Biodiversity and climate extremes: known interactions and research gaps

Miguel D. Mahecha¹, Ana Bastos², Friedrich Bohn³, Nico Eisenhauer⁴, Hannes Feilhauer¹, Thomas Hickler⁵, Heike Kalesse-Los⁶, Mirco Migliavacca⁷, Friederike Elly Luise Otto⁸, Jian Peng⁹, Ina Tegen¹⁰, Alexandra Weigelt¹¹, Manfred Wendisch¹², Christian Wirth¹, Djamil Al-Halbouni¹, Hartwig M Deneke¹³, Daniel Doktor¹⁴, Susanne Dunker³, André Ehrlich¹², Andreas Foth⁶, Almudena García-García¹⁵, Carlos A. Guerra⁴, Claudia Guimarães-Steinicke¹, Henrik Hartmann¹⁶, Silvia Henning¹⁰, Hartmut Herrmann¹⁷, Chaonan Ji¹, Teja Kattenborn¹, Nina Kolleck¹⁸, Marlene Kretschmer¹, Ingolf Kühn³, Marie Luise Luttkus¹³, Maximilian Maahn¹, Milena Mönks¹, Karin Mora¹, Mira Pöhlker¹, Markus Reichstein¹⁹, Nadja Rüger⁴, Beatriz Sánchez-Parra¹, Michael Schäfer⁶, Sebastian Sippel⁶, Matthias Tesche¹, Birgit Wehner¹³, Sebastian Wieneke⁶, Alexander Winkler², Sophie Wolf¹, Sönke Zaehle², Jakob Zscheischler²⁰, and Johannes Quaas¹²

¹Leipzig University ²Max Planck Institute for Biogeochemistry ³Helmholtz Centre for Environmental Research UFZ

⁴German Centre for Integrative Biodiversity Research (iDiv)

⁵LOEWE - Centre for Biodiversity and Climate BiK-F

⁶University of Leipzig

⁷European Commission Joint Research Center

⁸University of Oxford, U.K.

⁹Department of Remote Sensing, Helmholtz Centre for Environmental ResearchUFZ,

Permoserstrasse

¹⁰Institute for Tropospheric Research

¹¹Institute of Biology I, Department for Systematic Botany and Functional Biodiversity,

University of Leipzig

¹²Universität Leipzig

¹³Leibniz Institute for Tropospheric Research

 $^{14}\mathrm{Helmholtz}$ Centre for Environmental Research (HZ)

 $^{15}\mathrm{Helmholtz}$ Centre for Environmental Research

 $^{16}\mathrm{Max}$ Planck Institute for Biogeochemistry Jena

¹⁷Institut fur Troposphaerenforschung

¹⁸Potsdam University

¹⁹Max Planck Institute fur Biogeochemistry

²⁰Helmholtz Centre for Environmental Research UFZ

September 13, 2023

Abstract

Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well-being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarise the evidence that reductions in biodiversity can destabilise the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasise the bidirectional effects that link ecology and atmospheric processes.

Biodiversity and climate extremes: known interactions and research gaps

1

2

3	M. D. Mahecha ^{1,2,3} , A. Bastos ⁴ , F. J. Bohn ² , N. Eisenhauer ^{3,5} ,
4	H. Feilhauer ^{1,2,3} , T. Hickler ^{6,7} , H. Kalesse-Los ⁸ , M. Migliavacca ⁹ ,
5	F. E. L. $Otto^{10}$, J. $Peng^{1,2}$, I. $Tegen^{8,11}$, A. $Weigelt^{3,5}$, M. $Wendisch^8$,
6	C. Wirth ^{3,5} , D. Al-Halbouni ¹ , H. Deneke ¹¹ , D. Doktor ^{2,3} , S. Dunker ^{2,3} ,
7	A. Ehrlich ⁸ , A. Foth ⁸ , A. García-García ² , C. A. Guerra ^{3,5} ,
8	C. Guimarães-Steinicke ^{1,5} , H. Hartmann ^{4,12} , S. Henning ¹¹ , H. Herrmann ¹¹ ,
0	C I^{i1} T Kattenberr ^{1,3} N Kelleck ¹³ M Kretechmer ^{8,14} I K"thr ^{2,3,15}
9	C. JI, I. Kattenborn γ , N. Koneck , M. Kretschner γ , I. Kunn $\gamma \gamma$,
10	M. L. Luttkus ¹¹ , M. Maahn ^{\circ} , M. Monks ¹ , K. Mora ^{1,\circ} , M. Pohlker ^{\circ, 11} ,
11	M. Reichstein ^{3,4} , N. Rüger ^{3,16,17} , B. Sánchez-Parra ^{3,5} , M. Schäfer ⁸ , S. Sippel ⁸ ,
12	$\mathbf{M}. \ \mathbf{Tesche}^8, \ \mathbf{B}. \ \mathbf{Wehner}^{11}, \ \mathbf{S}. \ \mathbf{Wieneke}^{1,3}, \ \mathbf{A}. \ \mathbf{J}. \ \mathbf{Winkler}^4, \ \mathbf{S}. \ \mathbf{Wolf}^1, \ \mathbf{S}. \ \mathbf{Zaehle}^4, $
13	J. Zscheischler ^{2,18} , and J. Quaas ^{$3,8$}
14	1 Remote Sensing Centre for Earth System Research, Leipzig University, Institute for Earth System
15	Science and Remote Sensing, 04103 Leipzig, Germany
16	² Helmholtz Centre for Environmental Research – UFZ, 04318, Leipzig, Germany
17	³ German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
18	⁴ Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
19	⁵ Institute of Biology, Leipzig University, 04103 Leipzig, Germany
20	⁶ Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
21	⁷ Department of Physical Geography, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
22	⁸ Leipzig Institute for Meteorology, Leipzig University, 04103 Leipzig, Germany
23	9 European Commission, Joint Research Centre, 21027 Ispra (VA), Italy
24	¹⁰ The Grantham Institute for Climate Change, Imperial College London, London SW7 2AZ, UK
25	¹¹ Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
26	¹² Institute for Forest Protection, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants,
27	06484 Quedlinburg, Germany
28	13 Education and Socialication Theory, University of Potsdam, 14469 Potsdam, Germany
29	$^{14}\mathrm{Department}$ of Meteorology, University of Reading, Reading, UK
30	$^{15}\mathrm{Department}$ of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06099
31	Halle (Saale), Germany
32	¹⁶ Department of Economics, Leipzig University, 04109 Leipzig, Germany
33	¹⁷ Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
34	¹⁸ Technische Universität Dresden, Dresden, Germany

35 Key Points:

36	•	Mounting evidence suggests that an ecosystem's capacity to buffer the impacts
37		of climate extremes depends on its biodiversity.
38	•	Numerous mechanisms suggest that a reduction in biodiversity could exacerbate
39		climate extremes.
40	•	Understanding the full feedback loop linking biodiversity change and climate ex-
41		tremes requires an ambitious research agenda.

Corresponding author: Miguel D. Mahecha, miguel.mahecha@uni-leipzig.de

42 Abstract

Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosys-43 tem services and ultimately human well-being can be partially attenuated by the organ-44 ismic, structural, and functional diversity of the affected land surface. However, the on-45 going transformation of terrestrial ecosystems through intensified exploitation and man-46 agement may put this buffering capacity at risk. Here, we summarise the evidence that 47 reductions in biodiversity can destabilise the functioning of ecosystems facing climate 48 extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate 49 climate extremes. We argue that only a comprehensive approach, incorporating both eco-50 logical and hydrometeorological perspectives, enables to understand and predict the en-51 tire feedback system between altered biodiversity and climate extremes. This ambition, 52 however, requires a reformulation of current research priorities to emphasise the bidirec-53 tional effects that link ecology and atmospheric processes. 54

55 Plain Language Summary

⁵⁶ Climate extremes are increasing and impacting both nature and people. We hy-⁵⁷ pothesise that intact ecosystems, particularly via their biodiversity, can mitigate the im-⁵⁸ pacts of climate extremes. What happens when biodiversity decreases? Could this loss ⁵⁹ make the effects of climate extremes even worse or change how these events occur? We ⁶⁰ explore these two questions and summarise the current state of knowledge. We conclude ⁶¹ that targeted research efforts at the interface of ecology and atmospheric sciences are needed ⁶² to answer these questions conclusively.

63 1 Introduction

The transformation of terrestrial ecosystems due to land cover change, land man-64 agement intensification, and environmental pollution, continues to accelerate globally. 65 These interventions lead to a widespread decline in biodiversity and ecosystem function-66 ing (Bellard et al., 2012; Díaz et al., 2019; IPBES, 2019; Jaureguiberry et al., 2022). At 67 the same time, climate change progresses (IPCC, 2021). One effect is that weather and 68 climate-related extremes, such as droughts, heat waves, storms, and heavy rainfall in-69 crease in frequency, intensity, and some also in spatial extent (Alexander et al., 2006; Senevi-70 ratne et al., 2012; S. Lange et al., 2020; Fowler et al., 2021). Today, such extreme events 71 unprecedented in magnitude and duration occur around the world (Witze et al., 2022), 72

-3-

⁷³ such as the 2018-2020 multi-year drought over Europe (Rakovec et al., 2022). The in⁷⁴ tensification of extreme weather and climate events, with decreasing return periods and
⁷⁵ increased intensity, is one of the most critical consequences of anthropogenic climate change
⁷⁶ (IPCC, 2021; Fischer et al., 2021). But how will these two global mega-trends – biodi⁷⁷ versity decline and the intensification of climate and weather extremes – affect each other?
⁷⁸ This scientifically challenging question has severe societal implications and needs to be
⁷⁹ addressed urgently in an integrative research approach.

Climate extremes can affect human well-being directly, e.g., via health impacts due 80 to extreme heat (Ebi et al., 2021). However, a wide range of impacts is mediated by land-81 surface characteristics, in particular vegetation. During heat and drought events, increas-82 ing sensible heat fluxes can alter regional land-climate feedbacks and thereby intensify 83 the extreme event (Miralles et al., 2019; Barriopedro et al., 2023). Recently, García-García 84 et al. (in press) revealed that soil hot extremes can intensify faster than air temperature 85 extremes, a phenomenon driven in part by the soil moisture-temperature feedback, which 86 can further dry and warm the soil. Furthermore, heavy precipitation may turn (or not) 87 into catastrophic flooding, erosion, and land-slide events depending on the regional wa-88 ter retention potential, the local storage capacity of soils and flow control of landscapes, 89 and their geomorphological properties and vegetation structure (Brunner et al., 2021; 90 Vári et al., 2022). Both examples demonstrate that terrestrial ecosystems and their veg-91 etation characteristics play a crucial role in controlling the impacts of extreme climate 92 events. 93

Yet, the modulation of impacts of extreme events not only depends on vegetation structure but also on the functioning of ecosystems (Reichstein et al., 2014; De Boeck 95 et al., 2018; Thonicke et al., 2020a). It is important to note that ecosystem functioning 96 is connected to various dimensions of 'biodiversity', a broad concept embracing (i) ge-97 netic diversity, (ii) taxonomic diversity, (iii) functional diversity, (iv) structural diver-98 sity within ecosystems, and (v) landscape heterogeneity, to name the most relevant ones 99 for our research context (for an overview and definitions see Tab. 1). These dimensions 100 of biodiversity are not independent from each other, and the role of biodiversity in ecosys-101 tems also depends on the available species (identity). Patterns of biodiversity partly re-102 flect biogeographical history, spatial structures in geofactors ('geodiversity'), manage-103 ment, demographic history, or are an effect of internal disturbance dynamics (Bastos et 104 al., 2023). It is widely recognised that losses in biodiversity can threaten the stability 105

-4-

of ecosystems and thereby their ability to support human life (Mooney et al., 2009; Pörtner 106 et al., 2021). The reason for this is that changing biodiversity affect characteristic func-107 tions of ecosystems (Musavi et al., 2015; Migliavacca et al., 2021), such as their poten-108 tial to absorb pollutants, store carbon, or provide numerous natural resources. In the 109 context of climate extremes, biodiversity is relevant because it controls how the land sur-110 face responds to atmospheric conditions. Modification of the bio(geo)physical and bio-111 geochemical determinants of processes such as fluxes of gases, water, and energy, and the 112 release and absorption of primary emitted particles (Fröhlich-Nowoisky et al., 2016), reg-113 ulate land-surface climate feedbacks and can thereby affect local to global climate (Bonan, 114 2008; Santanello et al., 2018; Ukkola et al., 2018; Miralles et al., 2019). 115

Considering that ecosystems interact with atmospheric conditions, a crucial ques-116 tion arises (Mahecha et al., 2022): Is there a risk that changing biodiversity in ecosys-117 tems may not only weaken the resistance of ecosystems to climate extremes and their 118 capacity to provide services, but also exacerbate atmospheric hazards? In other words, 119 may biodiversity changes amplify the risk of weather and climate-related extremes? Pörtner 120 et al. (2023) recently issued a general call for a comprehensive investigation into the in-121 tricate relationship between changes in the climate system and biodiversity. Here, we con-122 duct an extensive review of pertinent literature to determine how far we can already give 123 answers to the specific aspect of extremes. We first aim to understand whether higher 124 levels of biodiversity buffer climate extremes (Section 2), and second, explore amplifi-125 cation processes of weather and climate extreme events dynamics in response to declin-126 ing biodiversity (Section 3). Based on the conclusiveness of the literature on these as-127 pects, we identify key research gaps that should be addressed to understand the full feed-128 back between biodiversity change and climate extremes (Section 4). 129

-5-

Table 1. Biodiversity is 'the variability among living organisms from all sources, [...]: this includes diversity within species, between species and of ecosystems' (CBD, 1992). Here, we provide an overview of dimensions of biodiversity relevant to ecosystem responses to and feedback processes with the atmosphere

Dimension	Definition	Illustration
Genetic	Diversity of genetic properties within and across species. Also contains her- itable changes in gene function not involving changes in DNA sequence (i.e., epigenetics).	Genetic diversity
Taxonomic	Diversity of species, calculated e.g. as species richness or evenness per unit of investigation.	 Taxonomic diversity ①
Functional	Diversity of plant functional traits i.e. the morphological, anatomical, physio- logical, biochemical properties of plants and their organs.	 Functional diversity •
Structural	Vertical and horizontal arrangements of physical components of plants and their organs, such as leaf layers and branches.	 Structural diversity +
Landscape	Diversity and complexity of lateral arrangements of ecosystems within a landscape. Contributes to the overall biodiversity of a region by shaping habi- tats that support different ecosystems; synonym for 'landscape heterogeneity'.	 Landscape diversity ①

¹³⁰ 2 Biodiversity buffers against weather and climate extremes

Numerous studies investigate how climate extremes impact ecosystems. Two key concepts are frequently used: ecosystem "resistance", which is the capacity to withstand a climate extreme, and ecosystem "resilience", which characterises how fast and complete a system recovers following an extreme event (sensu Hoover et al., 2014; De Keersmaecker et al., 2016). Together, these concepts help to differentiate and quantify the ways in which ecosystems, as a function of their biodiversity, buffer the impact of extreme climatic events (for an illustration see Fig. 1).

Given the various dimensions of biodiversity outlined in Table 1, what specific knowl-138 edge do we have about their role in buffering extremes? In terms of taxonomic diversity, 139 it appears that a few particular species often resist climate extremes, keeping up ecosys-140 tem functioning, or preventing community collapse under stress (De Laender et al., 2016; 141 Werner et al., 2021). This phenomenon is classically known as "the insurance effect" (Yachi 142 & Loreau, 1999; Loreau et al., 2021) and has been mostly inferred from experimental stud-143 ies (Kayler et al., 2015; Loreau et al., 2021). For example, Isbell et al. (2015) show that 144 grasslands with higher species diversity when exposed to exceptional dry or wet condi-145 tions have higher resistance, an effect attributed to the species-specific responses to par-146 ticular stressors (Craven et al., 2018). Liu et al. (2022) reported that forest resistances 147 against droughts increase with species richness. However, the insurance effect cannot be 148 attributed to species-specific responses only. Variations in genetic properties of individ-149 uals within species can likewise lead to varying resistance to climate extremes. This was 150 shown by Pfenninger et al. (2021), who analysed the susceptibility of individual beech 151 trees to the extreme drought in central Europe in 2018, and illustrated the wide range 152 of drought damages within a single species. 153

Intraspecific genetic diversity is one reason why taxonomic diversity alone is insuf-154 ficient to explain ecosystem responses to extremes. Another reason is that, at the ecosys-155 tem level, responses to extremes are also largely regulated by a system's "functional di-156 versity", defined by the variability of functional traits, such as leaf, stem, or root chem-157 ical properties and "structural diversity" (see Table 1). This explains why taxonomic di-158 versity alone plays only a subordinate role in stabilising ecosystem functioning in many 159 cases (Musavi et al., 2017). Mursinna et al. (2018) show that information on root trait 160 diversity is needed to explain an ecosystem's drought sensitivity. Forest responses to droughts 161

-7-

Figure 1. The ability of an ecosystem to resist or absorb changes in its states and functions over time is defined as 'resistance'. The capacity to recover to pre-event conditions is termed 'resilience'. Both resistance and resilience act over time, and jointly constitute the 'buffering capacity'. In this figure we exemplify systems with a) high resistance and low resilience, b) low resistance, and high resilience, and c) very low resilience such that the critical threshold is reached and no return to pre-event conditions can be achieved.

largely depend on the traits associated with isohydric versus anisohydric behaviour of 162 trees (Hartmann et al., 2021; Lübbe et al., 2022). In general, the diversity of functional 163 traits of organisms regulate how fluxes of energy, water, and nutrients are absorbed, stored 164 and released given certain environmental conditions (Violle et al., 2007; Berendse et al., 165 2015; Anderegg et al., 2019). Even organisms coexisting in the same ecosystem (i.e. species 166 that have passed an identical "environmental filter") exhibit a considerable degree of vari-167 ation in their functional role, and therefore in their contribution to the resistance of ecosys-168 tem with respect to weather and climate-related extreme events (resistance Reyer et al., 169 2013; Felton & Smith, 2017), and their ability to recover from such events. Figure 2 il-170 lustrates conceptually how the insurance effect, mediated via functional diversity, could 171 dampen the reduction of net primary production (NPP) and the increase in sensible heat 172 flux during a heat wave in a more diverse forest, compared to a low-diversity forest. 173

Figure 2. Illustration of the insurance effect: Hypothetical response of net primary production (NPP, net CO_2 uptake rate) to a heatwave (shown in reddish background colours) in a) a diverse forest, and c) a mono-culture. Analogous responses for energy fluxes are shown in b) and d). While low-diversity forests might initially have higher NPP, their low resistance might imply higher losses and reduced resilience given the lack of species compensation, i.e. a low insurance effect. The same effect can be observed for energy fluxes, where the ratios between latent and sensible heat fluxes change more drastically in low-diversity forests, with consequences for both ecosystems and atmospheric energy budgets.

