

membership added little unique explained variance throughout the visual system (median = 1 

%, maximum = 11%), reaching larger values in higher-level regions (median = 2%, maximum 

= 11% unique explained variance). Together, these results indicate that a multidimensional 

model offers an account with more explanatory value than a category model, supporting the 

idea that capturing behaviorally-relevant responses in the visual systems requires moving 
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beyond categorization and suggesting object dimensions as a suitable model of encoding the 

behavioral significance of objects. 

 

 

 
Fig. 6. Comparison of a continuous dimensional and a categorical model of object responses. Flat maps 

show the left hemisphere of each subject. Colors indicate the proportion of explained variance (noise ceiling 

corrected R²) from variance partitioning. A. Shared variance in single-trial fMRI responses explained by both 
models. B. Variance explained uniquely by a multidimensional model. C. Variance explained uniquely by a model 

of object categories. 
 

  

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted March 18, 2024. ; https://doi.org/10.1101/2023.08.23.553812doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.553812


17 

Discussion 

Determining how the human brain represents object properties that inform our broad range of 

behaviors is crucial for understanding how we make sense of our visual world and act on it in 

meaningful ways. Here, we identified behaviorally-relevant brain representations by predicting 

fMRI responses to thousands of object images with 66 interpretable representational 

dimensions underlying millions of object similarity judgements. The results revealed that this 

behaviorally-relevant information is mirrored in activity patterns throughout the entire visual 

processing hierarchy, emphasizing the importance of considering the entire system for 

identifying the behavioral relevance of visual responses. The diverse image selectivity of 

different visual brain regions emerged from the multidimensional tuning profiles in this 

distributed representation. This suggests that behaviorally-relevant dimensions offer a broadly 

applicable model for understanding the architecture of the visual system in which category-

selective regions stand out as a special case of sparse tuning. A direct model comparison 

confirmed that such a multidimensional account has more explanatory value than a category-

centric account. 

 

Much work on the behavioral relevance of object responses in occipitotemporal cortex has 

focused primarily on a limited number of behavioral goals, such as recognition and high-level 

categorization 20–22,28,71,92. According to this view, high-level visual regions contain 

representations that abstract from factors non-essential for recognition and categorization, 

such as position, color, or texture 3,94,95. Our findings provide an alternative perspective onto 

the nature of cortical object representations that may offer greater explanatory power than this 

traditional view. By considering a richer representation of objects supporting broader 

behavioral goals 23, object information is no longer restricted to the commonalities between 

objects based on how we label them. In this framework, even responses in early visual cortex 

to images from high-level categories such as food 74,75, which would traditionally be 

disregarded as lower-level confounds based on texture or color, are relevant information 

supporting the processing of behaviorally-relevant visual inputs. In this perspective, object 

vision solves the more general problem of providing a rich representation of the visual 

environment capable of informing a diverse array of behavioral domains 23. 

 

While our results favor a distributed view of object representations, localized response 

selectivity for ecologically important object stimuli has been replicated consistently, 

underscoring the significance of specialized clusters. Regional specialization and distributed 

representations have traditionally been seen as opposing levels of description 37,38. In contrast, 

our study advances a framework for unifying these perspectives by demonstrating that, 
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compared to other visual regions, category selective clusters exhibit sparse response tuning 

profiles. This framework treats regional specialization not as an isolated phenomenon, but 

rather a special case within a more general organizing principle. Thus, it provides a more 

general view of object representations that acknowledges the significance of regional 

specialization in the broader context of a multidimensional topography. 

 

One limitation of our study is that we did not identify behaviorally-relevant dimensions specific 

to each individual participant tested in the MRI. Instead, dimensions were based on a separate 

population of participants. However, our findings were highly replicable across the three 

participants for most dimensions, suggesting that these dimensions reflect general organizing 

principles rather than idiosyncratic effects (Suppl. Fig. 4). Of note, some dimensions did not 

replicate well (e.g. “feminine (stereotypical)”, “hobby-related”, or “foot- / walking-related”; 

