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Our understanding of the material organization of complex fluid flows has benefited
recently from mathematical developments in the theory of objective coherent structures.
These methods have provided a wealth of approaches that identify transport barriers
in three-dimensional (3-D) turbulent flows. Specifically, theoretical advances have been
incorporated into numerical algorithms that extract the most influential advective,
diffusive and active barriers to transport from data sets in a frame-indifferent fashion.
To date, however, there has been very limited investigation into these objectively defined
transport barriers in 3-D unsteady flows with complicated spatiotemporal dynamics.
Similarly, no systematic comparison of advective, diffusive and active barriers has
been carried out in a 3-D flow with both thermally driven and mechanically modified
structures. In our study, we utilize simulations of turbulent rotating Rayleigh–Bénard
convection to uncover the interplay between advective transport barriers (Lagrangian
coherent structures), material barriers to diffusive heat transport, and objective Eulerian
barriers to momentum transport. For a range of (inverse) Rossby numbers, we identify each
type of barrier and find intriguing relationships between momentum and heat transport
that can be related to changes in the relative influence of mechanical and thermal forces.
Further connections between bulk behaviours and structure-specific behaviours are also
developed.
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1. Introduction

Global transport properties in turbulent flows are intimately connected to flow structure
and flow organization. Clearly, this holds for thermally driven turbulent flows, where
the key global transport property is the heat transport. This is of utmost importance in
many technological applications and in the natural flows that one finds in the ocean, in
the atmosphere, and in the interiors of stars and planets. The paradigmatic system for
thermally driven flow is Rayleigh–Bénard (RB) convection (Bodenschatz, Pesch & Ahlers
2000; Kadanoff 2001; Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chilla &
Schumacher 2012; Shishkina 2021), a fluid in a box heated from below and cooled from
above. The key question for this flow is: how does the heat transfer (the Nusselt number,
Nu) depend on the control parameters, such as the non-dimensional temperature difference
between top and bottom plates (the Rayleigh number, Ra), the ratio of kinematic viscosity
and thermal diffusivity (the Prandtl number, Pr), and the geometry of the convection
domain? The same fundamental question holds for rotating RB convection when one varies
the ratio of rotation to convection (Ecke & Shishkina 2023), as expressed by the inverse
Rossby number.

Turbulent RB flow is characterized by the interplay between large-scale convection rolls,
thermal boundary layers, and plumes detaching from these boundary layers. The interplay
between these flow structures determines the overall heat flux. Any model for the heat
transport in RB flow makes assumptions on the flow structures. The unifying theory of
thermal convection of Grossmann and Lohse (Grossmann & Lohse 2000, 2001; Ahlers
et al. 2009; Stevens et al. 2013) describes successfully the functional dependence of the
Nusselt number and the Reynolds number on the Rayleigh number and the Prandtl number.
Such connections must also be made in the theories for rotating RB flow. For Pr > 0.7,
rotation first leads to an increase in heat transport and then a strong decrease, due to the
Taylor–Proudman theorem (Ecke & Shishkina 2023).

The increase in Nu as a function of rotation rate for intermediate Rossby numbers can be
understood from the overall flow organization and its connection to the thermal boundary
layers (Stevens et al. 2009; Zhong et al. 2009), a concept that can be extended to laterally
confined RB convection (Chong et al. 2015; Chong & Xia 2016; Hartmann et al. 2021)
and to double diffusive convection (Chong et al. 2017). Chong et al. (2017) and Xia
et al. (2023) suggest a unifying view for these individual stabilizing effects, connecting
the overall heat flux with both the boundary layer structures and the flow organization in
the bulk. Hartmann et al. (2022) extended this concept to account for the heat transport in
laterally confined and rotating RB flow, i.e. when two stabilizing effects modify the flow
simultaneously, showing a complex interference of the different effects.

The flow organization and the flow structure are relevant not only for the time-averaged
heat flux, but also for its temporal evolution. Nikolaenko et al. (2005), Brown & Ahlers
(2006), Xi & Xia (2007), Zwirner, Tilgner & Shishkina (2020) and Shishkina (2021)
showed that rearrangements of the roll structure over time lead to correlated modifications
in the heat flux. Each roll is quite isolated from its neighbours and has a long-lasting
identity. Similarly, Sugiyama et al. (2010) showed that the reversal of the large-scale
convection roll is related to the spatial growth of otherwise spatially isolated corner flows.
The reversal is then correlated with a burst in the temporal evolution of Nu as the corner
flow grows to the size of the system and takes over the role of the large-scale roll. In both
cases, we use the term isolated to refer to minimal mixing of momentum and heat with
the surrounding flow, as if there exists a partial flow barrier there. In temperature fields,
these barriers generate features that are easily distinguishable as relatively uniform regions
surrounded by large temperature gradients, across which diffusive transport is maximized.
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Rotating Rayleigh–Bénard transport barrier interplay

Given the important role of flow organization for the overall heat transport, quantitative
criteria are needed to characterize the flow structure. In their two-dimensional numerical
simulations, Sugiyama et al. (2010) used the overall angular velocity to achieve this. In
three-dimensional (3-D) RB convection, the Q-criterion and λ2 criterion (Hunt, Wray &
Moin 1988; Jeong & Hussain 1995) have been used previously (Boubnov & Golitsyn 1986;
Vorobieff & Ecke 1998, 2002; Kunnen, Geurts & Clercx 2010; Weiss et al. 2010). Though
these methods have their merits and are Galilean-invariant, they are not objective, i.e.
they give different results in general moving frames. Results returned by these criteria
therefore depend on the observer and generally do not capture properties and structures
intrinsic to the flow. Furthermore, the original, physically motivated values of these
criteria are generally ignored, and user-selected level surfaces of the quantities involved
are presented instead. As a result, a precise definition for coherent structures is missing in
the applications of these methods.

Fortunately, over the last two decades, mathematical methods for the objective
identification and characterization of material fluid structures and transport barriers have
been developed (Haller 2005, 2015, 2023; Haller et al. 2016, 2020). These methods
uncover experimentally verifiable flow features that are indifferent to the choice of the
frame of reference. Technically, this means that the results of these structure or barrier
identification procedures do not change under time-varying rotation and translation frame
transformations of the form

x = Q(t) y + b(t), (1.1)

where Q(t) is an arbitrary, time-dependent rotation matrix, and b(t) is an arbitrary
time-dependent translation vector. This objectivity requirement ensures that transport
barriers are intrinsic to the flow. That is, advective and diffusive transport barriers can
be unambiguously visualized experimentally using material tracers or dye (e.g. Tél et al.
2018). As shown, the Q-criterion and λ2 criterion do not pass this objectivity test (Haller
2015). The correlation of active barriers with such tracer-influencing features can also be
verified experimentally unambiguously given their objectivity. Furthermore, objectively
defining barriers of dynamically active vector fields provides a common test for verifying
conceptual models and settling debates through flux calculations that are indifferent to a
researcher’s chosen reference frame.

The purpose of the present research is to investigate objectively defined heat and
momentum barriers as well as elliptic (rotationally coherent) Lagrangian coherent
structures in non-rotating and rotating RB flow. This approach allows us to better identify
the flow organization, the flow structures, vortices and transport barriers, and how they
develop under varying control parameters (Rayleigh and Rossby numbers). To achieve this,
we also require objective definitions of heat and momentum flux that can be calculated for
arbitrary surfaces in the flow. This feature-based approach is in contrast to the majority
of heat and momentum transport studies on non-rotating and rotating RB convection that
rely on bulk scaling arguments (e.g. see the review by Ecke & Shishkina 2023). Once a
potential transport barrier is defined, the amount of heat or momentum flux through the
surface should be a property of the surface and the flow for a given time, and should be
independent of the reference frame in which the calculations are made. To do this, we
utilize frame-indifferent definitions of heat and momentum flux, defined in §§ 2.2 and 2.3.

