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Abstract 25 

It has been suggested that visual images are memorized across brief periods of time by vividly 26 
imagining them as if they still were there. In line with this, the contents of both working memory 27 
and visual imagery are known to be encoded already in early visual cortex. If these signals in 28 

early visual areas were indeed to reflect a combined imagery and memory code, one would 29 

predict them to be weaker for individuals with reduced visual imagery vividness. Here, we 30 
systematically investigated this question in two groups of participants. Strong and weak 31 

imagers were asked to remember images across brief delay periods. We were able to reliably 32 

reconstruct the memorized stimuli from early visual cortex during the delay. Importantly, in 33 
contrast to the prediction, the quality of reconstruction was equally accurate for both strong 34 

and weak imagers. The decodable information also closely reflected behavioral precision in 35 

both groups, suggesting it could contribute to behavioral performance, even in the extreme 36 
case of completely aphantasic individuals. Our data thus suggest that working memory signals 37 

in early visual cortex can be present even in the (near) absence of phenomenal imagery.  38 
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 2 

Introduction 39 

In recent years, visual imagery, the ability to generate pictorial mental representations in the 40 
absence of external visual stimulation (Kosslyn & Thompson, 2003; Pearson & Kosslyn, 2015), 41 

has received increasing attention as a potential mechanism for supporting visual working 42 
memory (Albers et al., 2013; Tong, 2013). 43 

 44 

Both visual imagery and visual working memory have been linked to the encoding of 45 

information in early visual cortex (Dijkstra et al., 2019; Klein et al., 2004; Kosslyn & Thompson, 46 
2003; Lee & Baker, 2016; Serences, 2016). The sensory recruitment hypothesis of visual 47 

working memory (D’Esposito & Postle, 2015; Sreenivasan et al., 2014) posits that visual 48 
information is maintained using selective activation patterns in early visual cortex. This 49 

matches with a common view of visual imagery, where early visual areas encode detailed, 50 

perception-like mental images via top-down connections from high-level regions (Dijkstra et 51 
al., 2017; Mechelli, 2004). Encoding of contents has been reported to be similar between 52 

perception and visual working memory (Ester et al., 2009; Harrison & Tong, 2009; Lee et al., 53 
2013; Serences et al., 2009). This similarity has also been shown to hold between perception 54 

and imagery across multiple features, including orientations (Albers et al., 2013), objects 55 
(Cichy et al., 2012; Lee et al., 2012; Ragni et al., 2020; Reddy et al., 2010), letters (Senden et 56 
al., 2019), and natural scenes (Naselaris et al., 2015). Furthermore, both visual working 57 
memory (Teng & Kravitz, 2019) and visual imagery (Pearson et al., 2008) can interfere with 58 

and bias perception of subsequent stimuli. 59 
 60 
The similarities in cortical organization of imagery and visual working memory raise the 61 

question whether these two processes might be related or even share the same neural 62 

substrate. Indeed, it was directly shown for normal-viewing participants that visual working 63 
memory and imagery representations of orientations exhibit very similar neuronal activity 64 

patterns in early visual cortex (Albers et al., 2013) suggesting that visual working memory and 65 

visual imagery share a similar neural substrate (Tong, 2013). In this view, participants might 66 
briefly memorize visual stimuli in working memory tasks by vividly imagining them across the 67 

delay period.  68 

 69 
However, the ability to generate imagery as well as its vividness differ substantially across 70 

individuals (Kosslyn et al., 2001). Some people even report the complete absence of 71 
phenomenal imagery (“aphantasia”; Zeman et al., 2015; Zeman et al., 2010). Nonetheless, 72 

these differences do not appear to manifest themselves systematically in behavioral measures 73 

of memory. Rather, most studies indicate that behavioral performance in visual working 74 
memory tasks is comparable across imagery vividness levels, including the extreme case of 75 
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 3 

aphantasic individuals (Jacobs et al., 2018; Zeman et al., 2015). However, differences have 76 

been reported. For example, working memory performance for strong imagers is disrupted by 77 
irrelevant visual input, while weak imagers show no such distraction effect (Keogh & Pearson, 78 

2014), indicating the use of distinct memorization strategies. This is supported by comparing 79 
reports of strong and weak imagers. Strong imagers report to rely mostly on visual strategies 80 

when solving visual working memory tasks. In contrast, weak imagers tend to report using 81 

different cognitive strategies such as verbal or categorical associations (Bainbridge et al., 82 

2021; Keogh et al., 2021; Logie et al., 2011). Thus, visual imagery might to be only one of 83 
several cognitive tools that can be used to solve visual working memory tasks. If this is true, 84 

then weak imagers could use different representational systems for maintaining stimulus 85 
features other than sensory recruitment in early visual cortex.  86 

 87 

In line with this, the cognitive-strategies framework of working memory (Pearson & Keogh, 88 
2019) postulates that the cognitive strategy used to solve a working memory task determines 89 

the format in which a stimulus is represented in the brain, and consequently influences how 90 
much information about the stimulus is present within a given cortical region. In the case of 91 

visual imagery, this could mean that individuals with high imagery vividness spontaneously 92 
recruit their early visual cortex to maintain detailed stimulus representations, while individuals 93 
with low imagery vividness employ alternative, non-visual strategies to solve the same 94 
cognitive task. Together, this predicts that strong imagers should retain more information about 95 

a stimulus feature in their visual cortex activity than weak imagers. 96 
 97 
Here, we directly test this hypothesis by assessing the influence of imagery vividness on the 98 

strength of visual working memory representations in visual cortex, using functional magnetic 99 

resonance imaging (fMRI). We recruited two groups of study participants, one with very high 100 
and one with very low imagery vividness scores as assessed by an established questionnaire 101 

(VVIQ, Fig 1B, see Methods; Marks, 1973). In the main experiment, participants performed a 102 

working memory task that involved memorizing a bright orientation stimulus across a brief 103 
delay (Figure 1A). We used a brain-based decoder (periodic support vector regression; see 104 

Methods) to reconstruct these orientations from brain activity patterns in early visual cortex 105 

obtained during the memory delay period. If strong imagers indeed rely more on imagery 106 
signals in early visual cortex to maintain the stimulus across the delay, this could lead to two 107 

predictions: First, that sensory information should be represented more accurately in the early 108 
visual brain signals of strong as opposed to weak imagers; second, sensory information in 109 

early visual areas should also be more predictive of an individual’s behavioral performance, 110 

especially in strong imagers. 111 
 112 
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 4 

Results 113 

Questionnaire data 114 
Study participants were selected via an online version of the established Vividness of Visual 115 

Imagery Questionnaire (VVIQ, 210 respondents, Figure 1B; Marks, 1973). We recruited 20 116 
participants each from the lower and upper quartile of the VVIQ score distribution, resulting in 117 

two experimental groups (average VVIQ score; weak: 40.75 ± 11.571; strong: 70.7 ± 3.262). 118 

After the second fMRI session, each participant repeated the VVIQ and also completed the 119 

Object Spatial Imagery Questionnaire (OSIQ; Blajenkova et al., 2006). VVIQ scores had a high 120 
test-retest reliability (r = 0.867, p < 0.001), and thus also the difference between weak and 121 

strong imagers, as defined by the recruitment scores, was stable across the study period 122 
(Figure 1C; t(38) = -5.086, p < 0.001, two-tailed). In line with previous studies, the OSIQ scores 123 

(Figure 1D) had a significant difference between weak and strong imagers for the visual items 124 

(t(38) = -3.338, p = 0.002, two-tailed), but no such difference for the spatial items (t(38) = 0.895, 125 
p = 0.377, two-tailed). Crucially, this pattern of OSIQ results replicates earlier findings obtained 126 

with this scale for weak and strong imagers (Bainbridge et al., 2021; Keogh & Pearson, 2018), 127 
which serves as a validation of the VVIQ scores as a recruitment measure. 128 

 129 
Behavioral results 130 
Figure 2A shows how accurately participants performed in the task. The figure plots the 131 
deviation between participants’ judgements and the true orientations for each trial (grey bars), 132 

revealing that the responses were highly accurate. To assess this quantitatively, we fitted a 133 
computational model to the response distribution of each participant that yields estimates for 134 
behavioral precision and bias (von Mises mixture model; Figure 2A, black line; see Methods 135 

for details). Across all participants, responses were precise (precision 𝜅1 = 5.673 ± 2.377), with 136 

a small but significant bias to respond anti-clockwise of the target (μ = -0.889° ± 1.635°; Figure 137 
2A, inset). 138 

 139 

Importantly, there were no significant differences between strong and weak imagers for 140 
behavioral precision (Figure 2B; t(38) = -0.965, p = 0.341, two-tailed) or any other of the 141 

estimated behavioral parameters (Figure S1). This indicates that the high individual differences 142 

in visual imagery were not associated with performance differences in the visual working 143 
memory task. We used a Bayesian analysis to assess the evidence for absence of a difference 144 

in behavioral precision between the weak and strong imagery groups. The Bayes factor 145 

indicated that the data were 2.2 times more likely under the null hypothesis (BF01 = 2.239) 146 
which provides weak evidence for the absence of an effect of imagery vividness on behavioral 147 

precision (Jeffreys, 1998). 148 
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 149 
Figure 1. Experimental task and questionnaire data. (A) Sequence of events in one trial of the experiment. In 150 
each trial, participants were successively presented with two orientation stimuli, each followed by a dynamic noise 151 
mask. Orientations were drawn from a set of 40 discrete, equally spaced orientations between 0° and 180°. The 152 
stimuli were followed by a numeric retro-cue (“1” or ”2”), indicating which one of them was to be used for the 153 
subsequent delayed-estimation task (“target”), and which could be dropped from memory (“distractor”). The 154 
orientation of the cued target grating had to be maintained for a 10-second delay. After the delay a probe grating 155 
appeared, which had to be adjusted using two buttons and then confirmed via an additional button press. 156 
Subsequently, visual feedback was given indicating whether a response was given in time (by turning the fixation 157 
point green, lower panel) or missed (by displaying a small “X” at the end of the response period if no response was 158 
given in time, upper panel). Cue and feedback are enlarged in this illustration for better visibility. (B) Distribution of 159 
the scores in an online visual imagery questionnaire (VVIQ, see Methods) that was used for recruitment. Subjects 160 
from the upper (blue) versus lower (orange) quartiles of the distribution were recruited for the strong and weak 161 
imagery vividness groups, respectively. The small arrow on the x-axis points to the aphantasia cutoff. (C) 162 
Questionnaire scores of the post-scan (repeated) VVIQ for weak and strong imagers, as defined by the recruitment 163 
scores. The post-scan scores of the weak imagery group were significantly lower than those for the strong imagery 164 
group, indicating that the groups were consistent across the study and repeated testing (t(38) = -5.086, p < 0.001, 165 
two-tailed; error bars: 95 % confidence intervals). (D) Results for the visual and spatial items from the OSIQ. Scores 166 
for the visual items were significantly lower for weak imagers (t(38) = -3.338, p = 0.002, two-tailed). Scores for the 167 
spatial items did not differ between groups (t(38) = 0.895, p = 0.377, two-tailed; error bars: 95 % confidence intervals), 168 
as expected from previous work (Bainbridge et al., 2021; Keogh & Pearson, 2018). 169 
 170 
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 171 
Figure 2. Behavioral results. (A) Histogram of deviations between the reported and the true orientation of the 172 
target stimuli (grey bars) and a model fit of behavioral responses across all subjects (black line). For this, the 173 
responses were modeled using a von Mises mixture model (vMMM) for detections (responses to target orientations, 174 
assumed to follow a von Mises distribution with mean 0° plus bias µ and behavioral precision 𝜅1), swap errors (false 175 
responses to distractor orientations, following the same assumptions as detections) and guesses (assumed to follow 176 
a continuous uniform distribution between -90° and +90°). The model estimated individual probabilities for each of 177 
these three event classes (resulting in mixture coefficients, r1, r2 and r3, respectively). The estimated parameters 178 
indicate that participants accurately performed the task: they correctly responded to the target direction in around 179 
95 % of trials (r1 = 0.947 ± 0.063). Across participants, responses were precise (𝜅1 = 5.673 ± 2.377), with a small 180 
but significant bias to respond anti-clockwise of the target (inset; μ = -0.889 ± 1.635°; t(39) = -3.437, p = 0.0014, two-181 
tailed; error bar: 95 % confidence interval). See Figure S1 for details on the other estimated parameters. (B) 182 
Behavioral precision (𝜅1) for strong and weak imagers separately. Behavioral precision did not significantly differ 183 
between groups (error bars: 95 % confidence intervals). 184 
 185 
Orientation reconstruction from fMRI data 186 
We used a brain-based decoder to reconstruct orientation representations encoded in the 187 
patterns of signals in early visual cortex (V1-V3, see Methods). Across all subjects, we were 188 

