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ON LINKED MODULES OVER THE SUPER-YANGIAN OF THE
SUPERALGEBRA (1)

ELENA POLETAEVA

School of Mathematical and Statistical Sciences, University of Texas Rio Grande
Valley, Edinburg, TX 78539, USA.
E-Mail: elena.poletaeva@utrgv.edu

ABSTRACT. Let Q(n) be the queer Lie superalgebra. We determine conditions
under which two 1-dimensional modules over the super-Yangian of Q(1) can be
extended nontrivially, and thus belong to the same block of the subcategory of finite-
dimensional YQ(1)-modules admitting generalized central character y = 0. We use
these results to determine conditions under which two 1-dimensional modules over
the finite W-algebra for Q(n) can be extended nontrivially. We describe blocks in
the category of finite-dimensional modules over the finite W-algebra for Q(2). In
certain cases we determine conditions under which two simple finite-dimensional
Y Q(1)-modules admitting central character x # 0 can be extended nontrivially
and propose a conjecture in the general case.

1. INTRODUCTION

The queer Lie superalgebra Q(n) is a fixed point subalgebra of the general linear
Lie superalgebra gl(n|n) relative to certain involutive automorphism.

We started to study the representation theory of the finite W-algebra W™ for
(Q)(n) associated with the principal nilpotent coadjoint orbits in [8]. We have shown
that all irreducible representations of W™ are finite-dimensional. In [10] we clas-
sified irreducible representations of W™ (Theorem 4.7). We used these results to
classify irreducible finite-dimensional representations of the super-Yangian Y'Q(1) of
(1) (Theorem 5.13). A natural problem is to describe blocks in the subcategory
of finite-dimensional Y@(1)-modules and in the subcategory of finite-dimensional
Wm-modules admitting a given generalized central character y. We initiated the
study of blocks in these subcategories in [11, 12]. If y = 0, then the simple mod-
ules in these subcategories are 1-dimensional. In this paper we determine when two
1-dimensional Y'Q(1)-modules can be extended nontrivially, and thus belong to the
same block (Theorem 11.1). We use these results and results of [10] to determine
when two 1-dimensional W"-modules can be extended nontrivially (Theorem 14.1).
Using Theorem 14.1, we describe blocks in the category of finite-dimensional modules
over W2 (Theorem 15.2).

Date: August 20, 2022.



2 ELENA POLETAEVA

Every simple finite-dimensional module over Y (1) is isomorphic (up to change
of parity) to V(s) ® I'y, where V (s) is a simple Y(Q)(1)-module parameterized by an
n-tuple of nonzero complex numbers s = (s, s2, ..., s,) such that s; + s; # 0 for all
i < j,and 'y is a 1-dimensional Y'(Q)(1)-module, which is defined by certain generating
function f(u) € YQ(1)[[u™?]]. If n > 1, then V(s) ® I'; admits a nontrivial central
character. In the case when s = (s;), we determine conditions under which two
simple modules of type V(s1) ® I'f can be extended nontrivially (Proposition 12.1).
We propose a conjecture in the general case when s = (sy, S9,...,5s,) (Conjecture
12.3).

2. THE LIE SUPERALGEBRA Q(n)

Consider the general linear Lie superalgebra gl(n|n) with the standard basis E;;,
where i, = £1,..., +n. Define the parity of i by

p(i) =0if ¢ > 0 and p(i) = 1 if i < 0.
Let 1 be an involutive automorphism of gl(n|n) defined by
n(Eij) = E_i—j.
The queer Lie superalgebra (n) is the fixed point subalgebra in gl(n|n) relative to
n. Recall that Q(n) can also be defined as follows (see [3]). Equip C"" with the
odd operator ¢ such that (2 = —Id. Then Q(n) is the centralizer of ¢ in the Lie

0 I,
—I, O

A B
B A)’
where A, B are n x n-matrices. Let

{eij, fijlij=1,...,n}
denote the basis in (n) consisting of elementary even and odd matrices. Set

(2-1) i = (_1)i+1fi,i; Ty = &2 = €.

3. THE FINITE W-ALGEBRA FOR Q(n)

superalgebra gl(n|n). Let ( = ( ) It is easy to see that Q)(n) consists of

matrices of the form

Let W™ be the finite W -algebra associated with a principal even nilpotent element
¢ in the coadjoint representation of g = Q(n). Let us recall its definition (see [13]).
We fix the Cartan subalgebra h C g to be the set of matrices with diagonal A and B.
By n' (respectively, n~) we denote the nilpotent subalgebras consisting of matrices
with strictly upper triangular (respectively, low triangular) A and B.

The Lie superalgebra g has the triangular decomposition g =n~ @ hdn', and we
set b =n" @ bh. Choose ¢ € g* such that

o(fij) =0, (eij) = 0ijs1-
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Let I, be the left ideal in U(g) generated by z — ¢(z) for all z € n~. Let 7 : U(g) —
U(g)/I, be the natural projection. Then

W" ={n(y) € U(g)/I,]| ad(x)y € I, for all z € n™ }.