While there has indeed been substantial development in Lagrangian and Eulerian
barrier detection methods over the past two decades, our paper relies on barrier
definitions that have not been compared on 3-D flows. The theory of rotationally coherent
structures and the Lagrangian-averaged vorticity deviation was first published 7 years ago
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Figure 1. Normalized heat transport Nu/Nu0 with respect to the inverse Rossby number Ro−1 for Pr = 4.38
and Ra = 2 × 108 in a Γ = 0.5 cylinder. The circles show data points published in Hartmann et al. (2022);
the crosses belong to unpublished data. The dotted line shows schematically the expected behaviour for the
onset of heat transport enhancement. The arrows indicate the three cases considered in this paper. The volume
renders of the instantaneous temperature field illustrate the typical, very different flow morphologies for these
cases.

(Haller et al. 2016) but was first implemented effectively on a 3-D turbulent flow
by Neamtu-Halic et al. (2019). Diffusion barriers were first defined and derived
mathematically as solutions of an extremum problem by Haller, Karrasch & Kogelbauer
(2018), and they are located in 3-D turbulent flow data for the first time in the present paper.
Active barriers to momentum transport were first defined, with their governing equation
first derived, in 2020 (Haller et al. 2020), and have never been compared systematically to
diffusion barriers in 3-D strongly unsteady flow data.

We utilize direct numerical simulations of RB flow in a cylinder of aspect ratio Γ = 1/2
at Rayleigh number Ra = 2 × 108 and three different (inverse) Rossby numbers, namely
Ro−1 = 0 (no rotation), Ro−1 = 6.25 (intermediate rotation, close to the maximum in heat
transfer), and Ro−1 = 33.3 (strong rotation, with strong suppression of the heat transfer
due to the Taylor–Proudman theorem). A comparison of these three scenarios is shown in
figure 1.

The paper is organized as follows. To be self-contained, we discuss briefly advective,
diffusive and active transport barriers in § 2. For a detailed and more general discussion
we refer the reader to Haller (2023). In § 3, we give the underlying equations of rotating
RB convection and the numerical method that we have employed for the direct numerical
simulations of these equations. Section 4 presents the results, which are discussed in § 5.
The paper ends with conclusions and an outlook in § 6.

2. Different types of transport barriers

Transport barriers inhibit the spread of material or specific quantities associated with a
fluid flow. We will refer to the inhibitors of the spread of material (or of a conserved tracer
field) as advection barriers, whereas we will call the inhibitors of the transport of diffusive
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tracer fields diffusion barriers. Advective barriers are assumed to be passive here, which
means that their evolution does not change the fluid velocity field. In contrast, we refer
to the transport of dynamically active vector fields with a direct connection to the fluid
velocity field as active transport, with examples including the transport of vorticity and
linear momentum. Barriers inhibiting the spread of an active field will be referred to as
active barriers.

In this study, we describe the role that heat plays as an intermediary between active
and passive fields. We show that barriers to diffusive heat transport can be computed
effectively directly from the velocity field, as one may expect if heat is a passive scalar
concentration (e.g. dye) being advected in the flow. On the other hand, temperature is
also present in the equations of motion. This feedback between convection-generated
momentum and momentum transport barriers plays a central role in the interplay that
is the focus of this study. For a general discussion of all these barrier types and for ways to
detect them, we refer again to Haller (2023).

2.1. Advection barriers
Defining the observed barriers to material advection precisely is challenging as all material
surfaces block the transport of conserved tracers across them. The concept of Lagrangian
coherent structures (LCS) addresses this ambiguity by seeking distinguished material
surfaces that are the centrepieces of material deformation and maintain coherence over
some finite time interval of interest (Haller 2015, 2023). Hyperbolic LCS are defined as
local maximizers of repulsion or attraction among material surfaces in the flow. In contrast,
elliptic LCS are defined as local maximizers of shear among material surfaces.

In a given velocity data set v(x, t), LCS detection tools use fluid particle trajectories
x(t; t0, x0) generated from the differential equation

ẋ = v(x, t), (2.1)

with initial position x0 at time t0. These trajectories define the flow map F t0,t(x0) =
x(t; t0, x0), from which we also define the right Cauchy–Green strain tensor

Ct0,t = [∇F t0,t
]T ∇F t0,t. (2.2)

To visualize hyperbolic LCS, it is common to use the finite-time Lyapunov exponent
(FTLE) field, defined over a finite time interval [t0, t1] as

FTLEt0,t1(x0) = 1
2 |t1 − t0| log λmax

(
Ct0,t1 (x0)

)
, (2.3)

where λmax > 0 is the largest eigenvalue of the positive definite tensor Ct0,t1 .
FTLE values measure locally the largest material stretching rate in the flow. For t1 − t0

large enough, codimension-one FTLEt0,t1(x0) ridges align with t0 positions of maximally
repelling LCS. Similarly, for t0 − t1 large enough (backward-time integration), we can find
maximally attracting LCS (Haller 2015, 2023).

To detect elliptic LCS over a time window [t0, t1], we define the Lagrangian-averaged
vorticity deviation (LAVD; Haller et al. 2016), by measuring the average deviation of the
pointwise vorticity ω = ∇ × v, along a trajectory, from its spatial mean ω̄. To obtain the
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time t0 location of elliptic LCS, we calculate

LAVDt0,t1(x0) := 1
|t1 − t0|

∫ t1

t0

∣∣ω(F t0,s(x0), s)− ω̄(s)
∣∣ ds. (2.4)

This quantity is objective once the fluid mass involved in the spatial averaging is fixed, but
the result will depend on the choice of that domain. In the RB setting that we analyse here,
the domain will be fixed simply as the full computational domain.

Locations of elliptic LCS at time t0 can be identified as smooth cylindrical level surfaces
of LAVDt0,t1(x0) surrounding a unique, codimension-two ridge (see Neamtu-Halic et al.
2019; Haller 2023). In turn, coherent Lagrangian vortices can be located as nested families
of such elliptic LCS. As discussed further below, smooth cylindrical level surfaces in
LAVDt1,t0(x0) fields provide the t1 locations of such structures by using a backward-time
integration, and are reflective of the fluid rotation that occurs from t0 to t1.

As with any Lagrangian diagnostic, the choice of integration time δt = |t1 − t0| must be
made by the user. We are interested in finding material surfaces that maintain coherence
over a given time. In rotating RB flow, it is reasonable to assume that fluid particles
will eventually transit even the most resilient LCS in finite time as they interact with
the boundaries of the flow domain. We show the effect of varying the integration time,
from 1 to 20 free-fall times, in the Appendix. We reveal that over this range of values,
the underlying LCS do not change, but LAVD fields and their relationship to heat and
momentum transport become noisier at larger δt due to the chaotic nature of the fluid
flow. We settle on an intermediate value δt = 4 for our analysis as it balances structure
visualization with flux barrier statistics. This sort of time scale analysis is secondary to
the primary purpose of the study, and is simply a part of studying finite-time dynamical
systems (Haller 2023).