able to reconstruct the true physical target orientation above chance-level for an extended 189 
period following delay onset (Figure 3A, green line): At 5 s after delay onset, the accuracy rose 190 

to 12 % above chance, where it plateaued until 3 s after probe onset. Following probe onset, 191 
the accuracy increased steeply before falling back towards baseline. This later peak in 192 

reconstruction performance is likely to reflect the perceptual information of the adjustable 193 

probe grating after it had been rotated by the participants to report the target orientation. 194 
Reconstruction of the reported orientation yielded a very similar pattern of results (Figure 3A, 195 

red line). This close resemblance was expected, given the close match between target and 196 

reported orientations (see Figure 2A).  197 
 198 
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 199 
Figure 3. Orientation reconstruction from early visual cortex. (A) Reconstruction performance for orientations 200 
based on brain signals from early visual areas V1-V3. The y-axis plots the accuracy (BFCA, see Methods), across 201 
time for target (green), reported (red), distractor (purple) and probe (yellow) orientations. The horizontal lines above 202 
the graph indicate time periods where this reconstruction was significantly above chance (permutation-based 203 
cluster-mass statistic, see Methods). The target orientation (green) could be reconstructed above chance-level 204 
throughout the delay and report periods (cluster-p < 0.001). Reconstruction of the reported orientation (red) followed 205 
a highly similar pattern (cluster-p < 0.001). The distractor orientation (purple) could only be reconstructed early in 206 
the trial (cluster-p < 0.001), before falling back to baseline. Reconstruction of the adjustable probe orientation 207 
(yellow) was only possible late in the trial (large cluster: cluster-p < 0.001; small cluster: cluster-p = 0.015), after it 208 
had been presented (shaded areas: 95 % confidence intervals). The gray box marks the preregistered delay-period 209 
time window used for subsequent analyses. (B) Target reconstruction performance for strong and weak imagers 210 
separately, pooled across the preregistered delay-period (gray bar in (A)). Delay-period decoding accuracy did not 211 
differ between weak and strong imagers (t(38) = 0.821, p = 0.417, two-tailed; error bars: 95 % confidence intervals). 212 
(C) Detailed correlation between delay-period accuracy (BFCA) and visual imagery score. There was no significant 213 
correlation between the strength of delay-period representations and imagery vividness even when using the full 214 
graded imagery scores (shaded area: 95 % confidence interval). Neural information during the delay-period was 215 
significantly above chance-level even for aphantasic individuals with a visual imagery score below 32 (grey bar at 216 
x-axis; t(4) = 8.758, p < 0.001, one-tailed, E.A.). The arrow on the x-axis points to the aphantasia cutoff. 217 
 218 
We also conducted several checks to test for other predictions of our analysis. First, we 219 

reconstructed the orientation of the distractor, i.e., the task-irrelevant orientation stimulus that 220 

was not cued and could thus be forgotten after the retro-cue. As expected, information about 221 
this distractor orientation (Figure 3A, purple line) was only present briefly at the beginning of 222 

the trial after which the accuracy returned to chance-level for the remainder of the trial. In line 223 

with previous work on the representation of task-irrelevant stimuli (Albers et al., 2013; Ester et 224 
al., 2013; Harrison & Tong, 2009), this transient early information presumably reflects the 225 

perceptual signal following the presentation of the distractor early in the trial, delayed by the 226 

hemodynamic lag. Second, we reconstructed the initial random starting orientation of the 227 

adjustable probe grating (Figure 3A, yellow line). As expected, this resulted in an informative 228 

time window late in the trial, after probe onset, likely reflecting the perceptual signal of the 229 

adjustable probe before it was rotated for the behavioral response. Together, this pattern of 230 
results indicates the presence of sustained, content-selective representations of the 231 
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memorized stimuli during the delay-period, while task-irrelevant stimulus information was 232 

quickly dropped from memory. In an additional analysis we confirmed that the decodable 233 
information was not related to systematic eye-movements (Figure S2). 234 

 235 
Group differences in delay-period representations 236 

Next, we proceeded to address the key question whether there was any indication that strong 237 

and weak imagers differed in their memory-related information in early visual cortex. Despite 238 

robust group-wise reconstruction performance, reconstruction accuracy did not differ between 239 
strong and weak imagers (Figure 3B; t(38) = 0.821, p = 0.417, two-tailed). This was confirmed 240 

by a post-hoc Bayesian t-test, which provided moderate evidence in favor of the null hypothesis 241 
over our original prediction that the early visual cortex signal of strong imagers should contain 242 

more information about the stimulus (BF01 = 5.275).  243 

 244 
To further corroborate the effect, we assessed the possibility that the effect of imagery 245 

vividness is more gradual in nature and thus might not be captured by the categorical group 246 
difference. To address this, we calculated the correlation between delay-period accuracies and 247 

graded imagery vividness scores. Again, the result was not significant (Figure 3C; r = -0.256, 248 
p = 0.11), with strong evidence for the absence of a positive correlation (BF01 = 12.442). There 249 
was also no relationship between working memory signals and any of the post-scan imagery 250 
assessments (see Table S1). Note that delay-period accuracy was significantly greater than 251 

chance-level even for the five participants with a visual imagery score of below 32 (marked 252 
with a grey bar on the x-axis of Figure 3C; one-sample t-test: t(4) = 8.758, p < 0.001, one-tailed; 253 
E.A.), which is generally considered the threshold for aphantasia (Zeman et al., 2015). Taken 254 

together, these results suggest that imagery vividness, at least in the form of subjective 255 

questionnaire scores, does not affect the strength of delay-period representations of target 256 
orientations in early visual cortex. 257 
  258 
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 259 
Figure 4. Behavioral precision versus decodable neural information from early visual cortex. Correlation 260 
between the behavioral precision (kappa, 𝜅1) in the task and the accuracy of brain-based reconstruction. The 261 
strength of delay-period representations was highly predictable of behavioral precision, both (A) across all 262 
participants and (B) within strong and weak imagery vividness groups. Shaded areas indicate 95 % confidence 263 
intervals. 264 
 265 
Finally, we tested a further prediction that would be expected if strong imagers relied more on 266 
sensory information encoded in early visual cortex than weak imagers. In that case, there 267 

should be a tighter predictive link between behavioral performance and the encoding of 268 
information in early visual areas, especially for strong imagers. For this, we assessed whether 269 
there was more performance-predictive information in early visual areas of strong imagers. In 270 

this additional analysis (E.A.) we observed a strong correlation between delay-period accuracy 271 
and behavioral precision (Figure 4A; r = 0.728, p < 0.001), which was the same across groups 272 
(Figure 4B; strong: r = 0.81, p < 0.001; weak: r = 0.657, p = 0.002). Interestingly, half of the 273 
variance in delay-period accuracy could be explained by behavioral precision (R2, all: 0.53; 274 

strong: 0.656; weak: 0.432). This strong effect suggests that the signals in early visual cortex 275 
could potentially play a direct role in maintaining the sensory stimulus across the memory delay 276 
(as suggested by the sensory recruitment hypothesis), and that this does not depend on 277 

whether a person is a strong or a weak imager. 278 
 279 
Discussion 280 

In this study, we investigated to which extent an individual’s visual imagery vividness affects 281 

the strength of working memory representations in their visual cortex. Two experimental 282 

groups, strong and weak imagers, performed a visual working memory task, which involved 283 
memorizing images of oriented lines over a delay. In both groups we found that early visual 284 

cortex contained robust information about the remembered orientations across the entire delay 285 
period. Importantly, the level of this information did not differ between strong and weak imagery 286 

groups. There was also no apparent dependency of visual cortex representations on any other 287 

subjective measure of encoding strategy (see Table S1), suggesting that remembered 288 
orientations were encoded equally strongly in the visual areas irrespective of an individual’s 289 
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imagery vividness. Crucially, even the five participants with a VVIQ score of below 32, which 290 

is generally considered the threshold for complete absence of phenomenal imagery 291 
(“aphantasia”; Zeman et al., 2015) showed comparable visual neural information to the strong 292 

imagers (see Figure 2C). Our results therefore show that working memory signals can be 293 
present in early visual cortex even in the (near) absence of phenomenal imagery. 294 

 295 

While working memory signals in early visual cortex were not modulated by imagery vividness, 296 

we did observe a strong correlation between encoded information and individual behavioral 297 
precision. Moreover, the overall strength of this effect was also indistinguishable between 298 

imagery groups. This suggests that the sensory information represented in early visual cortex 299 
was equally important for strong and weak imagers to successfully guide behavior. We thus 300 

find no evidence for differences between strong and weak imagers, neither in the encoding of 301 

sensory information nor in the degree to which this information is predictive of behavior. These 302 
results go against our key prediction from the cognitive-strategies framework of working 303 

memory (Pearson & Keogh, 2019), according to which strong imagers should retain higher 304 
levels of stimulus information in their early visual cortices during working memory, compared 305 

to weak imagers. Our results therefore call into question the importance of experienced 306 
imagery vividness in the modulation of early visual cortex recruitment during working memory. 307 
Please note that these null effects were based on preregistered analyses and are supported 308 
by additional Bayesian analyses. 309 

 310 
To our knowledge, this is the first study to specifically investigate the decodability of working 311 
memory representations in the context of individual differences in imagery ability. While some 312 

studies have considered the relationship between visual imagery and stimulus decoding 313 

(Albers et al., 2013; Dijkstra et al., 2017; Dijkstra et al., 2018), they have relied on random 314 
samples of participants, potentially not covering the entire spectrum of imagery ability and not 315 

addressing the effects of individual differences. One study found that the overlap between 316 

imagery and perception signals in early visual cortex is modulated by trial-by-trial imagery 317 
measures (Dijkstra et al., 2017). In a later study, the same authors could successfully cross-318 

decode between the neural signatures of weak and strong imagers, indicating that the 319 

decodable signal between both groups was similar (Dijkstra et al., 2018). While the second 320 
study in particular seems to support our results, caution is advised when comparing results 321 

obtained via trial-by-trial measures of imagery with trait measures such as VVIQ scores. 322 
Another study has reported a positive relationship between imagery ability and decoding 323 

accuracy (Albers et al., 2013), however, note that the authors of that study equated imagery 324 

ability with task performance, making this result more analogous to our reported relationship 325 
between target reconstruction and behavioral precision. Therefore, our present finding that 326 
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working memory signals do not seem to depend on imagery vividness is not in direct 327 

contradiction to these previous decoding studies.  328 
 329 

Importantly, our study was specifically designed to assess the neural encoding of working 330 
memory contents, not the neural representations of imagery. If working memory signals in early 331 

visual areas were to exclusively reflect imagery, one would predict these working memory 332 

signals both to be modulated by imagery ability and to be completely absent for individuals 333 

without phenomenal imagery (aphantasics). Our results show that both are not the case. 334 
Please note that we are not claiming that visual imagery and visual working memory are never 335 

based on the same neural signals. It is possible that imagery in strong imagers recruits the 336 
same neural representations that are also used for visual working memory. This would be 337 

compatible with findings from previous studies (Albers et al., 2013; Dijkstra. et al., 2017; 338 