Using the identification of U(g)/l, with the Whittaker module U(g) ®yum-) C,
U(b) ® C, we can consider W" as a subalgebra of U(b). The natural projection 9 :
U(b) — U(h) with the kernel n*U(b) is called the Harish-Chandra homomorphism.

It is proven in [8] that the restriction of ¥ to W™ is injective. We will identify W™
with 9(W™) C U(b).

Example 3.1. n = 2, h = span{zy, 25 | &,&}. Then W? realized as a subalgebra
of U(h) has the following generators:

20 = X1 + T2, 21 = X122 — 1€ (even),

o = &1+ &2, ¢1 = 226 — 216 (0dd).

4. THE SUPER YANGIAN OF (1)

The Yangians Y Q(n) associated with the Lie superalgebras Q(n) were defined by
M. L. Nazarov ([5, 6]). Recall that Y'Q(1) is the associative unital superalgebra over

C with the countable set of generators Tl(;n), where m = 1,2,... and i, = £1. The

Zs-grading of Y'Q(1) is defined as follows:

p(T) = pli) + p(j), where p(1) = 0 and p(—1) = 1.

To write the defining relations for these generators, we employ the formal series in
Y Q) [fu]):
i) = 8y L+ T T b

Then for all possible indices 7, 7, k, [ we have the relations

(u* — v?)[T;j(u), Tra(v)] - (—1)P@pk)+p@p()+pk)p0)
(4.1) = (u+0)(Th(u) T (v) = Tiej(0) Tia(u))

(1= )Ty (WTa(0) = Ty ()T (w) - (170,

Here v is a formal parameter independent of u, so that (4.1) is an equality in the
algebra of formal Laurent series in u™!, v~! with coefficients in YQ(1). For all indices
1,7 we also have the relations

(4.2) Tij(—u) =T —j(u).
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The relations (4.1) and (4.2) are equivalent to the following defining relations:

m+1 r—1 m—1 r+1 i 4
A e e A R

(49 TG STl VT T T - T

7]
ORI+ TOIT, + TP T = T LY,
(44) 0 = (- T,

where m,r =1,... and Ti(,g) = 0,5. Recall that Y'Q(1) is a Hopf superalgebra (see [6])
with comultiplication given by the formula

A(T) ZZ 6 +RNT) @ T~
s=0 k

The evaluation homomorphism ev : Y Q(1) — U(Q(1)) is defined as follows:

Tl(,ll) = —€1,1, Tl(’lzl — f171, TFZ(:S) — 5i,j; CTZ(’;) — 0 for r > 1,2,7 = £1.

5. W™ IS A QUOTIENT OF Y Q(1)
Definition 5.1. (a) Define A; : YQ(1) — Y Q(1)®' by

Al = Al—l,l O---0 A273 o A.
(b) Let ¢, : YQ(1) = U(Q(1))®" ~ U(h) be ¢, := ev®" 0 A,.
Note that gon(T(T)) gon(T( ) ) =0ifr>n.

Proposition 5.2. ([9], Corollary 5.16) The map ¢, is a surjective homomorphism
from Y Q(1) onto W™, realized as a subalgebra of U(h):

(Y Q1)) = 9(W") = W™,

Note that W™ is a subalgebra of W™ @ W™ ([10], Lemma 3.3). The following
diagram commutes:

YQ) —— YQ) @ YQ(1)
(5'1) ¢m+nl S@m@ﬂonl
Wm—i—n s Wm ® Wn
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6. SIMPLE MODULES OVER ASSOCIATIVE SUPERALGEBRAS

We work in the category of vector superspaces over C. We denote the parity of a
homogeneous vector v of a superspace by p(v) € Zy. All tensor products are over C.

Let A be a superalgebra. By an A-module M we mean a Zs-graded left A-module.
A submodule of M is a Zs-graded submodule. By II we denote the parity functor
(M) = M ®C°. For a module M over an associate superalgebra A, II(M) has the
same underlying vector space but with the opposite Z-grading. The new action of
a € Aonm € II(M) is given in terms of the old action by a-m = (—=1)?@am.

Recall that if M is a simple finite-dimensional A-module over some associative
superalgebra A, then by Schur’s Lemma End 4(M) is either one-dimensional, or two-
dimensional and has basis {Id,/, €pr}, where €y, is a (unique up to a sign) odd invo-
lution on M: €3, = Idy,. Note that €y provides an A isomorphism M — II(M).
We say that M is an irreducible of M-type in the former case and an irreducible of
Q-type in the latter (see [4, 1]).