2.2. Diffusion barriers
In contrast to advective barriers, diffusive barriers can be defined unambiguously without
any reliance on a coherence definition. If a scalar c satisfies the classic advection–diffusion
equation with diffusivity κ > 0, then the diffusive transport through an evolving material
surface M(t), with M(t0) = M0, can be written as

Σt0,t1(M0) =
∫ t1

t0

∫
M(t)

κ ∇c · n dA dt, (2.5)

with n(x, t) denoting a smoothly oriented unit normal vector field along M(t). In contrast
to the convective scalar flux vc · n, diffusive transport through a surface as defined in
(2.5) does not change with varying reference frames and can be thought of as a physical
property of only the surface and flow. Haller et al. (2018) sought to minimize the functional
Σt0,t1(M0) and found that when t0 < t1, diffusive transport minimizers are marked by
ridges of the diffusion barrier sensitivity (DBS) field, defined as

DBSt0,t1(x0) := Tr
[

1
|t1 − t0|

∫ t1

t0
C−1

t0,t(x0) dt
]
. (2.6)

In RB convection, distinguished flow features (plumes, vortices, etc.) are often identified
qualitatively as homogeneous structures with limited mixing with the surrounding fluid.
These barriers, across which the mixing of heat is limited, correspond to surfaces with the
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most dramatic temperature gradients. That is, they are surfaces that maximize diffusive
transport. By inverting the integration time, DBS ridges identify diffusion minimizers in
backward time, which are by definition equivalent to diffusion maximizers in the standard
forward-time flow. In other words, backward-time integration from t1 to t0 provides the t1
positions of diffusion maximizers as ridges of DBSt0

t1(x0).
It is remarkable that DBS is a predictive field given that its computation requires no

diffusive simulation and relies on only the velocity field. The mathematical accuracy of
this relies on a relatively small dimensionless thermal diffusivity. Specifically, DBS is a
valid indicator for large Péclet number (Pe � 1), and will predict diffusion barriers in any
flow, regardless of density, viscosity or diffusive coefficients, given sufficient advection.
For the rapid, intermediate and no-rotation simulations, we calculated Péclet numbers
590, 1820 and 2170, respectively, using the known Prandtl number and Reynolds number
from velocity fluctuations in all directions. Throughout the paper we use the terms heat
transport, flux and barriers to refer to diffusive heat flux, and exclude consideration of the
non-objective convective heat transport because of inconsistencies in its value for varying
reference frames.

For both the advective and diffusive barriers evaluated in this study, we use regularly the
inverse flow map, beginning at a given time t and integrating backwards in time to t − δt.
When plotting LAVD at t in this way, we reveal the rotational behaviour of the fluid for
a δt window immediately prior to t, and identify the advective transport barriers that are
organizing the scalar fields at t. DBS ridges computed using this backward-time integration
are barriers that maximize diffusive heat transport and are Lagrangian structures that
maintain strong temperature gradients across their boundaries. We utilize the same
integration time for DBS and LAVD calculations as discussed in the Appendix.

2.3. Momentum barriers
Defining transport barriers objectively for active dynamical quantities is a challenge
because such quantities used most often (such as the vorticity and the momentum) are
not objective. For example, convective momentum transport ρv(v · n) varies between
reference frames and is an insufficient benchmark to quantify momentum blocking
behaviour in arbitrary flows. To circumvent this problem, Haller et al. (2020) introduce the
(average) diffusive transport of the linear momentum vector f (x, t) = ρ v(x, t) through
M(t), defined over a time interval [t0, t1] as

ψt0,t1(M0) = 1
t1 − t0

∫ t1

t0

[∫
M(t)

Df
Dt

· n dA
]
vis

dt = 1
t1 − t0

∫ t1

t0

∫
M(t)

νρ ∇2v · n dA dt,

(2.7)

where the [·]vis operation identifies the part of the bracketed quantity that has an explicit
dependence on the viscosity ν, as determined from the incompressible Navier–Stokes
equation with density ρ. In (2.7), ν and ρ may vary spatially and temporally. Barriers to
momentum transport (or momentum barriers for short) can be defined as material surfaces
whose initial positions M0 are local extremizers of the functional ψt0,t1(M0). Of these
extremizers, the strongest ones are active momentum barriers, which are structurally stable
surfaces admitting strictly zero transport over any of their subsets.

In the instantaneous limit t1 → t0 = t, a surface M(t) is a perfect barrier to momentum
flux if ∇2v · n vanishes at each point of M(t). Throughout the paper, we use the
terms momentum transport, flux and barriers to refer to this objective value, and
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exclude consideration of the non-objective convective momentum transport. Finding active
Eulerian (instantaneous) momentum barriers then reduces to finding structurally stable
invariant manifolds in the barrier vector field

x′ = νρ ∇2v(x, t0) (2.8)

at a given time t0. Here, a prime denotes differentiation with respect to the barrier time
s that parametrizes trajectories of (2.8) that form barrier surfaces. Both ν and ρ may
vary spatially and temporally, as in many natural and thermally driven flows. One can
simplify calculations by reparametrizing the dummy integration time without changing
the geometry of the vector field or the invariant manifolds of the system. Specifically, to
maintain consistency with the equations of motion in rotating RB convection, we calculate
streamlines (trajectories) and the flow map of the instantaneous barrier field (2.8) as

F s
(x0;t0) = x(s; x0; t0) = x0 +

√
Pr
Ra

∫ s

0
∇2v(x(τ ), t0) dτ, (2.9)

where the leading constant coefficient
√

Pr/Ra rescales s to become the same order
of magnitude as the Lagrangian integration times δt used for LAVD and DBS. The
barrier vector field is a steady, volume-preserving dynamical system because ∇2v is
divergence-free for incompressible flows.

We can compute FTLE and LAVD fields along trajectories defined by (2.9), using
trajectories x(s; x0; t0) computed for t0 fixed, from a grid of initial positions x0. In all our
computations, we select the integration length s for F s

(x0;t0) to be close to the decorrelation
time scale (s ≈ 3) using the computational method suggested by Aksamit & Haller
(2022). Beyond this time scale, trajectory-based diagnostics become less representative of
features near their initial positions x0, as also described for LAVD fields in the Appendix.
Hyperbolic and elliptic invariant manifolds of (2.8) are detected in analogy with their
advective counterparts in the active FTLE (aFTLE) fields

aFTLEs
t0(x0) = 1

2 |s| log λmax
(Cs

t0(x0)
)
, (2.10)

and the active LAVD (aLAVD) fields

aLAVDs
t0(x0) := 1

s

∫ s

0

∣∣∣w (
F s̃
(t0,x0)

(x0)
)

− w̄
∣∣∣ ds̃. (2.11)

Here, C is the active Cauchy–Green strain tensor generated by the active flow map F , and
w is the vorticity of the active barrier field ∇2v.

The barrier time s is a non-dimensional geometric parameter corresponding to
integration times of trajectories of the barrier equations. As such, it has no direct fluid
dynamical meaning. This is akin to using the parameter τ in the differential equation
dx/dτ = v(x, t) to calculate instantaneous streamlines in a velocity field. In a normalized
unit barrier vector field, s is precisely the arc length of a barrier trajectory and would
then control directly the barrier length scales revealed by the Lagrangian diagnostics. For
non-normalized vector fields, we do not have this direct connection to physical scales. In
our situation, s influences the length of barrier field trajectories and whether or not initially
nearby trajectories will have time to separate and reveal barrier structures.
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3. Dynamical equations and numerical method

Rotating RB convection is governed by a set of equations including the continuity
equation, the Navier–Stokes equations and the convection–diffusion equation of
temperature. Under the Oberbeck–Boussinesq approximation, they are given in their
dimensionless forms as

∇ · v = 0, (3.1)

dv

dt
= −∇P +

√
Pr
Ra

∇2v +Θez − 1
Ro

ez × v, (3.2)

dΘ
dt

= 1√
Pr Ra

∇2Θ. (3.3)

Here, v, P and Θ are the dimensionless velocity, pressure and temperature fields,
respectively, normalized by the height H between the plates and the free-fall velocity U0 =√
αgδTH, where α is the isobaric thermal expansion coefficient, g is the gravitational

acceleration, and δT is the temperature difference between the upper and lower plates. The
pressure field P is reduced further by the hydrostatic balance and centrifugal contributions.
Hence the set of equations depends on three control parameters: the Prandtl number
Pr = ν/κ , the Rayleigh number Ra = αgδTH3/(νκ) and the inverse Rossby number
Ro−1 = 2ΩH/U0, where ν is the kinematic viscosity, κ is the thermal diffusivity, and Ω
is the rotation rate. Time will be measured in terms of the free-fall time scale tff = H/U0.