Functional diversity is linked to structural heterogeneity at the stand level: mix-174 tures of growth forms, plant sizes, and demographic stages appear to play an equally im-175 portant role in the stabilisation of ecosystems. Guimarães-Steinicke et al. (2021) show 176 the dominant effect of varying mixtures of herbs and grasses on the variability of veg-177 etation surface temperatures. The meta-analysis by Craven et al. (2018) emphasises that 178 functional biodiversity dimensions are determined by the asynchrony of abundances and 179 thus affect the stability of ecosystem functioning. Taken together, in a changing climate 180 with increasing occurrence of extreme weather and climate-related events, all dimensions 181 of diversity may cause some degree of insurance against the shocks induced by climate 182 extremes. 183

184	The buffering role of biodiversity is, however, a scale-dependent process. In gen-
185	eral, translating insights from experiments and theory to large-scale and real-world set-
186	tings proves difficult (Kreyling et al., 2008; Grossiord et al., 2019; Gonzalez et al., 2020).
187	At the regional to continental scale, predominant and landscape heterogeneity will de-
188	termine the predominant response mechanisms (Teuling et al., 2010; Flach et al., 2021;
189	Bastos, Fu, et al., 2020). Remote sensing observations are key to overcoming scaling is-
190	sues (Cavender-Bares et al., 2022), as it can monitor ecosystem responses, extreme weather
191	and climate events from the ground, as well as from airborne- and space-borne platforms,
192	covering local to global scales (Mahecha et al., 2017; Cavender-Bares et al., 2020; Peng
193	et al., 2021). De Keersmaecker et al. (2016) study the resistance and resilience against
194	drought across grasslands in central Europe using optical remote sensing observations.
195	They conclude that nutrient-poor and species-rich grasslands appear to be more resis-
196	tant, but less resilient against drought. The reverse seems to be true for fertilised, species-
197	poor grasslands. These results are consistent with local experimental studies. The emerg-
198	ing and constantly growing body of global remote sensing data improves our capabili-
199	ties of tracing biodiversity dynamics (Skidmore et al., 2021; Cavender-Bares et al., 2022),
200	ecosystem management (M. Lange et al., 2022), and multiple land-surface processes (Mahecha
201	et al., 2020). Combined, these data streams can be also used for quantifying how ecosys-
202	tems buffer the impacts of climate extreme events, a task that should be prioritised.

Table 2. Extreme weather events are rare occurrences at a specific place and time, while climate extremes are persistent patterns of extreme weather (AR6 WG1 Ch. 11 IPCC, 2021). Four empirical descriptions of extremes are relevant: univariate, multivariate, spatiotemporal, and record-shattering. These categories describe the rarity, intensity, frequency, duration, and extent of events, including compound extremes and multiple meteorological drivers.

Extreme	Definition	Illustration
Univariate	Rarity of an event relative to a statistical probability distribution, either in terms of intensity, fre- quency, spatio-temporal extent, duration, in one variable of interest.	Ailingeou dintensity Climate variable
Compound	Multivariate indices of extremes, also referred to as 'compound' extreme events, include unusual combinations of climate drivers.	Hazard intensity Hazard intensity Glimate variable 1
Spatio- temporal	Considering the spatio-temporal extent of an extreme event leads to additional metrics such as an event's duration, geographical coverage, volume, and integrated magnitde.	Patitude Latitude
Record shattering	Events that exceed previous obser- vational records by multiple orders of magnitude, typically measured by return times, and improbable without climate change.	Pecord shattering event 1000 year return level 0bserved variability Time

3 Biodiversity imprints on atmospheric processes and extremes

Global circulation patterns determine which regions of the world are exposed to 204 high aridity or high humidity, respectively, and during which seasons. Variations in at-205 mospheric circulation also have a strong influence on extreme event occurrences (Coumou 206 & Rahmstorf, 2012). For example, atmospheric blocking situations or recurrent atmo-207 spheric wave patterns lead to extended and persistent high-pressure systems or station-208 ary lows, which may cause heatwaves or flooding that have severe consequences for ecosys-209 tem functioning (Desai et al., 2016; Flach et al., 2018; Kornhuber et al., 2019; Bastos, 210 Ciais, et al., 2020). Blocking situations are particularly frequent over Europe, and also 211 cause several other types of weather extremes (Kautz et al., 2022). Ongoing anthropogenic 212 climate change is expected to further increase extreme weather around the globe and even 213 the underlying circulation patterns are expected to change (Faranda et al., 2020). How-214 ever, the extent to which such projected circulation changes are robust over Central Eu-215 rope remains a matter of debate (Huguenin et al., 2020). 216

Although weather- and climate extreme events are primarily triggered by atmo-217 spheric processes, land-atmosphere interactions also contribute to their genesis and oc-218 currence. Management and transformation of ecosystems, and consequently biodiversity, 219 can change surface properties, including albedo and emissivity, roughness, evaporative 220 resistance, and heat fluxes (Laguë et al., 2019). These interventions can substantially 221 alter atmospheric humidity, transport dynamics, and, ultimately, cloud evolution and 222 precipitation at regional and global scales (Avissar & Werth, 2005; Machado et al., 2018). 223 It has also been shown that the surface albedo modulates the intensity of heat/drought 224 extreme events through changes in evapotranspiration and vertical energy fluxes, i.e., sen-225 sible, latent heat, and radiative energy fluxes (Miralles et al., 2019; Zhou et al., 2019). 226 Since heat and drought amplification mechanisms depend on the type of ecosystem they 227 affect, it is expected that the ecosystem itself can influence how the land-surface processes 228 propagate (Teuling et al., 2017). Ecosystem imprints of this kind can also have remote 229 effects. For instance, Schumacher et al. (2019) show that heatwaves can propagate in space 230 through lateral heat transfer (see also Miralles et al., 2019). Furthermore, ecosystem im-231 prints on atmospheric conditions change with the seasons. At higher latitudes, for ex-232 ample, snow-covered surfaces, might amplify the blocking conditions in winter high-pressure 233 situations. Arctic warming may cause extreme cold air outbreaks in winter and thus in-234

-12-

235 236 fluence the mid-latitudes. Given the biophysical imprint of ecosystems on atmospheric processes, management can be of crucial relevance for buffering extreme events.

However, the question we explore is whether there is evidence for biological func-237 tion and feedback influencing climate extremes. Furthermore, considering the impact of 238 biodiversity on biological functioning, can patterns of biodiversity be directly associated 239 with climate extremes? Possible interaction paths of biodiversity and climate extremes 240 are illustrated in Fig. 3. A key example is clouds, which are influenced by water in its 241 three thermodynamic phases, energy fluxes, the concentration of biogenic volatile com-242 pounds (BVOCs), and aerosol particle fluxes mediated by vegetation characteristics (Duveiller 243 et al., 2021), and, at the same time, exert an important and instantaneous climate-extreme 244 buffering effect. In the presence of clouds, hot days remain cooler and, inversely, cold nights 245 become warmer. Plant biodiversity stabilises ecosystem functioning (Musavi et al., 2017), 246 and thus can be considered a key player in this interaction. A more direct effect of bio-247 diversity on atmospheric processes than the control of latent heat is the emission of BVOCs, 248 which impacts the tropospheric oxidising capacity, including substances such as ozone 249 through chemical degradation processes and leads to biogenic particles of secondary ori-250 gin (Riipinen et al., 2011; Lehtipalo et al., 2018; Riccobono et al., 2014; Luttkus et al., 251 2022). Additionally, primary biogenic particles such as pollen are also directly emitted, 252 which can foster the heterogeneous freezing of super-cooled cloud droplets by acting as 253 ice-nucleating particles at warmer temperatures than in their absence (O'Sullivan et al., 254 2018; Kretzschmar et al., 2023). Vegetation stress caused by heat and drought, which 255 can result in biomass burning in the most severe cases, may lead to extremes both in at-256 mospheric aerosol particle emissions and BVOC emissions (Grote et al., 2019). More bio-257 genic particles of primary or secondary origin, are expected to trigger direct and indi-258 rect effects including an enhanced aerosol-radiation interaction, an increase of the frac-259 tion of diffuse to direct solar radiation, which in turn has a stimulating effect on vege-260 tation productivity and to enhance the land carbon sink (Rap et al., 2015, 2018). Also, 261 such aerosol particles could set off changes in cloud microphysical (droplet size, droplet 262 concentration, and liquid water content) and optical (cloud albedo and transmissivity) 263 properties and, consequently, local precipitation patterns (Niinemets, 2010; Jiang et al., 264 2018; Sporre et al., 2019). These examples suggest that vegetation plays an important 265 role in the development of local atmospheric chemistry parameters that may strongly 266 shape the development of extreme events. Considering that biodiversity influences veg-267

-13-

Figure 3. Illustration of the general role of biodiversity as a buffer to climate extremes. "Biodiversity" is understood here as a multifaceted term that embraces everything from genetic, via functional traits, to landscape scale heterogeneity, as it is currently the accepted idea in international frameworks (Pereira et al., 2013), and including "geodiversity" (Gray, 2011). All these dimensions of biodiversity constrain ecosystem functioning (Reichstein et al., 2014), effectively translating climate impulses into fluxes and signals that contribute to multiple feedback mechanisms with the atmosphere (Bonan, 2008). Alterations of biodiversity dimensions must therefore feedback to climate extremes (red arrows), which, considering the future intensification of extremes, have the potential to transform biodiversity itself. Ecosystem services are directly affected by biodiversity and ecosystem functions.

etation dynamics, it stands to reason that biodiversity should have a discernible impact on climate extremes.

A particularly intertwined set of processes links functional diversity and fire regimes (Wirth, 2005). However, in the wake of climate change, fires are also on the rise, which regionally is leading to increased burned area and fire return intervals (Jones et al., 2022). The record breaking 2019/20 fires in Australia were unprecedented in intensity and ex-

tent leading to enormous emissions of CO_2 and soot particles (van der Velde et al., 2021). 274 Given that fire dynamics depends on vegetation properties, certain plant traits and the 275 amount of available fuel are important controls of the intensity and development of fires, 276 biodiversity has also an effect on the types of particles emitted. In a recent review, Jones 277 et al. (2022) describe the complexity of the factors to consider when understanding wild-278 fires. From this review and other studies, the important role of fires on particle injec-279 tion into the atmosphere and the interaction of lightning and pyroconvenction become 280 evident (Altaratz et al., 2010; Dowdy & Pepler, 2018). Processes of this kind are exam-281 ples of how a biodiversity influences land-surface responses and mechanisms that ulti-282 mately affect the atmosphere. 283

In summary, ecosystem properties and processes can buffer the impacts of weather 284 and climate-related extremes, with their effectiveness often depending on the state of their 285 biodiversity. While it is recognised that biodiversity and land-surface dynamics may in-286 fluence certain extreme events, the extent of this influence remains inadequately under-287 stood. The precise role of biodiversity and the overall magnitude of these effects, from 288 local to global scales, have yet to be clearly quantified. Given the existing evidence of 289 this inter-connectivity, we need to consider whether deliberately increasing functional 290 diversity, through management or rewilding (Svenning et al., 2016) should be re-evaluated 291 in light of its potential to dampen extreme events. Even if shifts in ecosystem charac-292 teristics and biodiversity do not significantly alter the frequency of climate extremes, there 293 are multiple processes that have the potential to amplify or dampen a range of weather 294 and climate-related extremes and their impacts. Managing ecosystems for improved drought 295 resistance and resilience (Balch et al., 2020; Pörtner et al., 2021) could be instrumen-296 tal in influencing land-atmosphere feedbacks. To harness this potential, we need a deeper 297 understanding of these feedback mechanisms. The challenge is not necessarily a short-298 age of scientific hypotheses, but rather the integration of diverse scientific disciplines, their 299 observational methodologies, and modelling approaches. 300

Figure 4. Uncommon temporal sequences and carryover effects. Two consecutive years with combined drought and heatwaves can have particularly strong impacts since species-specific defences can be reduced and lead to higher vulnerabilities to e.g. insects. Reduced chemical defences and generally depleted pools render vegetation more sensitive. The interplay of preconditioning and carryover effects amplifies the impacts of sequential extremes. Abbreviations are: T = temperature, VPD = vapour pressure deficit, BVOCs = biogenic volatile organic compounds, H = sensible heat, LE = latent heat, and SM = soil moisture (Figure created with BioRender.com).

³⁰¹ 4 Research gaps

Despite substantial progress in understanding the relationship between climate extremes and biodiversity change, there remain substantial scientific gaps that this section will elucidate. While there is a relatively solid understanding of how ecosystems buffer at least specific types of climate extremes, the quantification of biodiversity's impact on related atmospheric processes is less developed. The subsequent points emphasize areas that require further investigation:

Quantifying biodiversity buffers across event types: For other than the well studied cases of droughts and heatwaves, we have only weak evidence for the damp ening or amplifying processes. This concerns mostly the rather small-scale events
 such as spring frost, heavy precipitation events, solar radiation- or ozone maxima.

-16-

313 314

315

316

317

312

These events have been studied less frequently and intensely, even if they are known to have locally important impacts. Radiation extremes, for instance, may evolve locally and regionally in response to specific synoptic situations, due to a lack of evaporation or in reaction to inhomogeneous cloud cover (van Heerwaarden et al., 2021; Fast et al., 2019). Impacts of weather extremes of this kind have been overlooked so far, but may be particularly sensitive to changes in biodiversity.

- Considering all dimensions of biodiversity: Genetic, taxonomic, and func-318 tional diversity shape buffers and feedback mechanisms in specific ways. How will 319 the changes in these biodiversity dimensions affect the buffering capacity of ecosys-320 tems? We assume that the key dimension to consider here is functional diversity. 321 Local features, such as canopy height represent a key buffer against thermal am-322 plification of heat extremes (Lin et al., 2020). Variations in canopy surface height 323 were found to reduce spatial variation in canopy temperatures (Guimarães-Steinicke 324 et al., 2021). Functional diversity similarly controls the amplification/dampening 325 of local climate extremes (Ratcliffe et al., 2016; Pardos et al., 2021), but so does 326 landscape composition (Flach et al., 2021; Bastos, Fu, et al., 2020) and heterogene-327 ity at larger scales (Oehri et al., 2020). What we miss is a global catalogue of how 328 each of the biodiversity dimensions interact with the variety of climate extremes. 329
- Embracing multiple spatial and temporal scales: Just like biodiversity pat-330 terns, meteorological drivers are also scale-dependent. Research is needed to in-331 clude all relevant scales, including micro-meteorological (metres to sub-km), syn-332 optic (up to 1000 km), and hemispheric to global scales, which all appear to be 333 relevant to the occurrence of extremes. Temporally, atmospheric variability ranges 334 from the weather time scales (hours/days) to the interannual and multidecadal 335 patterns of large-scale circulations. Completing our picture of biodiversity buffers 336 and feedback mechanisms at different scales will require addressing feedbacks across 337 spatial and temporal scales. Remote sensing of land surface and atmospheric prop-338 erties offers the means for studies of this kind, and the first examples show how 339 landscape heterogeneity influences ecosystem functioning across scales (Oehri et 340 al., 2020). Scale-bridging exercises are important since ecosystems not only have 341 characteristic resistances to weather- and climate-related extremes. They are also 342 part of a dynamic pulse-response mechanism Harris et al. (2018) that controls nu-343

-17-

merous processes at the land-atmosphere interface at different and interacting spatiotemporal scales (see Fig. 2), which need to be understood more deeply.

• The critical role of time: Another crucial aspect related to the impact of ex-346 tremes is their timing. Ecosystems are composed of individual organisms, each fol-347 lowing characteristic phenology and responses to environmental conditions. Func-348 tional traits vary over time, making the functional diversity of entire ecosystems 349 time-dependent (Ma et al., 2020). In consequence, resistance and resilience at the 350 ecosystem level are determined by an interplay of event-timing and a time-dependent 351 buffering capacity. At longer time scales, an ecosystem's specific succession stage 352 leads to different response trajectories (Johnstone et al., 2016). Besides timing, 353 both duration (von Buttlar et al., 2018) and recurrence (Anderegg et al., 2020; 354 Bastos et al., 2021) of extremes are decisive for an ecosystem's resistance and re-355 silience (Frank et al., 2015; Sippel et al., 2018; Thonicke et al., 2020a). This means 356 that any feedback mechanisms between biodiversity and climate extremes must 357 also be time-dependent. 358

• **Preconditions are key determinants:** Pre-exposure critically determines how 359 ecosystems' resistance and resilience interact with weather or climate-related ex-360 tremes. Warm spring seasons combined with early water shortage may result in 361 lower summer resistance to extremes (Flach et al., 2018; Sippel et al., 2018). Lower 362 resistances diminish the buffer capacity of ecosystems, allowing impacts of extremes 363 in subsequent seasons to be more readily amplified (see fig. 1). On longer time scales, 364 increased disturbance regimes can further influence such feedbacks (Seidl et al., 365 2017; Forzieri et al., 2021). Recent work reveals the importance of memory effects 366 in sequential hot drought years for tree growth and stress responses (Bastos, Ciais, 367 et al., 2020; Schnabel et al., 2021). Figure 4 illustrates how an ecosystem's buffer-368 ing capacity is weakened by an extreme event, such that consecutive droughts may 369 lead to an even longer-lasting impact on vegetation dynamics and functions in fol-370 lowing years. Research on lagged responses, such as the species-specific tree mor-371 tality caused by climate extremes, is still in its infancy (Sippel et al., 2018; Cailleret 372 et al., 2019; Zscheischler et al., 2020). Understanding these complex impact chains 373 requires scrutinising their drivers and modulating factors (Zscheischler et al., 2020; 374 Kretschmer et al., 2021). 375

-18-

• Understanding bidirectional effects: Land-surface composition plays a cru-376 cial role in the development and propagation of certain extreme events. However, 377 predicting how ecosystem's biodiversity shapes land-atmosphere interactions is not 378 yet possible. Even less is known about the imprint of specific biodiversity features 379 and processes that modulate these interactions and regulate extremes. Effects of 380 this type are manifold and range from emission of biogenic aerosol particles act-381 ing as ice-nucleating particles required for heterogeneous ice formation in clouds 382 (Jokinen et al., 2015), to carbon cycle effects (Reichstein et al., 2013), and large-383 scale land-surface-atmosphere interactions (Forzieri et al., 2020). In this context, 384 it is important to recognise the indirect effects of biodiversity in stabilising plant 385 communities and vegetation structure. If biodiversity helps prevent a biome shift 386 from tropical forests to grasslands (see (Sakschewski et al., 2016)), this has ma-387 jor implications for the land-atmosphere feedback. Overall, we find that many re-388 search gaps prevent from accurately predicting how changing dimensions of bio-389 diversity are affected and how they, in turn, modulate different types of atmospheric 390 and climatic extremes. 391

• From anticipation to sustainable management: Climate change and the on-392 going transformation of terrestrial ecosystems lead to unprecedented constellations 393 of climate extremes and biodiversity. For instance, little is known about whether 394 extremes that exceed historical records by large margins (Fischer et al., 2021) have 395 disproportionately large effects on ecosystems, thus exceeding the adaptive capac-396 ities, or whether ecosystems are able to cushion the impact of such drastic extremes. 397 While such events have been observed recently, the rarity of these events, their ex-398 pected increase in the future, and the limitations of current models to represent 399 the complex feedback between climate extremes and biodiversity across spatio-400 temporal scales expose another research gap. Currently, even the conceptual ba-401 sis to address this gap has not yet been developed. It is unclear what level of pro-402 cess complexity and spatio-temporal scales need to be represented for robust pro-403 jections and whether this is computationally feasible. As a consequence, the strength 404 and even the sign of the feedback between biodiversity change and diverse types 405 of climate extremes at different scales remain unknown. Management for climate 406 adaptation and mitigation would require reliable predictive models that have only 407

-19-

408

409

started to represent certain aspects of functional diversity, which needs to be developed much further.

• Socio-ecological dimensions and systemic risk: Thinking ahead, we would 410 argue that ultimately empirical and modelling research needs to develop more in-411 tegrated approaches that consider biodiversity, multiple ecosystem services, and 412 social-ecological dynamics together (Thonicke et al., 2020b) to fully address feed-413 backs leading to systemic risks of climate extremes (Reichstein et al., 2021). This 414 approach requires collaboration between different disciplines, such as ecology, at-415 mospheric sciences and climatology, psychology, and social sciences. The under-416 standing of the interactions between climate extremes, biodiversity, ecosystem ser-417 vices, and socio-ecological systems can also inform policy and management strate-418 gies for reducing greenhouse gas emissions and mitigating the impacts of climate 419 change without sacrificing other ecosystem services. For example, policies that pri-420 oritise the protection of critical ecosystems and biodiversity can enhance the re-421 silience of ecosystems to climate extremes and support carbon sequestration, which 422 can help mitigate the impacts of climate change in a no-regret strategy (Erb et 423 al., 2022). 424

The overarching and unresolved question we identify here is: When do we expect 425 dampening or amplifications due to interactions between biodiversity dynamics and cli-426 mate extremes? Only by answering this question can we manage ecosystems to maximise 427 their resistance and resilience to future climate conditions, in particular to more frequent 428 extremes. More research is required to understand and quantify such feedback mecha-429 nisms and their spatial and temporal dependencies. Local-scale studies are particularly 430 important to quantify changes in biodiversity-related drivers of the climate system. A 431 pivotal issue that remains unresolved is how to quantify the imprints of local and small-432 scale biodiversity patterns on large-scale synoptic or global circulation patterns. An ad-433 ditional complication is how to identify the remote influence of biodiversity linked to at-434 mospheric teleconnections. 435

436 5 Summary and Conclusions

The scientific gaps identified in this paper require a rethinking of current research priorities and the development of an ambitious interdisciplinary agenda. This strategic plan needs to explore the relationships between biodiversity and ecosystem dynamics in response to climate extremes, and as a mechanism in the evolution of climate extremes at multiple spatial scales and across large environmental gradients.

