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Abstract Humans have adapted to an immense array of environments by accumulating
culturally transmitted knowledge and skills. Adaptive culture can accumulate either via
more distinct cultural traits or via improvements of existing cultural traits. The kind of
culture that accumulates depends on, and coevolves with, the social structure of societies.
Here, we show that the coevolution of learning networks and cumulative culture results
in two distinct pathways to cultural adaptation: highly connected populations with
high proficiency but low trait diversity versus sparsely connected populations with low
proficiency but higher trait diversity. Importantly, we show there is a conflict between
group-level payoffs, which are maximised in highly connected groups that attain high
proficiency, and individual level selection, which favours disconnection. This conflict
emerges from the interaction of social learning with population structure and causes
populations to cycle between the two cultural and network states. The same conflict
creates a paradox where increasing innovation rates lowers group payoffs. Finally, we
explore how populations navigate these two pathways in environments where payoffs
differ among traits and can change over time, showing that high proficiency is favoured
when payoffs are stable and vary strongly between traits, while frequent changes in trait
payoffs favour more trait diversity. Our results illustrate the complex interplay between
networks, learning, and the environment, and so inform our understanding of human
social evolution.

Social Media Summary: Letting culture and social networks co-evolve, we find two paths to
cultural adaptation and a novel social dilemma.
Word count main text: 6 444
Keywords: cumulative cultural evolution, social networks, social learning, heterogeneous
environments, agent-based model
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1 Introduction

Our species’ ecological success is in large part based on our capacity to accumulate cultural
knowledge (Boyd et al., 2011; Henrich and McElreath, 2003; Hill et al., 2009). We have accumu-
lated vast amounts of cultural traits (e.g., knowledge, technologies, believes, and ideas) that
are too numerous or complex to be invented by a single individual (Boyd and Richerson, 1995;
Henrich and McElreath, 2003; Mesoudi and Thornton, 2018). Instead, cumulative cultural
adaptation proceeds by individual innovations that either add a new skill, tool, or knowledge,
or add to the complexity and efficacy of an existing one. These individual innovations, if
they spread to enough individuals through social transmission, can be maintained in the
population in the long term so that they do not have to be reinvented and can be built upon.
In fact, our species’ unique cultural niche seems to be to build on various forms of social
learning that allow us to specialise on resources that require high skill, and do so in a broad
spectrum of environments (Hill et al., 2009; Kaplan et al., 2000; Roberts and Stewart, 2018).
This capacity—to accumulate locally adaptive traits—enabled us to settle all over the globe
from arid deserts to frigid polar regions, and from the rich equator to the relatively unpro-
ductive high-latitudes (Boyd et al., 2011; Elton, 2008), and collectively adapt to changing
environments and develop solutions to new problems (Galesic et al., 2023).

Whether and how much adaptive culture accumulates is a function of social and de-
mographic parameters, such as group size (Derex et al., 2013; Henrich, 2004b), connectivity
(Cantor et al., 2021; Derex et al., 2018), life span (Acerbi et al., 2012), acquisition costs (Mesoudi,
2011), and length of the learning period (Lehmann et al., 2010). The converse is also true: the
quantity and quality of cumulative culture and the selection on cultural traits will determine
selection on individual-level and group-level traits such as learning schedules (Lehmann
et al., 2013) or network structure (Smolla and Akçay, 2019). Thus, understanding adapta-
tion through cumulative culture needs to consider the reciprocal feedbacks between the
dynamics of innovation and transmission of cultural traits and the individual and group-level
mechanisms through which these dynamics occur.

An important feature of cumulative culture is that there are often many cultural traits that
might be profitable, and each cultural trait can be built upon and improved by successive
innovations. This gives individuals and societies multiple routes to increase their payoffs:
(1) innovating and/or learning more profitable traits (i.e., having a large repertoire) or (2)
innovating and/or learning improvements on traits that they already have (i.e., having high
proficiency in fewer traits). Our previous work showed that when cultural selection favours
large repertoires, groups evolve sparsely connected networks and large trait diversity, whereas
selection for high proficiency results in densely connected groups that coordinate on a few
traits, allowing successive innovations to be maintained in the group (Smolla and Akçay,
2019).