The RB system (3.1)–(3.3) is confined to a cylinder of diameter to height ratio Γ =
0.5, with no-slip boundaries at the plates and the sidewall. The top and bottom plates
are isothermal with Θ = 0 and Θ = 1, respectively, whereas the sidewall is adiabatic. In
our simulations, we keep Pr = 4.38 and Ra = 2 × 108 fixed, and consider the cases for
no rotation (Ro−1 = 0), ‘optimal’ intermediate rotation (Ro−1 = 6.25), and rapid rotation
(Ro−1 = 33.3̄); see figure 1 and Hartmann et al. (2022).

We solve (3.1)–(3.3) by using a central second-order-accurate finite-difference scheme
on a staggered grid (see Verzicco & Orlandi 1996; Verzicco & Camussi 1997, 1999).
The computational domain consists of Nϑ × Nr × Nz = 384 × 64 × 256 grid points in the
azimuthal, radial and vertical directions, respectively. The grid points are further clustered
towards the plates and the sidewall to ensure a sufficient resolution of the boundary layers
(Shishkina et al. 2010) and the Kolmogorov scales in the entire domain. More details about
the simulations can be found in Hartmann et al. (2022), on which the three analysed cases
of this study are grounded. For our analysis, we consider a period of 25 free-fall times in
the statistically stationary regime (800 ≤ t/tff ≤ 825). We note that the 3-D flow fields are
horizontally interpolated to a Cartesian grid in the post-processing to apply the different
barrier diagnostics.

4. Results

We investigated the role of transport barriers in RB convection for three different strengths
of rotation, representing three distinct flow regimes. In figure 2, we show horizontal
slices of the temperature field Θ near the bottom wall and in the centre for our three
different simulations. Figures 2(a–c) intersect our flow volume at z/H = 0.1, whereas
figures 2(d–f ) show intersections at z/H = 0.5. Further quantitative analysis will utilize
the entire volume for all three flows.
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Figure 2. Comparison of instantaneous snapshots of temperature in RB convection for three different Rossby
numbers. Panels (a–c) shows Θ at z/H = 0.1, whereas panels (d–f ) reveal structures closer to the heat
source at z/H = 0.1. All colormaps are centered around the plane-averaged temperature 〈Θ〉H at that height.
Classical non-rotating RB convection, Ekman pumping in vertically aligned vortices, and sidewall boundary
flow characterizes the flow in panels (a,d), (b,e), and (c,f ), respectively.

The temperature fields describe qualitatively the influence of distinct flow structures
on fluid organization. Figures 2(a) and 2(d) reveal highly turbulent mixing for Ro−1 = 0.
In figure 2(b), three distinct hot vortices reveal evidence of ongoing Ekman pumping at
Ro−1 = 6.25, which becomes less evident at z/H = 0.5 (figure 2e). At the highest rate
of rotation, Ro−1 = 33 in figures 2(c) and 2( f ), the flow is much less turbulent, with
the dominant features along the sidewall depicting the dominant roll of wall modes. We
investigate the agreement of these signatures with advective, diffusive and momentum
barriers, as well as providing additional insights on fluxes from our transport barrier
focused approach in the following subsections.

4.1. No rotation
For the strongly convective case with no rotation (Ro−1 = 0), our transport barrier
diagnostics reveal a complex network of hyperbolic and elliptic structures both in the
fluid velocity field, and in the momentum barrier field. In figures 3(a) and 3(d), we plot
temperature and vertical velocity, respectively, alongside aLAVD, aFTLE, LAVD and DBS
fields at z/H = 0.5 for the same dimensionless flow time (t/tff = 809) as that visualized
in figure 2(d).

Figures 3(b) and 3(c) reveal instantaneous momentum barriers in aLAVD and aFTLE
fields calculated from an active barrier field integration time s = 5. We remain consistent
with this integration time for all values of Ro−1. Many of the same organizing structures
can be identified in both the aLAVD and aFTLE fields. For example, rotationally coherent
momentum barriers appear as both concentric families of circular aLAVD level sets around
maxima and regions encircled by aFTLE ridges.
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Figure 3. Comparison of temperature and velocity (a,d) with active (b,c), advective (e) and diffusive
( f ) barriers for the non-rotational flow (Ro−1 = 0) at t/tff = 809 and z/H = 0.5. The Eulerian momentum
barriers (b,c) show the greatest complexity, but there is a very similar general organization of the flow at the
advective fluid barriers (e) and diffusive heat barriers ( f ). There is a notable increase in structural complexity
for all diagnostics when compared with temperature and velocity in (a,b).

Separations between hot and cold plumes in figure 3(a) clearly correlate with
momentum barriers, but the momentum barriers are actually much more complex than
one would expect from the temperature field alone. For the region y > 0, there is one
such robust hot–cold interface, in figure 3(a), corresponding with a separation between
ascending and descending fluid in figure 3(d). Both aLAVD to aFTLE highlight structures
parallel toΘ = 〈Θ〉H, but multiple spiralling features are also revealed in adjacent regions
with significantly weaker temperature and velocity signatures. The vortex that appears
to mix warm and cold regions at approximately (x, y) = (0, 0.5) will be investigated
further in § 5. Further qualitative comparisons reveal many additional detailed structures
in aLAVD and aFTLE, whereas a seemingly low-pass filtered version of such features is
present in the temperature and velocity fields.

Figure 3(e) shows the intersection of coherent Lagrangian vortices with the z/H = 0.5
plane. In contrast to the instantaneous active barrier field approach used for identifying
barriers in figures 3(b) and 3(c), these rotational structures are generated by advecting fluid
particles in the time-varying fluid velocity field. We use the inverse flow map, beginning
at t = 809 and integrating backwards in time. As mentioned before, calculating LAVD
this way reveals the rotational behaviour of the fluid between t = 805 and t = 809, and
plots the transport barriers locations at t = 809. Figure 3( f ) complements this analysis
and shows barriers that maximize diffusive heat transport as DBS ridges from the inverse
flow map.

Similar to our comparison with momentum barriers, the advective and diffusive barriers
also show a general agreement with the scalar distribution in figure 2(a). This confirms
that DBS is indeed a predictive field as its computation relies solely on the velocity field,
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Figure 4. Comparison of advective, diffusive and active barriers for the intermediate rotational case
(Ro−1 = 6.25) at t/tff = 805 and z/H = 0.1. The momentum barriers visible in the active Eulerian diagnostics
(b,c) again show the greatest complexity, but all diagnostics clearly emphasize the dominant Ekman vortices
in the flow. (e) Three rotationally coherent vortices, largely independent of each other. ( f ) The diffusive heat
barriers further support the separation of the flow into minimally interacting domains.

requiring no diffusive simulation. There is a strong correlation between DBS and LAVD
features, and they both reveal more detail about the internal structure of advective and
diffusive barriers than one sees in Θ or vz. For example, there are multiple double-plume
structures, such as at (x, y) = (−0.1,±0.1), whose vortices are not clearly defined in
figures 2(a) or 2(d). There is also a difference between the instantaneous momentum
barrier features and the Lagrangian structures, such as the double plume at (x, y) =
(−0.1,−0.1). These differences will be explored in more detail in § 5.

4.2. Optimal intermediate rotation
For the intermediate rotation case (Ro−1 = 6.25), our transport barrier diagnostics still
reveal a complex network of active, advective and diffusive transport barriers. In figure 4,
we plot Θ , vz, aLAVD, aFTLE, LAVD and DBS fields at z/H = 0.1 at the same
dimensionless flow time (t/tff = 805) as that visualized in figure 2(b), and computed with
the same advection time scales as in § 4.1.