Suppl. Fig. 4), which indicates that our fitting procedure does not yield replicable brain activity 

patterns for any arbitrary dimension. Future work may test the degree to which these results 

generalize to other dimensions identified through behavior. Additionally, applying our 

approach to an external fMRI dataset (Suppl. Methods. 1) revealed similarly distributed 

responses, with highly similar dimension tuning maps, suggesting that our findings generalize 

to independent participants (Suppl. Fig. 2). Future work could test the extent to which these 

results generalize to the broader population and how they vary between individuals. Further, 

despite the broad diversity of objects used in the present study, our work excluded non-object 

images like text 66. While effects of representational sparseness were less pronounced in 

scene-selective regions and largely absent in text-selective regions 10, our encoding model 

significantly predicted brain responses in scene-selective regions (Suppl. Fig. 3), indicating 

validity beyond isolated objects. Future research may extend these insights by exploring 

additional image classes. Moreover, our use of a pre-trained computational model to obtain 

predicted dimension values might have underestimated the performance of the object 

embedding in predicting brain responses or may have selectively improved the fit of some 

dimensions more than that of others. Future studies could test if using empirically measured 

dimension values for each image would lead to refined dimension maps. Finally, we reported 

results based on noise-ceiling corrected R2 values. While noise-ceiling normalization is 

common practice when interpreting encoding model results in order to make them more 

comparable, the degree to which the results would generalize if noise ceilings were much 

higher could likely only be addressed with much larger, yet similarly broad datasets. 

 

While the behaviorally-relevant dimensions used in this study were highly predictive of 

perceived similarity judgments and object categorization 52, there are many possible behaviors 

not captured by this approach. Here, we used representational dimensions underlying 
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similarity judgments to contrast with the category-centric approach. We chose similarity 

judgments as a common proxy for mental object representations, since they underlie various 

behavioral goals, including categorization and recognition 52–56. Future work could test the 

extent to which other behaviors or computational approaches carry additional explanatory 

value 15,49,51,96,97. This would also allow establishing the causal relevance of these activity 

patterns in behavioral readout 13,15,17,98. 

 

Given the explanatory power of our dimensional framework, our results may be interpreted as 

hinting at an alternative explanation of traditional stimulus-driven feature selectivity through 

the lens of behavioral relevance 99, where the emergence of feature selectivity may exist 

because of the potential for efficient behavioral readout. Since the dimensions used in this 

study likely do not capture all behaviorally-relevant selectivity, our approach does not allow 

testing this strong assumption. For example, a direct comparison of our embedding with the 

predictive performance of a Gabor wavelet pyramid model 100 or state-of-the-art deep neural 

network models 101 would neither support nor refute this idea. Future work could specifically 

target selectivity to individual visual features to determine the degree to which these 

representations are accessible to behavioral readout and, thus, may alternatively be explained 

in terms of behavioral relevance, rather than feature selectivity. 

 

In conclusion, our work provides a multidimensional framework that aligns with the rich and 

diverse behavioral relevance of objects. This approach promises increased explanatory power 

relative to a category-centric framework and integrates regional specialization within a broader 

organizing principle, thus offering a promising perspective for understanding how we make 

sense of our visual world.  
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Methods 

THINGS-data 

We relied on the openly available THINGS-data collection to investigate the brain 

representation of every-day objects 57. THINGS-data includes 4.7 million human similarity 

judgements as well as neural responses measured with functional magnetic resonance 

imaging (fMRI) to thousands of naturalistic and broadly sampled object images. The collection 

also includes a representational embedding of core object dimensions learned from the 

similarity judgments, which predicts unseen human similarity judgements with high accuracy 

and offers an interpretable account of the mental representation of objects 52,57. Here, we used 

these object dimensions to predict fMRI responses to object images. All data generation and 

processing methods are described in detail in the original data publication 57 and are only 

summarized here. 

 

 

Participants 

The MRI dataset in the THINGS-data collection comprises data from 3 healthy volunteers (2 

female, 1 male, mean age: 25.33 years). Participants had normal or corrected-to-normal visual 

acuity, and were right-handed. The behavioral dataset in the THINGS-data collection was 

obtained from 12,340 participants through the crowdsourcing platform Amazon Mechanical 

Turk (6,619 female, 4,400 male, 56 other, 1,065 not reported; mean age: 36.71, std: 11.87, 

n=5,170 no age reported). 

