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Comparative phylogenetic analyses are of potential value to establish the essential com-
ponents of genetic networks underlying physiological traits. For species that naturally lack
particular lymphocyte lineages,we showhere that this strategy readily distinguishes trait-
specific actors from pleiotropic components of the genetic network governing lymphocyte
differentiation. Previously, three of the four members of the DNA polymerase X family
have been implicated in the junctional diversification process during the somatic assem-
bly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal
deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination,
whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic
diversification of antigen receptor genes.
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� Additional supporting information may be found online in the Supporting Information section
at the end of the article.

Introduction

Despite considerable technical improvements, genetic screens in
vertebrates [1, 2] typically address only a single or at best a few
physiological traits and follow-up studies often require massively
parallel efforts to reconstruct the components of lineage-specific
genetic networks. However, provided that species differ in a par-
ticular trait, inter-specific genome comparisons [3] may offer an
alternative in silico strategy to catalog gene content in pathways
of interest.

The presence and dichotomy of lymphocyte lineages is a hall-
mark of vertebrate adaptive immune systems [4–7]. Yet not all
species conform to this canonical structure. Among the Cera-
tioidei suborder of anglerfishes, T+B+, T–B+, and T–B– species
were identified [8] (Fig. 1A). Because about 100 My have elapsed
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between the emergence of Ceratioidei and the present day [9],
genes originally active specifically in the now defunct adaptive
lymphocyte lineage(s) can be expected to be either lost or pseudo-
genized [8]. Thus, species-specific differences among Ceratoidei
provide an unprecedented opportunity to interrogate the physi-
ological pathways of lymphopoiesis. The blunt-snouted clingfish
(Gouania willdenowi) has lost immunoglobulin genes and other B
lymphocyte-lineage-related genes [10] and can thus be consid-
ered a T+B– variety. Inclusion of this species complements the
lymphocyte pathway analysis through phylogeny (LYPAP) strat-
egy proposed here.

Results and discussion

Outline of the LYPAP strategy

Among the Ceratoidei, we focused on three species for the present
comparative analysis. Chaunax abei, belonging to the closely
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Figure 1. Lymphocyte pathway analysis through phylogeny. (A) Schematic cladogram of the four anglerfish species used in this study. (B) Decision
tree to evaluate the lineage specificity of individual genes, based on the genome analysis of C. abei, C. couesii; P. spiniceps/H.mollis, and G. willdenowi.
(C) Cladogram of PolX gene family members generated by the PhyML 3.1/3.0 aLRT algorithm; the branch support values are indicated. For PolM,
PolL, and TdT, only the polymerase domain sequences were used for alignment; for sources of protein sequences, see Materials and methods. TdT
sequences are highlighted in red font.

related family of Lophiiformes, serves as a benchmark for the
comparative analysis since it possesses the canonical set of genes
essential for adaptive immunity. Cryptopsaras couesii lacks the T
cell lineage, but retains the key components of the canonical B
cell lineage; Photocorynus spiniceps and Haplophryne mollis both
lack T cells and B cells [8]. From this constellation, we expect
that a gene strictly associated with the T cell lineage (and thus
without any other non-redundant function in the developing or
adult organism) should be present in C. abei, but be either non-
functional or missing in the genomes of C. couesii, P. spiniceps,
and H. mollis. Likewise, a gene that functions in the B lymphocyte
lineage should be present in the genomes of C. abei and C. coue-
sii, but be either non-functional or missing in the genomes of P.
spiniceps and H. mollis; genes that have a function in both T and
B cells (such as the rag1 and rag2 genes) should also be absent
in P. spiniceps and H. mollis. As no anglerfish species was found
to definitively lack B cells, but retain T cells, analysis of the G.
willdenowi genome was included to resolve ambiguity in identify-
ing pan-lymphocyte and B lymphocyte-lineage genes (Fig. 1B).