In the real world, groups and individuals can benefit from either accumulating more
traits or higher proficiency—or both. Such open-ended cultural selection creates an inherent
trade-off between learning new traits versus improving proficiency on existing ones. As
cultural traits and proficiency accumulates in the population, individuals will be constrained
by limits of social learning, especially when social learning requires multiple exposures to the
trait to be learned. The consequences of this inherent trade-off has not yet been explored. Most
studies of cumulative culture rely on either accumulation of a single dimension of cultural
complexity (e.g. Henrich, 2004a), with only a few studies (Kempe et al., 2014; Kolodny et al.,
2015; Mesoudi, 2011) that consider the accumulation and improvement of different cultural
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traits. In most of these studies however, there is no trade-off between learning new traits or
maintaining and improving existing ones (Mesoudi, 2011, is a notable exception). Moreover,
most models of cumulative culture regard social learning as a simple contagion process,
assuming spread proportional to their local prevalence. This corresponds to an effective
assumption that social learning happens or not instantaneously upon exposure. However,
traits that make up adaptive cumulative culture, such as foraging tactics or making tools,
are likely to require repeated exposures to be learned. This makes spread of cultural traits
a non-linear function of their local prevalence. Our own previous work (Smolla and Akçay,
2019) incorporated this non-linearity and a trade-off at the individual level but sidestepped
it at the population level by exogenous imposing selection for either only broad repertoire
or only high proficiency. As a result, how individuals and societies navigate the competing
pathways to cultural adaptation, and how these pathways coevolve with social structure
remains largely unknown. As we show here, this coevolution is subject to an unexpected
emergent conflict between individual and group level cultural adaptation.

Another fundamental feature of cumulative cultural evolution is that it almost always
happens in heterogeneous environments where the payoffs from different traits will be
variable and fluctuate over time. Thus, cultural traits that are profitable in a given time
and place might not be profitable in another (Boyd and Richerson, 1995; Richerson and
Boyd, 2005). Such fluctuations can alter the trade-off between broader repertoires and higher
proficiency: environmental change is expected to favour broader, more generalist cumulative
culture as a way of bet-hedging (Deffner and Kandler, 2019) which in turn might be expected
to favour individual innovation and cultural diversity. However, how cumulative culture
coevolves with social network structure in heterogeneous and fluctuating environments
remains unknown.

To address these gaps, we model open-ended cultural selection where individuals can
increase their payoffs either by learning new cultural traits or increasing their proficiency
in traits they already know. We first ask what kinds of social structure is produced by
such open-ended cultural selection and find that, counter-intuitively, societies tend to cycle
between densely connected states with high-proficiency culture and sparsely connected states
with broad-repertoire culture. Interestingly, this cycling happens despite the fact that the
specialist state has a much higher overall payoff. We show that cycling is driven by a conflict
between group-level cultural adaptation and individual selection: average group level payoff
is highest in highly connected, high proficiency culture, but individual level selection favours
sparser connections that eventually break apart the high-proficiency culture. Likewise, we
show that increasing individual innovation rate inhibits high-proficiency culture through
the same mechanism. We then ask what kind of social network structure and cumulative
culture coevolve in heterogeneous and fluctuating environments where cultural traits have
variable payoffs that change over time. We find that higher rates of environmental change
and lower variation in payoffs between traits favour generalist societies with sparse network
connections, while slower environmental change and higher trait variance favour specialist
and well-connected societies. These results illustrate the complex interplay between group
structure, social learning, and environmental variation in cumulative cultural adaptation.
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2 Methods

We consider a population of N asexually reproducing individuals, with overlapping gener-
ations in a world with T learnable traits or skills. These skills relate to subsistence, social
norms or other aspects relevant to an individual’s survival. As we are interested in the effect
of environmental heterogeneity on social structure and cultural evolution, we assume that
skills differ in their utility. A skill’s utility, u, translates into a payoff that an individual
receives if the skill is part of its repertoire. The values of u are randomly drawn for each
trait, t, from lognormal distributions, Lognormal(µ, s2) in the interval [0, 10]. If not stated
otherwise we use µ = 0 and s2 2 {0.2, 0.4, . . . , 1}, and so mainly varying payoff variance
(see supplementary material, Fig. S1). We simulate environmental change as a change in
skill utilities across time. In our model, time is divided into rounds. In each round each skill
has a small probability to receive a new randomly drawn utility from the same distribution
the simulation was started with. We express the environmental change probability as the
number of updated utilities per generation (i.e., every N rounds) t 2 {10�3, 10�2, . . . , 101}.
In fast changing environments (t = 101), 10 utilities are updated every generation. At the
other extreme (t = 10�3) it takes on average 1000 generations for a single utility to change.
In the latter case the environment is essentially fixed. In the former case, payoffs change, for
example, because certain resources are ephemeral and a trait that allows using them is only
useful for a short amount of time. While these interpretations assume a sessile population
that experiences a change in their environment, an equally plausible interpretation is that of a
population on the move that encounters different environments.

Population turnover follows a Moran death-birth process (Moran, 1958), that is, in each
simulation round: (1) one individual is removed from the population (selected relative to the
inverse of their payoff, i.e., mortality selection), (2) one of the remaining individuals randomly
selected to be a ‘parent’ and a copy (subject to mutation of the connection traits) with an
empty repertoire is added to the social network, and (3) the new individual acquires cultural
traits and proficiency through innovation (individual learning) or social learning from its
network neighbours. We refer to N death-birth events as one generation, and so the rate of
replacement scales with population size N. In the following sections, we discuss these steps
in more detail.