Let A and B be two superalgebras. The tensor product A®B is again a superalgebra,
where multiplication is given by

(a1 @ by)(ag ® by) = (—1)p(b1)p(a2)a1a2 ® b1bo

for a; € A,b; € B. Let M and N be two modules over associative superalgebras A
and B. Then M ® N is naturally a module over A ® B where

(a ®@b)(m@n) = (=1)POPMam @ bn,

wherea € A,b € Band m € M,n € N. If M and N are two simple finite-dimensional
modules over associative superalgebras A and B, then the module M ® N might be
not simple. In fact, if M and N are both of M-type, then M ® N is simple of M-type.
If one of these modules is of M-type, and the other is of Q-type, then M ® N is simple
of Q-type. However, if M and N are both of Q-type, then M ® N is not simple.
Let €j; and ey be odd involutions of M and N, respectively. Then the map €y, ® ey
defined by

(enr @ en)(m @ n) = (=1)P™ep(m) @ en(n)
is an even A ® B-automorphism of M ® N, and its square is —Idy;gn. In this case
M ® N decomposes into a direct sum of two A ® B-submodules, which are formed
by the £i-eigenspaces of €y ® e)y. We can choose either submodule and denote it by
MXN. Then

M ® N ~ MRN @ II(MRN).
Both submodules are simple and of M-type.

7. SIMPLE W"™-MODULES

We classified simple W"™-modules in [10] (Theorem 4.7). Here we recall their con-
struction.
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7.1. W"-modules V(s). Let s = (s1,...,5,) € C". We call s regularif s; # 0 for all
i <n and typical if s; +s; # 0 for all 1 <7 < j < n. Note that we have the natural
embedding of the Lie superalgebras

(7.1) Qe e - &Q(1) = Q(n).

Let b; denote the Cartan subalgebra of Q(1). Then b = span{z; | &} with x; = &3,
and U(hy) ~ C([&]). Let V(s;) be a (1]1)-dimensional U(h;)-module, where the
action is given by

gw(\/o? \/03_) xH<‘B"S> for i =1,2.

The embedding (7.1) induces the isomorphism
U(h) = U(b1) @ U(h1) @ --- @ U(bh).

Then V(s) := V(s1) MV (sy) K --- K V(s,) is a simple U(h)-module. Consider the
restriction of U(h) to W". Let s = (s1,...,5,) be regular typical. Then V(s) is a
simple W"-module, and if 8" = o(s) for some permutation of coordinates, then V(s)
is isomorphic to V(s') as a W"-module, see [10].

7.2. Construction of simple W"-modules. Let I'; be the simple W?2-module of
dimension (1]0) on which ¢g, ¢1 and zy act by zero and z; acts by the scalar ¢.

Let r,p,g e Nand r+2p+qg=mn, t = (t1,...,t,) € CP,and A = (A\1,...,\,) € C9,
where t is regular and A is regular typical. Recall that there is an embedding W™ —
W (W2)®P @ W1 ([10], Corollary 3.4). Set

S(t,\):=CRT, K---KT, KV(\),

where the first term C in the tensor product denotes the trivial W"-module. For
g = 0 we use the notation S(t) and set V() = C.

Proposition 7.1. (see [10], Theorem 4.7) (a) Every simple W"-module is isomorphic
to S(t,\) up to change of parity.

(b) Two simple W™-modules S(t, \) and S(t’, \') are isomorphic if and only if p' = p,
¢ =q,t' =0(t) and N = 7(\) for some 0 € S, and T € S,.

8. CENTRAL CHARACTERS

The center of U(g) for g = Q(n) is described in [7]. The center of U(h) coincides
with Clzy,...,2,] and the image of the center of U(g) under the Harish-Chandra
homomorphism ¥ is generated by the polynomials p, = 22+ + ... + 225+1 for all
k € N. These polynomials are called -symmetric polynomials.

In [8] we proved that the center Z™ of W coincides with W" (N Clzy,...,z,] =
Y(Z(U(g))) and hence can be also identified with the ring of @-symmetric polynomi-

als.
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Every s defines the central character yg : 2" — C. Furthermore, it follows from
the description of simple W"-modules in [10] (Theorem 4.6) that every simple W"-
module admits central character xs for some s. For every s = (s1,...,s,) we define
the core c(s) = (si,, ..., si, ) as a subsequence obtained from s by removing all s; = 0
and all pairs (s;, s;) such that s; +s; = 0. Up to a permutation this result does not
depend on the order of removing. Thus, the core is well defined up to permutation.
We call m the length of the core.

Example 8.1. Let s = (1,0,3,—1, —1), then ¢(s) = (3, —1).
The following is a reformulation of the central character description in [7].

Lemma 8.2. Let s,s’ € C". Then xs = X if and only if s and s’ have the same
core (up to permutation).

It follows from Lemma 8.2 that the core depends only on the central character ys,
we denote it ¢(x).

9. SIMPLE FINITE-DIMENSIONAL Y Q(1)-MODULES

We classified simple finite-dimensional Y'Q)(1)-modules in [10]. First we recall the
description of 1-dimensional Y Q(1)-modules.

Remark 9.1. Note that [Tl(ﬁ), Tl(T)] =0 if K+ m is even (see [8], Proposition 6.4).