In figures 4(b) and 4(c), we see the three Ekman vortices act as instantaneous
momentum barriers in aLAVD and aFTLE fields. Surrounding these prominent features
are momentum barriers that are limiting momentum transport near the cores, effectively
separating core regions from each other. This behaviour can be seen as convex ridges of
aLAVD and aFTLE that parallel and contour the ridges that define the central cores. Along
approximately y = 0.15, we see one such momentum barrier that agrees loosely with the
Θ = 〈Θ〉H contour, separating that zone by blocking momentum transport into the other
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Figure 5. Comparison of temperature and velocity (a,d) with active (b,c), advective (e) and diffusive
( f ) barriers for the rapid rotation case (Ro−1 = 33) at t/tff = 811 and z/H = 0.1. All barrier diagnostics
highlight the features of sidewall boundary flow due to convective wall modes.

Ekman vortices. Some other momentum barriers have a less visible effect on the spatial
distribution of Θ .

Figures 4(e) and 4( f ) show the x–y intersection with advective and diffusive transport
barriers at the same height. These Lagrangian diagnostics show a clear dominance of the
Ekman vortices, and much less of the small-scale transport barrier behaviour seen in the
instantaneous momentum barrier diagnostics. One significant similarity with momentum
barriers here is the organization of LAVD and DBS contours that separate the Ekman
vortices from each other and from the centre of the cylinder. The extent of this separation,
and the exact locations of these barriers, cannot be obtained from Θ alone in figure 4(a).
Separating the flow by along vz = 0 contours in figure 4(d) also suggests an organization
of the flow that does not coincide strictly with momentum or heat transport.

4.3. Rapid rotation
In our final example, we compare advective, diffusive and active barriers for an RB flow
with high rotational strength. In figure 5, we compare Θ , vz, against aLAVD, aFTLE,
LAVD and DBS fields at z/H = 0.1 at the same simulation time as that visualized
in figure 2(c), computed with the same advection time scales as in the previous two
subsections.

In figures 5(b) and 5(c), momentum barriers appear with considerably less complexity
than in the previous two simulations. These features largely parallel Θ contours in
figure 5(a). There are two major features that are related to sidewall boundary flow
resulting from the high rate of rotation. Our two Lagrangian diagnostics reveal advective
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and diffusive barriers at the same locations with approximately the same level of
complexity, with some additional detail at the crossovers from the cold to the warm
fraction of the wall mode. This is in direct contrast to the previous two simulations, where
there was a large-scale agreement between all barrier types, but at finer scales, many
differences could be found. The only thing that changed between all simulations is the
rotational strength Ro−1. Comparing these three flows, it appears that the degree to which
advective, diffusive and active barriers agree in rotating RB convection depends on the
relative role of Coriolis and buoyancy forces. We investigate the role that mechanically
stabilizing forces play in heat and momentum organization, and how momentum and heat
transport barriers influence the flow, in the following subsections.

4.4. Bulk agreement of heat and momentum transport
By varying the Rossby number, we are able to evaluate the role of purely convective
and Coriolis-influenced structures in rotating RB convection. In our non-rotating case,
Ro−1 = 0, the flow consists of turbulent convective plumes. In the high rotational strength
case, the Coriolis effect impedes vertical mixing in the bulk and triggers the formation of
a sidewall boundary flow. In both cases, transport barriers of heat and momentum govern
the mixing of these variables throughout our flow.

The direction and magnitude of the diffusive transport of heat can be quantified by the
gradient of Θ . A coherent structure that effectively limits the mixing of heat will in turn
generate a significant concentration of heat, and a large temperature gradient will form
along the structure boundary. These strong gradients are clearly visible surrounding the
Ekman vortices in figure 2(b), which are responsible for the increase in the normalized
heat transport in figure 1. Momentum transport barriers have been shown by Haller et al.
(2020) to be stream surfaces in the barrier field (2.8). Therefore, along a surface that acts
as a transport barrier that constrains the transport of both momentum and heat, the inner
product of the vectors 〈∇2v,∇Θ〉 is equal to zero. In figure 6, we show discrete probability
histograms of this inner product, after normalizing by vector lengths |∇2v| and |∇Θ|, for
the entire flow volume over 26 free-fall time units for each strength of rotation. We use
500 equal-width bins spanning ±1.

All three flows in figure 6 show a clear probability peak around zero, indicating
a general bulk agreement between momentum and heat transport barriers. As this
calculation is applied for every grid cell, and not just along transport barrier surfaces,
some variability around zero is to be expected. This probability indicates that the
transport of momentum and heat is governed largely by similar features in the flow,
though some fine-scale disagreement exists. The variance of the three distributions in
figure 6 is compared in table 1. The decrease in variance with increase in Ro−1 quantifies
the enhanced barrier field agreement by Coriolis forces. As well, the percentage of
momentum barrier and diffusive heat flux vector pairs with the angle between them,
β = cos−1(〈∇2v,∇Θ〉/|∇2v| |∇Θ|), being between 80◦ and 100◦, exhibits a similar
trend. Both β and the variance confirm that the inner product distributions contract around
zero as transport barriers become strongly modified by both buoyant convection and
rotational stabilizing forces.

These inner products quantify the agreement of heat and momentum fluxes, and the
similarity of heat and momentum organizing structures. Both heat and momentum barriers
influence the evolution of the flow field, and changes in inner product distributions reveal
when these structures are in direct competition for organizing the flow. We investigate this
balance further in § 5.2.
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Figure 6. Discrete probability histograms of momentum flux and heat flux inner products for the three
strengths of rotation. Momentum and heat orthogonality increases as mechanical influence on flow structure
dominates convective influence.

Full volume Top and bottom Outer Inner

Ro−1 Variance β < 10◦ Variance β < 10◦ Variance β < 10◦ Variance β < 10◦

0 0.2 33 % 0.14 44 % 0.16 41 % 0.21 31 %
6.25 0.159 40 % 0.05 69 % 0.15 39 % 0.17 38 %
33 0.158 42 % 0.05 69 % 0.05 67 % 0.18 36 %

Table 1. Statistics from normalized inner product of heat and momentum barrier field vectors. For decreasing
rotational strength, there is an increase in the variance of barrier field inner products due to less agreement
between heat and momentum barriers. The percentage of barrier field vector pairs with an angle between them
(β) less than ten degrees also decreases as rotational strength decreases.

5. Discussion

5.1. Comparison of advection, heat and momentum barriers
In the work of Haller et al. (2020), DBS was found as the solution of an extremum problem
aimed to highlight diffusive transport barriers to scalar fluxes. In the original derivation,
however, the authors were able to verify this diffusive transport barrier behaviour only
by looking at the evolution of an initial scalar concentration that evolves passively with
the flow. The present work is the first verification that DBS ridges indeed represent heat
transport barriers that constrain the heat distributions that modify the flow.

To date, there has been no investigation of the interplay of advective, diffusive and
active barriers, and no investigation of any of these barriers in flows with both convective
and mechanically modified velocity fields. It is exceptional to note that many of these
barriers show ample agreement for our three cases, though they are all derived with distinct
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mathematical approaches. For example, in the intermediate rotation case with Ekman
pumping (Ro−1 = 6.25), the rotational LCS, seen as closed convex contours surrounding
LAVD maxima, align precisely with the Ekman vortices in the temperature field, as well as
the diffusion-maximizing DBS ridges, and are parallel to the active momentum barriers in
aLAVD and aFTLE. We make this comparison more rigorous by isolating one such LAVD
level surface and quantifying the flux of momentum and heat transport across it.