2.1 Population structure

We use complex dynamic networks structured by social inheritance (Ilany and Akcay, 2016)
to simulate population structure and turnover. These networks capture important aspects of
real-world networks (Ilany and Akcay, 2016) and allow the dynamical formation of local and
global clustering in response to different selective regimes. The social inheritance model has
three linking parameters, which represent the probabilities that a new individual (1) forms a
connection with its parent, pb (here, we assume pb = 1), (2) with the neighbours of the parent,
pn, and (3) with other individuals that are not connected to the parent, pr. A new individual
that is added to the population inherits pn and pr vertically from its parent (culturally or
genetically see, e.g., Brent et al., 2013). Mutation occurs with probability m = 0.05, whereby
mutated values are drawn from a normal distribution centred around the parent’s value
with standard deviations 0.05 and 0.005 for pn and pr respectively. Note that the SD for pr is
smaller, because the number of potential socially inherited links is generally much smaller
than the number of potential random links, and so values of pr are smaller by an order of
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magnitude. The new individual is connected to its parent and to other individuals based on
pn and pr.

2.2 Learning

Next, the new individual enters the learning phase, allowing her to either acquire new skills
or improve skill proficiency. The learning phase consists of 100 social learning and 100
innovation attempts. At birth, an individual’s proficiency l is zero for all T skills. Skill
proficiency increases through successful learning. When a new skill is acquired through
innovation or copying proficiency of skill t increases by one unit, i.e. lt⇤ = lt + 1. An
individual’s repertoire size Ri is the number of non-zero skill proficiencies l. To become
better at performing a skill, repeated engagement with it is required, as learning takes time
(Karni et al., 1998; Karni and Sagi, 1993; Lew-Levy et al., 2017; Morelli et al., 2003). Therefore,
proficiency increases with each successful individual or social learning attempt of the same
skill. An individual’s highest proficiency Li is equal to the largest lt in its repertoire. Because
the number of learning turns is limited and attention to one skill limits attention to other
skills, there is a trade-off between becoming good at a skill and learning many skills. Hence,
there is a negative relationship between skill proficiency and repertoire size.

During an individual learning episode the individual first picks one skill from all possible
skills T at random, and then attempts to acquire proficiency for this skill. Learning success is
moderated by an innovation success probability, a, and so the probability to acquire t through
innovation is

PI(t) =
a

T
, (1)

During a social learning episode the individual first picks a skill from those performed in
its vicinity (i.e. present in the repertoire of her neighbours). Given that each individual is
assumed to be equally likely to perform any of their traits, the probability that individual
i observes trait t in her neighbourhood is pi,t = ni,tR�1

ni
, where ni,t is the number of i’s

neighbours with skill t, and Rni is the sum of repertoire sizes of i’s neighbours. Subsequently,
the newborn attempts to acquire proficiency for this skill. Learning success is moderated
by a social learning success probability, b. Crucially, we assume that social learning is more
effective when an individual receives more exposure to a skill, i.e., if pi,t is larger, and so the
probability to acquire t through copying is

PS(t) = pt(bpt) = bp2
t . (2)

Equation 2 can be thought of as complex contagion in a given trait (Centola, 2010), where
transmission depends on the probability of observing a skill twice, regardless of the individual
being observed. As pointed out previously (Smolla and Akçay, 2019), this relates to Simpson’s
index (Simpson, 1949), and so as skill diversity in i’s neighbourhood increases the exposure
to each skill decreases, making it less likely to be observed sufficiently for successful social
learning. Thus, equation 2 shows acquiring a skill socially is more likely if social learning is
easy (large b), t is common among neighbours (large ni,t), and/or if neighbours possess few
skills (small Rni ). Additionally, we assume that an individual cannot surpass the proficiency
of the observed individuals by social learning, and thus PS(t) = 0 where all neighbours have
proficiency equal to or less than that of the individual i for skill t.
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2.3 Payoff

After the learning phase, we calculate the total payoff W, which an individual receives from
each skill in its repertoire. We calculate Wi as the sum of the product of the skill proficiencies
in i’s repertoire and their utility:

Wi = Â
j2Ri

ujli,j. (3)

Because of the trade-off between learning many different skills or becoming very good
in a few skills, Eq. 3 can be maximised in two different ways: either by acquiring some
proficiency in many well paying traits (hereafter generalist), or by becoming proficient in the
most profitable skills (hereafter specialist). A homogeneous environment (where uj is the same
for all j), learning a new trait or improving proficiency yields the same payoff, so our utility
function does not inherently favour one or the other pathway.

We model here mortality selection due to cultural traits, where Wi of an individual
determines its probability of being selected to die in every time period. Note that this is
different than Smolla and Akçay (2019) where selection was on fertility; i.e., the payoff
due to culturally acquired traits affected the probability of getting selected to reproduce.
Implementing fertility or mortality selection has no effect on our main results in homogeneous
environments (see Fig. S16); all results discussed in the main text for mortality selection also
carry over to fertility selection. However, in heterogeneous environments fertility selection
can result in densely connected populations ‘getting stuck’ on a few traits, an ‘echo-chamber’
phenomenon as observed and discussed by Smolla and Akçay (2019). This effect makes
densely connected populations unable to track changing environments.