Validation of the LYPAP strategy

To explore the usefulness of the LYPAP strategy, we examined the
status of two potentially lineage-specific genes. The interleukin 7

receptor (il7r) is a key component of homeostatic cytokine signal-
ing in T cells [11–13] of all species so far investigated; because
its requirement for B cell development varies among species [14–
16], we asked whether it is required for teleost B cell develop-
ment. We find that the il7r gene is present in the genome of
C. abei, but is absent in the genomes of the three other species
(Table 1; Supporting Information S1). Hence, in teleosts, the func-
tion of il7r is not essential for B cell development; expression
studies in zebrafish support this view (Supporting information
Fig. S1A and B). Thus, LYPAP correctly identified a T cell lineage-
specific function of il7r in Ceratoidei.

Next, we examined the role of the slp65 gene, encod-
ing an adaptor protein (also known as BLNK) orchestrating
the formation of a signaling complex that transmits engage-
ment of the B cell receptor with antigen to the nucleus; in
mice, Slp65 deficiency impairs B cell development, whereas T
cell development is unaffected [17]. Genome analyses indicate
that slp65 is present in C. abei and C. couesii, but absent in
intact form in P. spiniceps and H. mollis, where it is found
in pseudogenized form (Table 1; Supporting information Fig.
S1C; Supporting information S1). Of note, whereas the expres-
sion pattern (Supporting information Fig. S1A and D) would
suggest a pleiotropic function of slp65 in the hematopoietic
system, the analysis of gene models via LYPAP reveals that
slp65 is essential only for lymphocyte development. Indeed,
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Table 1. Cell type and gene content of anglerfish genomes.

Species
Cell type/gene C. abei C. couesii H. mollis P. spiniceps

T cells + − − −
B cells + + − −
il7r + − − −
slp65 + + − −
fli1a + + + +
fli1b + + + +
atad5a + + + +
atad5b + + (+) (+)

Note: The presence of an intact gene is denoted by “+”; absence or pseudogenization is indicated by “–”; (+) indicates a gene with alterations of
uncertain functional consequence. The accession numbers for nucleotide sequences are listed in Supporting information Table S1; alignments of
conceptually translated atad5b protein sequences are shown in Supporting information Fig. S3.

its presence in the G. willdenowi genome (Genbank accession
number XM_028468772) assigns a pan-lymphocyte function to
slp65.

In a second application, we turned to the validation of results
from forward genetic screens, during which we identified many
components of the genetic network underlying larval T cell devel-
opment in zebrafish [13]. We used LYPAP to ask whether the
identified candidate genes (and/or their paralogs) have T lineage-
specific or pleiotropic activity. By way of example, we addressed
two paralogous gene pairs, fli1a/fli1b, and atad5a/atad5b, for
which fli1a and atad5a were identified in the screens [13] (Sup-
porting information Fig. S2A and B). As summarized in Table 1,
fli1a and fli1b (Supporting information S1) can be found even in
those genomes that lack canonical adaptive lymphocyte lineages,
suggesting that they are required in lineages other than lym-
phocytes, in line with scRNA-seq expression analysis of zebrafish
whole kidney marrow cells (Supporting information Fig. S2C–E).
With respect to atad5a and atad5b genes, we found that both
atad5a and atad5b are present in all four species. However, the
atad5b genes of H. mollis and P. spiniceps lack exon 2, which
encodes two short disordered regions (Supporting information
Fig. S3); since no abnormality was noted in the T cell centered-
screen at 5 dpf (Supporting information Fig. S2B), this gene may
not be required for larval lymphopoiesis (c.f., Supporting infor-
mation Fig. S2C and G).