One cornerstone is observations. There is an urgent need for large-scale observa-442 tional studies to establish causal relationships and their relevance at different spatial and 443 temporal scales. In-situ and remote sensing observations that can simultaneously quan-444 tify multiple dimensions of taxonomic, structural, functional, and landscape diversity and 445 composition need to be aligned with the monitoring of atmospheric thermodynamics and 446 composition. There are fundamental advances in satellite-based Earth observations for 447 both climate and ecosystem monitoring (Mahecha et al., 2020; Skidmore et al., 2021) that 448 are increasingly integrated with in-situ observations of biodiversity (Dornelas et al., 2018), 449 global observatories of ecosystem-atmosphere exchanges such as FLUXNET (Baldocchi, 450 2020), or specific processes such as tree mortality (Hartmann et al., 2018). Machine learn-451 ing plays a key role in achieving this much-needed data integration (Bodesheim et al., 452 2022) and is increasingly empowered by deep learning (Reichstein et al., 2019). 453

Next to high-quality observations, we need powerful models. We must understand 454 how terrestrial ecosystem dynamics feed back into atmospheric variability and how bio-455 diversity modulates these relationships. For this aim, we need a new generation of pre-456 dictive models that is capable of capturing the interactions between atmospheric pro-457 cesses, biodiversity patterns, and ecosystems. The models need to be able to adequately 458 test hypotheses about feedback mechanisms. The development of functional digital twins 459 of the climate system is now in reach, soon providing climate simulations at the kilome-460 tre scale (Bauer et al., 2021; Slingo et al., 2022), but high-resolution simulations alone 461 are likely not enough to accurately reflect the coupling and feedbacks between climate 462 and biodiversity. The digital twin concept for ecosystems is still in a more conceptual 463 phase (Buonocore et al., 2022), as much research needs to be done for realistically rep-464 resenting biodiversity in land-surface models (Scheiter et al., 2013; Bendix et al., 2021). 465 Today, a series of prototypes of a Digital Twin for biodiversity is currently being devel-466 oped. Once developed, such models will allow to predict in detail what types of man-467

-21-

agement interventions would increase ecosystem resistance and resilience to changing cli-468 mate extremes. 469

Today, there is a growing awareness of the interconnections of biodiversity decline 470 and climate change, as shown in a recent report jointly published by IPCC & IPBES (Pörtner 471 et al., 2021; Pörtner et al., 2023) and in a series of policy tools. For instance, the new 472 European Union (EU) Forest Strategy for 2030 and other high-level policy initiatives by 473 the European Commission have recognised the value of the multi-functionality of forests, 474 including their regulatory role in atmospheric processes. However, the observational and 475 modelling bases are rather weak. Elsewhere, the lack of research on the feedback loop 476 linking biodiversity change and climate extremes is also evident in policy, which some-477 times pays too little attention to both aspects. One example is the consideration of cli-478 mate extremes and biodiversity in the Common Agricultural Policy of the EU. The EU's 479 subsidy policy has caused more than 70 percent of agricultural land to grow feed for live-480 stock. This promotes monocultures, the cheap consumption of meat in the EU and harms 481 not only the climate but also biodiversity. At the same time, there is a lack of scientific 482 studies on the interactions between loss of biodiversity and climate extremes. By address-483 ing these critical research gaps, we will significantly enhance our understanding of bio-484 diversity buffers, thereby aiding efforts to preserve their capacity to mitigate climate ex-485 tremes and safeguard ecosystem resilience. 486

487

Data avaialibility statement

488

This paper is based on a literature review; no original data have been used. All figures were generated based on conceptual considerations using the biorender.org software. 489

Acknowledgments 490

This work was supported by the Saxon State Ministry for Science, Culture and Tourism 491 (SMWK project 232171353) and the German Centre for Integrative Biodiversity Research 492 (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118, 202548816). 493 Leipzig University thanks the DLR for funding ML4Earth and the VW foundation and 494 Niedersächsisches Vorab for funding "Digital Forest". Leipzig University and the Max 495 Planck Institute for Biogeochemistry thank the European Space Agency for funding "Deep 496 Extremes" via AI4Science and the EU for funding the "XAIDA" project, grant agree-497 ment No 101003469. 498

-22-

499 **References**

500	Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank,
501	A. M. G., Vazquez-Aguirre, J. L. (2006). Global observed changes in daily
502	climate extremes of temperature and precipitation. Journal of Geophysical
503	Research: Atmospheres, 111(D5). doi: 10.1029/2005JD006290
504	Altaratz, O., Koren, I., Yair, Y., & Price, C. (2010). Lightning response to smoke
505	from amazonian fires. Geophysical Research Letters, 37(7).
506	Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G., & Shaw, J.
507	(2020). Divergent forest sensitivity to repeated extreme droughts. <i>Nature</i>
508	Climate Change, $10(12)$, 1091–1095. doi: 10.1038/s41558-020-00919-1
509	Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E.
510	(2019). Plant functional traits and climate influence drought intensifica-
511	tion and land-atmosphere feedbacks. Proceedings of the National Academy
512	of Sciences of the United States of America, $116(28)$, $14071-14076$. doi:
513	10.1073/pnas.1904747116
514	Avissar, R., & Werth, D. (2005). Global Hydroclimatological Teleconnections Re-
515	sulting from Tropical Deforestation. Journal of Hydrometeorology, $6(2)$, 134–
516	145. doi: 10.1175/JHM406.1
517	Balch, J. K., Iglesias, V., Braswell, A. E., Rossi, M. W., Joseph, M. B., Mahood,
518	A. L., Travis, W. R. (2020). Social-Environmental Extremes: Rethink-
519	ing Extraordinary Events as Outcomes of Interacting Biophysical and Social
520	Systems. Earth's Future, 8(7). doi: 10.1029/2019EF001319
521	Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed
522	to our understanding of global change biology. Global change biology, $26(1)$,
523	242-260.
524	Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D., & Salcedo-Sanz, S.
525	(2023). Heat waves: Physical understanding and scientific challenges. $Reviews$
526	of $Geophysics$, $e2022RG000780$.
527	Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Zaehle, S.
528	(2020). Direct and seasonal legacy effects of the 2018 heat wave and drought
529	on European ecosystem productivity. Science Advances, $6(24)$, eaba2724. doi:
530	10.1126/sciadv.aba2724
531	Bastos, A., Fu, Z., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Zaehle, S.

532	(2020). Impacts of extreme summers on European ecosystems: a comparative
533	analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Soci-
534	ety B: Biological Sciences, 375 (1810), 20190507. doi: 10.1098/rstb.2019.0507
535	Bastos, A., Orth, R., Reichstein, M., Ciais, P., Viovy, N., Zaehle, S., Sitch, S.
536	(2021). Increased vulnerability of European ecosystems to two compound dry
537	and hot summers in 2018 and 2019. <i>Earth System Dynamics Discussions</i> ,
538	1-32. doi: $10.5194/esd-2021-19$
539	Bastos, A., Sippel, S., Frank, D., Mahecha, M. D., Zaehle, S., Zscheischler, J., &
540	Reichstein, M. (2023). A joint framework for studying compound ecoclimatic
541	events. Nature Reviews Earth & Environment, 1–18.
542	Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., & Wedi, N. P.
543	(2021). The digital revolution of earth-system science. Nature Computational
544	Science, 1(2), 104-113.
545	Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012,
546	April). Impacts of climate change on the future of biodiversity. <i>Ecology Let</i> -
547	ters, 15(4), 365–377. doi: 10.1111/j.1461-0248.2011.01736.x
548	Bendix, J., Aguire, N., Beck, E., Bräuning, A., Brandl, R., Breuer, L., others
549	(2021). A research framework for projecting ecosystem change in highly diverse
550	tropical mountain ecosystems. $Oecologia, 195(3), 589-600.$
551	Berendse, F., van Ruijven, J., Jongejans, E., & Keesstra, S. (2015). Loss of plant
552	species diversity reduces soil erosion resistance. <i>Ecosystems</i> , 18, 881–888.
553	Bodesheim, P., Babst, F., Frank, D. C., Hartl, C., Zang, C. S., Jung, M., Ma-
554	hecha, M. D. (2022). Predicting spatiotemporal variability in radial tree
555	growth at the continental scale with machine learning. Environmental Data
556	Science, 1.
557	Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Cli-
558	mate Benefits of Forests. Science, 320(5882), 1444–1449. doi: 10.1126/science
559	.1155121
560	Brunner, M. I., Slater, L., Tallaksen, L. M., & Clark, M. (2021). Challenges in mod-
561	eling and predicting floods and droughts: A review. Wiley Interdisciplinary
562	Reviews: Water, $8(3)$, e1520.
563	Buonocore, L., Yates, J., & Valentini, R. (2022). A proposal for a forest digital twin
564	framework and its perspectives. Forests, $13(4)$, 498 .

565	Cailleret, M., Dakos, V., Jansen, S., Robert, E. M. R., Aakala, T., Amoroso, M. M.,
566	\ldots Martínez-Vilalta, J. (2019). Early-Warning Signals of Individual Tree Mor-
567	tality Based on Annual Radial Growth. Frontiers in Plant Science, 9, 1964.
568	doi: 10.3389/fpls.2018.01964
569	Cavender-Bares, J., Gamon, J., & Townsend, P. (Eds.). (2020). Remote Sensing of
570	Plant Biodiversity. Springer International Publishing. doi: 10.1007/978-3-030
571	-33157-3
572	Cavender-Bares, J., Schneider, F. D., Santos, M. J., Armstrong, A., Carnaval, A.,
573	Dahlin, K. M., Wilson, A. M. (2022). Integrating remote sensing with
574	ecology and evolution to advance biodiversity conservation. Nature Ecology &
575	Evolution. doi: $10.1038/s41559-022-01702-5$
576	CBD. (1992). Convention on biological diversity: text and annex. United Nations
577	Environment Programme. Retrieved from http://www.cbd.int/doc/legal/
578	cbd-en.pdf
579	Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature climate
580	$change, \ 2(7), \ 491-496.$
581	Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C.,
582	\dots Manning, P. (2018). Multiple facets of biodiversity drive the diversity-
583	stability relationship. Nature Ecology & Evolution, $2(10)$, 1579–1587. doi:
584	10.1038/s41559-018-0647-7
585	De Boeck, H. J., Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs, I., Jentsch,
586	A., & Zeiter, M. (2018). Patterns and drivers of biodiversity–stability rela-
587	tionships under climate extremes. Journal of $Ecology$, $106(3)$, 890–902. doi:
588	10.1111/1365-2745.12897
589	De Keersmaecker, W., van Rooijen, N., Lhermitte, S., Tits, L., Schaminée, J., Cop-
590	pin, P., Somers, B. (2016). Species-rich semi-natural grasslands have a
591	higher resistance but a lower resilience than intensively managed agricultural
592	grasslands in response to climate anomalies. Journal of Applied Ecology, $53(2)$,
593	430–439. doi: 10.1111/1365-2664.12595
594	De Laender, F., Rohr, J. R., Ashauer, R., Baird, D. J., Berger, U., Eisenhauer, N.,
595	\ldots Van den Brink, P. J. (2016). Reintroducing Environmental Change Drivers
596	in Biodiversity-Ecosystem Functioning Research. Trends in Ecology & Evolu-
597	tion, $31(12)$, 905–915. doi: 10.1016/j.tree.2016.09.007

598	Desai, A. R., Wohlfahrt, G., Zeeman, M. J., Katata, G., Eugster, W., Montagnani,
599	L., Schmid, HP. (2016). Montane ecosystem productivity responds more
600	to global circulation patterns than climatic trends. Environmental Research
601	Letters, $11(2)$, 024013. doi: 10.1088/1748-9326/11/2/024013
602	Dornelas, M., Antao, L. H., Moyes, F., Bates, A. E., Magurran, A. E., Adam, D.,
603	\dots others (2018). Biotime: A database of biodiversity time series for the
604	anthropocene. Global Ecology and Biogeography, 27(7), 760–786.
605	Dowdy, A. J., & Pepler, A. (2018). Pyroconvection risk in australia: Climatological
606	changes in atmospheric stability and surface fire weather conditions. $Geophysi$ -
607	cal Research Letters, $45(4)$, 2005–2013.
608	Duveiller, G., Filipponi, F., Ceglar, A., Bojanowski, J., Alkama, R., & Cescatti, A.
609	(2021). Revealing the widespread potential of forests to increase low level
610	cloud cover. Nat. Commun., 12, 4337. doi: 10.1038/s41467-021-24551-5
611	Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Za-
612	yas, C. N. (2019). Pervasive human-driven decline of life on Earth points to
613	the need for transformative change. Science (New York, N.Y.), 366(6471),
614	eaax3100. doi: 10.1126 /science.aax3100
615	Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., others
616	(2021). Hot weather and heat extremes: health risks. The Lancet, $398(10301)$,
617	698-708.
618	Erb, KH., Haberl, H., Le Noë, J., Tappeiner, U., Tasser, E., & Gingrich, S. (2022).
619	Changes in perspective needed to forge 'no-regret'forest-based climate change
620	mitigation strategies. GCB Bioenergy, $14(3)$, 246–257.
621	Faranda, D., Vrac, M., Yiou, P., Jézéquel, A., & Thao, S. (2020). Changes in future
622	synoptic circulation patterns: consequences for extreme event attribution. Geo -
623	physical Research Letters, $47(15)$, e2020GL088002.
624	Fast, J. D., Berg, L. K., Feng, Z., Mei, F., Newsom, R., Sakaguchi, K., & Xiao, H.
625	(2019). The Impact of Variable Land-Atmosphere Coupling on Convective
626	Cloud Populations Observed During the 2016 HI-SCALE Field Campaign.
627	Journal of Advances in Modeling Earth Systems, 11(8), 2629–2654. doi:
628	10.1029/2019MS001727
629	Felton, A. J., & Smith, M. D. (2017). Integrating plant ecological responses to cli-
630	mate extremes from individual to ecosystem levels. <i>Philosophical Transactions</i>

631	of the Royal Society B: Biological Sciences, 372(1723), 20160142. doi: 10.1098/
632	rstb.2016.0142
633	Fischer, E., Sippel, S., & Knutti, R. (2021). Increasing probability of record-
634	shattering climate extremes. Nature Climate Change, $11(8)$, $689-695$. doi:
635	10.1038/s41558-021-01092-9
636	Flach, M., Brenning, A., Gans, F., Reichstein, M., Sippel, S., & Mahecha, M. D.
637	(2021). Vegetation modulates the impact of climate extremes on gross primary
638	production. Biogeosciences, $18(1)$, 39–53. doi: 10.5194/bg-18-39-2021
639	Flach, M., Sippel, S., Gans, F., Bastos, A., Brenning, A., Reichstein, M., & Ma-
640	hecha, M. D. (2018) . Contrasting biosphere responses to hydrometeorological
641	extremes: revisiting the 2010 western Russian heatwave. Biogeosciences,
642	15(20), 6067-6085. doi: 10.5194/bg-15-6067-2018
643	Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H.,
644	Cescatti, A. (2021). Emergent vulnerability to climate-driven disturbances
645	in European forests. Nature Communications, $12(1)$, 1081. Retrieved 2021-
646	12-21, from https://www.nature.com/articles/s41467-021-21399-7 doi:
647	10.1038/s41467-021-21399-7
648	Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G.,
649	Cescatti, A. (2020, April). Increased control of vegetation on global ter-
650	restrial energy fluxes. Nature Climate Change, $10(4)$, $356-362$. Retrieved
651	2021-12-21, from https://www.nature.com/articles/s41558-020-0717-0
652	doi: 10.1038/s41558-020-0717-0
653	Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N.,
654	Zhang, X. (2021). Anthropogenic intensification of short-duration rain-
655	fall extremes. Nature Reviews Earth & Environment, $2(2)$, 107–122. doi:
656	10.1038/s43017-020-00128-6
657	Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D.,
658	Zscheischler, J. (2015). Effects of climate extremes on the terrestrial car-
659	bon cycle: concepts, processes and potential future impacts. Global Change
660	Biology, 21(8), 2861-2880.doi: 10.1111/gcb.12916
661	Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., An-
662	dreae, M. O., others (2016). Bioaerosols in the earth system: Climate,
663	health, and ecosystem interactions. Atmospheric Research, 182, 346–376.

-27-

664	García-García, A., Cuesta-Valero, F. C., Miralles, D. G., Mahecha, M. D., Quaas,
665	J., Reichstein, M., Peng, J. (in press). Soil heat extremes outpace
666	their atmospheric counterpart. Nature Climate Change. Retrieved from
667	https://www.researchsquare.com/article/rs-2832579/v1 doi:
668	https://doi.org/10.21203/rs.3.rs-2832579/v1
669	Gonzalez, A., Germain, R. M., Srivastava, D. S., Filotas, E., Dee, L. E., Gravel, D.,
670	Loreau, M. (2020). Scaling-up biodiversity-ecosystem functioning research.
671	$Ecology \ Letters, \ 23(4), \ 757-776. \ doi: \ 10.1111/ele.13456$
672	Gray, M. (2011). Other nature: geodiversity and geosystem services. <i>Environmental</i>
673	Conservation, $38(3)$, 271–274. doi: 10.1017/S0376892911000117
674	Grossiord, C., Sevanto, S., Bonal, D., Borrego, I., Dawson, T. E., Ryan, M., Mc-
675	Dowell, N. G. (2019). Prolonged warming and drought modify belowground
676	interactions for water among coexisting plants. Tree Physiology, $39(1)$, 55–63.
677	doi: 10.1093 /treephys/tpy080
678	Grote, R., Sharma, M., Ghirardo, A., & Schnitzler, JP. (2019). A New Mod-
679	eling Approach for Estimating Abiotic and Biotic Stress-Induced de novo
680	Emissions of Biogenic Volatile Organic Compounds From Plants. Fron-
681	tiers in Forests and Global Change, 2, 26. Retrieved 2021-12-21, from
682	https://www.frontiersin.org/article/10.3389/ffgc.2019.00026 doi:
683	$10.3389/{ m ffgc}.2019.00026$
684	Guimarães-Steinicke, C., Weigelt, A., Proulx, R., Lanners, T., Eisenhauer, N.,
685	Duque-Lazo, J., others (2021). Biodiversity facets affect community
686	surface temperature via 3d canopy structure in grassland communities. $Journal$
687	of $Ecology$, $109(5)$, 1969–1985.
688	Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A.,
689	Perkins-Kirkpatrick, S. E., Bowman, D. M. J. S. (2018). Biological re-
690	sponses to the press and pulse of climate trends and extreme events. <i>Nature</i>
691	Climate Change, 8(7), 579–587. doi: 10.1038/s41558-018-0187-9
692	Hartmann, H., Link, R. M., & Schuldt, B. (2021). A whole-plant perspective of iso-
693	hydry: stem-level support for leaf-level plant water regulation. Tree Physiology,
694	41(6), 901-905.
695	Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen,
696	C. D., O'Brien, M. (2018). Research frontiers for improving our un-