Dijkstra et al., 2018). However, our finding that even a strong reduction in imagery does not 339 
affect the decodable information suggests that these early visual signals are not necessarily 340 

tied to imagery. What our data show, is that neural representations of working memory 341 
contents are still observable and have a comparable information level even for individuals with 342 

weak or absent imagery. Thus, working memory signals can be dissociated from visual 343 
imagery in early visual cortex. Note that the current study did not focus on any particular 344 
encoding strategy and therefore does not allow any claims about the neural encoding of 345 
imagery contents. While it would be interesting to investigate how the strength of imagery 346 

representations varies with the vividness of subjectively experienced imagery, this is a 347 
question for future research and was not the aim of this study. 348 
 349 

Our finding of a close link between sensory information in the delay period and behavioral 350 

working memory performance is in line with several previous studies (Bettencourt & Xu, 2016; 351 
Ester et al., 2013; Hallenbeck et al., 2021; Harrison & Tong, 2009; Iamshchinina et al., 2021). 352 

Based on our highly sensitive method for reconstructing continuous stimulus features from 353 

voxel patterns, the neural information explained more than half of the between-subject 354 
variance in behavioral performance (see Methods for more details), which further corroborates 355 

the link between information encoded in early visual cortex and memorization of visual 356 

information across brief delays. Additionally, we found that sensory information was retained 357 
only for the cued and thus task-relevant stimulus but was not present for the uncued image. 358 

These results are in line with sensory recruitment accounts of working memory (D’Esposito & 359 
Postle, 2015), or more generally with a multi-level representation of sensory information across 360 

delays (Christophel et al., 2017), according to which cortical areas that are used for the 361 

encoding of task-relevant sensory information are also recruited for the brief memorization of 362 
that information. This task-dependent retention of information in early visual cortex could point 363 
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towards some form of active maintenance throughout the delay after offset of the stimulus. 364 

This could be achieved by neural mechanisms such as recurrent processing within early visual 365 
cortex (Lamme & Roelfsema, 2000) or by feedback from higher regions (Gazzaley & Nobre, 366 

2012) and could include short-term synaptic plasticity (Mongillo et al., 2008; Rose et al., 2016). 367 
Please note that sensory recruitment does not make any assumptions about the strategy with 368 

which sensory information is encoded, i.e., whether it is accompanied by imagery or not.  369 

 370 

It is worth pointing out that there has been some debate about the importance of early visual 371 
cortex for the generation and maintenance of visual imagery in general. For instance, results 372 

from activation-based studies have suggested that imagery effects in early visual cortex might 373 
be linked to sensory memory retrieval (Kaas et al., 2010). Further, it has been shown that vivid 374 

phenomenal imagery can be preserved in cortically blind patients after strokes to occipital 375 

areas (Bartolomeo et al., 1998; Chatterjee & Southwood, 1995; de Gelder et al., 2015), 376 
indicating that early visual cortex is not essential for visual imagery. Similarly, lesions in 377 

temporal regions have been reported to selectively affect visual imagery but leave visual 378 
perception largely preserved (Moro et al., 2008; Thorudottir et al., 2020), which has been taken 379 

as evidence that visual imagery depends on a temporal network (Spagna et al., 2021). 380 
Together, this would suggest a functional dissociation of early visual cortex and visual imagery 381 
(Bartolomeo et al., 2020), with imagery relying on higher-level representations beyond early 382 
visual cortex (Bartolomeo, 2008). As a consequence, orientation-specific signals could be 383 

maintained in early visual cortex, but weak imagers might not be able to access them to 384 
produce phenomenal imagery. On this basis, one could speculate that the weak imagers in 385 
our case might have had a deficit in a (potentially temporal) imagery network, whereas working 386 

memory performance is based on sensory information that is largely intact. Early visual 387 

information would thus be available to solve the working memory task but would not 388 
necessarily lead to the experience of imagery. Importantly, however, this is at odds with a large 389 

body of behavioral, neuroimaging and brain-stimulation work which suggests a close link 390 

between signals in early visual areas and imagery (Albers et al., 2013; Dijkstra et al., 2017; 391 
Keogh et al., 2020; Pearson, 2019), a discrepancy which will have to be resolved by future 392 

research. Another explanation for our results might be that our participants simply did not use 393 

visual strategies at all, or just to a small extent. This would be in direct opposition of the 394 
cognitive-strategies framework, which assumes a close correspondence between individual 395 

imagery ability and the cognitive strategy used to solve a working memory task (Pearson & 396 
Keogh, 2019). Strong imagers usually report to use visual strategies (Bainbridge et al., 2021; 397 

Keogh et al., 2021; Logie et al., 2011), and the spontaneous use of visual vs. non-visual 398 

strategies by strong and weak imagers has also been confirmed behaviorally, by showing that 399 
only strong imagers were affected by distracting visual input during a working memory delay 400 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 13 

(Keogh & Pearson, 2014). It is therefore unlikely that the strong imagery group in this study 401 

relied predominantly on non-visual strategies to solve the task. 402 
 403 

One reason for some of the discrepancies in the imagery literature may lie in the different ways 404 
in which imagery vividness is quantified across studies (Pearson, 2020). To date, various 405 

approaches have been suggested, including self-report questionnaires, trial-by-trial vividness 406 

measures (Dijkstra et al., 2017; Dijkstra et al., 2018; Dijkstra et al., 2017) and several measures 407 

that are related to certain spontaneous perceptual (Pearson et al., 2008) or physiological (Kay 408 
et al., 2022) reactions or anatomical features (Bergmann et al., 2016). It is not yet clear, 409 

however, which of these measures provides the best approximation for general individual 410 
imagery ability. Some of the more objective measures in particular have been used very rarely 411 

and still await calibration with respect to more conventional measures of visual imagery. In 412 

contrast, the VVIQ provides a well-established, reliable assessment for individual differences 413 
in imagery vividness (Dijkstra et al., 2018; Pearson et al., 2011). VVIQ scores have been 414 

shown to successfully capture the relationship between imagery vividness and neural signals 415 
(Amedi et al., 2005; Cui et al., 2007; Lee et al., 2012), and people are generally able to provide 416 

good metacognitive judgments about their own imagery abilities (Pearson et al., 2011; 417 
Rademaker & Pearson, 2012). Further, the VVIQ is closely related to a perceptual priming 418 
based measure of imagery ability (Pearson et al., 2008, 2011). In combination with pre-419 
selection and high test-retest reliability, the VVIQ scores should therefore provide a reasonably 420 

good estimate of general imagery ability in the two groups recruited for this study. 421 
 422 
It is worth mentioning that our reconstruction results might be explained by other factors than 423 

orientation-specific visual representations. Please note that in decoding studies it is generally 424 

not possible to fully guarantee that information pertains to the features intended by the 425 
researcher instead of other latent confounding variables such as spatial attention or motor 426 

preparation that co-vary with these features, as we have pointed out previously (Christophel 427 

et al., 2017). For example, the distribution of spatial attention can be very different across 428 
seemingly homogenous stimulus sets (Liu, 2016; Yun et al., 2013). Thus, when decoding 429 

between two object images one might be decoding the spatial distribution of attention rather 430 

than the object identity. This could also be the case for the orientation stimuli used here. 431 
However, the role of early visual cortex in encoding of orientations as here has long been 432 

established both at a cellular level (Hubel & Wiesel, 1968) as well as the population level 433 
(Haynes & Rees, 2005; Kamitani & Tong, 2005; Ts’o et al., 1990). Orientation stimuli as here 434 

have been used in many cornerstone studies of working memory (Albers et al., 2013; Bae & 435 

Luck, 2019; Harrison & Tong, 2009) and imagery (Keogh & Pearson, 2011, 2014; Pearson et 436 
al., 2008). Nonetheless, future studies will be needed to test whether all these findings of 437 
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orientation encoding in early visual cortex during working memory generalize to other stimulus 438 

sets. 439 
 440 

In conclusion, we show that the active maintenance of stimulus-related information in early 441 
visual areas was present also in participants who report a near-absence of visual imagery. The 442 

encoding of sensory information and its link to performance was strong and indistinguishable 443 

across different levels of imagery. This provides further evidence for the view that the 444 

recruitment of early visual cortex for working memory can be dissociated from visual imagery, 445 
at least for participants with weak or absent imagery. Thus, informative working memory 446 

representations in visual cortex are maintained irrespective of whether a person is able to 447 
engage in vivid imagery or not. 448 
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Methods 464 

Data and code availability 465 
Original code, summary statistics describing the reported data and processed datasets which 466 

can be used to recreate the figures in this manuscript have been deposited and are publicly 467 

available at https://github.com/simonweber91/WM_VI_EVC. Any additional data and 468 
information required to reanalyze the data reported in this paper are available from the lead 469 

contact upon reasonable request. 470 
 471 

Preregistration 472 

The main analysis workflow of this study (including custom preprocessing steps, parameter 473 
choices, ROIs and newly implemented statistical models) was preregistered at 474 
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https://osf.io/34y9z. The preregistration was submitted after data acquisition, but prior to data 475 

processing and analysis. All preregistered analysis procedures were developed and/or 476 
optimized on a separate fMRI dataset from a related study (Barbieri et al., 2023). Please note 477 

that we did not change any of the preregistered workflows. However, we did perform additional 478 
analyses and performed more extended statistical testing (e.g., Bayesian and permutation-479 

based tests) whenever it proved necessary to the quality of the study. All of these additional 480 

analyses are indicated as E.A. (“extended analysis”) in this text. 481 

 482 
Recruitment 483 

Two groups of study participants were preselected for the study using an online version of the 484 
Vividness of Visual Imagery Questionnaire (VVIQ; Marks, 1973) The questionnaire was 485 

implemented and hosted on the online survey platform SoSci Survey (www.soscisurvey.de) 486 

and local respondents were recruited via in-house mailing lists for experimental studies, study 487 
participant databases and Facebook. Respondents gave informed consent prior to being 488 

directed to the questionnaire and again before providing an email address for recruitment at 489 
the end of the questionnaire.  490 

We received a total of 263 online responses, 210 of which fulfilled the physiological, medical 491 
and demographic criteria for participation in the MRI study. Respondents whose VVIQ scores 492 
fell either into the upper or lower quartiles of the response distribution were assigned to the 493 
strong and weak imagery groups, respectively, and contacted for participation in the fMRI 494 

experiment (Figure 1B). From these groups we recruited a total of 42 fMRI participants. All 495 
participants were healthy, right-handed individuals between 18 and 40 years old with no history 496 
of neurological or psychiatric disorders. One participant dropped out of the study before 497 

completing all scanning sessions. The data of a second participant had to be discarded due to 498 

technical issues with the MRI scanner. Therefore, we collected complete datasets of 40 499 
participants (female: 23, age: 28.05 ± 6.064 years), 20 each per experimental group (average 500 

VVIQ score; weak: 40.75 ± 11.571; strong: 70.7 ± 3.262). 501 

Participants gave written informed consent prior to the fMRI experiment. They received 502 
monetary compensation of 10€/h for the fMRI sessions and a bonus of 10€ for completion of 503 

both scanning sessions. Following April 19, 2021, participants were required to present a 504 

negative SARS-CoV-19 rapid test result (not older than 24 hours) before entering the MRI 505 
facility. To compensate for the additional effort, we paid an additional 20€ for each SARS-CoV-506 

19 rapid test. The study was approved by the ethics committee of the Humboldt-Universität zu 507 
Berlin and conducted according to the principles of the Declaration of Helsinki (World Medical 508 

Association, 2013). 509 

  510 
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Stimuli 511 

The experiment was implemented using MATLAB R2018b (The MathWorks, Inc.) and 512 
Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007). All stimuli were presented on black 513 

background, to avoid residual luminance interfering with potential visual imagery during the 514 
delay period (Keogh & Pearson, 2014). For stimulation, we used circular high contrast sine-515 

wave Gabor patches with phase 0, contrast 0.8 and a spatial frequency of 0.02 cycles per 516 

pixel. Stimuli were presented inside a circular aperture with an inner diameter of 0.71 dva and 517 

an outer diameter of 8.47 dva. A white fixation dot of 0.18 dva was placed at the center of the 518 
inner aperture (Figure 1A). 519 