 
 
Stimuli 

All images were taken from the THINGS database 66. The THINGS database contains 26,107 

high-quality, colored images of 1,854 object concepts from a wide range of nameable living 

and non-living objects, including non-countable substances (e.g. “grass”), faces (e.g. “baby”, 

“boy”, “face”), and body parts (e.g. “arm”, “leg”, “shoulder”). The stimuli presented during 

functional MRI included 720 object concepts from the THINGS database, with the first 12 

examples of each concept selected for a total of 8,640 images. In addition, 100 of the 

remaining THINGS images were presented repeatedly in each session for the purpose of 

estimating data reliability. 
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Experimental procedure 

Participants of the THINGS-fMRI experiment took part in 15-16 scanning sessions, with the 

first 1-2 sessions serving to acquire individual functional localizers for retinotopic visual areas 

and category-selective clusters (faces, body parts, scenes, words, and objects). The main 

fMRI experiment comprised 12 sessions where participants were presented with the 11,040 

THINGS images (8,740 unique images, catch trials excluded, 500 ms presentation followed 

by 4 s of fixation). For details on the procedure of the fMRI and behavioral experiments, please 

consult the original publication of the datasets 57. 

 

Behavioral similarity judgements in the THINGS-data collection were collected in a triplet odd-

one-out study using the online crowdsourcing platform Amazon Mechanical Turk. Participants 

were presented with three object images side by side and were asked to indicate which object 

they perceived to be the odd-one-out. Each task comprised 20 odd-one-out trials, and 

participants could perform as many tasks as they liked. 

 

 

MRI data acquisition and preprocessing 

Whole-brain functional MRI images were acquired with 2mm isotropic resolution and a 

repetition time of 1.5s. The MRI data was preprocessed with the standard pipeline fMRIPrep 
102 which included slice time correction, head motion correction, susceptibility distortion 

correction, co-registration between functional and T1-weighted anatomical images, brain 

tissue segmentation, and cortical surface reconstruction. Additionally, cortical flat maps were 

manually generated 103. Functional MRI data was denoised with a semi-automated procedure 

based on independent component analysis (ICA) which was developed specifically for the 

THINGS-fMRI dataset. The retinotopic mapping data and functional localizer data were used 

to define retinotopic visual regions as well as the category-selective regions used in this study. 

Image-wise response estimates were obtained by fitting a single-trial model to the fMRI time 

series of each functional run while accounting for variation in hemodynamic response shape 

and mitigating overfitting 104–106. 

 

 

Behavioral embedding 

In order to predict the neural response to seen objects, we used a recent, openly available 

model of representational dimensions underlying human similarity judgements of objects 52. 

This model was trained to estimate a low-dimensional, sparse, and non-negative embedding 
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predictive of individual trial choices in an odd-one-out task on 1,854 object images. The 

dimensions of this embedding have been demonstrated to be highly predictive of human 

similarity judgments while yielding human-interpretable dimensions reflecting both perceptual 

(e.g. “red”, “round”) as well as conceptual (e.g. “animal-related”) object properties. We used a 

recent 66-dimensional embedding trained on 4.7 million odd-one-out judgments on triplets of 

1,854 object images 57.  

 

While the original embedding was trained on one example image for each of the 1,854 object 

concepts, it may not account for differences between exemplars of the same object concept. 

For example, the color of the apple the model was trained on might have been red, while we 

also presented participants with images of a green apple. This may underestimate the model’s 

potential to capture variance in brain responses to visually presented object images. To 

address this, we extended the original embedding by predicting the 66 object dimensions for 

each individual image in the THINGS database 66. To this end, we used the neural network 

model CLIP-ViT, which is a multimodal model trained on image-text pairs and which was 

recently demonstrated to yield excellent prediction of human similarity judgments 65,107. For 

each of the 1,854 object images, we extracted the activity pattern from the final layer of the 

image encoder. Then, for each of the 66 dimensions, we fitted a ridge regression model to 

predict dimension values, using cross-validation to determine the regularization 

hyperparameter. Finally, we applied the learned regression model to activations for all images 

in the THINGS database. This resulted is a 66-dimensional embedding that captures the 

mental representation of all 26,107 THINGS images. We used these predicted dimension 

values to predict fMRI responses to the subset of 8,740 unique images presented in fMRI, 

which yielded consistent improvements in explained variance for all dimensions (see Suppl. 