697	derstanding of drought-induced tree and forest mortality. New Phytologist,
698	218(1), 15–28. doi: 10.1111/nph.15048
699	Hoover, D. L., Knapp, A. K., & Smith, M. D. (2014). Resistance and resilience of a
700	grassland ecosystem to climate extremes. $Ecology, 95(9), 2646-2656.$
701	Huguenin, M. F., Fischer, E. M., Kotlarski, S., Scherrer, S. C., Schwierz, C., &
702	Knutti, R. (2020). Lack of change in the projected frequency and persistence
703	of atmospheric circulation types over central europe. Geophysical Research
704	Letters, 47(9), e2019GL086132.
705	IPBES. (2019, May). Global assessment report on biodiversity and ecosystem ser-
706	vices of the Intergovernmental Science-Policy Platform on Biodiversity and
707	Ecosystem Services (Tech. Rep.). IPBES secretariat, Bonn, Germany. doi:
708	10.5281/zenodo. 3831673
709	IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution
710	of Working Group I to the Sixth Assessment Report of the Intergovernmen-
711	tal Panel on Climate Change (V. Masson-Delmotte et al., Eds.). Cambridge
712	University Press.
713	Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C.,
714	\dots Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosys-
715	tem productivity to climate extremes. Nature, $526(7574)$, $574-577$. doi:
716	10.1038/nature15374
717	Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden,
718	A. S., others (2022). The direct drivers of recent global anthropogenic
719	biodiversity loss. Science Advances, $\mathcal{S}(45)$, eabm9982.
720	Jiang, X., Guenther, A., Potosnak, M., Geron, C., Seco, R., Karl, T., Pallardy,
721	S. (2018). Isoprene Emission Response to Drought and the Impact on Global
722	Atmospheric Chemistry. Atmospheric environment (Oxford, England : 1994),
723	183, 69-83. doi: 10.1016/j.atmosenv.2018.01.026
724	Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera,
725	P. E., others (2016). Changing disturbance regimes, ecological mem-
726	ory, and forest resilience. Frontiers in Ecology and the Environment, $14(7)$,
727	369 - 378.
728	Jokinen, T., Berndt, T., Makkonen, R., Kerminen, VM., Junninen, H., Paaso-
729	nen, P., Sipilä, M. (2015). Production of extremely low volatile organic

-29-

730	compounds from biogenic emissions: Measured yields and atmospheric implica-
731	tions. Proceedings of the National Academy of Sciences, 112(23), 7123–7128.
732	Retrieved 2021-12-21, from https://www.pnas.org/content/112/23/7123
733	doi: $10.1073/\text{pnas}.1423977112$
734	Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel,
735	M., others (2022) . Global and regional trends and drivers of fire under
736	climate change. Reviews of Geophysics, e2020RG000726.
737	Kautz, LA., Martius, O., Pfahl, S., Pinto, J. G., Ramos, A. M., Sousa, P. M.,
738	& Woollings, T. (2022). Atmospheric blocking and weather extremes over
739	the euro-atlantic sector – a review. Weather and Climate Dynamics, $\Im(1)$,
740	305-336. Retrieved from https://doi.org/10.5194/wcd-3-305-2022 doi:
741	10.5194/wcd-3-305-2022
742	Kayler, Z. E., De Boeck, H. J., Fatichi, S., Grünzweig, J. M., Merbold, L., Beier, C.,
743	\dots Dukes, J. S. (2015). Experiments to confront the environmental extremes
744	of climate change. Frontiers in Ecology and the Environment, $13(4)$, $219-225$.
745	doi: 10.1890/140174
746	Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S., &
747	Gray, L. (2019). Extreme weather events in early summer 2018 connected by a
748	recurrent hemispheric wave-7 pattern. Environmental Research Letters, $14(5)$,
749	054002.
750	Kretschmer, M., Adams, S., Arribas, A., Prudden, R., Robinson, N., Saggioro, E., &
751	Shepherd, T. (2021). Quantifying causal pathways of teleconnections. $B. Am.$
752	Meteorol. Soc., 102, E2247–E2263.
753	Kretzschmar, J., Pöhlker, M., Stratmann, F., Wex, H., Wirth, C., & Quaas, J.
754	(2023). From trees to rain: Enhancement of cloud glaciation and precipitation
755	by pollen. arXiv. Retrieved from https://arxiv.org/abs/2305.06758 doi:
756	10.48550/ARXIV.2305.06758
757	Kreyling, J., Wenigmann, M., Beierkuhnlein, C., & Jentsch, A. (2008). Effects
758	of Extreme Weather Events on Plant Productivity and Tissue Die-Back are
759	Modified by Community Composition. $Ecosystems, 11(5), 752-763.$ doi:
760	10.1007/s10021-008-9157-9
761	Laguë, M. M., Bonan, G. B., & Swann, A. L. (2019). Separating the impact of
762	individual land surface properties on the terrestrial surface energy budget in

-30-

763	both the coupled and uncoupled land–atmosphere system. Journal of Climate,
764	32(18), 5725-5744.
765	Lange, M., Feilhauer, H., Kühn, I., & Doktor, D. (2022). Mapping land-use intensity
766	of grasslands in germany with machine learning and sentinel-2 time series. Re -
767	mote Sensing of Environment, 277, 112888.
768	Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., others
769	(2020). Projecting exposure to extreme climate impact events across six event
770	categories and three spatial scales. Earth's Future, $\mathcal{S}(12)$, e2020EF001616.
771	Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R., Worsnop,
772	D. R. (2018). Multicomponent new particle formation from sulfuric acid,
773	ammonia, and biogenic vapors. Science Advances, $4(12)$, eaau5363. Retrieved
774	2021-12-21, from https://www.science.org/doi/10.1126/sciadv.aau5363
775	doi: 10.1126/sciadv.aau5363
776	Lin, H., Tu, C., Fang, J., Gioli, B., Loubet, B., Gruening, C., \dots Grace, J. (2020).
777	Forests buffer thermal fluctuation better than non-forests. Agricultural and
778	Forest Meteorology, 288-289 (107994). doi: 10.1016/j.agrformet.2020.107994
779	Liu, D., Wang, T., Peñuelas, J., & Piao, S. (2022). Drought resistance enhanced by
780	tree species diversity in global forests. Nature Geoscience, $15(10)$, 800–804.
781	Loreau, M., Barbier, M., Filotas, E., Gravel, D., Isbell, F., Miller, S. J., Dee,
782	L. E. (2021). Biodiversity as insurance: from concept to measurement and
783	application. Biological Reviews, $96(5)$, 2333–2354. doi: 10.1111/brv.12756
784	Lübbe, T., Lamarque, L. J., Delzon, S., Torres Ruiz, J. M., Burlett, R., Leuschner,
785	C., & Schuldt, B. (2022). High variation in hydraulic efficiency but not xylem
786	safety between roots and branches in four temperate broad-leaved tree species.
787	Functional Ecology, $36(3)$, $699-712$.
788	Luttkus, M. L., Hoffmann, E. H., Poulain, L., Tilgner, A., & Wolke, R. (2022). The
789	Effect of Land Use Classification on the Gas-Phase and Particle Composition
790	of the Troposphere: Tree Species Versus Forest Type Information. Journal of
791	Geophysical Research: Atmospheres, 127(7). doi: 10.1029/2021JD035305
792	Ma, X., Migliavacca, M., Wirth, C., Bohn, F. J., Huth, A., Richter, R., & Mahecha,
793	M. D. (2020). Monitoring Plant Functional Diversity Using the Reflectance
794	and Echo from Space. Remote Sensing, $12(8)$, 1248 . doi: 10.3390/rs12081248
795	Machado, L. A. T., Calheiros, A. J. P., Biscaro, T., Giangrande, S., Silva Dias,

-31-

796	M. A. F., Cecchini, M. A., Wendisch, M. (2018). Overview: Precipitation
797	characteristics and sensitivities to environmental conditions during GoAma-
798	zon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics,
799	18(9), 6461-6482. doi: 10.5194/acp-18-6461-2018
800	Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hartmann,
801	H., Wirth, C. (2022). Biodiversity loss and climate extremes – study the
802	feedbacks. <i>Nature</i> , 621, 30–32.
803	Mahecha, M. D., Gans, F., Brandt, G., Christiansen, R., Cornell, S. E., Fomferra,
804	N., Reichstein, M. (2020). Earth system data cubes unravel global
805	multivariate dynamics. $Earth System Dynamics, 11(1), 201-234.$ doi:
806	10.5194/esd-11-201-2020
807	Mahecha, M. D., Gans, F., Sippel, S., Donges, J. F., Kaminski, T., Metzger, S.,
808	Zscheischler, J. (2017). Detecting impacts of extreme events with ecolog-
809	ical in situ monitoring networks. $Biogeosciences, 14(18), 4255-4277.$ doi:
810	10.5194/bg-14-4255-2017
811	Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Bal-
812	docchi, D. D., Reichstein, M. (2021, October). The three major
813	axes of terrestrial ecosystem function. $Nature, 598(7881), 468-472.$ doi:
814	10.1038/s41586-021-03939-9
815	Miralles, D. G., Gentine, P., Seneviratne, S. I., & Teuling, A. J. (2019).
816	Land–atmospheric feedbacks during droughts and heatwaves: state of the
817	science and current challenges. Annals of the New York Academy of Sciences,
818	1436(1), 19-35. doi: 10.1111/nyas.13912
819	Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., La-
820	vorel, S., Yahara, T. (2009). Biodiversity, climate change, and ecosystem
821	services. Current Opinion in Environmental Sustainability, $1(1)$, 46–54. doi:
822	10.1016/j.cosust.2009.07.006
823	Mursinna, A. R., McCormick, E., Van Horn, K., Sartin, L., & Matheny, A. M.
824	(2018). Plant Hydraulic Trait Covariation: A Global Meta-Analysis to Re-
825	duce Degrees of Freedom in Trait-Based Hydrologic Models. Forests, $9(8)$, 446.
826	doi: 10.3390/f9080446
827	Musavi, T., Mahecha, M. D., Migliavacca, M., Reichstein, M., van de Weg, M. J.,
828	van Bodegom, P. M., \ldots others (2015). The imprint of plants on ecosystem

829	functioning: A data-driven approach. International Journal of Applied Earth
830	Observation and Geoinformation, 43, 119–131.
831	Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A.,
832	Mahecha, M. D. (2017, January). Stand age and species richness dampen in-
833	terannual variation of ecosystem-level photosynthetic capacity. Nature $Ecology$
834	& Evolution, $1(2)$, 1–7. doi: 10.1038/s41559-016-0048
835	Niinemets, Ü. (2010). Mild versus severe stress and byocs: thresholds, priming and
836	consequences. Trends in plant science, 15(3), 145–153.
837	Oehri, J., Schmid, B., Schaepman-Strub, G., & Niklaus, P. A. (2020). Terrestrial
838	land-cover type richness is positively linked to landscape-level functioning. Na -
839	ture Communications, $11(1)$, 154. doi: 10.1038/s41467-019-14002-7
840	O'Sullivan, D., Adams, M. P., Tarn, M. D., Harrison, A. D., Vergara-Temprado, J.,
841	Porter, G. C. E., Murray, B. J. (2018). Contributions of biogenic mate-
842	rial to the atmospheric ice-nucleating particle population in North Western
843	Europe. Scientific Reports, $\mathcal{S}(1)$, 13821. doi: 10.1038/s41598-018-31981-7
844	Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Calama,
845	R. (2021). The greater resilience of mixed forests to drought mainly depends
846	on their composition: Analysis along a climate gradient across Europe. $\ \ Forest$
847	Ecology and Management, 481, 118687. doi: 10.1016/j.foreco.2020.118687
848	Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H.,
849	Loew, A. (2021). A roadmap for high-resolution satellite soil moisture appli-
850	cations – confronting product characteristics with user requirements. $Remote$
851	Sensing of Environment, 252, 112162. doi: 10.1016/j.rse.2020.112162
852	Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes,
853	R. J., Wegmann, M. (2013). Essential Biodiversity Variables. Science,
854	339(6117), 277-278. doi: 10.1126/science.1229931
855	Pfenninger, M., Reuss, F., Kiebler, A., Schönnenbeck, P., Caliendo, C., Gerber, S.,
856	\dots others (2021). Genomic basis for drought resistance in european beech
857	forests threatened by climate change. <i>Elife</i> , 10, e65532.
858	Pörtner, HO., Scholes, R., Arneth, A., Barnes, D., Burrows, M. T., Diamond, S.,
859	\ldots others (2023). Overcoming the coupled climate and biodiversity crises and
860	their societal impacts. Science, $380(6642)$, eabl4881.
861	Pörtner, H., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Ngo,

-33-

862	H. T. (2021). IPBES-IPCC co-sponsored workshop report on biodiversity and
863	climate change. Bonn, Germany: Intergovernmental Science-Policy Platform
864	on Biodiversity and Ecosystem Services (IPBES) and Intergovernmental Panel
865	on Climate Change (IPCC). doi: 10.5281/zenodo.4659158
866	Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S.,
867	Kumar, R. (2022). The 2018–2020 multi-year drought sets a new benchmark
868	in europe. Earth's Future, $10(3)$, e2021EF002394.
869	Rap, A., Scott, C. E., Reddington, C. L., Mercado, L., Ellis, R. J., Garraway, S.,
870	Spracklen, D. V. (2018). Enhanced global primary production by biogenic
871	aerosol via diffuse radiation fertilization. $Nature \ Geoscience, \ 11(9), \ 640-$
872	644. Retrieved from https://doi.org/10.1038/s41561-018-0208-3 doi:
873	10.1038/s41561-018-0208-3
874	Rap, A., Spracklen, D. V., Mercado, L., Reddington, C. L., Haywood, J. M., El-
875	lis, R. J., Butt, N. (2015). Fires increase amazon forest productivity
876	through increases in diffuse radiation. $Geophysical Research Letters, 42(11),$
877	4654-4662. Retrieved from https://doi.org/10.1002/2015gl063719 doi:
878	10.1002/2015gl 063719
879	Ratcliffe, S., Liebergesell, M., Ruiz-Benito, P., Madrigal González, J.,
880	Muñoz Castañeda, J. M., Kändler, G., Wirth, C. (2016). Modes of func-
881	tional biodiversity control on tree productivity across the European continent.
881 882	tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, $25(3)$, $251-262$. doi: $10.1111/geb.12406$
881 882 883	tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I.,
881 882 883 884	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle.
881 882 883 884 885	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350
881 882 883 884 885 886	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D.
881 882 883 884 885 886 886	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed-
881 882 883 884 885 886 887 888	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi:
881 882 883 884 885 886 887 888 889	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111
881 882 883 884 885 886 886 887 888 889	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais,
881 882 883 884 885 886 886 888 889 890 891	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-
881 882 883 884 885 886 887 888 889 890 891	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data- driven Earth system science. Nature, 566(7743), 195–204. Retrieved 2021-
881 882 883 884 885 886 887 888 889 890 891 892 893	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data- driven Earth system science. Nature, 566(7743), 195–204. Retrieved 2021- 12-22, from https://www.nature.com/articles/s41586-019-0912-1 doi:

-34-
895	Reichstein, M., Riede, F., & Frank, D. (2021). More floods, fires and cyclones—plan
896	for domino effects on sustainability goals. Nature, 592(7854), 347–349.
897	Reyer, C. P., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P., Bonfante,
898	A., Pereira, M. (2013). A plant's perspective of extremes: terrestrial
899	plant responses to changing climatic variability. Global Change Biology, $19(1)$,
900	75–89. doi: 10.1111/gcb.12023
901	Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo,
902	L., Baltensperger, U. (2014, May). Oxidation Products of Biogenic Emis-
903	sions Contribute to Nucleation of Atmospheric Particles. Science, $344(6185)$,
904	717-721. Retrieved 2021-12-21, from https://www.science.org/doi/
905	10.1126/science.1243527 doi: 10.1126/science.1243527
906	Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Häkkinen, S., Ehn, M.,
907	Kulmala, M. (2011, April). Organic condensation: a vital link connect-
908	ing aerosol formation to cloud condensation nuclei (CCN) concentrations.
909	Atmospheric Chemistry and Physics, 11(8), 3865–3878. Retrieved 2021-12-
910	21, from https://acp.copernicus.org/articles/11/3865/2011/ doi:
911	10.5194/acp-11-3865-2011
912	Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke,
913	J., Thonicke, K. (2016). Resilience of Amazon forests emerges from
914	plant trait diversity. Nature Climate Change, $6(11)$, 1032–1036. doi:
915	10.1038/nclimate3109
916	Santanello, J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B.,
917	Berg, A., Wulfmeyer, V. (2018). Land–Atmosphere Interactions: The
918	LoCo Perspective. Bulletin of the American Meteorological Society, $99(6)$,
919	1253–1272. doi: 10.1175/BAMS-D-17-0001.1
920	Scheiter, S., Langan, L., & Higgins, S. I. (2013). Next-generation dynamic global
921	vegetation models: learning from community ecology. New Phytologist, $198(3)$,
922	957–969.
923	Schnabel, F., Purrucker, S., Schmitt, L., Engelmann, R. A., Kahl, A., Richter, R.,
924	\dots Wirth, C. (2021, March). Cumulative growth and stress responses to the
925	2018–2019 drought in a European floodplain forest. Global Change Biology,
926	28(5), 1870-1883. Retrieved 2022-04-29, from https://onlinelibrary.wiley
	.com/doi/10.1111/gcb.16028

928	Schumacher, D. L., Keune, J., van Heerwaarden, C. C., Vilà-Guerau de Arellano,
929	J., Teuling, A. J., & Miralles, D. G. (2019). Amplification of mega-heatwaves
930	through heat torrents fuelled by upwind drought. Nature Geoscience, $12(9)$,
931	712–717. doi: 10.1038/s41561-019-0431-6
932	Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G.,
933	Reyer, C. P. O. (2017, June). Forest disturbances under climate change.
934	Nature Climate Change, 7(6), 395–402. doi: 10.1038/nclimate3303
935	Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J.,
936	\dots Zhang, X. (2012). Changes in climate extremes and their impacts on the
937	natural physical environment: An overview of the IPCC SREX report. , 12566.
938	doi: 10.7916/d8-6nbt-s431
939	Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., & Frank,
940	D. (2018). Drought, Heat, and the Carbon Cycle: a Review. Current Climate
941	Change Reports, 4(3), 266–286. doi: 10.1007/s40641-018-0103-4
942	Skidmore, A. K., Coops, N. C., Neinavaz, E., Ali, A., Schaepman, M. E., Pa-
943	ganini, M., Wingate, V. (2021). Priority list of biodiversity metrics
944	to observe from space. Nature Ecology and Evolution, $5(7)$, 896–906. doi:
945	10.1038/s41559-021-01451-x
946	Slingo, J., Bates, P., Bauer, P., Belcher, S., Palmer, T., Stephens, G., Teutsch,
947	G. (2022). Ambitious partnership needed for reliable climate prediction.
948	Nature Climate Change, 12(6), 499–503.
949	Sporre, M. K., Blichner, S. M., Karset, I. H. H., Makkonen, R., & Berntsen,
950	T. K. (2019). BVOC–aerosol–climate feedbacks investigated using
951	NorESM. Atmospheric Chemistry and Physics, 19(7), 4763–4782. doi:
952	10.5194/acp-19-4763-2019
953	Svenning, JC., Pedersen, P. B. M., Donlan, C. J., Ejrnæs, R., Faurby, S., Galetti,
954	M., Vera, F. W. M. (2016). Science for a wilder Anthropocene: Synthesis
955	and future directions for trophic rewilding research. Proceedings of the Na-
956	tional Academy of Sciences of the United States of America, 113(4), 898–906.
957	doi: 10.1073/pnas.1502556112
958	Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P.,
959	Wohlfahrt, G. (2010, October). Contrasting response of European forest and
960	grassland energy exchange to heatwaves. Nature Geoscience, $3(10)$, 722–727.