Definition 9.2. Let A be the commutative subalgebra in Y Q(1) generated by Tl(?lk)

for kK > 0. Let
flu) =14 fou.

k>0
Let I's be the corresponding 1-dimensional A-module, where the action of

_ k) —
T171(U 2) _ ZTI(?I )u 2k
k>0
is given by the generating function f(u).

Recall that for any Hopf superalgebra R, the ideal (R;) generated by all odd
elements is a Hopf ideal and the quotient R/(R;) is a Hopf algebra.

Proposition 9.3. ([10], Lemma 5.11) The quotient Y Q(1)/(Y Q(1)) is isomorphic
to A ~ (C[Tl(ik)] k>0, With comultiplication

AT1’1<U72> = T171(u72) (029 Tl’l(ui2).
Thus we can lift an A-module I'; to a YQ(1)-module.

Proposition 9.4. ([10], Lemma 5.12) The isomorphism classes of 1-dimensional
Y Q(1)-modules are in bijection with the set {I's}. Furthermore, we have the identity
Ff ® Pg ~ ng.
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Let s € C" be regular typical. Then we can lift the W"-module V' (s) to a simple
Y Q(1)-module. Note that Tl(ﬁ) and T1(,T_)1 act on V(s) by zero if 7 > n.

Proposition 9.5. ([10], Theorem 5.13) Any simple finite-dimensional Y Q(1)-module
is isomorphic to V(s) @ I'y or IIV(s) ® I'y for some regular typical s and f(u) =
14+ >0 favu 2%, Furthermore, V(s) ® I'y and V(s') ® T'y are isomorphic up to
change of parity if and only if 8’ is obtained from s by permutation of coordinates
and f(u) = g(u).

Proposition 9.6. ([10], Proposition 5.19) The simple Y Q(1)-module V (s) ® I'y is
lifted from some W™ -module if and only if f € C[u™?]. Moreover, the smallest m
is equal to the degree of the polynomial f.

Remark 9.7. Note that m = 2p is even. S(t1,...,t,, ) ~ V(A) ® I'y where
p
f= H(1 + tau?).
i=1

10. THE CATEGORY Y Q(1)—mod

We described the center Z of Y(Q(1) in [10]. Let

(10.1 m= () ad TETD), 2o = Sl mal,
where ad' T’ 1(21) is the ¢-power of the adjoint endomorphism ad T1(,21) . The elements
{Zy; | i € N} are algebraically independent generators of Z.

Let YQ(1)-mod be the category of finite-dimensional Y'Q(1)-modules. A Y Q(1)-
module M admits generalized central character x if for any z € Z and m € M,
there exists n € Zsq such that (z — x(2))" - m = 0. Let (YQ(1))X-mod be the
full subcategory of modules admitting generalized central character x. The category
Y Q(1)—mod is the direct sum of the subcategories (Y Q(1))X—mod, as x ranges over
the central characters for which (Y Q(1))¥-mod is nonempty.

Lemma 10.1. Every simple Y Q(1)-module in the subcategory (Y Q(1))X¥-mod is
isomorphic up to change of parity to V(s) ® I'y, where s = (s1,...,s,) is regular
typical, which is unique up to permutation.

Proof. Let C C Y Q(1) be the unital subalgebra generated by {n; | i € N}. Then
V(s) and V(s) ® I'y are isomorphic C-modules. Indeed, 1y = Tl(’l_)1 and by (10.1)

L\
(10.2) Niy1 = (—5)[Tf,1), ).
Note that ) ) )
ATy =1 e1+101,.
Hence 7 acts on V(s) @ I'y as g ® 1. Then it follows by induction from (10.2) that
n; acts on V(s) @ 'y as n; ® 1 for all 4. Then every ¢ € C acts as ( ® 1. Hence V (s)
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and V(s) @ I'y are isomorphic C-modules, and they admit the same central character

X-
On the other hand, Y@Q(1)-modules V' (s) and V(s'), where s = (s1,...,s,) and

s’ = (s,...,s.,) are regular typical, have the same central character y if and only if

n =m and s’ is a permutation of s.
Indeed, a YQ(1)-module V (s) admits a central character y. It can be presented

using the generating function
(o.9]
x(u) = Z Xait” 2,
=0

where xo; = x(Z2;). Let o) denote the k-th elementary symmetric polynomial. We
proved in [10] that

) = Zaran o
1+ 221 O'Qi(S)u_% '