In figure 7, we show how these three kinds of transport barriers align for the Ekman
vortex case. Figure 7(a) shows the LAVD = 0.06 level surfaces that intersect the Ekman
vortex contours at z/H = 0.1. This is only an approximation to more complex elliptic LCS
extraction methods (see Neamtu-Halic et al. 2019), but shows how robust LAVD fields are
for identifying rotationally coherent 3-D transport barriers in time-varying flows. In fact,
figure 7(b) shows the degree of orthogonality of momentum and heat flux vectors with
the gradient of the LAVD field. This discrete probability histogram evaluates the heat and
momentum transport limiting behaviour of arbitrary LAVD level sets in the entire flow
domain. We find a high degree of tangency between LAVD level sets and momentum flux
barriers, as seen by a familiar peak around zero, with a variance of 0.16, and |β − 90| <
10◦ for 40 % of the vector field. That is, any structurally stable LAVD isosurface will
provide a good barrier to momentum transport, regardless of the chosen LAVD value.
Similarly, the temperature gradient is largely parallel to the LAVD gradient, as seen with
sharp maxima in inner product values at ±1 and β < 10◦ for 20 % of the vector field.

We calculate the distribution in figure 7(c) by restricting our focus to the level set
approximation of the Ekman vortices in figure 7(a). Here, we find an even stronger
orthogonality between momentum flux and the passive barrier normals. The variance of
momentum flux and LAVD gradient inner products reduces to 0.13, with |β − 90| < 10◦
for 46 % of the surface vectors, suggesting minimal leakage of momentum out of the actual
Ekman vortices. The distribution of heat flux angles also aligns with |β| < 10◦ for 44 %
of the vectors.

Figure 7(d) compares the agreement of heat and momentum flux for every point on
our advective barriers from figure 7(a). On the surface of this elliptic LCS, we find that
there is also a strong pointwise agreement of heat and momentum transport, with a similar
maximum around zero, and variance only 0.13. This is a smaller variance than the bulk
values shown in table 1. That is, even though LAVD is a diagnostic field designed to
identify elliptic LCS (advective barriers), LAVD isosurfaces localize where connections
between momentum, heat and fluid advection barriers in RB flow are strengthened. As
well, surface-specific analyses like this also provide a means to quantify objectively
changes in momentum and heat transport behaviour in a manner that is temporally and
spatially resolved, and can follow material features as they deform. This further opens
the door to evaluating the conditions under which momentum and heat fluxes are not in
agreement.

As seen in figure 6, the Ro−1 = 0 case shows the greatest disagreement between
momentum and heat geometries. We will now focus on examples of two structures with
different momentum and heat transport limiting abilities. If we zoom in on the central
region of the z/H = 0.5 slice from figure 3, then we see what appears to be a cylindrical
momentum barrier. We have isolated this region in figure 8. We extract the outermost
closed convex contour surrounding the aLAVD maximum in the centre of figure 8(a).
Though not presented here, the aFTLE field also reveals concentric closed ridges in the
same region (figure 3b).

When we compare this momentum blocking feature with the Lagrangian DBS field
(figure 8b), instead of a closed curve, we see a plume wrapping in on itself, entraining
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Figure 7. (a) Ekman vortices as LAVD isosurfaces (advective barriers). (b) Inner product of both diffusive heat
flux and momentum flux with LAVD gradient. (c) Inner product of both diffusive heat flux and momentum flux
with LAVD isosurface normal vectors. (d) Inner product of diffusive heat flux and momentum flux vector along
isosurface.

surrounding fluid. The magnitude of ∇Θ in figure 8(c) shows that indeed there are
relatively high gradient ridges parallel to the momentum barrier in red (on the left), but
there are also level sets of constant temperature that are mixing in to the momentum core
(from the right). In figure 8(d), we visualize the normalized momentum and heat flux inner
product, and compare to the location of the momentum vortex core. Here, there is clear
evidence of the entrained fluid. The direction of momentum transport and diffusive heat
flux are actually parallel for two arms of the swirl (marked 1 and 2), entering from the
right. This is in direct contrast to the typical orthogonality of momentum and diffusive
heat flux that we have seen for other barriers, and is seen on the left-hand side of the
momentum barrier in zone 3.

Using our closed aLAVD contour as initial positions, we can also extract the stream
surface rigorously by calculating trajectories in (2.8). This barrier stream surface perfectly
blocks active momentum transport. On the surface, however, the temperature gradient
follows a wide range of orientations, and is orthogonal on only part of the surface. In
figure 8(e) we find the probability distribution of the heat momentum inner products
for this 3-D stream surface in red, with the three zones from figure 8(d) also marked.
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Figure 8. An example of an elliptic momentum barrier as it intersects the z/H = 0.5 plane in the Ro−1 = 0
flow. This momentum barrier is entraining fluid into its core and is thus not behaving as a perfect heat transport
barrier. However, the warm fluid is entering from only the right-hand side (RHS) of the vortex, as can be seen
by alignment of DBS ridges with aLAVD contours on the left-hand side of the core. The fluid mixing by this
structure is also evident in the inner product distribution of heat and momentum flux.

We see many more spikes away from zero than in previous distributions, suggesting a
more complex relationship with the roles of heat and momentum for fluid organization in
this region. The same distribution from the entire plane z/H = 0.5 is shown as a black
curve in the background, and provides a useful comparison for average behaviour in the
same region.

Though Ro−1 = 0 shows the greatest relative disagreement between momentum and
heat flux vectors for our three flows, there is still significant alignment between heat and
momentum barriers in this turbulent flow. We highlight one such hyperbolic momentum
barrier that acts as a barrier for both momentum transport and temperature mixing.
Shifting our focus to the dominant hot–cold interface in figure 9, we identify an aFTLE
ridge in red (figure 9a) that shows close approximation to LAVD and Θ contours. While
aFTLE and Θ are both Eulerian diagnostics, and LAVD is Lagrangian, we can see there
is actually greater agreement between Θ (figure 9c) and LAVD contours (figure 9d)
around our momentum barrier in red. Using this red curve as initial conditions, we again
calculate the full 3-D momentum barrier as a stream surface in (2.8). For this hyperbolic
momentum barrier, we find a much clearer peak probability distribution of heat momentum
orthogonality shown in red in figure 9(e) than the bulk z/H = 0.5 distribution shown
in black. This confirms our qualitative conclusion that this aFTLE ridge is effectively
isolating a momentum barrier that also limits the mixing of heat across it.

5.2. Feedback of convection generating momentum and organizing the flow
In § 4.4, we found that the agreement between heat and momentum fluxes varies with
the strength of rotation. Specifically, when fluid motion is dominated by mechanically
generated structures, the momentum and heat transport barriers are more closely aligned.
We propose that this is the result of a feedback mechanism of balancing forces that
organize the flow.
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Figure 9. An example hyperbolic manifold in the momentum barrier field intersecting the z/H = 0.5 plane
represented as an aFTLE ridge for the Ro−1 = 0 flow. This momentum transport barrier is also behaving as a
wall between cold and warm regions of the flow, thus maximizing diffusive heat transport.

Starting with the case when rotational strength is large, and convection plays a smaller
role in organizing motion, we know that heat distributions are more passively organized in
the flow. This can be interpreted physically by a large Péclet number. This relationship is to
be expected, and previous work has shown that DBS fields can identify accurately diffusive
transport extremizers for scalar concentrations that have no influence on the flow, solely
from the velocity field (Haller et al. 2018). In flows with no convective influence, active
momentum barriers have also been shown to align with advective transport barriers, and
advective barriers themselves can have a close resemblance to diffusive transport barriers
(Haller et al. 2020; Katsanoulis et al. 2020).

The high rotational strength system may be thought of as a situation where momentum
transport barriers not only organize the distribution of momentum, but also drive the fluid
motions that organize the relatively passive distribution of heat. Through this connection
of active, advective and diffusive barriers, we find that the flow of momentum coincides
closely with features that effectively block scalar transport across them. This is why
momentum barriers have large temperature gradients across their boundaries, and is
precisely what we see in figure 6, where higher rotational strength (Ro−1 = 33) generates
stronger orthogonality of momentum and heat fluxes.