The set of target orientations comprised 40 discrete, equally spaced orientations separated by 520 
180°/40 = 4.5°. To avoid the exact cardinal directions (0°, 45°, 90°, 135°), the orientations were 521 

slightly shifted by 1.125°, resulting in a set of orientations between 1.125° and 176.625°. 522 

Another set of 40 gratings, which served as distractors, was created by shifting the target 523 
orientations by 4.5°/2 = 2.25°, yielding orientation stimuli between 3.375° and 178.875°. This 524 

ensured that (i) target and distractor orientations were never exactly the same and (ii) both 525 
sets of orientations avoided the exact cardinal directions. Since we presented 40 trials in each 526 

run (see below), each target and distractor orientation was shown once during each run, in 527 
randomized order. Accordingly, target and distractor orientations were counterbalanced across 528 
runs. The starting orientation of the probe grating was randomly selected from a uniform 529 
distribution between 0° and 180° on each trial. 530 

To avoid afterimages, we used a custom dynamic noise mask (Figure 1A). For each 531 
presentation of the mask, we initialized a 42-by-42 array of an equal number of black and white 532 
squares. Each time the screen was refreshed (refresh rate: 60 Hz), the array was scrambled 533 

along the rows and columns and smoothed by convolving it with a 2 x 2 box blur kernel. This 534 

created a highly dynamic noise mask that reliably suppressed afterimages of the high-contrast 535 
gratings. Masks were presented inside the same circular aperture as the stimuli. 536 

 537 

fMRI task 538 
The visual stimuli were presented on an MRI-compatible monitor (dimensions: 52 x 39 cm, 539 

resolution: 1024 x 768 px), positioned at the far end of the scanner bore, and viewed via an 540 

eye-tracking compatible mirror mounted on top of the head-coil. The distance between the 541 
eyes and the center of the monitor was 158 cm. 542 

Each trial of the experiment started with the presentation of a central fixation dot which 543 
remained visible throughout the entire trial (Figure 1A). Participants were instructed to fixate 544 

the dot at all times. After 0.4 s, participants were sequentially presented with two gratings (see 545 

above), one serving as the target and the other as the distractor. Each grating was shown for 546 
0.4 s, followed by 0.4 s of a dynamic, high-contrast noise mask to avoid after-images. After the 547 
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second mask a numerical retro-cue (0.4 s) was presented at the location of the fixation dot, 548 

indicating to the participants to remember the orientation of either the first (“1”) or second (“2”) 549 
grating during the subsequent delay period. The delay period lasted for 10 s, during which only 550 

the fixation dot remained visible on the screen. After the delay, a probe grating with random 551 
starting orientation appeared for 3.2 s. Participants were asked to adjust the orientation of the 552 

probe grating in a way that it corresponded to the remembered (target) orientation, using two 553 

buttons with the index and middle fingers of their right hand. After adjustment, participants had 554 

to confirm their response by pressing a button with the index finger of their left hand. If the 555 
response was completed within the time-window of 3.2 s, the fixation dot turned green for the 556 

remainder of the response period as visual feedback. If participants failed to provide a 557 
response in time, a small “X” was presented at the location of the fixation dot for 0.4 s. Trials 558 

were separated by a variable inter-trial interval (ITI) of 3.6 ± 1.6 s. Participants completed 40 559 

trials per run and a total of 8 runs, equally split across 2 fMRI sessions on separate days, 560 
resulting in 320 trials per participant. 561 

 562 
MRI data acquisition 563 

MRI data were collected with a 3-Tesla Siemens Prisma MRI scanner (Siemens, Erlangen, 564 
Germany) using a 64-channel head coil. At the beginning of each session, we recorded a high-565 
resolution T1-weighted MPRAGE structural image (208 sagittal slices, TR = 2400 ms, TE = 566 
2.22 ms, TI = 1000 ms, flip angle = 8°, voxel size = 0.8 mm2 isotropic, FOV = 256 mm). On 567 

each of the two days, this was followed by four experimental runs, for each of which we 568 
recorded a series of 965 T2-weighted functional images using a multi-band accelerated EPI 569 
sequence with a multiband factor of 8 (TR = 800 ms, TE = 37 ms, flip angle = 52°, voxel size 570 

= 2 mm2 isotropic, 72 slices, 1.9 mm inter-slice gap), resulting in a duration of 12:52 min per 571 

run. The first four TR of each sequence were discarded. 572 
 573 

Eye-tracking 574 

We used an EyeLink 1000 Plus (SR-Research) eye-tracker to record gaze position and pupil 575 
size of the dominant eye of each participant during the experimental runs. The tracker was 576 

positioned at the far end of the scanner bore (eye-lens-distance: 85 cm) on a long-distance 577 

mount and was calibrated once at the beginning of each session. Due to technical difficulties, 578 
we were only able to record eye-tracking data of 26 participants (13 per experimental group). 579 

 580 
Post-experiment questionnaires 581 

After the second session, participants completed three questionnaires: (i) the Vividness of 582 

Visual Imagery Questionnaire (VVIQ, as a post-experimental reference); (ii) the Object-Spatial 583 
Imagery Questionnaire (OSIQ; Blajenkova et al., 2006) a 30-item questionnaire probing the 584 
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strength of visual and spatial imagery; and (iii) a purely heuristic strategy questionnaire, asking 585 

(on a 5-point scale) for the degree to which they had used specific mnemonic strategies to 586 
remember the target orientations and complete the task, including visual, verbal, spatial, 587 

reference to cardinal directions, reference to a clock face, some kind of individual code, or 588 
other. 589 

 590 

Behavioral data analysis 591 

Behavioral responses were modeled by fitting a von Mises mixture model (vMMM) to the 592 
distribution of behavioral response errors (see Töpfer et al., 2022; original code available at 593 

https://github.com/JoramSoch/RDK_vMMM). The model is inspired by previous work on 594 
modelling detections from working memory with similarly continuous features (Zhang & Luck, 595 

2008). In our case, we assume that on every trial participants either detect the target 596 

(responses to target orientations, assumed to follow a von Mises distribution with mean 0° plus 597 

bias µ and precision 𝜅), make a swap error (responses to distractor orientations, following the 598 

same assumptions as detections) or guess (assumed to follow a continuous uniform 599 
distribution between -90° and +90°). Each of these three potential trial-wise outcomes 600 
(detections, swaps and guesses) has an associated probability distribution indicating how 601 

probable each potential response angle is, given the orientation of the stimulus (i.e., target and 602 
distractor). The overall response distribution is considered a linear combination of these three 603 

individual event probability distributions with associated probabilities as mixture coefficients	𝑟!, 604 

𝑟" and 𝑟#. 605 

According to this approach, the probability of observing a specific response evaluates to 606 
 607 

𝑃#𝜃!%𝜃", 𝜃# ,𝑟''⃑ , µ, 𝜅* = 𝑃('detection') ⋅ 𝑃(𝜃!|'detection') + 𝑃('swap') ⋅ 𝑃(𝜃!|'swap') + 𝑃('guess') ⋅ 𝑃(𝜃!|'guess') 608 

=	𝑟$ 	
exp B𝜅$ cos((𝜃" − 𝜃!)%&'%

𝜋
90 − µ)G

2𝜋𝐼((𝜅$)
	+	𝑟) 	

exp B𝜅) cos((𝜃# − 𝜃!)%&'%
𝜋
90 − µ)G

2𝜋𝐼((𝜅))
	+	𝑟* 	

1
2𝜋 609 

 610 

where 𝜃$ is the reported orientation in degrees; 𝜃%, 𝜃& and are the target and distractor 611 

orientations in degrees, respectively; 𝑟 is a vector containing 𝑟!, 𝑟" and 𝑟#, the event 612 

probabilities for the three model components (detections, swap errors and guesses);	𝜅⃑ is a 613 

vector containing 𝜅! and 𝜅", the precisions for detections and swap errors, respectively; µ is 614 

the response bias and 𝐼'(	𝜅𝑖) is the modified Bessel function of order 0. As 𝜅! reflects the width 615 

of the response distribution for target detections, we report this parameter as our key measure 616 
for behavioral precision. 617 

 618 
fMRI preprocessing 619 

Processing and analysis of fMRI data was performed in MATLAB 2021b, using SPM12, The 620 

Decoding Toolbox (Hebart et al., 2015) and custom scripts (see below). MR images were 621 
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converted into NIfTI format for further processing. Before the analysis, BOLD images were 622 

spatially realigned and resliced. The T1 image of each session was coregistered to the first 623 
image of the respective BOLD series. We then calculated normalization parameters to the 624 

Montreal Neurological Institute (MNI) standard space. These were used to project probabilistic 625 
maps of our regions of interest (ROIs) into the native space of each individual participant to 626 

guide voxel selection during the reconstruction analysis (see below). Following realignment, 627 

the time series of each voxel’s raw data were temporally detrended, to remove slow signal 628 

drifts that accumulate across a given run. This was implemented using cubic spline 629 
interpolation (modifying an existing algorithm; Tanabe et al., 2002). The time series of voxel 630 

data for a given run was separated into 40/2 = 20 segments of equal size. The data from each 631 
segment was averaged to create query points (nodes), which were then used for cubic spline 632 

interpolation, creating a smooth function modeling the slow signal drifts in the voxel data across 633 

the run. The number of nodes was specifically set to half the number of trials per run, to avoid 634 
the modeling (and thereby, removal) of within-trial effects. The drift-estimate was then 635 

subtracted from the voxel data. This procedure was repeated for every voxel and every run. 636 
After detrending, we applied temporal smoothing to the data by running a moving average of 637 

width 3 TR across the data of each run. 638 
To increase the signal-to-noise ratio for samples from trials with neighboring stimulus 639 
orientations, we developed a method that we refer to as “feature-space smoothing”. Feature-640 
space smoothing accounts for the assumption that, in a feature-continuous stimulus space, 641 

samples that lie closely together in feature space (e.g., neighboring orientations) should 642 
produce a similar neural response and therefore a similar voxel signal. By reducing the 643 
contribution of noise to the measurements of neighboring samples, it should be possible to 644 

increase the amount of information represented in the voxel signal across the feature space. 645 

We addressed this issue by using a gaussian smoothing kernel to compute a weighted average 646 
of the voxel signal corresponding to a given orientation and its neighbors (Figure S3). This 647 

means that samples close to a given orientation in feature space contribute more to the 648 

resulting average than those further away. The number (or distance) of samples included in 649 
the average is determined by the width (full width at half maximum, FWHM) of the smoothing 650 

kernel. Please note that we confirmed through simulations that feature-space smoothing can 651 

substantially increase signal-to-noise ratio and thereby reconstruction accuracies without 652 
producing spurious above-chance accuracies in the case of null data (Figure S3). In this study, 653 

we used nested cross-validation across subjects to determine the optimal kernel width for each 654 
participant (see below). Please note that all these approaches for temporal detrending and 655 

feature-space smoothing were developed and optimized on a separate dataset (from a related 656 

study; Barbieri et al., 2023) and both were pre-registered and checked for artifacts or spurious 657 
effects. 658 
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 659 

Early visual cortex ROI 660 
As our goal was to determine the strength of working memory representations in visual sensory 661 

stores depending on visual imagery vividness, we restricted our analysis to visually driven 662 
voxels in early visual cortex (V1, V2, V3). These regions have been shown repeatedly to 663 

similarly encode working memory representations of orientation (and other visual) stimuli 664 

(Christophel et al., 2012; Christophel & Haynes, 2014; Harrison & Tong, 2009; Serences et al., 665 