Note that V'(s1,...,s,) and V(sq, ..., s,,0) have the same central character. Suppose
that V(s) and V(s') have the same central character y and s, s’ are regular typical.
Assume that n > m. Extend s’ to the n-tuple 8" = (s},...,s/,,0,0,...,0). Then
V(s”) and V(s) have the same central character x. Note that ¢, (Z) = Z" (see [10]).
Thus x = xs°¥n = Xs” ©@n. Then ys = xsv. Hence by Lemma 8.2, s and s” have the
same core (up to permutation). Hence m = n and s’ is a permutation of s. Clearly,
if s’ is a permutation of s, then x5 = xs, and hence V(s) and V(s’) have the same

central character . O

Recall that simple modules are partitioned into blocks. If two simple modules M;
and Mj can be extended nontrivially, i.e., if there is a non-split short exact sequence
0 — M, — M — M; — 0 with {4,5} = {1,2}, then M; and M, belong
to the same block, and we will say that they are linked. Here we agree that M;
is linked to itself. More generally, if there is a finite sequence of simple modules
M = My, M,,..., M, = N such that adjacent pairs belong to the same block, then
modules M and N belong to this block. A module M belongs to a block if all its
composition factors do. Each block lies in a single (Y Q(1))X-mod. However, different
blocks can belong to the same (Y Q(1))X-mod: see [2].

11. THE SUBCATEGORY (Y Q(1))*=%-mod

It follows from Proposition 9.5 that simple modules in the subcategory (Y Q(1))x=%—
mod are exactly the 1-dimensional modules I'y up to change of parity. Let I'y and
I, be two Y'(QQ(1)-modules, where

(11.1) flu) = Zagku’%, g(u) = Zb%u’%, ag = by = 1.

k>0 k>0
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Recall that I'y is linked to itself. If f # g, then one can easily check that the short
exact sequence
0O —I1y—M-—T1,—0

splits. Indeed, we have the following relations in YQ(1):

2k 1 2k
(11.2) T30, T2,] = 21y,
2) (2k 2k+1 2k 2k) (1
(11.3) (13, M) = 2 4 2?2 T
1 2k+1 2k+1
(11.4) (T2, T = =2y,

All odd generators Tl(f;)l act on M by zero, since M is a purely even module. Then

T1(21k+1) also acts on M by zero by (11.4). Note that Tl(zlk) acts on M as ( aék Z% ),
, : 2k

and there exists m such that as,, # boy,, since f # g. We can choose a basis in M so
that ¢y, = 0. Then ¢y, = 0 for all k, since Tl(ik) commute. Hence M ~T'y @ I'y.
We will determine when I'; is linked with II(I'y). Let x4 = %(agk — bay).

Theorem 11.1. Ext'(11(T,), ;) # 0 if and only if v is an arbitrary complex number
and x;, for k > 1 satisfies the recurrence relation

(11.5) Tpy1 = (T2 — Tp + agk)T1.
Proof. Note that the short exact sequence
0—Ty—M—IKy) —0

is non-split if and only if T} 1(1_)1 does not act by zero. Indeed, if Tf}ﬂ , acts by zero,

then T1(2_ki and Tl(Q_kfr Y also act by zero for all k by (11.2) and (11.3), but then
M ~T;eu(ly,). Clearly, if M ~T'y @ 1I(I'y), then all odd generators act by zero.

Hence Ext'(T1(T,),[f) # 0 if and only if one can define a representation p :
YQ(1) — End(C!") such that (up to equivalence)

a 0 01
(116) @)= (% ) = (0 )
Then
0 L(ag, —b
a1y ar = (2.

(11.8) P(Tfikfl)) _ ( 0 zl;(az — by)(ag, — %Qk) + %(an + bay) ) ’
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(11.9) p(TZY) =0,
Here (11.7) follows from (11.6) and the relation (11.2), (11.8) follows from (11.6),

11.7), and (11.3), and (11.9) follows from (11.8) and (11.4).
7 d d foll f d 4
Let xj, = %(agk — byg). Then from (11.7)
0 x
(1110 = (9 %),
and from (11.8)
0 zxp —xp+a
(1L1) pTY) = (),

The recurrence relation (4.3) with m = 2k — 1 and r = 2p + 2 gives the relation

2k 2 1 2k—2 2 3
([, T2 — 32, 1) =

2k—1 2p+1 2k—2 2p+2 2p+1 2k—1 2p+2 2k—2
(1112) TEDTED | TR g T s

2k—1 2p+1 2k—2 2p+2 2p+1 2k—1 2p+2 2k—2
TG A PO PR,

From (11.12) and (11.6), (11.10), (11.11), (11.9) we obtain the relation
T1Zpxk + (A2p — Tp)Th — T1Tpr1Th—1 = Tpy1(A2k—2 — Tpp—1).
If p=0 (and ay = 1,29 = 0) we have
Tk — x%%—l = 71(agk—2 — Tp-1),

which is equivalent to (11.5). On the other hand, one can check that p defined by
(11.6), (11.9), (11.10) and (11.11), with z} satisfying (11.5), preserves the relations
(4.3). O

Corollary 11.2. Let x; = 1(bay — agk). Then Ext'(T'y, 11(Ty)) # 0 if and only if x;
is an arbitrary complex number and xj, for k > 1 satisfies the recurrence relation

(11.13) Tpy1 = (T128 + T + Ao )21

12. TOWARDS THE GENERAL CASE: THE SUBCATEGORY (Y Q(1))¥—mod

Making use of Lemma 10.1, we would like to determine conditions under which
two Y'Q(1)-modules V(s) ® I'y and V(s) ® I', can be extended nontrivially.
We will consider the case, when s = (s). We denote V' (s) by V(s).