Fig. 1). 

 

 

Encoding model 

We used a voxel-wise encoding model of the 66-dimensional similarity embedding to predict 

image-wise fMRI responses in order to test 1) how well the model predicts neural responses 

in different parts of the visual system and 2) how neural tuning to individual dimensions maps 

onto the topography of visual cortex. 

 

Linear regression on fMRI single trial estimates 

To test how well the core object dimensions predict brain responses in different parts of the 

visual system, we fit them to the fMRI single trial response estimates using ordinary least 
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squares regression. While most analyses in this work rely on a more powerful parametric 

modulation model estimated on time-series data (see below), we used single trial responses 

for estimating the predictivity of the object dimensions, since this approach does not require 

extracting the contribution of the parametric modulators for estimating the explained variance 

of the general linear model. We evaluated the prediction performance of this encoding model 

in a leave-one-session-out cross-validation, using the average correlation between predicted 

and observed fMRI responses across folds. Within each cross-validation fold, we also 

computed a null distribution of correlation values based on 10,000 random permutations of 

the held-out test data. To assess statistical significance, we obtained voxel-wise p-values by 

comparing the estimated correlation with the generated null-distribution and corrected for 

multiple comparisons based on a false discovery rate of p < 0.01. We computed noise ceiling 

corrected R² values by dividing the original R² of the model by the noise ceiling estimates, for 

each voxel separately. These single-trial noise ceilings (Suppl. Fig. 7) were provided with the 

fMRI dataset and were computed based on estimates of the signal and noise variance 

obtained based on the variability of responses to repeatedly presented images  57. 

 

Parametric modulation on fMRI time series 

In order to evaluate the contribution of individual object dimensions to the neural response in 

a given voxel, we used a parametric modulation model on the voxel-wise time series data. In 

this parametric modulation, a general onset regressor accounts for the average response 

across all trials, and a set of 66 parametric modulators account for the modulation of the BOLD 

signal by individual object dimensions. To compile the parametric modulation model, we 

constructed dimension-specific onset regressors and mean-centered each parametric 

modulator in order to make them orthogonal to the general onset regressor. We then 

convolved these regressors with a hemodynamic response function (HRF) to obtain predictors 

of the BOLD response. To account for variation in the shape of the HRF, we determined the 

best fitting HRF for each voxel based on a library of 20 HRFs 104,105. The resulting design 

matrix was then concatenated and fit to the fMRI time-series data. In order to mitigate 

overfitting, we regularized the regression weights using fractional ridge regression 106. We 

chose a range of regularization parameters from 0.10 to 0.90 in steps of 0.10 and from 0.90 

to 1.00 in steps of 0.01 in order to sample values more densely which reflect less 

regularization. We determined the best hyperparameter combination (20 HRFs, 26 

regularization parameters) for each voxel based on the amount of variance explained in a 12-

fold between-session cross-validation. Finally, we fit the model with the best hyperparameter 

combination per voxel to the entire dataset, yielding 66 statistical maps of regression weights 

representing the voxel-wise contribution of individual object dimensions in predicting the fMRI 
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signal. The regularization hyperparameter turned out to be small throughout visual cortex 

(Suppl. Fig. 8), demonstrating that regularization of regression weights had little impact on the 

absolute size of regression weights. While our analysis was focused on individual subjects, 

we also estimated the consistency of the tuning maps of individual dimensions across 

participants. To this end, we used a number of individually-defined regions of interest as 

anchor points for quantifying similarities and differences between these maps. First, for each 

dimension separately, we obtained mean beta patterns across these regions, including early 

visual retinotopic areas (V1-V3 and hV4) as well as face- (FFA, OFA), body- (EBA), and scene-

selective (PPA, OPA, MPA) regions. Face-, body-, and scene-selective regions were analyzed 

separately for each hemisphere to account for potential lateralized effects, and voxels with a 

noise ceiling smaller than 2% were excluded from the analysis. Finally, to quantify the 

replicability across participants, we computed the inter-subject correlation based on these 

mean beta patterns, separately for each dimension (Suppl. Fig. 4). 