961	doi: 10.1038/ngeo950
962	Teuling, A. J., Taylor, C. M., Meirink, J. F., Melsen, L. A., Miralles, D. G., Heer-
963	waarden, C. C. v., Arellano, J. VG. d. (2017, January). Observational
964	evidence for cloud cover enhancement over western European forests. $Nature$
965	Communications, $\mathcal{S}(1)$. doi: 10.1038/ncomms14065
966	Thonicke, K., Bahn, M., Lavorel, S., Bardgett, R. D., Erb, K., Giamberini, M.,
967	Rammig, A. (2020a). Advancing the Understanding of Adaptive Capacity of
968	Social-Ecological Systems to Absorb Climate Extremes. Earth's Future, $\mathcal{S}(2)$.
969	doi: 10.1029/2019EF001221
970	Thonicke, K., Bahn, M., Lavorel, S., Bardgett, R. D., Erb, K., Giamberini, M.,
971	Rammig, A. (2020b). Advancing the understanding of adaptive capacity of
972	social-ecological systems to absorb climate extremes. Earth's Future, $\delta(2)$,
973	e2019EF001221.
974	Ukkola, A. M., Pitman, A. J., Donat, M. G., De Kauwe, M. G., & Angélil, O.
975	(2018). Evaluating the Contribution of Land-Atmosphere Coupling to Heat
976	Extremes in CMIP5 Models. Geophysical Research Letters, 45(17), 9003–9012.
977	doi: 10.1029/2018GL079102
978	van der Velde, I. R., van der Werf, G. R., Houweling, S., Maasakkers, J. D., Bors-
979	dorff, T., Landgraf, J., \ldots others (2021). Vast co2 release from australian fires
980	in 2019–2020 constrained by satellite. Nature, $597(7876)$, $366-369$.
981	van Heerwaarden, C. C., Mol, W. B., Veerman, M. A., Benedict, I., Heusinkveld,
982	B. G., Knap, W. H., Fiedler, S. (2021, February). Record high solar ir-
983	radiance in Western Europe during first COVID-19 lockdown largely due to
984	unusual weather. Communications Earth & Environment, $2(1)$, 1–7. doi:
985	10.1038/s43247-021-00110-0
986	Vári, Á., Kozma, Z., Pataki, B., Jolánkai, Z., Kardos, M., Decsi, B., others
987	(2022). Disentangling the ecosystem service 'flood regulation': Mechanisms
988	and relevant ecosystem condition characteristics. Ambio, $1-16$.
989	Violle, C., Navas, ML., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier,
990	E. (2007). Let the concept of trait be functional! Oikos, $116(5)$, 882–892.
991	von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl,
992	A., Mahecha, M. D. (2018, March). Impacts of droughts and extreme-
993	temperature events on gross primary production and ecosystem respiration: a

994	systematic assessment across ecosystems and climate zones. <i>Biogeosciences</i> ,
995	15(5), 1293-1318. doi: 10.5194/bg-15-1293-2018
996	Werner, C., Meredith, L. K., Ladd, S. N., Ingrisch, J., Kübert, A., Haren, J. v.,
997	Williams, J. (2021, December). Ecosystem fluxes during drought and recovery
998	in an experimental forest. Science. doi: 10.1126 /science.abj6789
999	Wirth, C. (2005). Fire regime and tree diversity in boreal forests: implications for
1000	the carbon cycle. In Forest diversity and function: temperate and boreal sys-
1001	<i>tems</i> (pp. 309–344). Springer.
1002	Witze, A., et al. (2022). Extreme heatwaves: surprising lessons from the record
1003	warmth. Nature, 608(7923), 464–465.
1004	Yachi, S., & Loreau, M. (1999, February). Biodiversity and ecosystem productivity
1005	in a fluctuating environment: The insurance hypothesis. Proceedings of the Na-
1006	tional Academy of Sciences, $96(4)$, 1463–1468. doi: 10.1073/pnas.96.4.1463
1007	Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S.,
1008	Gentine, P. (2019, September). Land–atmosphere feedbacks exacerbate concur-
1009	rent soil drought and atmospheric aridity. Proceedings of the National Academy
1010	of Sciences, $116(38)$, 18848–18853. doi: 10.1073/pnas.1904955116
1011	Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M.,
1012	\dots others (2020). A typology of compound weather and climate events. <i>Nature</i>
1013	reviews earth & environment, 1(7), 333-347. doi: 10.1038/s43017-020-0060-z

Biodiversity and climate extremes: known interactions and research gaps

1

2

3	M. D. Mahecha ^{1,2,3} , A. Bastos ⁴ , F. J. Bohn ² , N. Eisenhauer ^{3,5} ,
4	H. Feilhauer ^{1,2,3} , T. Hickler ^{6,7} , H. Kalesse-Los ⁸ , M. Migliavacca ⁹ ,
5	F. E. L. $Otto^{10}$, J. $Peng^{1,2}$, I. $Tegen^{8,11}$, A. $Weigelt^{3,5}$, M. $Wendisch^8$,
6	C. Wirth ^{3,5} , D. Al-Halbouni ¹ , H. Deneke ¹¹ , D. Doktor ^{2,3} , S. Dunker ^{2,3} ,
7	A. Ehrlich ⁸ , A. Foth ⁸ , A. García-García ² , C. A. Guerra ^{3,5} ,
8	C. Guimarães-Steinicke ^{1,5} , H. Hartmann ^{4,12} , S. Henning ¹¹ , H. Herrmann ¹¹ ,
0	C I^{i1} T Kattenberr ^{1,3} N Kelleck ¹³ M Kretechmer ^{8,14} I K"thr ^{2,3,15}
9	C. JI, I. Kattenborn γ , N. Koneck , M. Kretschner γ , I. Kunn $\gamma \gamma$,
10	M. L. Luttkus ¹¹ , M. Maahn ^{\circ} , M. Monks ¹ , K. Mora ^{1,\circ} , M. Pohlker ^{\circ, 11} ,
11	M. Reichstein ^{3,4} , N. Rüger ^{3,16,17} , B. Sánchez-Parra ^{3,5} , M. Schäfer ⁸ , S. Sippel ⁸ ,
12	$\mathbf{M}. \ \mathbf{Tesche}^8, \ \mathbf{B}. \ \mathbf{Wehner}^{11}, \ \mathbf{S}. \ \mathbf{Wieneke}^{1,3}, \ \mathbf{A}. \ \mathbf{J}. \ \mathbf{Winkler}^4, \ \mathbf{S}. \ \mathbf{Wolf}^1, \ \mathbf{S}. \ \mathbf{Zaehle}^4, $
13	J. Zscheischler ^{2,18} , and J. Quaas ^{$3,8$}
14	1 Remote Sensing Centre for Earth System Research, Leipzig University, Institute for Earth System
15	Science and Remote Sensing, 04103 Leipzig, Germany
16	² Helmholtz Centre for Environmental Research – UFZ, 04318, Leipzig, Germany
17	³ German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
18	⁴ Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
19	⁵ Institute of Biology, Leipzig University, 04103 Leipzig, Germany
20	⁶ Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
21	⁷ Department of Physical Geography, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
22	⁸ Leipzig Institute for Meteorology, Leipzig University, 04103 Leipzig, Germany
23	9 European Commission, Joint Research Centre, 21027 Ispra (VA), Italy
24	¹⁰ The Grantham Institute for Climate Change, Imperial College London, London SW7 2AZ, UK
25	¹¹ Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
26	¹² Institute for Forest Protection, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants,
27	06484 Quedlinburg, Germany
28	13 Education and Socialication Theory, University of Potsdam, 14469 Potsdam, Germany
29	$^{14}\mathrm{Department}$ of Meteorology, University of Reading, Reading, UK
30	$^{15}\mathrm{Department}$ of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06099
31	Halle (Saale), Germany
32	¹⁶ Department of Economics, Leipzig University, 04109 Leipzig, Germany
33	¹⁷ Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
34	¹⁸ Technische Universität Dresden, Dresden, Germany

35 Key Points:

36	•	Mounting evidence suggests that an ecosystem's capacity to buffer the impacts
37		of climate extremes depends on its biodiversity.
38	•	Numerous mechanisms suggest that a reduction in biodiversity could exacerbate
39		climate extremes.
40	•	Understanding the full feedback loop linking biodiversity change and climate ex-
41		tremes requires an ambitious research agenda.

Corresponding author: Miguel D. Mahecha, miguel.mahecha@uni-leipzig.de

42 Abstract

Climate extremes are on the rise. Impacts of extreme climate and weather events on ecosys-43 tem services and ultimately human well-being can be partially attenuated by the organ-44 ismic, structural, and functional diversity of the affected land surface. However, the on-45 going transformation of terrestrial ecosystems through intensified exploitation and man-46 agement may put this buffering capacity at risk. Here, we summarise the evidence that 47 reductions in biodiversity can destabilise the functioning of ecosystems facing climate 48 extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate 49 climate extremes. We argue that only a comprehensive approach, incorporating both eco-50 logical and hydrometeorological perspectives, enables to understand and predict the en-51 tire feedback system between altered biodiversity and climate extremes. This ambition, 52 however, requires a reformulation of current research priorities to emphasise the bidirec-53 tional effects that link ecology and atmospheric processes. 54

55 Plain Language Summary

⁵⁶ Climate extremes are increasing and impacting both nature and people. We hy-⁵⁷ pothesise that intact ecosystems, particularly via their biodiversity, can mitigate the im-⁵⁸ pacts of climate extremes. What happens when biodiversity decreases? Could this loss ⁵⁹ make the effects of climate extremes even worse or change how these events occur? We ⁶⁰ explore these two questions and summarise the current state of knowledge. We conclude ⁶¹ that targeted research efforts at the interface of ecology and atmospheric sciences are needed ⁶² to answer these questions conclusively.

63 1 Introduction

The transformation of terrestrial ecosystems due to land cover change, land man-64 agement intensification, and environmental pollution, continues to accelerate globally. 65 These interventions lead to a widespread decline in biodiversity and ecosystem function-66 ing (Bellard et al., 2012; Díaz et al., 2019; IPBES, 2019; Jaureguiberry et al., 2022). At 67 the same time, climate change progresses (IPCC, 2021). One effect is that weather and 68 climate-related extremes, such as droughts, heat waves, storms, and heavy rainfall in-69 crease in frequency, intensity, and some also in spatial extent (Alexander et al., 2006; Senevi-70 ratne et al., 2012; S. Lange et al., 2020; Fowler et al., 2021). Today, such extreme events 71 unprecedented in magnitude and duration occur around the world (Witze et al., 2022), 72

-3-

⁷³ such as the 2018-2020 multi-year drought over Europe (Rakovec et al., 2022). The in⁷⁴ tensification of extreme weather and climate events, with decreasing return periods and
⁷⁵ increased intensity, is one of the most critical consequences of anthropogenic climate change
⁷⁶ (IPCC, 2021; Fischer et al., 2021). But how will these two global mega-trends – biodi⁷⁷ versity decline and the intensification of climate and weather extremes – affect each other?
⁷⁸ This scientifically challenging question has severe societal implications and needs to be
⁷⁹ addressed urgently in an integrative research approach.

Climate extremes can affect human well-being directly, e.g., via health impacts due 80 to extreme heat (Ebi et al., 2021). However, a wide range of impacts is mediated by land-81 surface characteristics, in particular vegetation. During heat and drought events, increas-82 ing sensible heat fluxes can alter regional land-climate feedbacks and thereby intensify 83 the extreme event (Miralles et al., 2019; Barriopedro et al., 2023). Recently, García-García 84 et al. (in press) revealed that soil hot extremes can intensify faster than air temperature 85 extremes, a phenomenon driven in part by the soil moisture-temperature feedback, which 86 can further dry and warm the soil. Furthermore, heavy precipitation may turn (or not) 87 into catastrophic flooding, erosion, and land-slide events depending on the regional wa-88 ter retention potential, the local storage capacity of soils and flow control of landscapes, 89 and their geomorphological properties and vegetation structure (Brunner et al., 2021; 90 Vári et al., 2022). Both examples demonstrate that terrestrial ecosystems and their veg-91 etation characteristics play a crucial role in controlling the impacts of extreme climate 92 events. 93

Yet, the modulation of impacts of extreme events not only depends on vegetation structure but also on the functioning of ecosystems (Reichstein et al., 2014; De Boeck 95 et al., 2018; Thonicke et al., 2020a). It is important to note that ecosystem functioning 96 is connected to various dimensions of 'biodiversity', a broad concept embracing (i) ge-97 netic diversity, (ii) taxonomic diversity, (iii) functional diversity, (iv) structural diver-98 sity within ecosystems, and (v) landscape heterogeneity, to name the most relevant ones 99 for our research context (for an overview and definitions see Tab. 1). These dimensions 100 of biodiversity are not independent from each other, and the role of biodiversity in ecosys-101 tems also depends on the available species (identity). Patterns of biodiversity partly re-102 flect biogeographical history, spatial structures in geofactors ('geodiversity'), manage-103 ment, demographic history, or are an effect of internal disturbance dynamics (Bastos et 104 al., 2023). It is widely recognised that losses in biodiversity can threaten the stability 105

-4-

of ecosystems and thereby their ability to support human life (Mooney et al., 2009; Pörtner 106 et al., 2021). The reason for this is that changing biodiversity affect characteristic func-107 tions of ecosystems (Musavi et al., 2015; Migliavacca et al., 2021), such as their poten-108 tial to absorb pollutants, store carbon, or provide numerous natural resources. In the 109 context of climate extremes, biodiversity is relevant because it controls how the land sur-110 face responds to atmospheric conditions. Modification of the bio(geo)physical and bio-111 geochemical determinants of processes such as fluxes of gases, water, and energy, and the 112 release and absorption of primary emitted particles (Fröhlich-Nowoisky et al., 2016), reg-113 ulate land-surface climate feedbacks and can thereby affect local to global climate (Bonan, 114 2008; Santanello et al., 2018; Ukkola et al., 2018; Miralles et al., 2019). 115

Considering that ecosystems interact with atmospheric conditions, a crucial ques-116 tion arises (Mahecha et al., 2022): Is there a risk that changing biodiversity in ecosys-117 tems may not only weaken the resistance of ecosystems to climate extremes and their 118 capacity to provide services, but also exacerbate atmospheric hazards? In other words, 119 may biodiversity changes amplify the risk of weather and climate-related extremes? Pörtner 120 et al. (2023) recently issued a general call for a comprehensive investigation into the in-121 tricate relationship between changes in the climate system and biodiversity. Here, we con-122 duct an extensive review of pertinent literature to determine how far we can already give 123 answers to the specific aspect of extremes. We first aim to understand whether higher 124 levels of biodiversity buffer climate extremes (Section 2), and second, explore amplifi-125 cation processes of weather and climate extreme events dynamics in response to declin-126 ing biodiversity (Section 3). Based on the conclusiveness of the literature on these as-127 pects, we identify key research gaps that should be addressed to understand the full feed-128 back between biodiversity change and climate extremes (Section 4). 129

-5-

Table 1. Biodiversity is 'the variability among living organisms from all sources, [...]: this includes diversity within species, between species and of ecosystems' (CBD, 1992). Here, we provide an overview of dimensions of biodiversity relevant to ecosystem responses to and feedback processes with the atmosphere

Dimension	Definition	Illustration
Genetic	Diversity of genetic properties within and across species. Also contains her- itable changes in gene function not involving changes in DNA sequence (i.e., epigenetics).	Genetic diversity
Taxonomic	Diversity of species, calculated e.g. as species richness or evenness per unit of investigation.	 Taxonomic diversity ①
Functional	Diversity of plant functional traits i.e. the morphological, anatomical, physio- logical, biochemical properties of plants and their organs.	 Functional diversity •
Structural	Vertical and horizontal arrangements of physical components of plants and their organs, such as leaf layers and branches.	 Structural diversity +
Landscape	Diversity and complexity of lateral arrangements of ecosystems within a landscape. Contributes to the overall biodiversity of a region by shaping habi- tats that support different ecosystems; synonym for 'landscape heterogeneity'.	 Landscape diversity ①

¹³⁰ 2 Biodiversity buffers against weather and climate extremes

Numerous studies investigate how climate extremes impact ecosystems. Two key concepts are frequently used: ecosystem "resistance", which is the capacity to withstand a climate extreme, and ecosystem "resilience", which characterises how fast and complete a system recovers following an extreme event (sensu Hoover et al., 2014; De Keersmaecker et al., 2016). Together, these concepts help to differentiate and quantify the ways in which ecosystems, as a function of their biodiversity, buffer the impact of extreme climatic events (for an illustration see Fig. 1).

Given the various dimensions of biodiversity outlined in Table 1, what specific knowl-138 edge do we have about their role in buffering extremes? In terms of taxonomic diversity, 139 it appears that a few particular species often resist climate extremes, keeping up ecosys-140 tem functioning, or preventing community collapse under stress (De Laender et al., 2016; 141 Werner et al., 2021). This phenomenon is classically known as "the insurance effect" (Yachi 142 & Loreau, 1999; Loreau et al., 2021) and has been mostly inferred from experimental stud-143 ies (Kayler et al., 2015; Loreau et al., 2021). For example, Isbell et al. (2015) show that 144 grasslands with higher species diversity when exposed to exceptional dry or wet condi-145 tions have higher resistance, an effect attributed to the species-specific responses to par-146 ticular stressors (Craven et al., 2018). Liu et al. (2022) reported that forest resistances 147 against droughts increase with species richness. However, the insurance effect cannot be 148 attributed to species-specific responses only. Variations in genetic properties of individ-149 uals within species can likewise lead to varying resistance to climate extremes. This was 150 shown by Pfenninger et al. (2021), who analysed the susceptibility of individual beech 151 trees to the extreme drought in central Europe in 2018, and illustrated the wide range 152 of drought damages within a single species. 153

Intraspecific genetic diversity is one reason why taxonomic diversity alone is insuf-154 ficient to explain ecosystem responses to extremes. Another reason is that, at the ecosys-155 tem level, responses to extremes are also largely regulated by a system's "functional di-156 versity", defined by the variability of functional traits, such as leaf, stem, or root chem-157 ical properties and "structural diversity" (see Table 1). This explains why taxonomic di-158 versity alone plays only a subordinate role in stabilising ecosystem functioning in many 159 cases (Musavi et al., 2017). Mursinna et al. (2018) show that information on root trait 160 diversity is needed to explain an ecosystem's drought sensitivity. Forest responses to droughts 161

-7-

Figure 1. The ability of an ecosystem to resist or absorb changes in its states and functions over time is defined as 'resistance'. The capacity to recover to pre-event conditions is termed 'resilience'. Both resistance and resilience act over time, and jointly constitute the 'buffering capacity'. In this figure we exemplify systems with a) high resistance and low resilience, b) low resistance, and high resilience, and c) very low resilience such that the critical threshold is reached and no return to pre-event conditions can be achieved.

largely depend on the traits associated with isohydric versus anisohydric behaviour of 162 trees (Hartmann et al., 2021; Lübbe et al., 2022). In general, the diversity of functional 163 traits of organisms regulate how fluxes of energy, water, and nutrients are absorbed, stored 164 and released given certain environmental conditions (Violle et al., 2007; Berendse et al., 165 2015; Anderegg et al., 2019). Even organisms coexisting in the same ecosystem (i.e. species 166 that have passed an identical "environmental filter") exhibit a considerable degree of vari-167 ation in their functional role, and therefore in their contribution to the resistance of ecosys-168 tem with respect to weather and climate-related extreme events (resistance Reyer et al., 169 2013; Felton & Smith, 2017), and their ability to recover from such events. Figure 2 il-170 lustrates conceptually how the insurance effect, mediated via functional diversity, could 171 dampen the reduction of net primary production (NPP) and the increase in sensible heat 172 flux during a heat wave in a more diverse forest, compared to a low-diversity forest. 173

Figure 2. Illustration of the insurance effect: Hypothetical response of net primary production (NPP, net CO_2 uptake rate) to a heatwave (shown in reddish background colours) in a) a diverse forest, and c) a mono-culture. Analogous responses for energy fluxes are shown in b) and d). While low-diversity forests might initially have higher NPP, their low resistance might imply higher losses and reduced resilience given the lack of species compensation, i.e. a low insurance effect. The same effect can be observed for energy fluxes, where the ratios between latent and sensible heat fluxes change more drastically in low-diversity forests, with consequences for both ecosystems and atmospheric energy budgets.