Investigation of the PolX gene family

Finally, we applied the LYPAP paradigm to examine a long-
standing question about the roles of the members of the DNA
polymerase X (PolX) family during somatic antigen receptor
diversification. The PolX family has four members, PolB, POLM,
POLL, and terminal deoxynucleotidyl transferase (TdT; encoded
by dntt); PolM, PolL, and TdT share a characteristic BRCT domain
that is lacking in PolB [18]. TdT is a major contributor to
both immunoglobulin (Ig) and T cell receptor gene diversifica-
tion during V(D)J recombination [19, 20]; in addition, PolL and
PolM have been shown to augment the junctional diversification

of immunoglobulin heavy and light genes, respectively in mice
[21], raising the question of whether the latter activities are a
species-specific phenomenon or represent a constitutive part of
the somatic diversification process of antigen receptor genes. Phy-
logenetic analysis (Fig. 1C) supports the view that TdT is charac-
teristic of jawed vertebrates [22]. Interestingly, P. spiniceps and
H. mollis, which lack intact rag1, rag2, ig and tcr genes [8], pos-
sess polB, polL and polM genes, but lack dntt (Table 2; Supporting
information S1). The LYPAP analysis thus not only defines TdT as
a uniquely lymphocyte-specific polymerase[23] but also indicates
that the functions of PolL and PolM are not essential for V(D)J
recombination (as recognized in mice).

Conclusion

Here, we have introduced the concept of LYPAP, suggesting that
comparative analyses of genomes of species that lack one or
both of the canonical adaptive lymphoid lineages are an oppor-
tunity to uncover the genetic underpinnings of adaptive immu-
nity. The trait-specific phylogenetic analysis as exemplified here
should be generalizable to other aspects of immune-related phe-
notypes; with deeper phenotyping of vertebrate species and anal-
ysis of their associated genome resources[24] this approach will
become even more useful.

Materials and methods

Animals

The zebrafish (Danio rerio) strains Ekkwill (EKK), Tüpfel long
fin (TL), wild-type-in-Kalkutta (WIK), AB, Assam (ASS), and
Tubingen (TU) were maintained in the animal facility of the
Max Planck Institute of Immunobiology and Epigenetics. All
animal experiments were approved by the institute’s review
committee and conducted under licenses from the local gov-
ernments (Regierungspräsidium Freiburg [AZ 35–9185.81/G-
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Table 2. Comparative analysis of lymphoid cell types and PolX genes.

Species
Cell type/gene Tunicate Lamprey Shark C. abei C. couesii H. mollis P. spiniceps

T cells n/a + + + − − −
B cells n/a + + + + − −
polb + + + + + + +
poll + + + + + + +
polm + + + + + + +
dntt − − + + + − −

19/69; AZ 35–9185.81/G-14/41; AZ 35–9185.81/G-17/ 79;
AZ 35–9185.81/G-13/70]; Regierungspräsidium Tübingen [AZ
AP1/02]).

Zebrafish morphants

Morpholino antisense oligonucleotides (morpholinos) targeting
the sequences of initiation codons (to block translation of both
maternal and zygotic mRNAs) of target gene mRNAs were
designed by and sourced from GeneTools, LLC. Lyophilised mor-
pholinos were resuspended in nuclease-free water at a concen-
tration of 1mM and stored at 4°C. Morpholinos diluted in 1×
Danieau buffer (58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6
mM CaCl2, 5 mM HEPES, pH 7.6) were titrated and injected
in a volume of 1–2 nL into wild-type embryos at the 1-cell
stage as described previously [13]. The phenotypes of morphants
were determined by RNA in situ hybridization, comparing the
rag1/gh ratio (thymopoietic index; see below) of injected ver-
sus un-injected fish at 5 dpf. The sequences of anti-sense mor-
pholinos are as follows. fli1a: 5-cgcctccttaatagttccgtccatt; fli1b: 5′-
agtacagtccattgcagatttctgt; atad5a: 5′-ggcaatgcaacaaccccagccatct;
atad5b: 5′-acgaatccattgttgccataaatat.