 

 

Regional tuning profiles and most representative object images 

To explore the functional selectivity implied by regional tuning to core object dimensions, we 

extracted tuning profiles for different visual brain regions and related them to the 

multidimensional representation of all object images in the THINGS database 66 using a high-

throughput approach. First, we extracted the regression weights resulting from the parametric 

modulation model in different visual brain regions: V1, V2, V3, human V4 (hV4), occipital face 

area (OFA), fusiform face area (FFA), extrastriate body area (EBA), parahippocampal place 

area (PPA), medial place are (MPA), and occipital place area (OPA). We then averaged these 

regional tuning profiles across participants and set negative weights to zero, given that the 

predicted dimensions reflect non-negative values, as well. We plotted the regional tuning 

profiles as rose plots to visualize the representation of core object dimensions in these brain 

regions. In order to explore the regional selectivity for specific object images, we determined 

the cosine similarity between each regional tuning profile and the model representation of all 

26,107 images in the THINGS database. This allowed us to identify those THINGS images 

that are most representative of the local representational profile in different visual brain 

regions. 

 

 

Representational sparseness 

We estimated the sparseness of the representation of core object dimensions based on the 

regression weights from the parametric modulation model. Given our aim of identifying local 
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clusters of similarly-tuned voxels, we performed spatial smoothing on the regression weight 

maps (FWHM = 4mm) to increase the spatial signal-to-noise ratio. We then took the vectors 

representing the 66-dimensional tuning profile for each voxel and removed negative vector 

elements, mirroring the analysis of the regional tuning profiles. We computed the sparseness 

of the resulting voxel-wise tuning vectors based on a previously introduced sparseness 

measure which is based on the normalized relationship between the L-1 and L-2 norm of a 

vector 108: 

 

𝑠(𝑥) 	= 	
	√𝑛 	−	∑|𝑥,|	/	.∑𝑥,/

√𝑛 	− 1
 

 

Where 𝑠 indicates the sparseness of the 𝑛-dimensional input vector 𝑥. A sparseness value of 

1 indicates a perfectly sparse representation where all vector elements except one have the 

same value. In turn, a value of 0 indicates a perfectly dense representation where all elements 

have identical values. We computed this sparseness measure over the regression weights in 

each voxel which yielded a sparseness measure as a single value per voxel. To assess their 

statistical significance, we first identified the distribution of sparseness values in a noise pool 

of voxels. This noise pool included voxels where the parametric modulation model predicted 

the fMRI signal poorly in the cross-validation procedure (𝑅/ < 0.0001). Since visual inspection 

of sparseness histograms suggested a log-normal distribution, we log-transformed all 

sparseness values to convert them to a normal distribution. Finally, we estimated the mean 

and standard deviation of the sparseness distribution in the noise pool, allowing us to obtain 

z- and p-values of the sparseness in each voxel. 

 

Based on these results, we explored whether local clusters of representational sparseness 

are indicative of brain regions with high functional selectivity. To this end, we identified two 

regional clusters of high sparseness values which were present in all subjects and which had 

not yet been defined based on the functional localizer experiment (see MRI data 

preprocessing). Based on visual inspection of the sparseness maps, we defined two regions 

of interest. The first region of interest was located in the right ventro-temporal cortex, anterior 

to anatomically-defined area FG4 84 and functionally-defined FFA, but posterior to the anterior 

temporal face patch 85. The second region of interest was located in the orbitofrontal cortex. 

We probed the functional selectivity of these sparsely tuned regions by extracting regional 

tuning profiles and determining the most representative object images as described in the 

previous section. 
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Variance partitioning of object category vs. dimension based models 

The aim of the variance partitioning was to test whether object dimensions or object categories 

offer a better model of neural responses to object images. To this end, we compiled a 

multidimensional and categorical model and compared the respective amount of shared and 

unique variance explained by these models.  