Functional diversity is linked to structural heterogeneity at the stand level: mix-174 tures of growth forms, plant sizes, and demographic stages appear to play an equally im-175 portant role in the stabilisation of ecosystems. Guimarães-Steinicke et al. (2021) show 176 the dominant effect of varying mixtures of herbs and grasses on the variability of veg-177 etation surface temperatures. The meta-analysis by Craven et al. (2018) emphasises that 178 functional biodiversity dimensions are determined by the asynchrony of abundances and 179 thus affect the stability of ecosystem functioning. Taken together, in a changing climate 180 with increasing occurrence of extreme weather and climate-related events, all dimensions 181 of diversity may cause some degree of insurance against the shocks induced by climate 182 extremes. 183

184	The buffering role of biodiversity is, however, a scale-dependent process. In gen-
185	eral, translating insights from experiments and theory to large-scale and real-world set-
186	tings proves difficult (Kreyling et al., 2008; Grossiord et al., 2019; Gonzalez et al., 2020).
187	At the regional to continental scale, predominant and landscape heterogeneity will de-
188	termine the predominant response mechanisms (Teuling et al., 2010; Flach et al., 2021;
189	Bastos, Fu, et al., 2020). Remote sensing observations are key to overcoming scaling is-
190	sues (Cavender-Bares et al., 2022), as it can monitor ecosystem responses, extreme weather
191	and climate events from the ground, as well as from airborne- and space-borne platforms,
192	covering local to global scales (Mahecha et al., 2017; Cavender-Bares et al., 2020; Peng
193	et al., 2021). De Keersmaecker et al. (2016) study the resistance and resilience against
194	drought across grasslands in central Europe using optical remote sensing observations.
195	They conclude that nutrient-poor and species-rich grasslands appear to be more resis-
196	tant, but less resilient against drought. The reverse seems to be true for fertilised, species-
197	poor grasslands. These results are consistent with local experimental studies. The emerg-
198	ing and constantly growing body of global remote sensing data improves our capabili-
199	ties of tracing biodiversity dynamics (Skidmore et al., 2021; Cavender-Bares et al., 2022),
200	ecosystem management (M. Lange et al., 2022), and multiple land-surface processes (Mahecha
201	et al., 2020). Combined, these data streams can be also used for quantifying how ecosys-
202	tems buffer the impacts of climate extreme events, a task that should be prioritised.

Table 2. Extreme weather events are rare occurrences at a specific place and time, while climate extremes are persistent patterns of extreme weather (AR6 WG1 Ch. 11 IPCC, 2021). Four empirical descriptions of extremes are relevant: univariate, multivariate, spatiotemporal, and record-shattering. These categories describe the rarity, intensity, frequency, duration, and extent of events, including compound extremes and multiple meteorological drivers.

Extreme	Definition	Illustration
Univariate	Rarity of an event relative to a statistical probability distribution, either in terms of intensity, fre- quency, spatio-temporal extent, duration, in one variable of interest.	Ailingeou d
Compound	Multivariate indices of extremes, also referred to as 'compound' extreme events, include unusual combinations of climate drivers.	Climate variable 1
Spatio- temporal	Considering the spatio-temporal extent of an extreme event leads to additional metrics such as an event's duration, geographical coverage, volume, and integrated magnitde.	Patitude Latitude
Record shattering	Events that exceed previous obser- vational records by multiple orders of magnitude, typically measured by return times, and improbable without climate change.	ecord shattering event 1000 year return level 0bserved variability Time

3 Biodiversity imprints on atmospheric processes and extremes

Global circulation patterns determine which regions of the world are exposed to 204 high aridity or high humidity, respectively, and during which seasons. Variations in at-205 mospheric circulation also have a strong influence on extreme event occurrences (Coumou 206 & Rahmstorf, 2012). For example, atmospheric blocking situations or recurrent atmo-207 spheric wave patterns lead to extended and persistent high-pressure systems or station-208 ary lows, which may cause heatwaves or flooding that have severe consequences for ecosys-209 tem functioning (Desai et al., 2016; Flach et al., 2018; Kornhuber et al., 2019; Bastos, 210 Ciais, et al., 2020). Blocking situations are particularly frequent over Europe, and also 211 cause several other types of weather extremes (Kautz et al., 2022). Ongoing anthropogenic 212 climate change is expected to further increase extreme weather around the globe and even 213 the underlying circulation patterns are expected to change (Faranda et al., 2020). How-214 ever, the extent to which such projected circulation changes are robust over Central Eu-215 rope remains a matter of debate (Huguenin et al., 2020). 216

Although weather- and climate extreme events are primarily triggered by atmo-217 spheric processes, land-atmosphere interactions also contribute to their genesis and oc-218 currence. Management and transformation of ecosystems, and consequently biodiversity, 219 can change surface properties, including albedo and emissivity, roughness, evaporative 220 resistance, and heat fluxes (Laguë et al., 2019). These interventions can substantially 221 alter atmospheric humidity, transport dynamics, and, ultimately, cloud evolution and 222 precipitation at regional and global scales (Avissar & Werth, 2005; Machado et al., 2018). 223 It has also been shown that the surface albedo modulates the intensity of heat/drought 224 extreme events through changes in evapotranspiration and vertical energy fluxes, i.e., sen-225 sible, latent heat, and radiative energy fluxes (Miralles et al., 2019; Zhou et al., 2019). 226 Since heat and drought amplification mechanisms depend on the type of ecosystem they 227 affect, it is expected that the ecosystem itself can influence how the land-surface processes 228 propagate (Teuling et al., 2017). Ecosystem imprints of this kind can also have remote 229 effects. For instance, Schumacher et al. (2019) show that heatwaves can propagate in space 230 through lateral heat transfer (see also Miralles et al., 2019). Furthermore, ecosystem im-231 prints on atmospheric conditions change with the seasons. At higher latitudes, for ex-232 ample, snow-covered surfaces, might amplify the blocking conditions in winter high-pressure 233 situations. Arctic warming may cause extreme cold air outbreaks in winter and thus in-234

-12-

235 236 fluence the mid-latitudes. Given the biophysical imprint of ecosystems on atmospheric processes, management can be of crucial relevance for buffering extreme events.

However, the question we explore is whether there is evidence for biological func-237 tion and feedback influencing climate extremes. Furthermore, considering the impact of 238 biodiversity on biological functioning, can patterns of biodiversity be directly associated 239 with climate extremes? Possible interaction paths of biodiversity and climate extremes 240 are illustrated in Fig. 3. A key example is clouds, which are influenced by water in its 241 three thermodynamic phases, energy fluxes, the concentration of biogenic volatile com-242 pounds (BVOCs), and aerosol particle fluxes mediated by vegetation characteristics (Duveiller 243 et al., 2021), and, at the same time, exert an important and instantaneous climate-extreme 244 buffering effect. In the presence of clouds, hot days remain cooler and, inversely, cold nights 245 become warmer. Plant biodiversity stabilises ecosystem functioning (Musavi et al., 2017), 246 and thus can be considered a key player in this interaction. A more direct effect of bio-247 diversity on atmospheric processes than the control of latent heat is the emission of BVOCs, 248 which impacts the tropospheric oxidising capacity, including substances such as ozone 249 through chemical degradation processes and leads to biogenic particles of secondary ori-250 gin (Riipinen et al., 2011; Lehtipalo et al., 2018; Riccobono et al., 2014; Luttkus et al., 251 2022). Additionally, primary biogenic particles such as pollen are also directly emitted, 252 which can foster the heterogeneous freezing of super-cooled cloud droplets by acting as 253 ice-nucleating particles at warmer temperatures than in their absence (O'Sullivan et al., 254 2018; Kretzschmar et al., 2023). Vegetation stress caused by heat and drought, which 255 can result in biomass burning in the most severe cases, may lead to extremes both in at-256 mospheric aerosol particle emissions and BVOC emissions (Grote et al., 2019). More bio-257 genic particles of primary or secondary origin, are expected to trigger direct and indi-258 rect effects including an enhanced aerosol-radiation interaction, an increase of the frac-259 tion of diffuse to direct solar radiation, which in turn has a stimulating effect on vege-260 tation productivity and to enhance the land carbon sink (Rap et al., 2015, 2018). Also, 261 such aerosol particles could set off changes in cloud microphysical (droplet size, droplet 262 concentration, and liquid water content) and optical (cloud albedo and transmissivity) 263 properties and, consequently, local precipitation patterns (Niinemets, 2010; Jiang et al., 264 2018; Sporre et al., 2019). These examples suggest that vegetation plays an important 265 role in the development of local atmospheric chemistry parameters that may strongly 266 shape the development of extreme events. Considering that biodiversity influences veg-267

-13-

Figure 3. Illustration of the general role of biodiversity as a buffer to climate extremes. "Biodiversity" is understood here as a multifaceted term that embraces everything from genetic, via functional traits, to landscape scale heterogeneity, as it is currently the accepted idea in international frameworks (Pereira et al., 2013), and including "geodiversity" (Gray, 2011). All these dimensions of biodiversity constrain ecosystem functioning (Reichstein et al., 2014), effectively translating climate impulses into fluxes and signals that contribute to multiple feedback mechanisms with the atmosphere (Bonan, 2008). Alterations of biodiversity dimensions must therefore feedback to climate extremes (red arrows), which, considering the future intensification of extremes, have the potential to transform biodiversity itself. Ecosystem services are directly affected by biodiversity and ecosystem functions.

etation dynamics, it stands to reason that biodiversity should have a discernible impact on climate extremes.

A particularly intertwined set of processes links functional diversity and fire regimes (Wirth, 2005). However, in the wake of climate change, fires are also on the rise, which regionally is leading to increased burned area and fire return intervals (Jones et al., 2022). The record breaking 2019/20 fires in Australia were unprecedented in intensity and ex-

tent leading to enormous emissions of CO_2 and soot particles (van der Velde et al., 2021). 274 Given that fire dynamics depends on vegetation properties, certain plant traits and the 275 amount of available fuel are important controls of the intensity and development of fires, 276 biodiversity has also an effect on the types of particles emitted. In a recent review, Jones 277 et al. (2022) describe the complexity of the factors to consider when understanding wild-278 fires. From this review and other studies, the important role of fires on particle injec-279 tion into the atmosphere and the interaction of lightning and pyroconvenction become 280 evident (Altaratz et al., 2010; Dowdy & Pepler, 2018). Processes of this kind are exam-281 ples of how a biodiversity influences land-surface responses and mechanisms that ulti-282 mately affect the atmosphere. 283

In summary, ecosystem properties and processes can buffer the impacts of weather 284 and climate-related extremes, with their effectiveness often depending on the state of their 285 biodiversity. While it is recognised that biodiversity and land-surface dynamics may in-286 fluence certain extreme events, the extent of this influence remains inadequately under-287 stood. The precise role of biodiversity and the overall magnitude of these effects, from 288 local to global scales, have yet to be clearly quantified. Given the existing evidence of 289 this inter-connectivity, we need to consider whether deliberately increasing functional 290 diversity, through management or rewilding (Svenning et al., 2016) should be re-evaluated 291 in light of its potential to dampen extreme events. Even if shifts in ecosystem charac-292 teristics and biodiversity do not significantly alter the frequency of climate extremes, there 293 are multiple processes that have the potential to amplify or dampen a range of weather 294 and climate-related extremes and their impacts. Managing ecosystems for improved drought 295 resistance and resilience (Balch et al., 2020; Pörtner et al., 2021) could be instrumen-296 tal in influencing land-atmosphere feedbacks. To harness this potential, we need a deeper 297 understanding of these feedback mechanisms. The challenge is not necessarily a short-298 age of scientific hypotheses, but rather the integration of diverse scientific disciplines, their 299 observational methodologies, and modelling approaches. 300

Figure 4. Uncommon temporal sequences and carryover effects. Two consecutive years with combined drought and heatwaves can have particularly strong impacts since species-specific defences can be reduced and lead to higher vulnerabilities to e.g. insects. Reduced chemical defences and generally depleted pools render vegetation more sensitive. The interplay of preconditioning and carryover effects amplifies the impacts of sequential extremes. Abbreviations are: T = temperature, VPD = vapour pressure deficit, BVOCs = biogenic volatile organic compounds, H = sensible heat, LE = latent heat, and SM = soil moisture (Figure created with BioRender.com).

³⁰¹ 4 Research gaps

Despite substantial progress in understanding the relationship between climate extremes and biodiversity change, there remain substantial scientific gaps that this section will elucidate. While there is a relatively solid understanding of how ecosystems buffer at least specific types of climate extremes, the quantification of biodiversity's impact on related atmospheric processes is less developed. The subsequent points emphasize areas that require further investigation:

Quantifying biodiversity buffers across event types: For other than the well studied cases of droughts and heatwaves, we have only weak evidence for the damp ening or amplifying processes. This concerns mostly the rather small-scale events
 such as spring frost, heavy precipitation events, solar radiation- or ozone maxima.

-16-

313 314

315

316

317

312

These events have been studied less frequently and intensely, even if they are known to have locally important impacts. Radiation extremes, for instance, may evolve locally and regionally in response to specific synoptic situations, due to a lack of evaporation or in reaction to inhomogeneous cloud cover (van Heerwaarden et al., 2021; Fast et al., 2019). Impacts of weather extremes of this kind have been overlooked so far, but may be particularly sensitive to changes in biodiversity.

- Considering all dimensions of biodiversity: Genetic, taxonomic, and func-318 tional diversity shape buffers and feedback mechanisms in specific ways. How will 319 the changes in these biodiversity dimensions affect the buffering capacity of ecosys-320 tems? We assume that the key dimension to consider here is functional diversity. 321 Local features, such as canopy height represent a key buffer against thermal am-322 plification of heat extremes (Lin et al., 2020). Variations in canopy surface height 323 were found to reduce spatial variation in canopy temperatures (Guimarães-Steinicke 324 et al., 2021). Functional diversity similarly controls the amplification/dampening 325 of local climate extremes (Ratcliffe et al., 2016; Pardos et al., 2021), but so does 326 landscape composition (Flach et al., 2021; Bastos, Fu, et al., 2020) and heterogene-327 ity at larger scales (Oehri et al., 2020). What we miss is a global catalogue of how 328 each of the biodiversity dimensions interact with the variety of climate extremes. 329
- Embracing multiple spatial and temporal scales: Just like biodiversity pat-330 terns, meteorological drivers are also scale-dependent. Research is needed to in-331 clude all relevant scales, including micro-meteorological (metres to sub-km), syn-332 optic (up to 1000 km), and hemispheric to global scales, which all appear to be 333 relevant to the occurrence of extremes. Temporally, atmospheric variability ranges 334 from the weather time scales (hours/days) to the interannual and multidecadal 335 patterns of large-scale circulations. Completing our picture of biodiversity buffers 336 and feedback mechanisms at different scales will require addressing feedbacks across 337 spatial and temporal scales. Remote sensing of land surface and atmospheric prop-338 erties offers the means for studies of this kind, and the first examples show how 339 landscape heterogeneity influences ecosystem functioning across scales (Oehri et 340 al., 2020). Scale-bridging exercises are important since ecosystems not only have 341 characteristic resistances to weather- and climate-related extremes. They are also 342 part of a dynamic pulse-response mechanism Harris et al. (2018) that controls nu-343

-17-

merous processes at the land-atmosphere interface at different and interacting spatiotemporal scales (see Fig. 2), which need to be understood more deeply.

• The critical role of time: Another crucial aspect related to the impact of ex-346 tremes is their timing. Ecosystems are composed of individual organisms, each fol-347 lowing characteristic phenology and responses to environmental conditions. Func-348 tional traits vary over time, making the functional diversity of entire ecosystems 349 time-dependent (Ma et al., 2020). In consequence, resistance and resilience at the 350 ecosystem level are determined by an interplay of event-timing and a time-dependent 351 buffering capacity. At longer time scales, an ecosystem's specific succession stage 352 leads to different response trajectories (Johnstone et al., 2016). Besides timing, 353 both duration (von Buttlar et al., 2018) and recurrence (Anderegg et al., 2020; 354 Bastos et al., 2021) of extremes are decisive for an ecosystem's resistance and re-355 silience (Frank et al., 2015; Sippel et al., 2018; Thonicke et al., 2020a). This means 356 that any feedback mechanisms between biodiversity and climate extremes must 357 also be time-dependent. 358

• **Preconditions are key determinants:** Pre-exposure critically determines how 359 ecosystems' resistance and resilience interact with weather or climate-related ex-360 tremes. Warm spring seasons combined with early water shortage may result in 361 lower summer resistance to extremes (Flach et al., 2018; Sippel et al., 2018). Lower 362 resistances diminish the buffer capacity of ecosystems, allowing impacts of extremes 363 in subsequent seasons to be more readily amplified (see fig. 1). On longer time scales, 364 increased disturbance regimes can further influence such feedbacks (Seidl et al., 365 2017; Forzieri et al., 2021). Recent work reveals the importance of memory effects 366 in sequential hot drought years for tree growth and stress responses (Bastos, Ciais, 367 et al., 2020; Schnabel et al., 2021). Figure 4 illustrates how an ecosystem's buffer-368 ing capacity is weakened by an extreme event, such that consecutive droughts may 369 lead to an even longer-lasting impact on vegetation dynamics and functions in fol-370 lowing years. Research on lagged responses, such as the species-specific tree mor-371 tality caused by climate extremes, is still in its infancy (Sippel et al., 2018; Cailleret 372 et al., 2019; Zscheischler et al., 2020). Understanding these complex impact chains 373 requires scrutinising their drivers and modulating factors (Zscheischler et al., 2020; 374 Kretschmer et al., 2021). 375

-18-

• Understanding bidirectional effects: Land-surface composition plays a cru-376 cial role in the development and propagation of certain extreme events. However, 377 predicting how ecosystem's biodiversity shapes land-atmosphere interactions is not 378 yet possible. Even less is known about the imprint of specific biodiversity features 379 and processes that modulate these interactions and regulate extremes. Effects of 380 this type are manifold and range from emission of biogenic aerosol particles act-381 ing as ice-nucleating particles required for heterogeneous ice formation in clouds 382 (Jokinen et al., 2015), to carbon cycle effects (Reichstein et al., 2013), and large-383 scale land-surface-atmosphere interactions (Forzieri et al., 2020). In this context, 384 it is important to recognise the indirect effects of biodiversity in stabilising plant 385 communities and vegetation structure. If biodiversity helps prevent a biome shift 386 from tropical forests to grasslands (see (Sakschewski et al., 2016)), this has ma-387 jor implications for the land-atmosphere feedback. Overall, we find that many re-388 search gaps prevent from accurately predicting how changing dimensions of bio-389 diversity are affected and how they, in turn, modulate different types of atmospheric 390 and climatic extremes. 391

• From anticipation to sustainable management: Climate change and the on-392 going transformation of terrestrial ecosystems lead to unprecedented constellations 393 of climate extremes and biodiversity. For instance, little is known about whether 394 extremes that exceed historical records by large margins (Fischer et al., 2021) have 395 disproportionately large effects on ecosystems, thus exceeding the adaptive capac-396 ities, or whether ecosystems are able to cushion the impact of such drastic extremes. 397 While such events have been observed recently, the rarity of these events, their ex-398 pected increase in the future, and the limitations of current models to represent 399 the complex feedback between climate extremes and biodiversity across spatio-400 temporal scales expose another research gap. Currently, even the conceptual ba-401 sis to address this gap has not yet been developed. It is unclear what level of pro-402 cess complexity and spatio-temporal scales need to be represented for robust pro-403 jections and whether this is computationally feasible. As a consequence, the strength 404 and even the sign of the feedback between biodiversity change and diverse types 405 of climate extremes at different scales remain unknown. Management for climate 406 adaptation and mitigation would require reliable predictive models that have only 407

-19-

408

409

started to represent certain aspects of functional diversity, which needs to be developed much further.