The payoff Wi in equation (3) is in principle unbounded, but in practice will be limited by
the finite individual and social learning success of individuals. However, in heterogeneous
environments with high trait variance, a few very valuable traits (very high uj) might end up
having a disproportionate effect on survival in our simulations and drive artifactual results. To
guard against such a nuisance outcome, we assume that fitness exhibits diminishing returns
with utility. Specifically, we assume the probability of death is proportional to 1/M(Wi),
where M(Wi) is a Michaelis-Menten function M(Wi) = 1 + (VmaxWi)(K + Wi)�1, with upper
limit Vmax = 50 and half rate constant K = 50, and a minimum payoff of 1. The high
value of the half-rate constant means that for most of the parameter range, this probability
increases almost linearly with Wi while guarding against unrealistic strong selection effects
with extreme heterogeneity in trait payoffs.

A simulation turn ends with re-calculating each individual’s payoff. A new simulation
round starts with the removal of an individual, and selection of a random survivor.

2.4 Population size

The effect of population size on cultural evolution has been somewhat controversial recently
(see e.g. Fay et al., 2019; Henrich, 2004b; Powell et al., 2009; Shennan, 2001). We consider
how population size affects the coevolution of culture and network structure by simulating
populations of different sizes, N 2 {25, 50, 75, 100, 200}.
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2.5 Simulation parameters

If not stated otherwise, we run all simulations with N = 100 and M = 500, for 5,000
generations (data being averaged over the last 200 generations to remove simulation artefacts
from the initialisation of each simulation) and 200 repetitions, with mutation rate m = 0.05
(with SD = 0.05 for pn and SD = 0.005 for pr), innovation success rate a = 0.02 and social
learning success rate b = 0.5. Note that we chose M to be as large as needed for populations to
never reach it but as small as possible for computational convenience. Complex networks are
initialised with random values drawn from uniform distributions (pn: U(0, 1), pr: U(0, 0.1)).
Individuals are initialised with empty repertoires. For robustness checks see ESM S2.2.

2.6 Outcome variables

To compare differences in cultural knowledge between populations we record average reper-
toire size (R̄ = N�1 ÂN

i Ri), and mean highest per individual trait proficiency (L̄ = N�1 ÂN
i Li).

To compare evolved networks, we record mean degree centrality, and average weighted com-
ponent size. Mean degree centrality, a measure for connectedness, is the average number of
connections individuals have, where higher mean degree centrality signifies more connections
between individuals, and vice versa. As the emerging networks can have unconnected com-
ponents, we calculate the average weighted component size as a measure for the component
size distribution. We define average weighted component size as the sum of the product of
the component size, cs, and the relative component size, c0s over all component sizes, that
is ÂN

s=1 csc0s. We calculate the relative component size c0s = csns
N , where ns is the number of

components of size s, which is equivalent to ÂN
s=1

c2
s ns
N . If not stated otherwise, all reported

results are averages of the last 20% of generations.

2.7 Software

The simulations were run with Julia 1.8.5 (Bezanson et al., 2017), and analysed with R 4.2.2 (R
Core Team, 2022).

3 Results

3.1 Homogeneous environments

3.1.1 There are two distinct pathways to cultural adaptations

We find that two distinct types of populations emerge in homogeneous environments (Fig.
1). The first type has low average connection probabilities (pn, pr) and features sparsely
connected (low degree) networks with disjointed components (average component size less
than N). The second type of population has high average connection probabilities and densely
connected networks composed of a single connected component (average component size
equals N; representative examples as insets in Fig. 1b). These populations display two distinct
kinds of cumulative culture as characterised by the average repertoire size and average skill
proficiency. Sparser networks only reach baseline proficiency on average, but have a slightly
larger repertoire (Fig. 1c). In contrast, denser networks achieve higher average proficiency
with only a slightly reduced average repertoire. Interestingly, we find that proficiency is high
for a wide range of degrees, so long as the network is connected. In contrast, repertoire sizes
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Figure 1. The two pathways to cultural adaptation. The four panels depict 200 populations from our simulations,
with each panel showing different characteristics of the same set of populations. Each population is represented
by a dot, coloured according to the mean proficiency of that population. When linking parameters evolve two
distinct kinds of populations emerge: low vs. high mean linking traits (pn and pr, panel a), low degree and small,
unconnected components vs. high degree and a single connected component (panel b), large repertoires and low
proficiency vs. smaller repertoires and high proficiency (panel c), and high trait diversity and low payoff vs. low
trait diversity and high payoff (panel d). Simulations with a = 0.01, b = 1, N = 100, M = 500, running for 5,000
generations, t = 0 and s = 0.

are large for a wide range component sizes, as long as average degree is low and there are at
least a few unconnected components.