2009). In a first step we combined the probabilistic anatomical maps of V1, V2 and V3 (Wang 666 
et al., 2015) to create a combined map in standard space, collapsing across left and right 667 

hemispheres. We then transformed this map into the native space of each participant, by 668 
applying the inverse normalization parameters estimated during preprocessing. The individual 669 

maps were then thresholded at 0.1, to exclude voxels that had a less than 10 % probability of 670 

being part of a given area, and binarized. This resulted in an average ROI size of 5938.6 ± 671 
858.45 voxels. In a second step we identified visually driven voxels within that ROI. For this, 672 

we estimated a GLM with regressors for all trial events (target, distractor, cue, delay and probe, 673 
plus 6 head motion realignment parameters as regressors of no interest). Regressors were 674 

convolved with a canonical hemodynamic response function. We then calculated a contrast for 675 
the target regressor (vs. an implicit baseline), in order to determine voxels with significant 676 
activation in response to the target, irrespective of orientation. The resulting statistical 677 
parametric maps were then used in combination with the individual anatomical ROIs for voxel 678 

selection in the multivariate reconstruction analysis. For this, we selected the voxels rank-679 
ordered by their respective t-score (from the unspecific target contrast) within the anatomical 680 
ROI for each individual. The cutoff yielding the exact number of voxels used for reconstruction 681 

was determined via nested cross-validation across subjects (see below). 682 

  683 
Orientation reconstruction from fMRI data 684 

The aim of our reconstruction analysis was to predict the angle of the orientation stimulus from 685 

the multivariate signal of the preprocessed raw data in the early visual cortex ROI. Note that 686 
the space of orientations is circular between 0° and 180°. To account for this, we implemented 687 

periodic support vector regression (pSVR), a periodic extension of the SVR (Drucker et al., 688 

1996). First, we projected the angular labels into a periodic space by calculating two sinusoids 689 
in the range [0°, 180°). Both functions had an amplitude of 1 and a period of 180°, so that one 690 

period spanned the entire label space. One function was shifted by 45°, so that the combination 691 
of both periodic functions coded for the linear label scale (Figure S4). This is the 180°-692 

equivalent to the way sine and cosine functions between 0° and 360° code for the angles on a 693 

unit circle. 694 
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Next, we individually predicted each set of labels from the multivariate voxel pattern using the 695 

LIBSVM (Chang & Lin, 2011) implementation of SVR with a non-linear radial basis function 696 
(RBF) kernel, via a leave-one-run-out cross-validation. Before prediction, the voxel signals in 697 

the training data were rescaled to the range [0, 1]. The scaling parameters were then applied 698 
to the test data (“across-scaling”; Hebart et al., 2015). 699 

After prediction of both sets of periodic labels (𝑥(+, 𝑦(+) we computed the reconstructed angular 700 

orientation 𝜃(.  using the four-quadrant inverse tangent: 701 

  702 

𝜃(. = atan2(𝑥(+ , 𝑦(+) 703 

  704 
The analysis was repeated for the 30 TRs (24 s) following delay-onset, for each TR individually. 705 

This allowed for a time-resolved estimation of how orientations were represented in the visual 706 

cortex across the entire trial. 707 
 708 
Reconstruction performance evaluation 709 
To evaluate the accuracy of the orientation reconstruction, we computed the feature-710 
continuous accuracy (FCA). FCA is a rescaling of the absolute angular deviation (between 711 

predicted and true label) into the range 0-100 % and can be calculated, for the case of stimuli 712 
that are 180°-periodic, as (Pilly & Seitz, 2009) 713 
 714 

FCA7𝜃) , 𝜃(.8 = 	
90 −	 <7𝜃) − 𝜃(.8circ<

90
	∗ 100 715 

 716 

where 𝜃) is the true orientation in the 𝑖-th trial and 𝜃(.  is the associated reconstructed orientation. 717 

This trial-wise measure of reconstruction performance can be easily interpreted as a feature-718 

continuous analogue to the accuracy measure of more conventional classification approaches: 719 
a value of 100 % means that there is no deviation between true and reconstructed orientations, 720 
i.e., perfect reconstruction; 50 % means deviation of 45°, which for circular orientation data is 721 

equivalent to guessing and can be considered as the chance-level; and 0 % means that 722 

reconstructed and true orientations are exactly orthogonal. FCA can be averaged to quantify 723 
reconstruction accuracy across trials. 724 

For behavioral responses, the orientation labels may not be uniformly distributed across the 725 

orientation space, but clustered around, for example, cardinal axes. In a reconstruction setting, 726 
this would be analogous to a classification case with unequal (or unbalanced) numbers of 727 

classes, where the predictive model can exploit the uneven distribution of classes to simply 728 

predict the more frequent class more often. To account for this potential source of bias, we 729 
calculated a balanced FCA (BFCA). BFCA is an extension of the concept of balanced accuracy 730 
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(Brodersen et al., 2010) for continuous variables. It is calculated by computing the integral of 731 

the trial-wise FCA from 0° to 180° (i.e., the orientation-space), using trapezoidal numerical 732 
integration across the sorted true and reconstructed orientations: (Barbieri et al., 2023) 733 

 734 

BFCA = 	
1
180

	B FCA(
!-'

'

𝜃, 𝜃C)	d𝜃 735 

 736 

The process of integration assigns lower weights to the FCA values in the well-populated parts 737 

of the label-distribution and higher weights to the less populated parts. Thus, BFCA is a non-738 
trial-wise measure of reconstruction performance, which accounts for the potential bias in FCA 739 

caused by non-uniformly distributed labels. We report BFCA as our key measure for 740 

reconstruction accuracy. Note that this approach has been previously tested to exclude the 741 
possibility of artifactual results. 742 

 743 
Parameter optimization 744 

As mentioned above, we used an across-subjects nested cross-validation to determine the 745 
optimal values of two parameters for each participant individually: (i) the width of the gaussian 746 
kernel used for feature-space smoothing, and (ii) the number of voxels entered into the 747 
analysis. For (i), we chose FWHM values between 0° (i.e., no smoothing) and 90°, in steps of 748 

10°. Thus, we had a set of 10 possible kernel widths for smoothing. For (ii), we chose voxel 749 
counts between 250 and 2500, in steps of 250. This resulted in a set of 10 possible voxel 750 
counts. To select the specific voxels entered into the analysis, we first masked the individual 751 
target-versus-baseline t-maps with the warped anatomical ROIs (see above) and then selected 752 
the n voxels with the highest t-scores within those ROIs, with n representing a number from 753 

the set of possible voxel counts. The reconstruction analysis was then run for every 754 

combination of FWHM values and voxel counts. 755 
After reconstruction, we determined the optimal parameters for each subject in the following 756 

way: First, we calculated the mean BFCA across all remaining subjects for every parameter 757 

combination, resulting in one value per combination and time point. Second, we averaged 758 
across the preregistered delay-period TRs (TRs 6-15 following delay onset), as we were 759 

specifically interested in potential group differences during this time window. This yielded one 760 

BFCA value per parameter combination, specifically for the entire delay period. The parameter 761 
combination that yielded the highest BFCA was then assigned to the left-out subject. This was 762 

repeated for every subject and resulted in an average FWHM value of 74.5 ± 9.04 and an 763 

average voxel count of 1750 ± 211.83. 764 
  765 

  766 
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Statistical Testing 767 

As we were specifically interested in potential group differences during the delay-period, 768 
statistical testing for differences between the strong and weak imagery groups was based on 769 

the time points in the trial which most likely only reflect delay period activity. Since the canonical 770 
hemodynamic response has a buildup of ~5 seconds, we considered the TRs 6-15 in the 30 771 

TR timeframe that we analyzed, corresponding to a time window of 4 s after delay onset to 2 772 

s after probe onset (please note that this time window is 0.4 s shorter than described in the 773 

preregistration, as the preregistered time window would have resulted in 10.5 instead of 10 774 
TRs). This preregistered time window should avoid the leaking of stimulus- or probe-775 

representations into the delay-period analysis. 776 
We used two-tailed two-sample t-tests to test for potential differences in the reconstruction 777 

scores between the experimental groups. Further, we calculated Pearson’s r to assess the 778 

correlation between outcome variables (E.A.). 779 
  780 

Cluster-based permutation approach (E.A.) We were interested at which time points during the 781 
trial we could detect significant above-chance reconstruction accuracy. To account for the 782 

multiple-comparisons (Groppe et al., 2011) and autocorrelation (Purdon & Weisskoff, 1998) 783 
issues that arise for such time-resolved analyses, we adopted a non-parametric cluster-based 784 
permutation approach (Bullmore et al., 1999; Groppe et al., 2011; Maris & Oostenveld, 2007). 785 
This procedure was performed after the parameter optimization described above, to restrict 786 

the time-consuming permutation analysis to one set of parameters per subject. We repeated 787 
this approach separately for each reconstructed label type: target, distractor, probe and 788 
reported orientation. 789 

 790 

Bayesian tests (E.A.). As our results indicated no significant differences between our two 791 
groups, we used Bayesian hypothesis tests to assess the evidence for this absence. Bayesian 792 

hypothesis tests are used to describe the probability of observing the measured data under 793 

the null and alternative hypothesis, respectively (Keysers et al., 2020). This likelihood is 794 
quantified using the Bayes factor (BF), a continuous measure of evidence for either hypothesis. 795 

Specifically, we used two Bayesian hypothesis tests to assess the evidence for absence of 796 

effects: First, in the case of non-significant group-comparisons, we performed follow-up 797 
Bayesian independent t-tests, using a Cauchy distribution with scale parameter r = 0.707 as 798 

the prior distribution (Morey & Rouder, 2011). Second, in the case of non-significant 799 

correlations, we performed Bayesian correlation with a stretched beta prior of width 𝜅 = 1. All 800 

Bayesian hypothesis tests were performed in the open-source software JASP (Love et al., 801 

2019). 802 

 803 
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Orientation reconstruction from eye-tracking data 804 

Participants were instructed to maintain fixation at all times during the experiment. It is at least 805 
theoretically conceivable that participants might have used an eye-movement-based strategy 806 

to remember target orientations. Eye-movements have also been shown to modulate visual 807 
responses in the brain (Merriam et al., 2013). To account for these potentially confounding 808 

factors, we investigated whether the gaze position across the trial held information about the 809 

target orientation. For this, we subjected the recorded x and y ordinates of 26 participants (for 810 

which complete sets of eye-tracking data were available) to the same reconstruction analysis 811 
as the fMRI data. 812 

Preprocessing of eye-tracking data was performed in MATLAB using functions from the 813 
Fieldtrip toolbox (Oostenveld et al., 2011), code adapted from prior work (Urai et al., 2017) and 814 

in-house code. Blinks were linearly interpolated and bandpass filtered between 5 Hz (high-815 

pass) and 100 Hz (low-pass). For each trial, we extracted 15 s worth of data following the onset 816 
of the first grating. The data from each run was detrended using the same cubic spline 817 

interpolation as described above (see Preprocessing of fMRI data). We then downsampled the 818 
data by a factor of 10, resulting in 1500 time points per trial. 819 

After preprocessing, we entered the data into the same pSVR reconstruction analysis as the 820 
fMRI data, using the x and y ordinates of the gaze position as input instead of voxel signal, 821 
and evaluated the reconstruction by calculating the BFCA. As with the fMRI data, we tested 822 
for clusters of above-chance time points using the cluster-based t-mass permutation approach 823 

described above. 824 
 825 
Feature-space smoothing simulation 826 

To demonstrate how feature-space smoothing can increase signal-to-noise ratio (SNR) and 827 

increase accuracy in a continuous reconstruction setting, we simulated fMRI data with varying 828 
amounts of SNR and used different levels of feature-space smoothing before reconstruction. 829 

Following the specifics of our experiment, we simulated data comprising 8 runs with 40 trials 830 

each, for 250 voxels. The measured response of voxel 𝑖 in trial 𝑗 was generated as 831 
 832 

𝑦). = 𝑟). 	 · 	𝑠 + 𝜀). 833 

 834 

where 𝑟). is the actual response of voxel 𝑖 in response to the orientation shown in trial 𝑗, s is a 835 

scaling factor controlling the ratio of signal and noise, and 𝜀). is sampled from a standard 836 

normal distribution. 837 

To simulate the voxel responses, we assumed a population of idealized voxels, where each 838 
voxel would exhibit a distinct periodic tuning profile in response to angular orientation. The 839 

tuning profile 𝑧) for each voxel 𝑖 was sampled from a multivariate normal distribution  840 
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𝑧) ∼ 𝑁(0, 𝐾)) 841 

where 𝐾) specifies the voxels’ periodic covariance kernel. This kernel 𝐾) is given by 842 