 

We used 50 superordinate object categories provided in the THINGSplus metadata collection 

to construct a category encoding model 93. These high-level categories comprised: "animal", 

"bird", "body part", "breakfast food", "candy", "clothing", "clothing accessory", "condiment", 

"construction equipment", "container", "dessert", "drink", "electronic device", "farm animal", 

"food", "footwear", "fruit", "furniture", "game", "garden tool", "hardware", "headwear", "home 

appliance", "home decor", "insect", "jewelry", "kitchen appliance", "kitchen tool", "lighting", 

"mammal", "medical equipment", "musical instrument", "office supply", "outerwear", "part of 

car", "plant", "protective clothing", "safety equipment", "school supply", "scientific equipment", 

"sea animal", "seafood", "sports equipment", "tool", "toy", "vegetable", "vehicle", "watercraft", 

"weapon" , and "women’s clothing". To account for cases where images contained multiple 

objects (e.g. an image of “ring” might also contain a finger), we used the image annotations in 

the THINGSplus metadata 93 and manually matched these annotations to objects in the 

THINGS database for all images presented in the fMRI experiment. Lastly, we added two more 

categories by manually identifying images containing human faces or body parts, respectively. 

We then compiled an encoding model with 52 binary regressors encoding the high-level 

categories of all respective objects. 

 

Next, we compiled a corresponding encoding model of object dimensions. Note that we 

predicted that this model would outperform the categorical model in explaining variance in 

neural responses. To conservatively test this prediction, we biased our analysis in favor of the 

categorical model by selecting fewer dimensions than categories. To this end, for each 

category we identified the object dimension with the strongest relationship based on the area 

under the curve metric (AUC). Since some dimensions are diagnostic for multiple categories 

(e.g. “animal-related” might be the most diagnostic dimension for both “bird” and “insect”), this 

resulted in a one-to-many mapping between 30 dimensions and 50 categories. The selected 

dimensions comprised: "Metallic / artificial", "food-related", "animal-related", "textile", "plant-

related", "house-related / furnishing-related", "valuable / precious", "transportation- / 

movement-related", "electronics / technology", "colorful / playful", "outdoors", "paper-related / 

flat", "hobby-related / game-related / playing-related", "tools-related / handheld / elongated", 
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"fluid-related / drink-related", "water-related", "weapon-related / war-related / dangerous", 

"household-related", "feminine (stereotypical)", "body part-related", "music-related / hearing-

related / hobby-related / loud", "construction-related / craftsmanship-related / housework-

related", "spherical / voluminous", "flying-related / sky-related", "bug-related / non-mammalian 

/ disgusting", "heat-related / fire-related / light-related", "foot-related /  walking-related", "head-

related", "medicine-related / health-related", and "sweet / dessert-related". 

 

In order to compare the predictive potential of these two models, we fitted them to the fMRI 

single trial responses in a voxel-wise linear regression and performed variance partitioning. In 

order to estimate the uniquely explained variance, we first orthogonalize the target model and 

the data with respect to the other model 109. This effectively removes the shared variance from 

both the target model and the data. We then fit the residuals of the target model to the residuals 

of the data and calculated the coefficient of determination (𝑅/) in a 12-fold between-session 

cross-validation as an estimate of the unique variance explained by the target model. We then 

estimated the overall variance explained by both models by concatenating the two models, 

fitting the resulting combined model to the data, and determining the cross-validated 𝑅/ 

estimate. Lastly, we computed an estimate of the shared variance explained by the two models 

by subtracting the uniquely explained variances from the overall explained variance. For 

visualization purposes, R² values were normalized by the noise ceiling estimates provided with 

the fMRI dataset 57 (Suppl. Fig. 7). We also visualized the relationship between the 

performance of both models quantitatively. To that end, we selected voxels with a noise ceiling 

of greater than 5% in early- (V1-V3) and higher-level (face-, body-, and scene-selective) 

regions of interest and created scatter plots comparing the variance uniquely explained by the 

category- and dimensions-based model in these voxels (Suppl. Fig. 5). To summarize the 

extent of explained variance, we computed median and maximum values for the shared and 

unique explained variances in these voxels. 