While average repertoire sizes at the individual level differ only modestly between the
two kinds of populations, the cultural makeup at the population level differs markedly.
Populations with sparser networks possess almost twice as many unique traits compared to
those with denser networks but they also have much lower average payoff at the same time
(Fig. 1d). Further, the trait frequency spectrum differs. Populations with sparse networks
have a much more even distribution with many traits at intermediate frequencies, whereas
dense networks converge to a few traits known to almost every individual and a high number
of traits at low frequencies (Fig. S2). The convergence to a few traits by the whole population
allows these networks to increase proficiency in these traits.

3.1.2 Low-payoff state persists due to cycling

Figure 1d shows that groups with larger repertoires have on average much lower payoffs
than those with high skill proficiency. Why do high-repertoire populations persist in the
long term despite this payoff disadvantage? Analysing simulation trajectories, we find that
populations exhibit cycles in the pn-pr space (Fig. S8) that repeatedly push them between
the high-proficiency (and high payoff) and large-repertoire (and low payoff) states (videos
of cycling behaviour available in SI). This cycling is a result of how different combinations
of pn and pr relate to average payoff. Figure 2 shows the average linking parameters and
associated average payoffs for 100 simulations over their last 100 generations. The density
of the points in Figure 2 indicates where the populations spend their time in steady state.
This plot highlights two important features: first, the average payoff stays high as long as
either pn or pr or both are high. Second, there is a region separating the low- and high-linking
probabilities that populations do not linger in. Plotting average payoffs across constant pn
transects in Figure 2b shows that this region corresponds to a ‘valley’ of low average payoff.
Specifically, average payoff decreases with decreasing pr, but increases somewhat again at
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very low pr. Yet, time trajectories from our simulations show that populations consistently
drop into this payoff valley from the high-payoff state (i.e., from the right-hand side with low
pn) and emerge on the other side, in the low-payoff state (on the left-hand side, see also Fig.
S9).

Figure 2. The fitness landscape for connection traits, pn and pr. Panel a shows mean linking parameters and
payoff for populations (one every 10 generations over the last 100 generations). The distribution of lighter and
darker coloured points highlights the distinct population states separated by a fitness valley where the populations
spend negligible time (for illustrative purpose payoffs < 7 shown in grey). Panels in b depict cross-sections of
this fitness valley at particular values of pn (at the horizontal dashed lines in panel a). The red dots depict the
resident pn and pr values used for Figure 3. Results in c and d are two example simulations where the first shows
a down-transition from the high payoff state and the second an up-transition from the low-payoff state. The
changes in the linking parameters in d show how the down-transition begins with a drop in pr followed by a
drop in pn, whereas it is the opposite for the up-transition (for more details see ESM Fig. S9). Simulations with
a = 0.01, b = 1, N = 100, M = 500, running for 5,000 generations, t = 0 and s = 0.

3.1.3 Cycling results from the conflict between individual and group payoff

To explain this puzzling observation, we computed the local selection pressures acting on the
linking traits pn and pr in populations that are fixed for a particular value of the linking traits
and have the associated steady state cumulative culture. Figure 3 depicts the relative payoff
(dis-)advantage of a mutation that changes the linking traits for an array of resident pn and pr
values. This gives the local selective landscape at the individual level across the pn-pr space
and reveals a striking contrast between individual selection and population average payoff.
Even though average payoffs at the population level are highest when either pn or pr or both
are high, selection almost always favours reduced linking at the individual level.

This discord between average group payoff and individual-level selection emerges from
the interaction between emergent cumulative culture and social learning as we model it.
Recall that high-payoff populations have dense networks and strong cultural convergence
(that is, a small number of traits that are present in all repertoires and for which there is
high proficiency). At the same time, because every individual also innovates random traits
with a small probability, being connected to many others not only brings the individual in
contact with the most common traits but also with those that are rare. However, because
learning in our model requires repeated observations of a trait, the presence of a large number
of rare traits reduces the overall success of social learning. This ’distraction’ effect of rare
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traits applies most strongly to other rare traits (as common traits are observed at the same
overall frequency no matter how many connections are made). Therefore, individuals with
lower pn and/or pr (who on average connect to fewer others) will be more likely to learn
more socially and have a higher payoff. This individual benefit drags the population towards
the valley in the average fitness, and ultimately to the low-payoff state. Figure 3 shows
that the strongest pull towards the low payoff population state occurs in the fitness valley
described above. Populations can escape from this sparsely connected, low-payoff state either
by drift, due to the weak selection with low pr, or by trading random connections for socially
inherited ones: at low pn and pr (lower left panels in Figure 3), individual selection can
favour increased pn as long as it is combined with decreased pr. This is because an increase in
social inheritance links the individual to a clustered neighbourhood that is more likely similar
in their trait repertoire. This creates local cultural convergence and reduces the number of
unique rare traits an individual is exposed to. These clustered components can thus achieve
higher payoffs and grow to take over the population, a kind of component-level selection that
takes populations back to the connected, high-proficiency state.