 843 

𝐾)(𝑥/, 𝑥0, 𝜎)) = 𝑒𝑥𝑝

⎣
⎢
⎢
⎢
⎡

−2

⎝

⎜
⎛
𝑠𝑖𝑛 X12 (𝑥/ − 𝑥0)Y

𝜎)
⎠

⎟
⎞

"

⎦
⎥
⎥
⎥
⎤

 844 

 845 

where 𝑥 is a 𝑝 × 1 vector specifying a grid of possible orientations, such that 𝑥/, 𝑥0 ∈ [0,2𝜋), 846 

𝑝 is controlling the number of unique, equally spaced values from the feature space; and 𝜎) is 847 

the voxel’s unique tuning function smoothness parameter. For this simulation, the smoothness 848 

of each voxel was sampled from a gamma distribution: 𝜎) 	~	𝛤(2,2). 849 
Thus, voxel- and trial-wise responses could be sampled as 850 

 851 

𝑟). = 𝑧)(𝜃.) 852 

 853 

where 𝑥. is the orientation presented during the 𝑗-th trial and orientation labels were drawn 854 

from a uniform distribution: 𝜃. 	~	𝑈(0,2𝜋). 855 

For the SNR-controlling factor 𝑠, we chose 10 values between 0.1 and 1, equally spaced by 856 

0.1, as well as 0 (i.e., pure noise). Before reconstruction, we used feature-space smoothing on 857 

the data, for FWHM values between 0° (i.e., no smoothing) and 360°, equally spaced by 10°. 858 
This resulted in 11 SNR levels and 37 smoothing levels. After pSVR reconstruction, we 859 
calculated BFCA as our measure of accuracy. The simulation was repeated 1000 times for 860 
each parameter combination. The results of this simulation are summarized in Figure S3. 861 

 862 
References 863 

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared 864 

Representations for Working Memory and Mental Imagery in Early Visual Cortex. 865 
Current Biology, 23(15), 1427–1431. https://doi.org/10.1016/j.cub.2013.05.065 866 

Amedi, A., Malach, R., & Pascual-Leone, A. (2005). Negative BOLD Differentiates Visual 867 

Imagery and Perception. Neuron, 48(5), 859–872. 868 
https://doi.org/10.1016/j.neuron.2005.10.032 869 

Bae, G., & Luck, S. J. (2019). What happens to an individual visual working memory 870 

representation when it is interrupted? British Journal of Psychology, 110(2), 268–287. 871 
https://doi.org/10.1111/bjop.12339 872 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 26 

Bainbridge, W. A., Pounder, Z., Eardley, A. F., & Baker, C. I. (2021). Quantifying aphantasia 873 

through drawing: Those without visual imagery show deficits in object but not spatial 874 
memory. Cortex, 135, 159–172. https://doi.org/10.1016/j.cortex.2020.11.014 875 

Barbieri, R., Töpfer, F. M., Soch, J., Bogler, C., Sprekeler, H., & Haynes, J.-D. (2023). 876 
Encoding of continuous perceptual choices in human early visual cortex [Preprint]. 877 

bioRxiv. https://doi.org/10.1101/2023.02.10.527876 878 

Bartolomeo, P. (2008). The neural correlates of visual mental imagery: An ongoing debate. 879 

Cortex, 44(2), 107–108. https://doi.org/10.1016/j.cortex.2006.07.001 880 
Bartolomeo, P., Bachoud-Lévi, A.-C., De Gelder, B., Denes, G., Dalla Barba, G., Brugières, 881 

P., & Degos, J.-D. (1998). Multiple-domain dissociation between impaired visual 882 
perception and preserved mental imagery in a patient with bilateral extrastriate lesions. 883 

Neuropsychologia, 36(3), 239–249. https://doi.org/10.1016/S0028-3932(97)00103-6 884 

Bartolomeo, P., Hajhajate, D., Liu, J., & Spagna, A. (2020). Assessing the causal role of early 885 
visual areas in visual mental imagery. Nature Reviews Neuroscience, 21, 2. 886 

https://doi.org/10.1038/s41583-020-0348-5 887 
Bergmann, J., Genç, E., Kohler, A., Singer, W., & Pearson, J. (2016). Smaller Primary Visual 888 

Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cerebral Cortex, 889 
26(9), 3838–3850. https://doi.org/10.1093/cercor/bhv186 890 

Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under 891 
distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150–157. 892 

https://doi.org/10.1038/nn.4174 893 
Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: A new self-894 

report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239–263. 895 

https://doi.org/10.1002/acp.1182 896 

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. 897 
https://doi.org/10.1163/156856897X00357 898 

Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The Balanced 899 

Accuracy and Its Posterior Distribution. 2010 20th International Conference on Pattern 900 
Recognition, 3121–3124. https://doi.org/10.1109/ICPR.2010.764 901 

Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., & Brammer, M. J. 902 

(1999). Global, voxel, and cluster tests, by theory and permutation, for a difference 903 
between two groups of structural MR images of the brain. IEEE Transactions on 904 

Medical Imaging, 18(1), 32–42. https://doi.org/10.1109/42.750253 905 
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM 906 

Transactions on Intelligent Systems and Technology, 2(3), 1–27. 907 

https://doi.org/10.1145/1961189.1961199 908 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 27 

Chatterjee, A., & Southwood, M. H. (1995). Cortical blindness and visual imagery. Neurology, 909 

45(12), 2189–2195. https://doi.org/10.1212/WNL.45.12.2189 910 
Christophel, T. B., & Haynes, J.-D. (2014). Decoding complex flow-field patterns in visual 911 

working memory. NeuroImage, 91, 43–51. 912 
https://doi.org/10.1016/j.neuroimage.2014.01.025 913 

Christophel, T. B., Hebart, M. N., & Haynes, J.-D. (2012). Decoding the Contents of Visual 914 

Short-Term Memory from Human Visual and Parietal Cortex. The Journal of 915 

Neuroscience, 32(38), 12983–12989. https://doi.org/10.1523/JNEUROSCI.0184-916 
12.2012 917 

Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The 918 
Distributed Nature of Working Memory. Trends in Cognitive Sciences, 21(2), 111–124. 919 

https://doi.org/10.1016/j.tics.2016.12.007 920 

Cichy, R. M., Heinzle, J., & Haynes, J.-D. (2012). Imagery and Perception Share Cortical 921 
Representations of Content and Location. Cerebral Cortex, 22(2), 372–380. 922 

https://doi.org/10.1093/cercor/bhr106 923 
Cui, X., Jeter, C. B., Yang, D., Montague, P. R., & Eagleman, D. M. (2007). Vividness of mental 924 

imagery: Individual variability can be measured objectively. Vision Research, 47(4), 925 
474–478. https://doi.org/10.1016/j.visres.2006.11.013 926 

de Gelder, B., Tamietto, M., Pegna, A. J., & Van den Stock, J. (2015). Visual imagery 927 
influences brain responses to visual stimulation in bilateral cortical blindness. Cortex, 928 

72, 15–26. https://doi.org/10.1016/j.cortex.2014.11.009 929 
D’Esposito, M., & Postle, B. R. (2015). The Cognitive Neuroscience of Working Memory. 930 

Annual Review of Psychology, 66(1), 115–142. https://doi.org/10.1146/annurev-psych-931 

010814-015031 932 

Dijkstra, N., Bosch, S. E., & van Gerven, M. A. J. (2017). Vividness of Visual Imagery Depends 933 
on the Neural Overlap with Perception in Visual Areas. The Journal of Neuroscience, 934 

37(5), 1367–1373. https://doi.org/10.1523/JNEUROSCI.3022-16.2016 935 

Dijkstra, N., Bosch, S. E., & van Gerven, M. A. J. (2019). Shared Neural Mechanisms of Visual 936 
Perception and Imagery. Trends in Cognitive Sciences, 23(5), 423–434. 937 

https://doi.org/10.1016/j.tics.2019.02.004 938 

Dijkstra, N., Mostert, P., Lange, F. P. de, Bosch, S., & van Gerven, M. A. (2018). Differential 939 
temporal dynamics during visual imagery and perception. ELife, 7, e33904. 940 

https://doi.org/10.7554/eLife.33904 941 
Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M. A. J., & Friston, K. (2017). Distinct 942 

Top-down and Bottom-up Brain Connectivity During Visual Perception and Imagery. 943 

Scientific Reports, 7(1), 5677. https://doi.org/10.1038/s41598-017-05888-8 944 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 28 

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., & Vapnik, V. (1996). Support Vector 945 

Regression Machines. Advances in Neural Information Processing Systems, 9. 946 
Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A Neural Measure of Precision 947 

in Visual Working Memory. Journal of Cognitive Neuroscience, 25(5), 754–761. 948 
https://doi.org/10.1162/jocn_a_00357 949 

Ester, E. F., Serences, J. T., & Awh, E. (2009). Spatially Global Representations in Human 950 

Primary Visual Cortex during Working Memory Maintenance. Journal of Neuroscience, 951 

29(48), 15258–15265. https://doi.org/10.1523/JNEUROSCI.4388-09.2009 952 
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and 953 

working memory. Trends in Cognitive Sciences, 16(2), 129–135. 954 
https://doi.org/10.1016/j.tics.2011.11.014 955 

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related 956 

brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711–1725. 957 
https://doi.org/10.1111/j.1469-8986.2011.01273.x 958 

Hallenbeck, G. E., Sprague, T. C., Rahmati, M., Sreenivasan, K. K., & Curtis, C. E. (2021). 959 
Working memory representations in visual cortex mediate distraction effects. Nature 960 

Communications, 12(1), 4714. https://doi.org/10.1038/s41467-021-24973-1 961 
Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in 962 

early visual areas. Nature, 458(7238), 632–635. https://doi.org/10.1038/nature07832 963 
Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in 964 

human primary visual cortex. Nature Neuroscience, 8(5), 686–691. 965 
https://doi.org/10.1038/nn1445 966 

Hebart, M. N., Görgen, K., & Haynes, J.-D. (2015). The Decoding Toolbox (TDT): A versatile 967 

software package for multivariate analyses of functional imaging data. Frontiers in 968 

Neuroinformatics, 8, 88. https://doi.org/10.3389/fninf.2014.00088 969 
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey 970 

striate cortex. The Journal of Physiology, 195(1), 215–243. 971 

https://doi.org/10.1113/jphysiol.1968.sp008455 972 
Iamshchinina, P., Christophel, T. B., Gayet, S., & Rademaker, R. L. (2021). Essential 973 

considerations for exploring visual working memory storage in the human brain. Visual 974 

Cognition, 29(7), 425–436. https://doi.org/10.1080/13506285.2021.1915902 975 
Jacobs, C., Schwarzkopf, D. S., & Silvanto, J. (2018). Visual working memory performance in 976 

aphantasia. Cortex, 105, 61–73. https://doi.org/10.1016/j.cortex.2017.10.014 977 
Jeffreys, H. (1998). The theory of probability. OUP Oxford. 978 

Kaas, A., Weigelt, S., Roebroeck, A., Kohler, A., & Muckli, L. (2010). Imagery of a moving 979 

object: The role of occipital cortex and human MT/V5+. NeuroImage, 49(1), 794–804. 980 
https://doi.org/10.1016/j.neuroimage.2009.07.055 981 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 29 

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human 982 

brain. Nature Neuroscience, 8(5), 679–685. https://doi.org/10.1038/nn1444 983 
Kay, L., Keogh, R., Andrillon, T., & Pearson, J. (2022). The pupillary light response as a 984 

physiological index of aphantasia, sensory and phenomenological imagery strength. 985 
ELife, 11, e72484. https://doi.org/10.7554/eLife.72484 986 