Proposition 12.1. Let V(s) ® I'y and V(s) ® I'y be Y Q(1)-modules, where s # 0,
let f(u) and g(u) be given by (11.1), and let xy, = 5 (as; — bay,). Then

Ext'(V(s) @ II(T,), V(s) ® Tf) # 0 if and only if x;, satisfies the recurrence relation
(11.5).
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Proof. First, show that if
(12.1) 0— Iy — C' — TI(Ty) — 0

is a non-split short exact sequence of Y'Q)(1)-modules, then the short exact sequence
of YQ(1)-modules

(12.2) 0—V(s)@T; — V(s)@CI' — V(s) @ I(Ty) — 0

is non-split if and only if 21 # s.
Let C!' =< 1|1 > and V(s) =< v | w >, where 1 and v are even and 1 and

w are odd. Note that Tl(}l) and T1(,1—)1 act on V(s) as (—05 _OS) and (\95 \/g),

respectively, and Tl(ﬁ) and T1(,T_)1 act by zero if r > 2. Let 'y =< 1 >. Suppose that

V(s)@CH = V(s)®@T ;@M is a direct sum of Y Q(1)-modules. Then M =< X | Y >,
where

X=a(v®1)+ (w1, aeC,
(12.3)

Y =T (X) = (ay/5 — D(w@ 1) + /50 @ 7).

Obviously, T1(Z) (X) = A\ X for some A, € C. If n is even this implies that 2z1a = /s,
and if n is odd, then 2a+/s = 1. Hence x; = s. One can easily check that if z; = s,
then M defined by (12.3), where a = 53~, is a YQ(1)-submodule of V (s) @ C!1.

Wg7
Next, suppose that there is a non-split short exact sequence of Y'Q(1)-modules
(12.4) 0—V(s)@Ty — M — V(s) II(I'y) — 0.

Describe the action of YQ(1) on V(s) ® I'y. Recall that Y'(Q)(1) is generated by Tl(?lk)
and Tf}ll (see [10], Lemma 5.1). Let {v, w} be a basis of V(s), and I'y =< 1 >. Then

V(s)®I'y =<w | wy >, where v; = v ®1 and w; = w ® 1. The action of Tl(ik) and
1 . . L . as, O 0 /s
T} Z; with respect to this basis is given by the matrices ( 0 a%) and ( Js 0 )

respectively.
Let f and g be given by (11.1), and let x} = %(agk—bgk). Assume that f # g. Then
there exists m such that as,, # bg,. We can choose a basis in M: {vy, wq,va, ws},

where v; and vy are even and w; and w, are odd, with respect to which the action

of Tl(im) is given by a diagonal matrix, and since all 7T} 1(21k)

diagonal matrices:

commute, they also act by

0 ayp O O
(12.5) 0 0 by O
0O 0 0 by
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We choose a basis so that in addition Tl(yl_)1 acts by

0 5 0 1
Vi 0 -1 0
(12.6) 0 0 0 s
0 0 s 0
Using (11.2)-(11.4) we obtain that the action of Tf{’“{ and Tl(ikfrl) on M is given by
the following matrices, respectively:

(12.7)
0 0 0 T 0 agk\/g 0 T1Tk — T + Qop
0 0 — T 0 agk\/g 0 —(:L‘ll’k — T + a2k> 0
00 O 0 ’ 0 0 0 bor/S ’
0 0 O 0 0 0 bokr/S 0
and Tl(ikﬂ) acts by
— Q918 0 0 Tp\/S
0 —agks —xpy/s 0
(12.8) 0 0 —bops 0
0 0 0 —bors

Then using the relation (11.12), we can show that x; are determined exactly by the
recurrence relation (11.5). If f = g, then all z; are zero. Clearly, they satisfy (11.5).
On the other hand, one can define the action of Y@Q(1) on M by (12.5), (12.7) and
(12.8), where zj, satisfy the recurrence relation (11.5), and show that this actions
respects (4.3). O

Remark 12.2. Note that if x; # 0, s, then M is isomorphic to the YQ(1)-module
V(s) ® C'! defined by (12.2). Indeed, let V(s) =< v |w > and C' =< 1|1 >.
Then V(s) @ C' =< v®1,w®1 | w®1,v®1 >. Note that in this basis T1(,21) acts by

a9 0 —\/5 0
0 a9 0 \/5
(12.9) 0 0 by 0

0 0 0 by

If x;1 # 0, one can choose a basis so that the matrix of T1(,21) is diagonal, and cor-
respondingly, the matrices for all 7; lek) are given by (12.5). Also, if x; # s, then
multiplying v ® 1 and w ® 1 by 1 — o we obtain that T1(7121 acts in this basis by the
matrix (12.6). Then M ~ V(s) ® C'I', since YQ(1) is generated by Tl(?lk) and Tl(vl_)l.
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Conjecture 12.3. Let S be a simple finite-dimensional Y'Q(1)-module. Let n > 2,
s = (81, S2,...,8,) be regular typical, and let f(u) and g(u) be given by (11.1). Let

T = %(agk — bgk) Then

Ext'(S,V(s) ® Ty) # 0,

if and only if S >~ V(s) ® II(I'y), where 2 is an arbitrary complex number and zy
for k > 1 satisfies the recurrence relation (11.5). The short exact sequence (12.2) is
non-split.