Transitions between high and low payoff state happens more often in smaller populations
than large populations (see Table S1) and larger populations spend more time in the high
payoff state in the long run. However, even relatively large populations (N = 500) can spend
30% of time in the low-payoff state given our base parameters.

This cycling behaviour is a previously unrecognised example of a social dilemma where
the interest of the individual is at odds with that of the group. The group benefits from being
highly connected, as this allows for cultural convergence and subsequently an increased
skill proficiency. While the individual benefits from this situation, they benefit even more by
reducing their linking to the group. However, ultimately, this results in the social networks
breaking apart and a loss of accumulated proficiency that disconnected networks cannot
produce or sustain. This is a new kind of social dilemma between cultural adaptation at
the group level and selection for the social structure that supports it at the individual level.
Crucially, the assumption that social learning requires repeated exposures is necessary for
these results, since this assumption creates a trade-off between overall success of social
learning and the number of traits. If social learning can follow from single exposures, there is
no such trade-off, and accordingly, populations evolve to be highly connected but without
the convergence on a few traits and associated high proficiency (see Figures S10 and S18).

3.1.4 Frequent innovation selects for sparser networks and lower payoff

Next, we explore how individual innovation and social learning rates influence the coevo-
lution of network structure and cumulative culture. If there is no social learning (b = 0),
increasing innovation rate a always increases average payoff (Fig. 4a), independent of the
environment. This is straightforward because without social learning, an individual’s reper-
toire and proficiency depends solely on innovation, and more innovation means both larger
repertoire size and higher proficiency. Social network structure, as expected, evolves neutrally
in this case (Fig 4b).

In the presence of social learning, however, we again find an unexpected result: increasing
individual innovation rate a decreases the average payoffs of the population (Fig. 4a). This
counter-intuitive pattern again happens because of the interplay between network struc-
ture and social learning: when innovation rates are low, individuals carry few or no rare
idiosyncratic traits. Therefore, connecting to more individuals does not carry a cost in terms
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Figure 3. Local selection pressures on the linking traits. Each panel corresponds to results from ten populations
fixed for a particular value of pn and pr (given on the right-hand side and top of the grid, respectively; these
correspond to the red dots in Figure 2). For each panel we initialise 10 populations by running our model with
fixed connection traits and allowing the cumulative culture to come to a steady state. Then we introduce a single
mutant that deviates from the resident linking parameters by Dpn and Dpr, which are depicted on the x- and
y-axes of each panel, respectively. Next, we calculate the relative payoff W 0/W of the mutant relative to the
mean payoff of the residents, as a result of the cultural traits the mutant learns and innovates. We repeat this 500
times for every combination of Dpn and Dpr. Relative fitness is generally higher with lower pn and pr, revealing
individual level selection for disconnecting, despite the population level consequences for group level payoff
depicted in Figure 2. Simulations with a = 0.01, b = 1, N = 100, M = 500, running for 5,000 generations, t = 0
and s = 0.

of reduced learning probabilities, which reduces the individual level selection to disconnect.
Populations thus remain highly connected, converge on a few traits, and retain improvements
in proficiency in these even if they are very rare. As individual innovation rates increase
however, each individual innovates more traits, which in a highly connected population
reduces the probability to acquire traits through social learning. Therefore, the individual
level selection for reduced connections becomes stronger, and as a result, populations are
more likely to spend time in the sparsely connected, low payoff state (Fig 4b). As innovation
rates increase further, populations spend all their time in the sparsely connected state, and
average payoff only recovers when innovation rates are so high that individual innovation
starts compensating for the lack of socially learned traits. Note that increased individual inno-
vation rate is always directly beneficial for the innovating individual (as it simply increases
its proficiency or repertoire) but our results illustrate it can inhibit accumulation of culture
because of its effect on network evolution, another instance of a conflict between individual
selection and group-level cultural adaptation.
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Figure 4. The rate of innovation and social learning affects payoffs (a) and social network structure (b). Panel a
depicts average payoffs as a function of innovation success rate a for different social learning success rates (b). In
the absence of social learning (b = 0), we find that increasing innovation always increases payoffs. However, with
social learning (b > 0), we find that average payoffs decrease with innovation rate initially before recovering at
high innovation rates. Panel b depicts the average weighted component size, a measure of the connectivity of
the network, with social learning success rate b, for different values of individual learning rates. It shows that as
long as there is any social learning (b > 0) higher individual innovation rate results is less connected networks.
Simulations with N = 100, M = 500, running for 5,000 generations. Error bars in a represent 90% confidence
intervals.