 

 

Data availability 

The data supporting our analyses were obtained from the publicly available THINGS-fMRI 

dataset. The fMRI dataset is accessible on OpenNeuro  

(https://doi.org/10.18112/openneuro.ds004192.v1.0.5) and Figshare 

(https://doi.org/10.25452/figshare.plus.c.6161151). The object dimensions embedding 

underlying behavioral similarity judgements which was used to predict the fMRI responses is 

available at the Open Science Framework repository (https://osf.io/f5rn6/). The higher-level 

object category labels which were used to construct a categorical model of object responses 
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are part of the THINGSplus metadata and available at the Open Science Framework 

(https://osf.io/jum2f/). 

 

 

Code availability 

The code used for data processing, analysis, and visualization in this study is publicly available 

on GitHub (https://github.com/ViCCo-Group/dimension_encoding). 
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Supplementary Information 

Supplementary Methods 

Supplementary Methods 1: Replication in BOLD5000 

In order to test how well our results replicate in an independent dataset, we applied our 

encoding model of behaviorally-relevant object dimensions to a different openly available 

large-scale fMRI dataset of visual responses. We chose the BOLD5000 dataset 67 because it 

included object images taken from a different image database, ImageNet 110, as well as scene 

images taken from the MS CoCo database 111 that consist of a mixture of individual objects 

and multiple objects in a scene. This allowed us to evaluate the extent to which our results 

generalize to different participants and images classes. However, we excluded responses to 

scene categories from the SUN database 112 since these images were specifically designed 

to exclude objects. We further excluded participant CSI4 from this analysis since they 

performed only part of the experiment. The resulting dataset comprised three participants who 

each saw 3,916 images (1,916 images from ImageNet and 2,000 images from MS CoCo). 

 

We constructed our model of behaviorally-relevant object representation for the BOLD5000 

stimuli by obtaining predicted dimension values based on the same procedure which we used 

for the THINGS images (see Methods section Behavioral embedding). We then fit an encoding 

model to each individual participant where we predict voxel-wise responses to each image 

based on the 66 object dimensions. Mirroring our main analysis, we fit this model in two 

different ways, 1) in order to evaluate its overall prediction performance, and 2) to evaluate 

the contribution to individual dimensions in each voxel. To estimate the prediction accuracy of 

the entire model, we used a simple cross-validated linear regression analogous to our main 

analysis (Methods section Linear Regression on fMRI single trial estimates). We normalized 

this prediction accuracy based on noise ceilings which we obtained with the same procedure 

that was used for the THINGS-fMRI dataset 57. To obtain robust estimates for the contribution 

of individual dimensions for this prediction, we fit our encoding model again using fractional 

ridge regression 106. We determined the best-fitting regularization parameter for each voxel 

based on the same parameter grid and cross-validation procedure which we used in our 

parametric modulation model, except it was applied to discrete response estimates instead of 

time series data (see Methods section Parametric modulation on fMRI time series). Finally, to 

visualize the spatial extent of the model prediction accuracy and the dimension-wise tuning 

maps, we visualized the results on cortical flat maps 103. 
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Supplementary Methods 2: Variance partitioning of object shape vs. behaviorally-relevant 

dimensions 

In an exploratory analysis, we tested how much variance in neural responses can be explained 

by object shape relative to the behaviorally-relevant object dimensions. To this end, we used 

an image-computable model of object shape and compared its explanatory power to our 

behavior-derived dimensions using variance partitioning. 

 

We first obtained a model of object shape for all stimuli presented in THINGS-fMRI. To this 

end, we automatically segmented all images using Segment Anything 113 which we prompted 

with a CLIP embedding of the object concept labels to further refine results. Images for which 

the segmentation algorithm failed (n=873) were excluded from this analysis. Next, we used 

object silhouettes identified through these segmentations as input to an image-computable 

model of object shape 114. This model represents object shape with 22 dimensions, which have 

been demonstrated to be highly predictive of perceived shape similarity and which reflect 

latent components underlying more than 100 shape descriptors, such as fourier descriptors, 

major axis orientation, or shape skeleton 114. If a given image contained multiple objects of the 

same type (e.g. 3 apples), we averaged by averaging over the values of all segmentations for 

this given image. From these results, we obtained an encoding model of object shape with 22 

regressors. We then compared this shape model with our behavior-derived model in a 

variance partitioning analogous to our comparison with object category (see Methods Variance 

partitioning of object category vs. dimension based models). This allowed us to disentangle 

the amount of explained variance in neural responses that is uniquely attributable to object 

shape or the behaviorally-relevant dimensions, or that is shared by both. 
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Supplementary Figures 