Keogh, R., Bergmann, J., & Pearson, J. (2020). Cortical excitability controls the strength of 987 

mental imagery. ELife, 9, e50232. https://doi.org/10.7554/eLife.50232 988 

Keogh, R., & Pearson, J. (2011). Mental Imagery and Visual Working Memory. PLoS ONE, 989 
6(12), e29221. https://doi.org/10.1371/journal.pone.0029221 990 

Keogh, R., & Pearson, J. (2014). The sensory strength of voluntary visual imagery predicts 991 
visual working memory capacity. Journal of Vision, 14(12), 7–7. 992 

https://doi.org/10.1167/14.12.7 993 

Keogh, R., & Pearson, J. (2018). The blind mind: No sensory visual imagery in aphantasia. 994 
Cortex, 105, 53–60. https://doi.org/10.1016/j.cortex.2017.10.012 995 

Keogh, R., Wicken, M., & Pearson, J. (2021). Visual working memory in aphantasia: Retained 996 
accuracy and capacity with a different strategy. Cortex, 143, 237–253. 997 

https://doi.org/10.1016/j.cortex.2021.07.012 998 
Keysers, C., Gazzola, V., & Wagenmakers, E.-J. (2020). Using Bayes factor hypothesis testing 999 

in neuroscience to establish evidence of absence. Nature Neuroscience, 23(7), 788–1000 
799. https://doi.org/10.1038/s41593-020-0660-4 1001 

Klein, I., Dubois, J., Mangin, J.-F., Kherif, F., Flandin, G., Poline, J.-B., Denis, M., Kosslyn, S. 1002 
M., & Le Bihan, D. (2004). Retinotopic organization of visual mental images as revealed 1003 
by functional magnetic resonance imaging. Cognitive Brain Research, 22(1), 26–31. 1004 

https://doi.org/10.1016/j.cogbrainres.2004.07.006 1005 

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36. 1006 
Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature 1007 

Reviews Neuroscience, 2(9), 635–642. https://doi.org/10.1038/35090055 1008 

Kosslyn, S. M., & Thompson, W. L. (2003). When is early visual cortex activated during visual 1009 
mental imagery? Psychological Bulletin, 129(5), 723–746. 1010 

https://doi.org/10.1037/0033-2909.129.5.723 1011 

Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by 1012 
feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579. 1013 

https://doi.org/10.1016/S0166-2236(00)01657-X 1014 
Lee, S.-H., & Baker, C. I. (2016). Multi-Voxel Decoding and the Topography of Maintained 1015 

Information During Visual Working Memory. Frontiers in Systems Neuroscience, 10. 1016 

https://doi.org/10.3389/fnsys.2016.00002 1017 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 30 

Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2012). Disentangling visual imagery and perception 1018 

of real-world objects. NeuroImage, 59(4), 4064–4073. 1019 
https://doi.org/10.1016/j.neuroimage.2011.10.055 1020 

Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2013). Goal-dependent dissociation of visual and 1021 
prefrontal cortices during working memory. Nature Neuroscience, 16(8), 997–999. 1022 

https://doi.org/10.1038/nn.3452 1023 

Liu, T. (2016). Neural representation of object-specific attentional priority. NeuroImage, 129, 1024 

15–24. https://doi.org/10.1016/j.neuroimage.2016.01.034 1025 
Logie, R. H., Pernet, C. R., Buonocore, A., & Sala, S. D. (2011). Low and high imagers activate 1026 

networks differentially in mental rotation. Neuropsychologia, 49(11), 3071–3077. 1027 
https://doi.org/10.1016/j.neuropsychologia.2011.07.011 1028 

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., Ly, A., Gronau, Q. 1029 

F., Smíra, M., Epskamp, S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., Morey, R. 1030 
D., & Wagenmakers, E.-J. (2019). JASP : Graphical Statistical Software for Common 1031 

Statistical Designs. Journal of Statistical Software, 88(2). 1032 
https://doi.org/10.18637/jss.v088.i02 1033 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. 1034 
Journal of Neuroscience Methods, 164(1), 177–190. 1035 
https://doi.org/10.1016/j.jneumeth.2007.03.024 1036 

Marks, D. F. (1973). Visual Imagery Differences In The Recall Of Pictures. British Journal of 1037 

Psychology, 64(1), 17–24. https://doi.org/10.1111/j.2044-8295.1973.tb01322.x 1038 
Mechelli, A. (2004). Where Bottom-up Meets Top-down: Neuronal Interactions during 1039 

Perception and Imagery. Cerebral Cortex, 14(11), 1256–1265. 1040 

https://doi.org/10.1093/cercor/bhh087 1041 

Merriam, E. P., Gardner, J. L., Movshon, J. A., & Heeger, D. J. (2013). Modulation of Visual 1042 
Responses by Gaze Direction in Human Visual Cortex. Journal of Neuroscience, 1043 

33(24), 9879–9889. https://doi.org/10.1523/JNEUROSCI.0500-12.2013 1044 

Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic Theory of Working Memory. Science, 1045 
319(5869), 1543–1546. https://doi.org/10.1126/science.1150769 1046 

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null 1047 

hypotheses. Psychological Methods, 16(4), 406–419. 1048 
https://doi.org/10.1037/a0024377 1049 

Moro, V., Berlucchi, G., Lerch, J., Tomaiuolo, F., & Aglioti, S. M. (2008). Selective deficit of 1050 
mental visual imagery with intact primary visual cortex and visual perception. Cortex, 1051 

44(2), 109–118. https://doi.org/10.1016/j.cortex.2006.06.004 1052 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 31 

Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., & Gallant, J. L. (2015). A voxel-wise 1053 

encoding model for early visual areas decodes mental images of remembered scenes. 1054 
NeuroImage, 105, 215–228. https://doi.org/10.1016/j.neuroimage.2014.10.018 1055 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source 1056 
Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. 1057 

Computational Intelligence and Neuroscience, 2011, 1–9. 1058 

https://doi.org/10.1155/2011/156869 1059 

Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental 1060 
imagery. Nature Reviews Neuroscience, 20(10), 624–634. 1061 

https://doi.org/10.1038/s41583-019-0202-9 1062 
Pearson, J. (2020). Reply to: Assessing the causal role of early visual areas in visual mental 1063 

imagery. Nature Reviews Neuroscience, 21, 2. https://doi.org/10.1038/s41583-020-1064 

0349-4 1065 
Pearson, J., Clifford, C. W. G., & Tong, F. (2008). The Functional Impact of Mental Imagery on 1066 

Conscious Perception. Current Biology, 18(13), 982–986. 1067 
https://doi.org/10.1016/j.cub.2008.05.048 1068 

Pearson, J., & Keogh, R. (2019). Redefining Visual Working Memory: A Cognitive-Strategy, 1069 
Brain-Region Approach. Current Directions in Psychological Science, 28(3), 266–273. 1070 
https://doi.org/10.1177/0963721419835210 1071 

Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the 1072 

imagery debate. Proceedings of the National Academy of Sciences, 112(33), 10089–1073 
10092. https://doi.org/10.1073/pnas.1504933112 1074 

Pearson, J., Rademaker, R. L., & Tong, F. (2011). Evaluating the Mind’s Eye: The 1075 

Metacognition of Visual Imagery. Psychological Science, 22(12), 1535–1542. 1076 

https://doi.org/10.1177/0956797611417134 1077 
Pilly, P. K., & Seitz, A. R. (2009). What a difference a parameter makes: A psychophysical 1078 

comparison of random dot motion algorithms. Vision Research, 49(13), 1599–1612. 1079 

https://doi.org/10.1016/j.visres.2009.03.019 1080 
Purdon, P. L., & Weisskoff, R. M. (1998). Effect of temporal autocorrelation due to physiological 1081 

noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Human Brain 1082 

Mapping, 6(4), 239–249. https://doi.org/10.1002/(SICI)1097-0193(1998)6:4<239::AID-1083 
HBM4>3.0.CO;2-4 1084 

Rademaker, R. L., & Pearson, J. (2012). Training Visual Imagery: Improvements of 1085 
Metacognition, but not Imagery Strength. Frontiers in Psychology, 3. 1086 

https://doi.org/10.3389/fpsyg.2012.00224 1087 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 32 

Ragni, F., Tucciarelli, R., Andersson, P., & Lingnau, A. (2020). Decoding stimulus identity in 1088 

occipital, parietal and inferotemporal cortices during visual mental imagery. Cortex, 1089 
127, 371–387. https://doi.org/10.1016/j.cortex.2020.02.020 1090 

Reddy, L., Tsuchiya, N., & Serre, T. (2010). Reading the mind’s eye: Decoding category 1091 
information during mental imagery. NeuroImage, 50(2), 818–825. 1092 

https://doi.org/10.1016/j.neuroimage.2009.11.084 1093 

Rose, N. S., LaRocque, J. J., Riggall, A. C., Gosseries, O., Starrett, M. J., Meyering, E. E., & 1094 

Postle, B. R. (2016). Reactivation of latent working memories with transcranial 1095 
magnetic stimulation. Science, 354(6316), 1136–1139. 1096 

https://doi.org/10.1126/science.aah7011 1097 
Senden, M., Emmerling, T. C., van Hoof, R., Frost, M. A., & Goebel, R. (2019). Reconstructing 1098 

imagined letters from early visual cortex reveals tight topographic correspondence 1099 

between visual mental imagery and perception. Brain Structure and Function, 224(3), 1100 
1167–1183. https://doi.org/10.1007/s00429-019-01828-6 1101 

Serences, J., Saproo, S., Scolari, M., Ho, T., & Muftuler, L. (2009). Estimating the influence of 1102 
attention on population codes in human visual cortex using voxel-based tuning 1103 

functions. NeuroImage, 44(1), 223–231. 1104 
https://doi.org/10.1016/j.neuroimage.2008.07.043 1105 

Serences, J. T. (2016). Neural mechanisms of information storage in visual short-term 1106 
memory. Vision Research, 128, 53–67. https://doi.org/10.1016/j.visres.2016.09.010 1107 

Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-Specific Delay Activity 1108 
in Human Primary Visual Cortex. Psychological Science, 20(2), 207–214. 1109 
https://doi.org/10.1111/j.1467-9280.2009.02276.x 1110 

Spagna, A., Hajhajate, D., Liu, J., & Bartolomeo, P. (2021). Visual mental imagery engages 1111 

the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging 1112 
evidence. Neuroscience & Biobehavioral Reviews, 122, 201–217. 1113 

https://doi.org/10.1016/j.neubiorev.2020.12.029 1114 

Sreenivasan, K. K., Curtis, C. E., & D’Esposito, M. (2014). Revisiting the role of persistent 1115 
neural activity during working memory. Trends in Cognitive Sciences, 18(2), 82–89. 1116 

https://doi.org/10.1016/j.tics.2013.12.001 1117 

Tanabe, J., Miller, D., Tregellas, J., Freedman, R., & Meyer, F. G. (2002). Comparison of 1118 
Detrending Methods for Optimal fMRI Preprocessing. NeuroImage, 15(4), 902–907. 1119 

https://doi.org/10.1006/nimg.2002.1053 1120 
Teng, C., & Kravitz, D. J. (2019). Visual working memory directly alters perception. Nature 1121 

Human Behaviour, 3(8), 827–836. https://doi.org/10.1038/s41562-019-0640-4 1122 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 33 

Thorudottir, S., Sigurdardottir, H. M., Rice, G. E., Kerry, S. J., Robotham, R. J., Leff, A. P., & 1123 

Starrfelt, R. (2020). The Architect Who Lost the Ability to Imagine: The Cerebral Basis 1124 
of Visual Imagery. Brain Sciences, 10(2), 59. https://doi.org/10.3390/brainsci10020059 1125 

Tong, F. (2013). Imagery and visual working memory: One and the same? Trends in Cognitive 1126 
Sciences, 17(10), 489–490. https://doi.org/10.1016/j.tics.2013.08.005 1127 

Töpfer, F. M., Barbieri, R., Sexton, C. M., Wang, X., Soch, J., Bogler, C., & Haynes, J.-D. 1128 