3.2 Heterogeneous environments

3.2.1 Environmental turnover and trait variance affects the networks that evolve

In heterogeneous environments, where payoffs vary across traits and time, we find that the
variance in trait payoffs and the turnover rate of payoffs play a crucial role in determining the
network structure and associated cumulative culture. Specifically, high proficiency culture
evolves much more readily in stable environments with highly skewed utility distributions
(Fig. 5a), which coincides with occurrence of connected graphs (Fig. 5c). In contrast, envi-
ronments with fast environmental turnover but highly variable utilities favour the evolution
of sparse networks with larger individual skill repertoires (Fig. 5b,c) and a larger cultural
repertoire (Fig. 5d). Here, coordination on a few traits and accumulation of proficiency does
not happen fast enough before payoffs change again. These differences disappear as utility
distributions become increasingly uniform (small s). That said, similar to the homogeneous
environment case, we find both kinds of networks and their associated repertoire type (Fig. 5e)
in the majority of environments that we tested. Only where utilities are highly heterogeneous
and environments are stable, the low payoff state is absent.

3.2.2 Larger populations accumulate more proficiency in stable environments

Finally, we vary population size and find that as populations become larger they are more
likely to accumulate higher proficiency and be more connected (Fig. S13). However, this
feature is conditional on environmental stability. Where utilities change frequently, we do
not find an effect of population size: larger populations stay disconnected and in the low
proficiency, broad repertoire state. It is interesting to note that the cumulative nature of
learning in our model allows individuals to reach higher proficiency in larger populations.
However, this is not the case for repertoire size. In fact, individuals in unconnected graphs
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Figure 5. Environmental heterogeneity affects the viability of the generalist and specialist repertoire popula-
tions. When linking parameters evolve in different environments, we find stronger reliance on high proficiency
(and there are fewer traits in the population overall) where turnover is low and utilities are highly skewed (large
s), whereas in environments with frequent turnover we find stronger reliance on larger repertoires. Simulations
with a = 0.01 and b = 1, N = 100, M = 500, running for 5,000 generations, averaged over 200 repetitions.
False colour scale in e is based on the following data transformation of average repertoire size (R) and highest
proficiency (L): L/max(L)� R/max(R). Subset of data in e with t 2 {10�3, 1} and s = {0.2, 1}. See Fig. S11 for
additional results.

of large populations achieve similar if not smaller repertoire sizes compared to smaller
populations (Fig. S15).

4 Discussion

Our results uncover some fundamental tensions in the coevolution of cumulative culture
and social network structure through which cultural traits are propagated. We demonstrate
two distinct pathways to cultural adaptation is available to populations in a setting where
both learning new traits and increasing proficiency in existing traits is available. These
two pathways (broad repertoire versus high proficiency) correspond to distinct population
structures and cumulative culture features. At the same time, we uncover two general
conflicts populations face when navigating these pathways. First, we show that although
groups do best on the aggregate when they are well-connected, coordinate on a few core
cultural traits, and build up proficiency, selection favours disconnection at the individual
level. This creates a previously unrecognised type of conflict between individual and group-
level payoff. Second, we show that increasing individual innovation rates results in less
connected networks and a lower population level payoff. This is because all else being equal,
higher individual innovation increases the trait diversity around an individual which again
makes social learning less successful, and increases the selection against social connections.
Since individual innovation is also individually beneficial (as it only results in individuals
knowing more traits or having higher proficiency) this is another dimension of conflict
between individual and group-level payoff. It is important to note that both of these results
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obtain despite there being no inherent cost to making or maintaining social connections.
Both of these conflicts between group- and individual-level benefits arise from the nature

of social learning. Our model does not inherently privilege learning or innovating new traits
over increased proficiency in an existing trait. However, individuals can only learn socially
when they are repeatedly exposed to the same trait. Having more connections exposes an
individual to more idiosyncratic traits that have been individually innovated, which reduces
the probability of successful social learning overall. A similar negative effect of being exposed
to too many options on social learning success has been reported in a paper-plane transmission
chain experiment: Fay et al. (2019) found that where being exposed to only one model (versus
four) from the previous round lead to cumulative improvements in flight distance. The
authors concluded that having access to a larger number of variants is taxing the working
memory, which could lead to lower copying fidelity. Having a higher innovation rate similarly
reduces the social learning success of one’s social connections. The reduction in overall social
learning probability with the number of options available is akin to the well-documented
phenomenon of “choice overload” in consumer psychology (Chernev et al., 2015; Iyengar
and Lepper, 2000; Scheibehenne et al., 2010): having too many choices for a consumer good
can result in a number of counterintuitive effects, including a reduction in the probability of
purchasing anything at all. In our case, this pattern flows directly from the requirement that
in order to socially acquire a trait, individuals have to be exposed to it multiple times. This
means that the probability of social learning is non-linear in the frequency of the trait in an
individuals social neighbourhood and decreasing in the number of skills that are available for
observation.