As we decrease the rotational strength, the role of buoyancy increases and the
transport of momentum becomes more complex. Thermal plumes can now generate
more momentum, meaning that the location and shape of momentum barriers are no
longer dominated by just mechanical forcing. However, the transport of momentum is
not governed solely by the heat gradients either, even in the non-rotational case. This is
clearly true since we are dealing with fluid motions that are interacting with the walls of a
bounded domain. The organization of momentum barriers has a clear connection to fluid
motion by definition, which again influences the mixing of heat in the flow. Thus there is
a feedback from the momentum barriers back into heat barrier formation by way of the
velocity field. We find that this heat–momentum feedback, or competition between forces,
is most complex at low Ro−1 when there is the lowest agreement between active, advective
and diffusive heat barriers. This provides a structure-based understanding of the degree to
which the mixing of these scalar and vector values is correlated. For example, there is still
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Figure 10. Discrete probability histograms of momentum flux and heat flux inner products for the three
strengths of rotation in different regions of the flow domain. Momentum and heat orthogonality increases
as mechanical influence on flow structure dominates convective influence for all regions when comparing the
highly rotational and non-rotational cases. For the optimal intermediate rotation, outer region orthogonality
decreases slightly, while the other two regions are enhanced.

some heat and momentum flux alignment, and figures 8 and 9 help to discriminate when
momentum and heat barriers can agree for Ro−1 = 0.

When we consider separate fixed regions in our flow domain, we can compare the
influence of the walls on the geometries of heat and momentum barriers. In figure 10,
we look at discrete probability histograms of momentum and heat flux inner products
near the top and bottom of the cylinder (z/H < 0.01 and z/H > 0.99). We find that the
thermal boundary layer height λT (Stevens, Clercx & Lohse 2010) is of the order of this
range, equalling 1.11 × 10−2, 9.37 × 10−3 and 3.43 × 10−2 for the three flows, in order
of increasing strength of rotation. Sidewall boundary layer theory is less developed for
weakly rotating RB flows, so we also looked at inner products in an outer region defined
as the outermost 15 % of the volume (r/H > 0.23), and took the complement of all these
regions to be the inner region of the flow. We are limited as to how close we can get to the
cylindrical walls by interpolated Cartesian grid used for the barrier diagnostics.

Momentum in ascending and descending fluid is redirected as that fluid deforms along
the upper and lower plates, respectively. As these hot and cold plumes react to the plates of
the flow domain, the deformation of diffusive barriers and momentum barriers is strongly
coupled. This results in a larger degree of agreement in active and diffusive barriers in the
top and bottom regions for all three values of Ro−1, where orthogonality still increases
with increasing rotation strength. The peak probability for the top and bottom region inner
products is larger than the respective bulk values in figure 6, with a smaller variance and
more closely aligned flux vectors (table 1). Though there is a strong thermal influence
at the lower plate, inner product distributions are nearly identical if we further separate
fluid near the top versus bottom (not pictured). This shows that we have found a zone with
a particularly strong agreement between momentum and heat transport, resulting from a
largely mechanical influence as the vertically moving fluid is redirected when impacting
the plates and has no other options.

In comparison, the inner region of the domain reveals significantly less agreement
between momentum and heat transport, less than half the probability in the strong rotation
case. The inner and outer domains still show a general peak probability around zero,
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Figure 11. Ratios of coordinate-averaged r.m.s. viscous and buoyancy forces for each of the three flows:
(a) plane-averaged force balance; (b) averages for a given radius.

indicating some momentum and heat transport coupling. When we isolate outer wall
and inner domains, trends in the probability distribution with increasing Ro−1 are less
clear. This is especially evident for the outer wall distribution peak that actually decreases
slightly from Ro−1 = 0 to Ro−1 = 6.25 before increasing substantially for Ro−1 = 33.
This requires further investigation, but may be due to the discretization of the round walls
used for calculations of the velocity Laplacian, versus the original cylindrical coordinates
used for the flow simulations. Using a different flow geometry, such as in a rectangular
RB simulation, would help to answer this question and generate further comparison of the
interplay between advective, diffusive and active barriers. This may also be related to the
specific role played by the Coriolis force, enhancing thermal convection at Ro−1 = 6.25
and suppressing it at Ro−1 = 33.

To put our work in context with recent findings, we investigate the average strength of
forces associated closely with the diffusive and active barriers. The viscous and buoyancy
forces can be written in dimensionless form as

F V =
√

Pr
Ra

∇2v, F B = Θez. (5.1)

In the spirit of the work of Aguirre Guzmán et al. (2021), we compute the
coordinate-averaged root mean square (r.m.s.) of the two forces in both the vertical and
radial directions. That is, for each force, its r.m.s. value is defined as

F(−) =
√〈(

Fx − 〈Fx〉
)2 + (

Fy − 〈Fy〉
)2 + (

Fz − 〈Fz〉
)2

〉
, (5.2)

where angle brackets indicate averaging over fixed values of r or z, with F being a function
of the respective coordinate. In figure 11, we plot the plane-averaged and radial-averaged
ratios of viscous and buoyancy forces over all time steps for each of our three strengths of
rotation. Momentum transport barriers under investigation here are tangent to F V , whereas
diffusive barriers will organize regions of uniform |F B|. Following findings from previous
work, one might expect a large ratio F V/F B when momentum structures are strongly
influential and diffusive barriers are aligned passively.

In figure 11, we plot only the lower half of the cylinder as there is a rough vertical
symmetry in the ratios and this allows the use of log-log plots to more easily separate ratios
for the different cases. Closest to the lower plate (low z, figure 11a), we find that the ratio
of mean viscous and buoyancy forces follows a trend similar to that of momentum and heat
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flux orthogonality. This supports our interpretation that the flow is more strongly organized
by the behaviour of momentum barriers, with the coherent heat structures playing a more
passive role.

Outside this region, however, the relationships that we have described between active
and diffusive barriers does not appear to extend to the bulk r.m.s. ratios of viscous and
buoyancy forces. In the interior of the flow, seen as large z-values and small r-values in
figures 11(a) and 11(b), respectively, heat and momentum flux orthogonality trends are
not reflected in the force balancing. If these force balances were directly connected to
the dominant organizing transport barrier, then we would expect dominant viscous forces
for Ro−1 = 33 over all values of z, but this is not the case. In the large-r outer region of
the flow, we also find a contradictory relationship between the magnitude of viscous and
buoyancy forces versus the dominating nature of momentum barriers in the flow. Away
from the top and bottom of the domain, FB is consistently larger than FV , which we
previously suggested increased the complexity of heat–momentum barrier relationships
and the transport of momentum. If we sort the Ro−1 cases according to the magnitude of
F V/F B, then this sorting does not coincide with regional trends of heat and momentum
transport alignment seen in figure 10 and table 1.

While the previous subsections have clearly displayed a connection between heat and
momentum transport barriers, and a tendency towards closer agreement with increased
mechanical influence, this connection is not always readily available when looking at
coordinate averages of the magnitudes of the forces being constrained by these barriers.
Indeed, figures 7–9 show the enhanced heat–momentum alignment in our own discrete
probability histograms when going from a bulk scale to calculations along the actual
transport barriers. By investigating heat and momentum flux through the individual
structures, we can show more accurately when and how momentum and heat transport
are coupled. We suspect that these highly localized processes are lost when averaging bulk
forces across larger scales.

6. Conclusions and outlook

We find that recent advances in deriving mathematical representations of various flow
structures, and the effort to make them objective, are paying off. In the present work, we
conducted the first comparison of advective, diffusive and active transport barriers in a
physically relevant and highly non-trivial 3-D turbulent flow. This provides new insights
into organization in rotating RB flow, and general insight into the frame-indifferent
correlation of momentum and heat flux. Starting with physical and objective definitions
of material coherence, and heat and momentum flux, we were able to identify transport
barriers using three distinct mathematical criteria. Given their unique mathematical
derivations, it is informative to see advective, diffusive and active barriers reveal
qualitatively similar structures in rotating RB flows for a wide range of rotational strength,
with specific disagreements arising from the flow physics. We summarize our main
findings as follows.