Thymopoietic index

Thymic rag1 gene expression is a marker of ongoing assembly of
T cell receptor genes. Hence, the intensity of the RNA in situ sig-
nal correlates with the number of differentiating T cells, which we
consider to be a measure of T cell development. In order to pro-
vide an internal control (technical, with respect to the hybridiza-
tion process as such; and, biological, with respect to the tissue
specificity of the observed genetic effects), we employed a probe
specific for the growth hormone (gh) gene, which marks a sub-
set of cells in the hypophysis. Determination of rag1/gh ratios
was carried out as follows: After RNA in situ hybridization with
rag1 and gh probes, ventral images of 4–5 dpf zebrafish larvae
were taken on an MZFLIII (Leica) microscope using a digital cam-
era DFC300FX (Leica), essentially generating a two-dimensional
projection of the 3D structure. The areas of rag1 and gh sig-
nals were measured using ImageJ (ImageJ 1.52a; available at
http://imagej.nih.gov/ij), and the ratio of average of the rag1-

positive area vs. gh-positive area was calculated as a measure of
thymopoietic activity.

Genomic resources

Whole genome sequences of Ceratioidei were described previ-
ously[8].

Contig assembly from customized BLAST databases

Genomic sequence collections were searched for gene-specific
sequences using the BLASTn algorithm on the SequenceServer
BLAST server (version 1.0.9) [25], installed in-house. BLAST
parameters were set to an expectation cutoff of 1E−5, allow-
ing a maximum number of 1000 returned sequences. From the
resulting hits, contigs were assembled with SeqMan Pro (version
13.0.0, DNASTAR) using a match size of 25 nucleotides and a min-
imum match percentage of 98% with otherwise default parame-
ters. Contigs were manually curated and used as queries against
the non-redundant National Center for Biotechnology Informa-
tion protein database using the BLASTn and BLASTx algorithms
to identify gene-specific regions. The DNA and protein alignments
were performed using the MUSCLE alignment algorithm in DNAS-
TAR’s MegAlign Pro applications [26] and other sequence analy-
sis tools [27]. Gene models of anglerfish genes were determined
using T. rubripes (or orthologous teleost) protein sequences as
templates for tBLASTN searches and assembled into virtual cDNA
sequences (Genbank accession numbers are listed in Supporting
information Table S1).

Phylogenetic analysis

For phylogenetic analysis, the PhyML 3.1/3.0 aLRT algorithm
implemented at the pyhlogeny.fr platform was used with default
parameters [28]. Apart from sequences tabulated in Supple-
mentary Data 1 (conceptually translated from the virtual cDNA
[Supporting information Table S1]), the following sequences
were retrieved from Genbank. PolB sequences (Anneissia japon-
ica: XP_033124559; Branchiostoma lanceolatum: CAH124683;
Callorhinchus milii: XP_042200499; Petromyzon marinus:
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XP_032817546; Takifugu rubripes: XP_003974975). PolL
sequences (Anneissia japonica: XP_033125579; Branchiostoma:
XP_035671919; Callorhinchus milii: XP_007909582; Petromyzon
marinus: XP_032808362; Takifugu rubripes: XP_003972614).
PolM sequences (Acanthaster planci: XP_022091844; Bran-
chiostoma belcheri: XP_019635777; Callorhinchus milii:
XP_042200446; Petromyzon marinus: XP_032807934; Tak-
ifugu rubripes: XP_003965471). TdT sequences (Ginglymostoma
cirratum: AAG53984; Takifugu rubripes: NP_001027915).

Single–cell RNA sequencing data analysis

Clustering analysis and visualization of all datasets [29] were
performed by the VarID algorithm [30]. The Uniform manifold
approximation and projection for dimension reduction represen-
tation was used for cell cluster visualization [31]. Information on
how to generate the Uniform manifold approximation and pro-
jection for dimension reductions for the genes shown in Support-
ing information Figs. S1 and S2 can be retrieved from GitHub
(https://github.com/ElliotBoehm/LYPAP).
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