13. THE CATEGORY W™—mod

Let W"—mod be the category of finite-dimensional W"-modules. Let (W™)X-mod
be the full subcategory of modules admitting generalized central character y. The
category W"-mod is the direct sum of subcategories (W")X—mod, as x ranges over the
central characters x for which (W")X-mod is nonempty. We proved in [10] (Lemma
4.12) that a simple W™-module S belongs to (W™)X —mod if and only if it is isomor-
phic (up to change of parity) to S(t,\) with A = ¢(x).

14. THE SUBCATEGORY (W™)X=0—mod

Note that simple modules in the subcategory (W™)X=%-mod are exactly the 1-
dimensional modules S(t) up to change of parity (see [10]).

Theorem 14.1. Fixt = (t1,...,t,) and t' = (t},...,t), where p and q are less than
or equal to . Consider the W"-modules S(t) and S(t'). Define agy, = oy(t1,...,1p)
for k = 1,...,p, agx = 0 for k > p. Similarly, define by, = oy(t},...,t;) for k =
1,...,q, by, =0 for k > q. Let x), = %(ng — boy).

(a) If S(t) is a nontrivial W"-module, then Ext'(11(S(t')), S(t)) # 0 if and only if
x1 # 0 and xy, for k > 1 satisfies the recurrence relation (11.5) or S(t') is isomorphic
to S(t) and n > 2p.

(b) If S(t) = CU° is the trivial W"-module, then Ext'(11(S(t')), S(t)) # 0 if and only
if S(t') = C1° or t' = (t') with t|, = —2.

Proof. Suppose that Ext'(11(S(t')), S(t)) # 0. Lift S(t) and S(t) to YQ(1)-modules
['; and Ty, respectively, where f and g are given by (11.1). Then Ext'(11(T,),T;)) #
0. Hence by Theorem 11.1, x; satisfy (11.5). Note that if x; = 0, then all z, = 0
and hence S(t') is isomorphic to S(t). One can show that if S(t) is a nontrivial W"-
module, which is linked with 1I(S(t)), then n > 2p. Indeed, suppose that n = 2p.
Then there exists a non-split short exact sequence

(14.1) 0— S(t) — M — II(S(t)) — 0.
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We lift the W™-module M to a YQ(1)-module. Then the action of YQ(1) on M is
given by (11.6)-(11.9) (up to equivalence), where ag, = by, for all k. Then

(14.2) Ty = (0 )
; 0 0
(2p+1) : _
Note that p(T}7] ') = 0, since 2p + 1 > n. Hence ay, = 0, but

agp:Up(tl,...,tp):tl'...'tp.

Hence t; = 0 for some i. A contradiction, since all ¢; are nonzero.
Conversely, show that if z;, satisfy (11.5), then the lifted modules I'y and 1I(I')
are linked (see (12.1)). Assume that x; # 0. Then (11.5) implies that

1T — T + Qo = 0

for 2k > n, if n is even, and for 2k > n — 1, if n is odd. Hence p(T(r) )=0ifr>n
by (11.10) and (11.11), and p(T} 1) =01if r > n by (11.6) and (11.9). Recall that the
kernel of the surjective homomorphism ¢, : YQ(1) — W™ is generated by Tl(rl) and
T(T)l, where r > n. This allows one to define a representation y : W™ — End(C!")
such that p = o p,. Thus S(t) is linked with II(S(t")).

If S(t) = C', then ay, = 0 for & > 1. From (11.5), 2, = 0 or 2; = 1. In the first
case rp = 0 and by, = 0 for k > 1. Hence S(t') is the trivial module. In the second
case, r1 = 1 and z, = 0 for k > 2, by = —2, and by, = 0 for & > 2. Hence t’' = (¢})
with ] = —2.

Finally, assume that S(t) is a nontrivial W™-module and n > 2p. Let r = n — 2p.
Recall that there is an embedding W" < W7 @ (W?)®P and

S(t)=CRI, ®---KT,

where the first term C in the tensor product denotes the trivial W"-module. By (b),
there exists a non-split short exact sequence of W"-modules

(14.3) 0— Cl' — ¢t — ' — 0.