(i) Classically observed rotating RB flow structures (e.g. Ekman vortices and sidewall
boundary flow) can be identified using advective, diffusive and active transport
barrier methods.

(ii) Transport barrier diagnostic fields reveal greater structural detail than is possible
with the underlying temperature, or non-objective velocity fields.
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(iii) Higher rotational strength leads to an increased alignment of advective, diffusive
and active barriers.

(iv) On the surface of LCS, momentum and heat fluxes show the greatest orthogonality
(and transport barrier agreement) in the flow domain, regardless of rotational
strength.

(v) In bulk, the orthogonality of momentum and heat flux vector fields follows several
trends related to mechanical influence and proximity to the walls.

While it may be intuitive to expect the boundaries of hot and cold fluid transport
pathways in RB convection to also determine the location of momentum and advection
barriers, we find that the exact pathways are only loosely aligned. As well, precise
agreement of heat and momentum fluxes, and the exact shape of each respective transport
barrier, vary more with larger Rossby number. We propose that this is connected
to a heat–momentum feedback mechanism that is influencing organization of the
flow.

The relative influence of mechanically modified and thermally generated structures can
be seen in trends in the probability distributions of heat and momentum flux inner products
for the entire flow domain. Changes to diffusive heat and momentum flux vector fields
result in a progressively decreased alignment of heat and momentum transport that is
quantifiable at the finest resolved scales. This gives a predictive marker of thermal and
mechanical influence for experimental and observational research when the governing
forces are not known a priori.

Variations in flux inner product distributions between individual barrier surfaces provide
a coherent structure-based link between diffusive heat and momentum transport that was
not known previously. At infinite Rossby number, we are able to identify some strong
barriers that block both momentum and heat transport, though other momentum barriers
become much less effective at also constraining heat. This distinction between barriers in
the same flow further supports the theory that heat and momentum flux orthogonality may
act as a predictive tool causally linked to different structure generating processes.

Discriminating individual structures that behave predominantly as heat or momentum
barriers, and determining their origin, is possible only with a feature-based approach.
Attempts to replicate these distinctions with coordinate-averaged force magnitudes were
inconclusive. To identify relevant transport barriers, a self-consistent mathematical
definition of a barrier is needed, which must necessarily be frame-indifferent. Here, we
have introduced methods to identify several kinds of transport barriers to the study of RB
convection, and provided a numeric for validating the ability of an arbitrary structure to
actually block momentum or heat transport. This provides a common ground for testing
theories of zonal separation and tracking the individual structures governing the temporal
evolution of heat flux.

Further investigation following this method of inquiry could improve our understanding
of the underlying advective, diffusive and active barriers that control the evolution of RB
flows in far more complex geometries and scenarios. For example, DBS ridges effectively
predict maximizers and minimizers of diffusive scalar fluxes solely from the velocity field,
given a sufficiently large Péclet number. As Pe can be represented as the product of Prandtl
number and Reynolds number, we can identify diffusive heat barriers for arbitrarily large
Prandtl number, such as liquid metals, as long as there is a sufficiently large Reynolds
number. It is an open question how the agreement of objective momentum barriers and
heat barriers will change as the Péclet number increases.

We believe that this first study is crucially important and long overdue. Indeed, there is
no a priori reason why three different types of barriers, each based on distinct physical
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principles and satisfying different mathematical expressions, should coincide or differ
from each other consistently. It is also remarkable that the explanation for the cases when
fluxes and barriers do not agree follows directly from the differences in the definitions of
the structures.

As a representative example of convective flows with analogues in many geophysical
and industrial settings, the findings here suggest that deeper insights into a variety of
physical phenomena may be possible when analysing coherent fluid structures with this
dynamic transport barrier perspective. Furthermore, we advocate for more quantitative
material-structure-based studies as there are clear advantages over some bulk statistical
approaches.
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Appendix

In this appendix, we use the intermediate rotation case (Ro−1 = 6.25) as an example flow
to exhibit the resilience of LCS when varying the integration time. In figure 12, we present
the t = 825 LAVD field along z/H = 0.5 for integration times (δt) ranging from 1 to 20
free-fall times. At the shortest δt (figure 12a), one Ekman vortex and several strongly
rotational mixing regions already appear. When increasing δt to 5 and 10 free-fall times
(figures 12b,c, respectively), the dominant structures do not change fundamentally, but
more fine structure is revealed in the surrounding fluid, and the boundaries between flow
features become more distinct. At δt = 20 (figure 12d), there is a speckling noise-like
effect in the LAVD field. This is in fact not noise, but due to the chaotic separation of
trajectories that were initially adjacent to coherent material surfaces, and no longer reflect
behaviour on those structures.

The resilience of the momentum and heat flux limiting behaviour of LAVD level sets
is presented in figure 13. For all δt, we can approximate active and diffusive transport
barriers with advective barriers, as seen by familiar discrete probability histograms of
LAVD gradient inner products with heat and momentum flux fields for z/H = 0.5. We
use only 50 equal-width bins between ±1 to generate this histogram as we have restricted
the number of samples to the LAVD plots that are presented. While the clear maxima

969 A27-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-2610-7258
https://orcid.org/0000-0002-2610-7258
https://orcid.org/0000-0002-4860-0449
https://orcid.org/0000-0002-4860-0449
https://orcid.org/0000-0003-4138-2255
https://orcid.org/0000-0003-4138-2255
https://orcid.org/0000-0003-1260-877X
https://orcid.org/0000-0003-1260-877X
https://doi.org/10.1017/jfm.2023.563


Rotating Rayleigh–Bénard transport barrier interplay

0.2

0.1

–0.1

–0.2

–0.2 –0.1 0 0.1 0.2

0

0.2

0.1

–0.1

–0.2

–0.2 –0.1 0 0.1 0.2

0

0.2

0.1

–0.1

–0.2

–0.2 –0.1 0 0.1 0.2

0

0.2

0.1

–0.1

–0.2

–0.2 –0.1 0 0.1 0.2

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

y

y

x x

LAVD824
825 LAVD820

825

LAVD815
825 LAVD805

825

(a) (b)

(c) (d )

Figure 12. Evolution of LAVD fields at z/H = 0.5 for the Ro−1 = 6.25 flow as integration times are increased
from δt = 1 to δt = 20 free-fall times. As trajectory integration increases, LAVD fields first gain additional
detail (a,b). Vortex core contours gradually lose their convex shape (c), and trajectories eventually become
uncorrelated with initially adjacent elliptic coherent structures due to the chaotic nature of the fluid. This
results in a gradual increase in noise for long integrations (d).

at ±1 show a strong alignment of the LAVD gradient and temperature gradient for all
integration times (figure 13a), there is a decrease in the ability of LAVD level sets to
identify boundaries with large temperature gradients if comparing the smallest and largest
integration times.

In figure 13(b), we see a clear peak around 0 for all δt, suggesting the resilience of LAVD
level sets to block momentum flux. However, there is a consistent decrease in alignment
of advective and active momentum barriers as δt increases. We believe that the decreased
agreement of advective barriers with heat and momentum barriers is due to the influence
of chaotic behaviour on the LAVD gradient. Similar behaviour can be expected if one
varies δt for DBS calculations, which also rely on advecting fluid particles in the original
time-varying velocity field.

Figure 13 suggests that user discretion can be utilized when choosing δt, with only
a limited effect on the main findings found in this paper. The changes in the LAVD
field at increased integration times are typical for any Lagrangian diagnostic applied to
a non-autonomous, aperiodic flow. The precise impact of the chaotic trajectories on the
diagnostic depends on the ODE solver used to generate particle paths, as well as the
method of flow field interpolation.
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Figure 13. Discrete probability histograms of inner products of LAVD gradients with momentum flux and heat
flux for increasing LAVD integration times. As integration times increase, contours of LAVD lose alignment
with momentum and heat flux barriers.
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