• Socio-ecological dimensions and systemic risk: Thinking ahead, we would 410 argue that ultimately empirical and modelling research needs to develop more in-411 tegrated approaches that consider biodiversity, multiple ecosystem services, and 412 social-ecological dynamics together (Thonicke et al., 2020b) to fully address feed-413 backs leading to systemic risks of climate extremes (Reichstein et al., 2021). This 414 approach requires collaboration between different disciplines, such as ecology, at-415 mospheric sciences and climatology, psychology, and social sciences. The under-416 standing of the interactions between climate extremes, biodiversity, ecosystem ser-417 vices, and socio-ecological systems can also inform policy and management strate-418 gies for reducing greenhouse gas emissions and mitigating the impacts of climate 419 change without sacrificing other ecosystem services. For example, policies that pri-420 oritise the protection of critical ecosystems and biodiversity can enhance the re-421 silience of ecosystems to climate extremes and support carbon sequestration, which 422 can help mitigate the impacts of climate change in a no-regret strategy (Erb et 423 al., 2022). 424

The overarching and unresolved question we identify here is: When do we expect 425 dampening or amplifications due to interactions between biodiversity dynamics and cli-426 mate extremes? Only by answering this question can we manage ecosystems to maximise 427 their resistance and resilience to future climate conditions, in particular to more frequent 428 extremes. More research is required to understand and quantify such feedback mecha-429 nisms and their spatial and temporal dependencies. Local-scale studies are particularly 430 important to quantify changes in biodiversity-related drivers of the climate system. A 431 pivotal issue that remains unresolved is how to quantify the imprints of local and small-432 scale biodiversity patterns on large-scale synoptic or global circulation patterns. An ad-433 ditional complication is how to identify the remote influence of biodiversity linked to at-434 mospheric teleconnections. 435

436 5 Summary and Conclusions

The scientific gaps identified in this paper require a rethinking of current research priorities and the development of an ambitious interdisciplinary agenda. This strategic plan needs to explore the relationships between biodiversity and ecosystem dynamics in response to climate extremes, and as a mechanism in the evolution of climate extremes at multiple spatial scales and across large environmental gradients.

One cornerstone is observations. There is an urgent need for large-scale observa-442 tional studies to establish causal relationships and their relevance at different spatial and 443 temporal scales. In-situ and remote sensing observations that can simultaneously quan-444 tify multiple dimensions of taxonomic, structural, functional, and landscape diversity and 445 composition need to be aligned with the monitoring of atmospheric thermodynamics and 446 composition. There are fundamental advances in satellite-based Earth observations for 447 both climate and ecosystem monitoring (Mahecha et al., 2020; Skidmore et al., 2021) that 448 are increasingly integrated with in-situ observations of biodiversity (Dornelas et al., 2018), 449 global observatories of ecosystem-atmosphere exchanges such as FLUXNET (Baldocchi, 450 2020), or specific processes such as tree mortality (Hartmann et al., 2018). Machine learn-451 ing plays a key role in achieving this much-needed data integration (Bodesheim et al., 452 2022) and is increasingly empowered by deep learning (Reichstein et al., 2019). 453

Next to high-quality observations, we need powerful models. We must understand 454 how terrestrial ecosystem dynamics feed back into atmospheric variability and how bio-455 diversity modulates these relationships. For this aim, we need a new generation of pre-456 dictive models that is capable of capturing the interactions between atmospheric pro-457 cesses, biodiversity patterns, and ecosystems. The models need to be able to adequately 458 test hypotheses about feedback mechanisms. The development of functional digital twins 459 of the climate system is now in reach, soon providing climate simulations at the kilome-460 tre scale (Bauer et al., 2021; Slingo et al., 2022), but high-resolution simulations alone 461 are likely not enough to accurately reflect the coupling and feedbacks between climate 462 and biodiversity. The digital twin concept for ecosystems is still in a more conceptual 463 phase (Buonocore et al., 2022), as much research needs to be done for realistically rep-464 resenting biodiversity in land-surface models (Scheiter et al., 2013; Bendix et al., 2021). 465 Today, a series of prototypes of a Digital Twin for biodiversity is currently being devel-466 oped. Once developed, such models will allow to predict in detail what types of man-467

-21-

agement interventions would increase ecosystem resistance and resilience to changing cli-468 mate extremes. 469

Today, there is a growing awareness of the interconnections of biodiversity decline 470 and climate change, as shown in a recent report jointly published by IPCC & IPBES (Pörtner 471 et al., 2021; Pörtner et al., 2023) and in a series of policy tools. For instance, the new 472 European Union (EU) Forest Strategy for 2030 and other high-level policy initiatives by 473 the European Commission have recognised the value of the multi-functionality of forests, 474 including their regulatory role in atmospheric processes. However, the observational and 475 modelling bases are rather weak. Elsewhere, the lack of research on the feedback loop 476 linking biodiversity change and climate extremes is also evident in policy, which some-477 times pays too little attention to both aspects. One example is the consideration of cli-478 mate extremes and biodiversity in the Common Agricultural Policy of the EU. The EU's 479 subsidy policy has caused more than 70 percent of agricultural land to grow feed for live-480 stock. This promotes monocultures, the cheap consumption of meat in the EU and harms 481 not only the climate but also biodiversity. At the same time, there is a lack of scientific 482 studies on the interactions between loss of biodiversity and climate extremes. By address-483 ing these critical research gaps, we will significantly enhance our understanding of bio-484 diversity buffers, thereby aiding efforts to preserve their capacity to mitigate climate ex-485 tremes and safeguard ecosystem resilience. 486

487

Data avaialibility statement

488

This paper is based on a literature review; no original data have been used. All figures were generated based on conceptual considerations using the biorender.org software. 489

Acknowledgments 490

This work was supported by the Saxon State Ministry for Science, Culture and Tourism 491 (SMWK project 232171353) and the German Centre for Integrative Biodiversity Research 492 (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118, 202548816). 493 Leipzig University thanks the DLR for funding ML4Earth and the VW foundation and 494 Niedersächsisches Vorab for funding "Digital Forest". Leipzig University and the Max 495 Planck Institute for Biogeochemistry thank the European Space Agency for funding "Deep 496 Extremes" via AI4Science and the EU for funding the "XAIDA" project, grant agree-497 ment No 101003469. 498

-22-

499 **References**

500	Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank,
501	A. M. G., Vazquez-Aguirre, J. L. (2006). Global observed changes in daily
502	climate extremes of temperature and precipitation. Journal of Geophysical
503	Research: Atmospheres, 111(D5). doi: 10.1029/2005JD006290
504	Altaratz, O., Koren, I., Yair, Y., & Price, C. (2010). Lightning response to smoke
505	from amazonian fires. Geophysical Research Letters, 37(7).
506	Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G., & Shaw, J.
507	(2020). Divergent forest sensitivity to repeated extreme droughts. <i>Nature</i>
508	Climate Change, $10(12)$, 1091–1095. doi: 10.1038/s41558-020-00919-1
509	Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E.
510	(2019). Plant functional traits and climate influence drought intensifica-
511	tion and land-atmosphere feedbacks. Proceedings of the National Academy
512	of Sciences of the United States of America, $116(28)$, $14071-14076$. doi:
513	10.1073/pnas.1904747116
514	Avissar, R., & Werth, D. (2005). Global Hydroclimatological Teleconnections Re-
515	sulting from Tropical Deforestation. Journal of Hydrometeorology, $6(2)$, 134–
516	145. doi: 10.1175/JHM406.1
517	Balch, J. K., Iglesias, V., Braswell, A. E., Rossi, M. W., Joseph, M. B., Mahood,
518	A. L., Travis, W. R. (2020). Social-Environmental Extremes: Rethink-
519	ing Extraordinary Events as Outcomes of Interacting Biophysical and Social
520	Systems. Earth's Future, 8(7). doi: 10.1029/2019EF001319
521	Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed
522	to our understanding of global change biology. Global change biology, $26(1)$,
523	242-260.
524	Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D., & Salcedo-Sanz, S.
525	(2023). Heat waves: Physical understanding and scientific challenges. $Reviews$
526	of $Geophysics$, $e2022RG000780$.
527	Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Zaehle, S.
528	(2020). Direct and seasonal legacy effects of the 2018 heat wave and drought
529	on European ecosystem productivity. Science Advances, $6(24)$, eaba2724. doi:
530	10.1126/sciadv.aba2724
531	Bastos, A., Fu, Z., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Zaehle, S.

532	(2020). Impacts of extreme summers on European ecosystems: a comparative
533	analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Soci-
534	ety B: Biological Sciences, 375 (1810), 20190507. doi: 10.1098/rstb.2019.0507
535	Bastos, A., Orth, R., Reichstein, M., Ciais, P., Viovy, N., Zaehle, S., Sitch, S.
536	(2021). Increased vulnerability of European ecosystems to two compound dry
537	and hot summers in 2018 and 2019. <i>Earth System Dynamics Discussions</i> ,
538	1-32. doi: $10.5194/esd-2021-19$
539	Bastos, A., Sippel, S., Frank, D., Mahecha, M. D., Zaehle, S., Zscheischler, J., &
540	Reichstein, M. (2023). A joint framework for studying compound ecoclimatic
541	events. Nature Reviews Earth & Environment, 1–18.
542	Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., & Wedi, N. P.
543	(2021). The digital revolution of earth-system science. Nature Computational
544	Science, 1(2), 104-113.
545	Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012,
546	April). Impacts of climate change on the future of biodiversity. <i>Ecology Let</i> -
547	ters, 15(4), 365–377. doi: 10.1111/j.1461-0248.2011.01736.x
548	Bendix, J., Aguire, N., Beck, E., Bräuning, A., Brandl, R., Breuer, L., others
549	(2021). A research framework for projecting ecosystem change in highly diverse
550	tropical mountain ecosystems. $Oecologia, 195(3), 589-600.$
551	Berendse, F., van Ruijven, J., Jongejans, E., & Keesstra, S. (2015). Loss of plant
552	species diversity reduces soil erosion resistance. <i>Ecosystems</i> , 18, 881–888.
553	Bodesheim, P., Babst, F., Frank, D. C., Hartl, C., Zang, C. S., Jung, M., Ma-
554	hecha, M. D. (2022). Predicting spatiotemporal variability in radial tree
555	growth at the continental scale with machine learning. Environmental Data
556	Science, 1.
557	Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Cli-
558	mate Benefits of Forests. Science, 320(5882), 1444–1449. doi: 10.1126/science
559	.1155121
560	Brunner, M. I., Slater, L., Tallaksen, L. M., & Clark, M. (2021). Challenges in mod-
561	eling and predicting floods and droughts: A review. Wiley Interdisciplinary
562	Reviews: Water, $8(3)$, e1520.
563	Buonocore, L., Yates, J., & Valentini, R. (2022). A proposal for a forest digital twin
564	framework and its perspectives. Forests, $13(4)$, 498 .

565	Cailleret, M., Dakos, V., Jansen, S., Robert, E. M. R., Aakala, T., Amoroso, M. M.,
566	\ldots Martínez-Vilalta, J. (2019). Early-Warning Signals of Individual Tree Mor-
567	tality Based on Annual Radial Growth. Frontiers in Plant Science, 9, 1964.
568	doi: 10.3389/fpls.2018.01964
569	Cavender-Bares, J., Gamon, J., & Townsend, P. (Eds.). (2020). Remote Sensing of
570	Plant Biodiversity. Springer International Publishing. doi: 10.1007/978-3-030
571	-33157-3
572	Cavender-Bares, J., Schneider, F. D., Santos, M. J., Armstrong, A., Carnaval, A.,
573	Dahlin, K. M., Wilson, A. M. (2022). Integrating remote sensing with
574	ecology and evolution to advance biodiversity conservation. Nature Ecology &
575	Evolution. doi: $10.1038/s41559-022-01702-5$
576	CBD. (1992). Convention on biological diversity: text and annex. United Nations
577	Environment Programme. Retrieved from http://www.cbd.int/doc/legal/
578	cbd-en.pdf
579	Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature climate
580	$change, \ 2(7), \ 491-496.$
581	Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C.,
582	\dots Manning, P. (2018). Multiple facets of biodiversity drive the diversity-
583	stability relationship. Nature Ecology & Evolution, $2(10)$, 1579–1587. doi:
584	10.1038/s41559-018-0647-7
585	De Boeck, H. J., Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs, I., Jentsch,
586	A., & Zeiter, M. (2018). Patterns and drivers of biodiversity–stability rela-
587	tionships under climate extremes. Journal of $Ecology$, $106(3)$, 890–902. doi:
588	10.1111/1365-2745.12897
589	De Keersmaecker, W., van Rooijen, N., Lhermitte, S., Tits, L., Schaminée, J., Cop-
590	pin, P., Somers, B. (2016). Species-rich semi-natural grasslands have a
591	higher resistance but a lower resilience than intensively managed agricultural
592	grasslands in response to climate anomalies. Journal of Applied Ecology, $53(2)$,
593	430–439. doi: 10.1111/1365-2664.12595
594	De Laender, F., Rohr, J. R., Ashauer, R., Baird, D. J., Berger, U., Eisenhauer, N.,
595	\ldots Van den Brink, P. J. (2016). Reintroducing Environmental Change Drivers
596	in Biodiversity-Ecosystem Functioning Research. Trends in Ecology & Evolu-
597	tion, $31(12)$, 905–915. doi: 10.1016/j.tree.2016.09.007

598	Desai, A. R., Wohlfahrt, G., Zeeman, M. J., Katata, G., Eugster, W., Montagnani,
599	L., Schmid, HP. (2016). Montane ecosystem productivity responds more
600	to global circulation patterns than climatic trends. Environmental Research
601	Letters, $11(2)$, 024013. doi: 10.1088/1748-9326/11/2/024013
602	Dornelas, M., Antao, L. H., Moyes, F., Bates, A. E., Magurran, A. E., Adam, D.,
603	\dots others (2018). Biotime: A database of biodiversity time series for the
604	anthropocene. Global Ecology and Biogeography, 27(7), 760–786.
605	Dowdy, A. J., & Pepler, A. (2018). Pyroconvection risk in australia: Climatological
606	changes in atmospheric stability and surface fire weather conditions. $Geophysi$ -
607	cal Research Letters, $45(4)$, 2005–2013.
608	Duveiller, G., Filipponi, F., Ceglar, A., Bojanowski, J., Alkama, R., & Cescatti, A.
609	(2021). Revealing the widespread potential of forests to increase low level
610	cloud cover. Nat. Commun., 12, 4337. doi: 10.1038/s41467-021-24551-5
611	Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Za-
612	yas, C. N. (2019). Pervasive human-driven decline of life on Earth points to
613	the need for transformative change. Science (New York, N.Y.), 366(6471),
614	eaax3100. doi: 10.1126 /science.aax3100
615	Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., others
616	(2021). Hot weather and heat extremes: health risks. The Lancet, $398(10301)$,
617	698-708.
618	Erb, KH., Haberl, H., Le Noë, J., Tappeiner, U., Tasser, E., & Gingrich, S. (2022).
619	Changes in perspective needed to forge 'no-regret'forest-based climate change
620	mitigation strategies. GCB Bioenergy, $14(3)$, 246–257.
621	Faranda, D., Vrac, M., Yiou, P., Jézéquel, A., & Thao, S. (2020). Changes in future
622	synoptic circulation patterns: consequences for extreme event attribution. Geo -
623	physical Research Letters, $47(15)$, e2020GL088002.
624	Fast, J. D., Berg, L. K., Feng, Z., Mei, F., Newsom, R., Sakaguchi, K., & Xiao, H.
625	(2019). The Impact of Variable Land-Atmosphere Coupling on Convective
626	Cloud Populations Observed During the 2016 HI-SCALE Field Campaign.
627	Journal of Advances in Modeling Earth Systems, 11(8), 2629–2654. doi:
628	10.1029/2019MS001727
629	Felton, A. J., & Smith, M. D. (2017). Integrating plant ecological responses to cli-
630	mate extremes from individual to ecosystem levels. <i>Philosophical Transactions</i>

631	of the Royal Society B: Biological Sciences, 372(1723), 20160142. doi: 10.1098/
632	rstb.2016.0142
633	Fischer, E., Sippel, S., & Knutti, R. (2021). Increasing probability of record-
634	shattering climate extremes. Nature Climate Change, $11(8)$, $689-695$. doi:
635	10.1038/s41558-021-01092-9
636	Flach, M., Brenning, A., Gans, F., Reichstein, M., Sippel, S., & Mahecha, M. D.
637	(2021). Vegetation modulates the impact of climate extremes on gross primary
638	production. Biogeosciences, $18(1)$, 39–53. doi: 10.5194/bg-18-39-2021
639	Flach, M., Sippel, S., Gans, F., Bastos, A., Brenning, A., Reichstein, M., & Ma-
640	hecha, M. D. (2018) . Contrasting biosphere responses to hydrometeorological
641	extremes: revisiting the 2010 western Russian heatwave. Biogeosciences,
642	15(20), 6067-6085. doi: 10.5194/bg-15-6067-2018
643	Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H.,
644	Cescatti, A. (2021). Emergent vulnerability to climate-driven disturbances
645	in European forests. Nature Communications, $12(1)$, 1081. Retrieved 2021-
646	12-21, from https://www.nature.com/articles/s41467-021-21399-7 doi:
647	10.1038/s41467-021-21399-7
648	Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G.,
649	Cescatti, A. (2020, April). Increased control of vegetation on global ter-
650	restrial energy fluxes. Nature Climate Change, $10(4)$, $356-362$. Retrieved
651	2021-12-21, from https://www.nature.com/articles/s41558-020-0717-0
652	doi: 10.1038/s41558-020-0717-0
653	Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N.,
654	Zhang, X. (2021). Anthropogenic intensification of short-duration rain-
655	fall extremes. Nature Reviews Earth & Environment, $2(2)$, 107–122. doi:
656	10.1038/s43017-020-00128-6
657	Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D.,
658	Zscheischler, J. (2015). Effects of climate extremes on the terrestrial car-
659	bon cycle: concepts, processes and potential future impacts. Global Change
660	Biology, 21(8), 2861-2880.doi: 10.1111/gcb.12916
661	Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., An-
662	dreae, M. O., others (2016). Bioaerosols in the earth system: Climate,
663	health, and ecosystem interactions. Atmospheric Research, 182, 346–376.