Because of this conflict between group-level payoffs and individual level selection, high
proficiency culture and the social structure that maintains it can be considered a public
good: maintaining the social learning infrastructure for high proficiency culture requires
individuals to make more connections and innovate less than what would maximise their
own payoffs. As in other public goods, groups that can counteract socially harmful individual
incentives. For example, Ache hunter-gatherers maintained a high yearly interaction rate and
high number of total connections for their population size compared to the Hadza hunter-
gatherers in part by organising inter-band club fight rituals (Hill et al., 2014). Likewise, in
Southern India, participating in religious rituals results in denser connections (Power, 2018).
Our results provide a novel hypothesis for the evolution of rituals and social norms that
promote social connections can enforce connectivity, cultural convergence, and resulting high
proficiency, which can have an advantage in competition with other groups. One further
factor modulating the connectivity of the learning network might be the traits themselves:
traits used in cooperative foraging or social rituals will necessarily have more connected
learning networks than traits that are mostly for personal or household use, as knowledge
about medicinal plants (Salali et al., 2016).

Likewise, as we find too much individual innovation ultimately is detrimental to high
proficiency culture, we might expect norms that enforce social learning at the expense of
individual innovation, even if there is no inherent difference between the traits that are
socially transmitted. Such normative behaviour discouraging individual innovation has been
described, for example, for the transmission of pottery skills among three ethnic groups
(Dii, Duupa, and Doayo) in Cameroon (Wallaert-Pêtre, 2001). Here, practitioners form tight
communities that limit access to knowledge and reject departures from socially admitted
norms. This leads to highly conserved methods and products, which is often observed in the
context of formal apprenticeships (see e.g. Lancy, 2012). Similarly, Buckley and Boudot (2017)
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provide an example of loom and weaving technology in Southeast Asia, where knowledge is
primarily transmitted form mothers to daughters over a long apprenticeship, which similarly
leads to relatively low rates of innovation.

Another potential solution to the problem of maintaining a specialised and high proficiency
cumulative culture is role-specialisation. Our model considers a simple, undifferentiated
population; this might be an ancestral state for human populations but the tensions identified
in our model are expected to impose strong selection for differentiation of roles with respect
to social learning. Specifically, high effective connectivity with respect to social transmission
of traits can also be achieved if learning happens mostly through a subset of individuals that
specialise in teaching social information. These individuals could also invest into making
transmission more efficient by directed demonstrations or focusing attention (Ventura and
Akcay, 2022). This is an additional selective advantage for the evolution of teaching, in
addition to ensuring transmission fidelity (Castro and a Toro, 2014).

Our results with heterogeneous traits and environmental turnover highlight an additional
dimension of complexity in the coevolution of cumulative culture and social structure. Envi-
ronmental turnover rate emerges as an important modulator of the type of network structure
and cumulative culture, with rapid environmental turnover favouring disconnected graphs,
larger repertoires, and low proficiency. These results are in line with previous results (Deffner
and Kandler, 2019; Kolodny et al., 2015) showing that stable environments lead to more
specialised kinds of culture. Consistent with our predictions, Kalan et al. (2020) found that
chimpanzee groups living in more variable environments exhibited greater trait diversity.
On the other hand, heterogeneity in payoffs at a given point in time has contrasting effects
depending on the turnover rate: at low turnover rates, where payoffs update infrequently,
larger variance favours populations that find the high payoff traits and increase proficiency in
them by becoming well-connected. However, at high turn over rates it becomes likely that a
high payoff trait will no longer be high payoff by the time proficiency is accumulated, which
forecloses this route to cultural adaptation. Therefore, individuals are selected to increase
their repertoire size to try to maximise the probability of learning at least some high-payoff
traits. Notably, in most cases, populations still visit both the highly connected, high profi-
ciency state and the sparsely connected, broad repertoire state, indicating that environmental
heterogeneity and turnover modulate but not entirely eliminate the tensions described above.

Our model highlights how the interaction of individual innovation, social learning, and
connectivity creates emergent constraints on the evolution of cumulative culture. This has
implications for the much-discussed topic of how cultural complexity relates to population
size. We find that cultural complexity does not keep increasing with population size (Figure
S13) because further increases in complexity run into the limits of social learning at the
individual level. This effect was also observed in a previous model by Mesoudi (2011) where
social learning and individual innovation both were assumed to incur a direct cost, putting
a limit to the amount individuals can learn. These results suggest that a population size
effect on cumulative culture will be limited in the absence of further innovation in learning
technology (as discussed above) that can ameliorate the trade-offs in social learning. We
further show here that the effect of population size on cumulative culture is contingent on the
environment: the increase in cultural complexity in the form of increased proficiency requires
that the environment change relatively slowly. Otherwise, what is profitable changes before
any proficiency can be accumulated through cultural transmission, and population size has
no effect on the cultural complexity.

Overall, our model points to previously unappreciated tensions between different path-
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ways to cultural adaptation in groups and the incentives at the group- and individual-level
that arise from the coevolution of interaction networks and cumulative culture. Resolving
these tensions in different ecological settings likely played an important role in human social
evolution and our ability to do so might be one reason for the unique success of our species.
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