(2022). Psychophysics and computational modeling of feature-continuous motion 1129 

perception. Journal of Vision, 22(11), 16. https://doi.org/10.1167/jov.22.11.16 1130 
Ts’o, D. Y., Frostig, R. D., Lieke, E. E., & Grinvald, A. (1990). Functional Organization of 1131 

Primate Visual Cortex Revealed by High Resolution Optical Imaging. Science, 1132 
249(4967), 417–420. https://doi.org/10.1126/science.2165630 1133 

Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision 1134 

uncertainty and alters serial choice bias. Nature Communications, 8(1), 14637. 1135 
https://doi.org/10.1038/ncomms14637 1136 

Wang, L., Mruczek, R. E. B., Arcaro, M. J., & Kastner, S. (2015). Probabilistic Maps of Visual 1137 
Topography in Human Cortex. Cerebral Cortex, 25(10), 3911–3931. 1138 

https://doi.org/10.1093/cercor/bhu277 1139 
Yun, K., Peng, Y., Samaras, D., Zelinsky, G. J., & Berg, T. L. (2013). Exploring the role of gaze 1140 

behavior and object detection in scene understanding. Frontiers in Psychology, 4. 1141 
https://doi.org/10.3389/fpsyg.2013.00917 1142 

Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery – Congenital aphantasia. 1143 
Cortex, 73, 378–380. https://doi.org/10.1016/j.cortex.2015.05.019 1144 

Zeman, A. Z. J., Della Sala, S., Torrens, L. A., Gountouna, V.-E., McGonigle, D. J., & Logie, 1145 

R. H. (2010). Loss of imagery phenomenology with intact visuo-spatial task 1146 

performance: A case of ‘blind imagination.’ Neuropsychologia, 48(1), 145–155. 1147 
https://doi.org/10.1016/j.neuropsychologia.2009.08.024 1148 

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working 1149 

memory. Nature, 453(7192), 233–235. https://doi.org/10.1038/nature06860 1150 
 1151 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 

Supplemental Information 
 

 
Figure S1. Von Mises mixture model (vMMM) fit of behavioral responses. (A) The distribution of behavioral 
responses was modeled as a combination of the three model components: detections (responses to target 
orientations, assumed to follow a von Mises distribution with mean 0° plus bias µ and precision 𝜅; green), swap 
errors (responses to distractor orientations, following the same assumptions as detections; purple) and guesses 
(assumed to follow a continuous uniform distribution between -90° and +90°; red). These components were 
weighted by individual event probabilities (mixture coefficients) 𝑟!,	𝑟" and 𝑟#, respectively. Participants correctly 
responded to the target direction in 94.7 % of trials (𝑟! = 0.947 ± 0.063), and only infrequently made swap errors (𝑟" 
= 0.026 ± 0.034) or guesses (𝑟# = 0.027 ± 0.041). Responses to targets were precise (𝜅! = 5.673 ± 2.377), while 
responses to the distractor, where present, were imprecise (𝜅" = 1.735 ± 2.41). There was a small but significant 
bias to respond anti-clockwise of the target (μ = -0.889 ± 1.635°; t(39) = -3.437, p = 0.0014, two-tailed; see also 
Figure 1C). (B) Estimated vMMM parameters for strong and weak imagers separately. There was no significant 
difference between the two groups for any of the estimated parameters (𝑟!: t(38) = -0.925, p = 0.361; 𝑟": t(38) = 1.585, 
p = 0.121; 𝑟#: t(38) = 0.108, p = 0.914; 𝜅": t(38) = -0.207, p = 0.837; μ: t(38) = 1.574, p = 0.124, all two-tailed; see Figure 
1D for 𝜅!).  
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.02.13.528298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528298
http://creativecommons.org/licenses/by/4.0/


 

 
Figure S2. Target reconstruction from eye-tracking data. Reconstruction of target orientation from gaze position 
across the trial, for all subjects (left panel) and separated by groups (right panel). There were no temporal clusters 
with significantly above-chance BFCA, suggesting that participants did not systematically use gaze position to 
maintain target orientation across the delay period. Shaded areas indicate 95 % confidence intervals. 
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Figure S3. Schematic representation of feature-space smoothing and simulation results. (A) We used a 
Gaussian smoothing kernel to compute a weighted average from the voxel signal of samples lying closely together 
in feature space. Samples close to a given orientation in feature-space therefore contribute more to the resulting 
average than those further away. The full width at half maximum (FWHM) of the smoothing kernel controls the 
smoothing range, i.e., the number (or distance) of samples that are included in the weighted average. We used 
FWHM values between 0° (no smoothing) and 90° in steps of 10° and determined the optimal kernel width for each 
participant via nested cross-validation across subjects. Note that this was done (a) at the level of the input data to 
the analysis, not the results, (b) for training and test data separately, and (c) was confirmed not to produce artifacts 
or spurious results by extensive simulations (see (C) and Extended Methods). (B) We simulated data with varying 
levels of SNR and used feature-space smoothing with different kernel widths (measured as FWHM in degrees) 
before reconstruction of the underlying signal. The plot shows BFCA for all parameter combinations, averaged 
across 1000 repetitions. (C) BFCA across smoothing levels, for the pure noise condition. BFCA remained at chance-
level across all levels of smoothing (all p > 0.25) and BFCA for any smoothing condition did not differ from the no-
smoothing condition (all p > 0.15).  (D) BFCA gain compared to no smoothing, averaged across all 1000 repetitions. 
The first column corresponds to baseline, i.e., zero smoothing. In the signal conditions (SNR > 0), feature-space 
smoothing was able to reliably increase BFCA compared to no smoothing. The effect was strongest for smoothing 
kernel widths between 30° and 170°, where we observed increases in accuracy of up to 20 %. Generally, the effect 
of feature space smoothing was stronger for data with low SNR (orange-yellow area). In cases of extremely high 
kernel-width and comparatively high SNR (i.e., SNR > 0.6	and FWHM > 220°), feature-space smoothing had a 
detrimental effect, meaning that BFCA was decreased compared to no smoothing (dark blue area). Please note, 
however, that kernel-widths this high do not make any sense for real-world applications and were only included for 
the purpose of demonstration. We conclude that feature-space smoothing is a powerful preprocessing technique to 
increase SNR in a feature-continuous reconstruction setting. As the optimal kernel-width for smoothing depends on 
the specific data and SNR, we recommend using nested cross-validation to determine the optimal FWHM value, 
similar to the approach described in the main text. 
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Figure S4. Schematic representation of periodic support vector regression (pSVR). The aim of our 
reconstruction analysis was to predict an angular label between 0° and 180° from the multivariate voxel signal in 
response to a stimulus grating with the respective orientation. However, the linear scale of orientation labels (from 
0° to 180°) does not reflect the periodic nature of the stimulus (i.e., 0° and 180° are identical). To account for this, 
we projected the angular labels into a periodic space by fitting two sinusoids into the range [0, 180). Both functions 
had an amplitude of 1 and a period of 180°, so that one period spanned the entire label space. One function was 
shifted by 45°, so that the combination of both periodic functions coded for the linear label scale. This is equivalent 
to the way sine and cosine functions between 0 and 360° code for the angles on a unit circle. We trained and tested 
a multivariate SVR model for both periodic label sets (x, y) separately. From the combination of the predicted 
periodic labels, we then reconstructed a predicted angular label using the four-quadrant inverse tangent. The 
predicted orientation was then compared to the true orientation to derive BFCA, our measure of reconstruction 
accuracy. 
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Table S1: Correlation table of all variables of interest (and strategy questionnaire). 

 BFCA 
target 

Behav. 
precision 

Pre-scan 
VVIQ 

Post-scan 
VVIQ 

OSIQ 
visual 

OSIQ 
spatial 

Strat. 
visual 

Strat. 
verbal 

Strat. 
spatial 

Strat. 
cardinal 

Strat. 
clock 

Strat. 
code 

Strat. 
other 

BFCA target  0.728*** -0.256 -0.277 -0.297 0.166 -0.203 0.245 -0.289 -0.146 0.173 -0.174 0.402* 

Behav. 
precision 0.728***  -0.127 -0.062 -0.158 -0.011 -0.118 0.274 -0.179 -0.268 0.044 0.061 0.235 

Pre-scan 
VVIQ -0.256 -0.127  0.867*** 0.706*** -0.271 0.109 -0.182 0.073 0.293 0.06 -0.011 -0.43** 

Post-scan 
VVIQ -0.277 -0.062 0.867***  0.837*** -0.25 0.157 -0.208 0.005 0.246 0.114 0.029 -0.488** 

OSIQ visual -0.297 -0.158 0.706*** 0.837***  -0.239 0.273 -0.319* 0.004 0.241 0.089 0.067 -0.564*** 

OSIQ spatial 0.166 -0.011 -0.271 -0.25 -0.239  -0.011 0.006 0.125 0.128 -0.238 -0.21 0.28 

Strat. visual -0.203 -0.118 0.109 0.157 0.273 -0.011  -0.427** -0.271 -0.371* -0.119 -0.233 -0.365* 

Strat. verbal 0.245 0.274 -0.182 -0.208 -0.319* 0.006 -0.427**  -0.009 -0.023 -0.316* 0.064 0.14 

Strat. spatial -0.289 -0.179 0.073 0.005 0.004 0.125 -0.271 -0.009  0.195 -0.436** 0.032 -0.051 

Strat. cardinal -0.146 -0.268 0.293 0.246 0.241 0.128 -0.371* -0.023 0.195  -0.247 -0.01 -0.077 

Strat. clock 0.173 0.044 0.06 0.114 0.089 -0.238 -0.119 -0.316* -0.436** -0.247  -0.15 -0.144 

Strat. code -0.174 0.061 -0.011 0.029 0.067 -0.21 -0.233 0.064 0.032 -0.01 -0.15  -0.21 

Strat. other 0.402* 0.235 -0.43** -0.488** -0.564*** 0.28 -0.365* 0.14 -0.051 -0.077 -0.144 -0.21  

 

Table of correlation coefficients between all variables of interest, including the items from the heuristic strategy questionnaire. There are two notable sets of relationships: the strong 
correlation between target reconstruction accuracy (“BFCA target”) and behavioral precision (“Behav. precision”), and the close relationship between pre- and post-scan VVIQ (i.e., 
test-retest reliability) and the visual OSIQ scores. There are some significant effects between several variables and items from the strategy (“Strat.”) questionnaire. Please note, 
however, that these questions were purely heuristic in nature. We only asked for each strategy in rater general terms and did not ask for the vividness of each strategy. The questions 
were not based on any previously validated procedure, in contrast to the established VVIQ and OSIQ scales. Also, the ratings on these items have high variance, rendering any 
interpretation difficult. We are currently not aware of any established and standardized sets of questions regarding the use of cognitive strategies. 
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Table S2: Descriptive statistics for all variables of interest (and strategy questionnaire). 

 BFCA 
target 

Behav. 
precision 

Pre-scan 
VVIQ 

Post-scan 
VVIQ 

OSIQ 
visual 

OSIQ 
spatial 

Strat. 
visual 

Strat. 
verbal 

Strat. 
spatial 

Strat. 
cardinal 

Strat. 
clock 

Strat. 
code 

Strat. 
other 

Mean 12.21 5.673 55.725 58.25 49.525 44.225 0.285 0.141 0.189 0.071 0.186 0.054 0.073 

Standard 
deviation 9.768 2.377 17.332 15.834 12.878 8.636 0.217 0.13 0.119 0.115 0.179 0.092 0.121 

Skewness 0.484 1.143 -0.641 -1.055 -1.048 -0.187 1.664 0.453 0.062 1.758 0.435 1.335 1.407 

Kurtosis 
(excess) -0.862 1.519 -0.708 0.264 0.226 -0.658 3.727 -0.8 -0.066 3.108 -0.93 0.154 0.576 

 

Table of mean, standard deviation, skewness and excess kurtosis for all variables of interest, including the items from the heuristic strategy questionnaire. 
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