Consider the W™-module M = C!' KT, X.--KT,. Then we obtain an exact
sequence (14.1), which is non-split. Indeed, let & for i = 1,...,r be odd elementary
matrices in Q(r), and 5}, §j2 be odd elementary matrices in Q(2) for j =1,...,p, see
(2.1). Recall that there is a surjective homomorphism ¢,, : YQ(1) — W™ for every

n, see Proposition 5.2. Note that ng(Tl(,l) & + ...+ & by (2.6) in [10]. Because

the exact sequence (14.3) is non-split, the action of ¢, (Tl(}_)l) on C'! is nonzero. Also,

Pr2p(T 1—1 Zf®1®p+21®1®(3 1) (§1+§)®1®p 7)
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by (2.6) and (3.10) in [10]. Note that &; and &7 act on I'y; by zero for j = 1,...,p.

Hence 90T+2p(T1(71)1) acts on M as (& + ...+ &) ® 1%, and this action is nonzero.

Thus Ext'(11(S(t)), S(t)) # 0. O

Remark 14.2. Suppose that I'y is lifted from a nontrivial module S(t), and assume
that Ext'(r1(T',),T;) # 0. Note that T, is lifted from some W"-module S(t') which
is not isomorphic to S(t), if and only 1f Tnrz = 0 if n is even and xnpn = 0if n is
odd, see (11.5). This means that z; is a (nonzero) root of the polynom1a1 of degree n
(respectively, n—1) defined by the recurrence relation (11.5) if n is even (respectively,
odd). Then we set by, = ag, — 2y for all k and find t' = (#},...,t;) such that
bar, = ox(t'). Here t’ is defined up to permutation of ¢, ... ¢, and we delete all zero
entries. Then Ext!(11(S(t')), S(t)) # 0. Also, if n > 2p, then Ext!(11(S(t)), S(t)) #
0. Moreover, all modules S(t’) satisfying the above formula are obtained in this way.

Corollary 14.3. (a) If S(t) is a nontrivial W"-module, then Ext'(S(t), T1(S(t))) # 0
if and only if zj, := 1(boy — agx) satisfies the recurrence relation (11.13) for k > 0 and
x1 # 0 or S(t') is isomorphic to S(t) and n > 2p.

(b) If S(t) is a trivial W"-module, then Ext'(S(t),11(S(t))) # 0 if and only if
S(t) =CH ort' = (t)) with t, = —2.

15. BLOCKS IN THE CATEGORY W?2—mod

Lemma 15.1. Let n = 2. A simple W?-module S belongs to (W?*)X — mod if and
only if one of the following three cases takes place:

(1) S =~ V(s1,s2) for sy # —s9,51,52 # 0 and ¢(x) = (s1, S2),

(2) S ~V(s,0) for s # 0 and c(x) = (s),

(3) S ~ T or II(I';) and x = 0.

Proof. Follows from Lemma 4.12 in [10]. O
Theorem 15.2. (1) Each simple W?2-module V (sy, so) for s; # —$3, 81, 82 # 0 forms
a block in (W?)X-mod, where c(x) = (s1, 52).

(2) Each simple W?2-module V (s,0) for s # 0 forms a block in (W?)X-mod, where

c(x) = (s).
(3) The blocks in the subcategory (W?)X=0-mod are described as follows. Let a € C.
Define

(15.1) an=a—n>+nv1—4a forn=0,+1,42, ...

Then I', lies in the block formed by I',, if n is even and IIl', , if n is odd. III', lies
in the block formed by 11T, if n is even and I',,,, if n is odd.

Proof. Statements (1) and (2) follow from Lemma 8.2 and Lemma 15.1. To prove
(3), first we will show that 'y is linked with IIT, if and only if

(15.2) b=a—1++1—4a.
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Let S(t) =T, and S(t") =T'. Set ap = by = 1, ay = a, by = b and agy, = by = 0 for
k>1, x, = %(agk — byy) for k > 0. Suppose a # 0, then by Theorem 14.1 (a)

Ty = (22 — 21 + ag)2y,

and x; must satisfy 23 — x; + ay = 0. Hence z; = %(1 + +v1—4a). Thus b =
a — 14 +/1 — 4a. Note that Corollary 14.3 (a) gives the same result.

If @ = 0, then by Theorem 14.1 (b) we have that b = 0 or b = —2. Hence (15.2)
holds.

Note that b is a root of the equation

(15.3) b? + (2 — 2a)b + (a® + 2a) = 0.

The sum of the roots of equation (15.3) is 2a — 2. This gives the relation

(15.4) ap-1 + apy1 = 2a, — 2 (a, = a).

Then (15.2) and (15.4) imply (15.1). O

Example 15.3. (1) a = 0, then a,, = n(1 —n) and Iy lies in the block
T g0, TIT 90, T 19, TIT 4, Ty, , TIT, T, TIT_5, T, TIT_ 19, T, TIT_50, - . .
(2) a = 1, then a, = 1 —n? and I's lies in the block
Py I 5T s,
(3) a =1, then a,, = 1 — n? + ny/=3 and T lies in the block
T g T ymg g TID g Ty TID g Ty g o Ty g
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