 

 
Supplementary Fig. 1. Improvements in fMRI encoding model accuracy after image-wise prediction of object 
dimensions. Scatter plots show the Pearson correlation between held out and predicted data (12-fold cross-

validation) for our voxel-wise fMRI encoding model based on the 66 object dimensions underlying perceived 

similarity 57. Each sample represents one voxel in a mask of visual cortex (V1-V3, FFA, OFA, pSTS, EBA, PPA, 

OPA, RSC). The x-axis denotes the prediction performance of the original object embedding based on 1,854 object 
concepts 57. The y-axis denotes the prediction performance after these original object dimension weights have 

been predicted for each individual object image presented in fMRI (see Methods section on behavioral model). The 

dotted line shows equal performance in both cases. 
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Supplementary Fig. 2. Replication in the BOLD5000 dataset. A. Prediction accuracy of an fMRI encoding model 

based on the predicted object embedding for BOLD5000 stimuli (noise-corrected R2). Each column shows the 
flattened left cortical surface of one subject. The labels “CSI1”, “CSI2”, and “CSI3” correspond to the BOLD5000 

subjects. Note that the ROI for early visual cortex is much smaller in BOLD5000 compared to the THINGS-fMRI 

dataset due to a smaller stimulus presentation (4.6 compared to 10 degree visual angle) and a different procedure 
for producing flat maps. B. Functional tuning maps for individual object dimensions in example subject CSI3. 
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Supplementary Fig. 3. fMRI encoding model prediction accuracy and average accuracy in different ROIs. A. 

Prediction accuracy in statistically significant voxels (p<0.01, FDR-corrected). Each row shows flattened cortical 

surfaces for each subject. Colors indicate Pearson correlation between predicted and held-out data in a between-
session 12-fold cross-validation. B. Average prediction accuracy expressed as R2 in different retinotopic (V1, V2, 

V4, hV4) and category-selective regions of interest (OFA, FFA, EBA, PPA, MPA, OPA). Error bars indicate 95% 

confidence intervals of the mean. 
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Supplementary Fig. 4. Consistency of average ROI dimension tuning across subjects. Bar heights show the 

correlation between two participants’ dimension tuning patterns for a given dimension. Tuning patterns were 
obtained by averaging beta values from the encoding model in 16 ROIs. Bar color indicates the subject pair for 

which the correlation was computed. 
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Supplementary Fig. 5. Comparison of variance in neural responses uniquely explained by object category 
vs. dimensions. Each sample represents one voxel. The x-axis indicates the amount of variance explained by 
an encoding model of object category, and the y-axis in turn by a model of behaviorally-relevant dimensions. 

Voxels above the dashed identity line were better explained by the dimensions model. Color indicates whether 

voxels belong to early-visual (V1-V3) or higher-level (face-, body-, and scene-selective) regions of interest. 
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Supplementary Fig. 6. Comparison of a model of object shape and the model of behaviorally-relevant object 
dimensions. Flat maps show the left hemisphere of each subject. Colors indicate the proportion of explained 

variance (noise ceiling corrected R²) from variance partitioning. A. Shared variance explained by both models. B. 

Variance explained uniquely by the model of behavioral dimensions. C. Variance explained uniquely by a model of 
object shape. 
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Supplementary Fig. 7. Noise ceiling of single trial responses provided by the THINGS-fMRI dataset. Colors 
indicate the noise ceiling expressed as the amount of explainable variance in trial-wise fMRI response estimates 

which was used to normalize the prediction performance of the encoding model. 
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Supplementary Fig. 8. Regularization parameter in the parametric modulation model. Colors indicate voxel-
wise α-fraction used to regularize the weights in the fractional ridge regression. Larger α-fraction reflect a smaller 

amount of regularization. An α-fraction of 1 is equivalent to the ordinary least squares solution. An α-fraction of 0 

indicates maximum regularization, with all regression weights shrunk to 0. 
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