-27-

664	García-García, A., Cuesta-Valero, F. C., Miralles, D. G., Mahecha, M. D., Quaas,
665	J., Reichstein, M., Peng, J. (in press). Soil heat extremes outpace
666	their atmospheric counterpart. Nature Climate Change. Retrieved from
667	https://www.researchsquare.com/article/rs-2832579/v1 doi:
668	https://doi.org/10.21203/rs.3.rs-2832579/v1
669	Gonzalez, A., Germain, R. M., Srivastava, D. S., Filotas, E., Dee, L. E., Gravel, D.,
670	Loreau, M. (2020). Scaling-up biodiversity-ecosystem functioning research.
671	$Ecology \ Letters, \ 23(4), \ 757-776. \ doi: \ 10.1111/ele.13456$
672	Gray, M. (2011). Other nature: geodiversity and geosystem services. <i>Environmental</i>
673	Conservation, $38(3)$, 271–274. doi: 10.1017/S0376892911000117
674	Grossiord, C., Sevanto, S., Bonal, D., Borrego, I., Dawson, T. E., Ryan, M., Mc-
675	Dowell, N. G. (2019). Prolonged warming and drought modify belowground
676	interactions for water among coexisting plants. Tree Physiology, $39(1)$, 55–63.
677	doi: 10.1093 /treephys/tpy080
678	Grote, R., Sharma, M., Ghirardo, A., & Schnitzler, JP. (2019). A New Mod-
679	eling Approach for Estimating Abiotic and Biotic Stress-Induced de novo
680	Emissions of Biogenic Volatile Organic Compounds From Plants. Fron-
681	tiers in Forests and Global Change, 2, 26. Retrieved 2021-12-21, from
682	https://www.frontiersin.org/article/10.3389/ffgc.2019.00026 doi:
683	$10.3389/{ m ffgc}.2019.00026$
684	Guimarães-Steinicke, C., Weigelt, A., Proulx, R., Lanners, T., Eisenhauer, N.,
685	Duque-Lazo, J., others (2021). Biodiversity facets affect community
686	surface temperature via 3d canopy structure in grassland communities. $Journal$
687	of $Ecology$, $109(5)$, 1969–1985.
688	Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A.,
689	Perkins-Kirkpatrick, S. E., Bowman, D. M. J. S. (2018). Biological re-
690	sponses to the press and pulse of climate trends and extreme events. <i>Nature</i>
691	Climate Change, 8(7), 579–587. doi: 10.1038/s41558-018-0187-9
692	Hartmann, H., Link, R. M., & Schuldt, B. (2021). A whole-plant perspective of iso-
693	hydry: stem-level support for leaf-level plant water regulation. Tree Physiology,
694	41(6), 901-905.
695	Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen,
696	C. D., O'Brien, M. (2018). Research frontiers for improving our un-

697	derstanding of drought-induced tree and forest mortality. New Phytologist,
698	218(1), 15–28. doi: 10.1111/nph.15048
699	Hoover, D. L., Knapp, A. K., & Smith, M. D. (2014). Resistance and resilience of a
700	grassland ecosystem to climate extremes. $Ecology, 95(9), 2646-2656.$
701	Huguenin, M. F., Fischer, E. M., Kotlarski, S., Scherrer, S. C., Schwierz, C., &
702	Knutti, R. (2020). Lack of change in the projected frequency and persistence
703	of atmospheric circulation types over central europe. Geophysical Research
704	Letters, 47(9), e2019GL086132.
705	IPBES. (2019, May). Global assessment report on biodiversity and ecosystem ser-
706	vices of the Intergovernmental Science-Policy Platform on Biodiversity and
707	Ecosystem Services (Tech. Rep.). IPBES secretariat, Bonn, Germany. doi:
708	10.5281/zenodo.3831673
709	IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution
710	of Working Group I to the Sixth Assessment Report of the Intergovernmen-
711	tal Panel on Climate Change (V. Masson-Delmotte et al., Eds.). Cambridge
712	University Press.
713	Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C.,
714	\dots Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosys-
715	tem productivity to climate extremes. Nature, $526(7574)$, $574-577$. doi:
716	10.1038/nature15374
717	Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden,
718	A. S., others (2022). The direct drivers of recent global anthropogenic
719	biodiversity loss. Science Advances, $\mathcal{S}(45)$, eabm9982.
720	Jiang, X., Guenther, A., Potosnak, M., Geron, C., Seco, R., Karl, T., Pallardy,
721	S. (2018). Isoprene Emission Response to Drought and the Impact on Global
722	Atmospheric Chemistry. Atmospheric environment (Oxford, England : 1994),
723	183, 69-83. doi: 10.1016/j.atmosenv.2018.01.026
724	Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera,
725	P. E., others (2016). Changing disturbance regimes, ecological mem-
726	ory, and forest resilience. Frontiers in Ecology and the Environment, $14(7)$,
727	369 - 378.
728	Jokinen, T., Berndt, T., Makkonen, R., Kerminen, VM., Junninen, H., Paaso-
729	nen, P., Sipilä, M. (2015). Production of extremely low volatile organic

-29-

730	compounds from biogenic emissions: Measured yields and atmospheric implica-
731	tions. Proceedings of the National Academy of Sciences, 112(23), 7123–7128.
732	Retrieved 2021-12-21, from https://www.pnas.org/content/112/23/7123
733	doi: $10.1073/\text{pnas}.1423977112$
734	Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel,
735	M., others (2022) . Global and regional trends and drivers of fire under
736	climate change. Reviews of Geophysics, e2020RG000726.
737	Kautz, LA., Martius, O., Pfahl, S., Pinto, J. G., Ramos, A. M., Sousa, P. M.,
738	& Woollings, T. (2022). Atmospheric blocking and weather extremes over
739	the euro-atlantic sector – a review. Weather and Climate Dynamics, $\Im(1)$,
740	305-336. Retrieved from https://doi.org/10.5194/wcd-3-305-2022 doi:
741	10.5194/wcd-3-305-2022
742	Kayler, Z. E., De Boeck, H. J., Fatichi, S., Grünzweig, J. M., Merbold, L., Beier, C.,
743	\dots Dukes, J. S. (2015). Experiments to confront the environmental extremes
744	of climate change. Frontiers in Ecology and the Environment, $13(4)$, $219-225$.
745	doi: 10.1890/140174
746	Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S., &
747	Gray, L. (2019). Extreme weather events in early summer 2018 connected by a
748	recurrent hemispheric wave-7 pattern. Environmental Research Letters, $14(5)$,
749	054002.
750	Kretschmer, M., Adams, S., Arribas, A., Prudden, R., Robinson, N., Saggioro, E., &
751	Shepherd, T. (2021). Quantifying causal pathways of teleconnections. $B. Am.$
752	Meteorol. Soc., 102, E2247–E2263.
753	Kretzschmar, J., Pöhlker, M., Stratmann, F., Wex, H., Wirth, C., & Quaas, J.
754	(2023). From trees to rain: Enhancement of cloud glaciation and precipitation
755	by pollen. arXiv. Retrieved from https://arxiv.org/abs/2305.06758 doi:
756	10.48550/ARXIV.2305.06758
757	Kreyling, J., Wenigmann, M., Beierkuhnlein, C., & Jentsch, A. (2008). Effects
758	of Extreme Weather Events on Plant Productivity and Tissue Die-Back are
759	Modified by Community Composition. $Ecosystems, 11(5), 752-763.$ doi:
760	10.1007/s10021-008-9157-9
761	Laguë, M. M., Bonan, G. B., & Swann, A. L. (2019). Separating the impact of
762	individual land surface properties on the terrestrial surface energy budget in

-30-

763	both the coupled and uncoupled land–atmosphere system. Journal of Climate,
764	32(18), 5725-5744.
765	Lange, M., Feilhauer, H., Kühn, I., & Doktor, D. (2022). Mapping land-use intensity
766	of grasslands in germany with machine learning and sentinel-2 time series. Re -
767	mote Sensing of Environment, 277, 112888.
768	Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., others
769	(2020). Projecting exposure to extreme climate impact events across six event
770	categories and three spatial scales. Earth's Future, $\mathcal{S}(12)$, e2020EF001616.
771	Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R., Worsnop,
772	D. R. (2018). Multicomponent new particle formation from sulfuric acid,
773	ammonia, and biogenic vapors. Science Advances, $4(12)$, eaau5363. Retrieved
774	2021-12-21, from https://www.science.org/doi/10.1126/sciadv.aau5363
775	doi: 10.1126/sciadv.aau5363
776	Lin, H., Tu, C., Fang, J., Gioli, B., Loubet, B., Gruening, C., \dots Grace, J. (2020).
777	Forests buffer thermal fluctuation better than non-forests. Agricultural and
778	Forest Meteorology, 288-289 (107994). doi: 10.1016/j.agrformet.2020.107994
779	Liu, D., Wang, T., Peñuelas, J., & Piao, S. (2022). Drought resistance enhanced by
780	tree species diversity in global forests. Nature Geoscience, $15(10)$, 800–804.
781	Loreau, M., Barbier, M., Filotas, E., Gravel, D., Isbell, F., Miller, S. J., Dee,
782	L. E. (2021). Biodiversity as insurance: from concept to measurement and
783	application. Biological Reviews, $96(5)$, 2333–2354. doi: 10.1111/brv.12756
784	Lübbe, T., Lamarque, L. J., Delzon, S., Torres Ruiz, J. M., Burlett, R., Leuschner,
785	C., & Schuldt, B. (2022). High variation in hydraulic efficiency but not xylem
786	safety between roots and branches in four temperate broad-leaved tree species.
787	Functional Ecology, $36(3)$, $699-712$.
788	Luttkus, M. L., Hoffmann, E. H., Poulain, L., Tilgner, A., & Wolke, R. (2022). The
789	Effect of Land Use Classification on the Gas-Phase and Particle Composition
790	of the Troposphere: Tree Species Versus Forest Type Information. Journal of
791	Geophysical Research: Atmospheres, 127(7). doi: 10.1029/2021JD035305
792	Ma, X., Migliavacca, M., Wirth, C., Bohn, F. J., Huth, A., Richter, R., & Mahecha,
793	M. D. (2020). Monitoring Plant Functional Diversity Using the Reflectance
794	and Echo from Space. Remote Sensing, $12(8)$, 1248 . doi: 10.3390/rs12081248
795	Machado, L. A. T., Calheiros, A. J. P., Biscaro, T., Giangrande, S., Silva Dias,

-31-

796	M. A. F., Cecchini, M. A., Wendisch, M. (2018). Overview: Precipitation
797	characteristics and sensitivities to environmental conditions during GoAma-
798	zon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics,
799	18(9), 6461-6482. doi: 10.5194/acp-18-6461-2018
800	Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hartmann,
801	H., Wirth, C. (2022). Biodiversity loss and climate extremes – study the
802	feedbacks. <i>Nature</i> , 621, 30–32.
803	Mahecha, M. D., Gans, F., Brandt, G., Christiansen, R., Cornell, S. E., Fomferra,
804	N., Reichstein, M. (2020). Earth system data cubes unravel global
805	multivariate dynamics. $Earth System Dynamics, 11(1), 201-234.$ doi:
806	10.5194/esd-11-201-2020
807	Mahecha, M. D., Gans, F., Sippel, S., Donges, J. F., Kaminski, T., Metzger, S.,
808	Zscheischler, J. (2017). Detecting impacts of extreme events with ecolog-
809	ical in situ monitoring networks. $Biogeosciences, 14(18), 4255-4277.$ doi:
810	10.5194/bg-14-4255-2017
811	Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Bal-
812	docchi, D. D., Reichstein, M. (2021, October). The three major
813	axes of terrestrial ecosystem function. $Nature, 598(7881), 468-472.$ doi:
814	10.1038/s41586-021-03939-9
815	Miralles, D. G., Gentine, P., Seneviratne, S. I., & Teuling, A. J. (2019).
816	Land–atmospheric feedbacks during droughts and heatwaves: state of the
817	science and current challenges. Annals of the New York Academy of Sciences,
818	1436(1), 19-35. doi: 10.1111/nyas.13912
819	Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., La-
820	vorel, S., Yahara, T. (2009). Biodiversity, climate change, and ecosystem
821	services. Current Opinion in Environmental Sustainability, $1(1)$, 46–54. doi:
822	10.1016/j.cosust.2009.07.006
823	Mursinna, A. R., McCormick, E., Van Horn, K., Sartin, L., & Matheny, A. M.
824	(2018). Plant Hydraulic Trait Covariation: A Global Meta-Analysis to Re-
825	duce Degrees of Freedom in Trait-Based Hydrologic Models. Forests, $9(8)$, 446.
826	doi: 10.3390/f9080446
827	Musavi, T., Mahecha, M. D., Migliavacca, M., Reichstein, M., van de Weg, M. J.,
828	van Bodegom, P. M., \ldots others (2015). The imprint of plants on ecosystem
829	functioning: A data-driven approach. International Journal of Applied Earth
-----	--
830	Observation and Geoinformation, 43, 119–131.
831	Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A.,
832	Mahecha, M. D. (2017, January). Stand age and species richness dampen in-
833	terannual variation of ecosystem-level photosynthetic capacity. Nature $Ecology$
834	& Evolution, $1(2)$, 1–7. doi: 10.1038/s41559-016-0048
835	Niinemets, Ü. (2010). Mild versus severe stress and byocs: thresholds, priming and
836	consequences. Trends in plant science, 15(3), 145–153.
837	Oehri, J., Schmid, B., Schaepman-Strub, G., & Niklaus, P. A. (2020). Terrestrial
838	land-cover type richness is positively linked to landscape-level functioning. Na -
839	ture Communications, 11(1), 154. doi: 10.1038/s41467-019-14002-7
840	O'Sullivan, D., Adams, M. P., Tarn, M. D., Harrison, A. D., Vergara-Temprado, J.,
841	Porter, G. C. E., Murray, B. J. (2018). Contributions of biogenic mate-
842	rial to the atmospheric ice-nucleating particle population in North Western
843	Europe. Scientific Reports, $\delta(1)$, 13821. doi: 10.1038/s41598-018-31981-7
844	Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Calama,
845	R. (2021). The greater resilience of mixed forests to drought mainly depends
846	on their composition: Analysis along a climate gradient across Europe. $\ \ Forest$
847	Ecology and Management, 481, 118687. doi: 10.1016/j.foreco.2020.118687
848	Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H.,
849	Loew, A. (2021). A roadmap for high-resolution satellite soil moisture appli-
850	cations - confronting product characteristics with user requirements. Remote
851	Sensing of Environment, 252, 112162. doi: 10.1016/j.rse.2020.112162
852	Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes,
853	R. J., Wegmann, M. (2013). Essential Biodiversity Variables. Science,
854	339(6117), 277-278. doi: 10.1126/science.1229931
855	Pfenninger, M., Reuss, F., Kiebler, A., Schönnenbeck, P., Caliendo, C., Gerber, S.,
856	\dots others (2021). Genomic basis for drought resistance in european beech
857	forests threatened by climate change. <i>Elife</i> , 10, e65532.
858	Pörtner, HO., Scholes, R., Arneth, A., Barnes, D., Burrows, M. T., Diamond, S.,
859	\dots others (2023). Overcoming the coupled climate and biodiversity crises and
860	their societal impacts. Science, $380(6642)$, eabl4881.
861	Pörtner, H., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Ngo,

-33-

862	H. T. (2021). IPBES-IPCC co-sponsored workshop report on biodiversity and
863	climate change. Bonn, Germany: Intergovernmental Science-Policy Platform
864	on Biodiversity and Ecosystem Services (IPBES) and Intergovernmental Panel
865	on Climate Change (IPCC). doi: 10.5281/zenodo.4659158
866	Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S.,
867	Kumar, R. (2022). The 2018–2020 multi-year drought sets a new benchmark
868	in europe. Earth's Future, $10(3)$, e2021EF002394.
869	Rap, A., Scott, C. E., Reddington, C. L., Mercado, L., Ellis, R. J., Garraway, S.,
870	Spracklen, D. V. (2018). Enhanced global primary production by biogenic
871	aerosol via diffuse radiation fertilization. $Nature \ Geoscience, \ 11(9), \ 640-$
872	644. Retrieved from https://doi.org/10.1038/s41561-018-0208-3 doi:
873	10.1038/s41561-018-0208-3
874	Rap, A., Spracklen, D. V., Mercado, L., Reddington, C. L., Haywood, J. M., El-
875	lis, R. J., Butt, N. (2015). Fires increase amazon forest productivity
876	through increases in diffuse radiation. $Geophysical Research Letters, 42(11),$
877	4654-4662. Retrieved from https://doi.org/10.1002/2015gl063719 doi:
878	10.1002/2015gl 063719
879	Ratcliffe, S., Liebergesell, M., Ruiz-Benito, P., Madrigal González, J.,
880	Muñoz Castañeda, J. M., Kändler, G., Wirth, C. (2016). Modes of func-
881	tional biodiversity control on tree productivity across the European continent.
881 882	tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, $25(3)$, $251-262$. doi: $10.1111/geb.12406$
881 882 883	tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I.,
881 882 883 884	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle.
881 882 883 884 885	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350
881 882 883 884 885 886	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D.
881 882 883 884 885 886 886	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed-
881 882 883 884 885 886 887 888	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi:
881 882 883 884 885 886 887 888 889	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111
881 882 883 884 885 886 886 887 888 889	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais,
881 882 883 884 885 886 886 888 889 890 891	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-
881 882 883 884 885 886 887 888 889 890 891	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data- driven Earth system science. Nature, 566(7743), 195–204. Retrieved 2021-
881 882 883 884 885 886 887 888 889 890 891 892 893	 tional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25(3), 251–262. doi: 10.1111/geb.12406 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Wattenbach, M. (2013, August). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. doi: 10.1038/nature12350 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and ecosystem functional biogeography. Proceed- ings of the National Academy of Sciences, 111(38), 13697–13702. doi: 10.1073/pnas.1216065111 Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data- driven Earth system science. Nature, 566(7743), 195–204. Retrieved 2021- 12-22, from https://www.nature.com/articles/s41586-019-0912-1 doi:

-34-

895	Reichstein, M., Riede, F., & Frank, D. (2021). More floods, fires and cyclones—plan
896	for domino effects on sustainability goals. Nature, $592(7854)$, $347-349$.
897	Reyer, C. P., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P., Bonfante,
898	A., Pereira, M. (2013) . A plant's perspective of extremes: terrestrial
899	plant responses to changing climatic variability. Global Change Biology, $19(1)$,
900	75–89. doi: 10.1111/gcb.12023
901	Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo,
902	L., Baltensperger, U. (2014, May). Oxidation Products of Biogenic Emis-
903	sions Contribute to Nucleation of Atmospheric Particles. Science, $344(6185)$,
904	717-721. Retrieved 2021-12-21, from https://www.science.org/doi/
905	10.1126/science.1243527 doi: 10.1126/science.1243527
906	Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Häkkinen, S., Ehn, M.,
907	Kulmala, M. (2011, April). Organic condensation: a vital link connect-
908	ing aerosol formation to cloud condensation nuclei (CCN) concentrations.
909	Atmospheric Chemistry and Physics, 11(8), 3865–3878. Retrieved 2021-12-
910	21, from https://acp.copernicus.org/articles/11/3865/2011/ doi:
911	10.5194/acp-11-3865-2011
912	Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke,
913	J., Thonicke, K. (2016). Resilience of Amazon forests emerges from
914	plant trait diversity. Nature Climate Change, $6(11)$, 1032–1036. doi:
915	10.1038/nclimate3109
916	Santanello, J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B.,
917	Berg, A., Wulfmeyer, V. (2018). Land–Atmosphere Interactions: The
918	LoCo Perspective. Bulletin of the American Meteorological Society, $99(6)$,
919	1253–1272. doi: 10.1175/BAMS-D-17-0001.1
920	Scheiter, S., Langan, L., & Higgins, S. I. (2013). Next-generation dynamic global
921	vegetation models: learning from community ecology. New Phytologist, $198(3)$,
922	957–969.
923	Schnabel, F., Purrucker, S., Schmitt, L., Engelmann, R. A., Kahl, A., Richter, R.,
924	
	\dots Wirth, C. (2021, March). Cumulative growth and stress responses to the
925	Wirth, C. (2021, March). Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. <i>Global Change Biology</i> ,
925 926	 Wirth, C. (2021, March). Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. <i>Global Change Biology</i>, 28(5), 1870–1883. Retrieved 2022-04-29, from https://onlinelibrary.wiley

928	Schumacher, D. L., Keune, J., van Heerwaarden, C. C., Vilà-Guerau de Arellano,
929	J., Teuling, A. J., & Miralles, D. G. (2019). Amplification of mega-heatwaves
930	through heat torrents fuelled by upwind drought. Nature Geoscience, $12(9)$,
931	712–717. doi: 10.1038/s41561-019-0431-6
932	Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G.,
933	Reyer, C. P. O. (2017, June). Forest disturbances under climate change.
934	Nature Climate Change, 7(6), 395–402. doi: 10.1038/nclimate3303
935	Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J.,
936	\dots Zhang, X. (2012). Changes in climate extremes and their impacts on the
937	natural physical environment: An overview of the IPCC SREX report. , $12566.$
938	doi: 10.7916/d8-6nbt-s431
939	Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., & Frank,
940	D. (2018). Drought, Heat, and the Carbon Cycle: a Review. Current Climate
941	Change Reports, 4(3), 266–286. doi: 10.1007/s40641-018-0103-4
942	Skidmore, A. K., Coops, N. C., Neinavaz, E., Ali, A., Schaepman, M. E., Pa-
943	ganini, M., Wingate, V. (2021). Priority list of biodiversity metrics
944	to observe from space. Nature Ecology and Evolution, $5(7)$, 896–906. doi:
945	10.1038/s41559-021-01451-x
946	Slingo, J., Bates, P., Bauer, P., Belcher, S., Palmer, T., Stephens, G., Teutsch,
947	G. (2022). Ambitious partnership needed for reliable climate prediction.
948	Nature Climate Change, 12(6), 499–503.
949	Sporre, M. K., Blichner, S. M., Karset, I. H. H., Makkonen, R., & Berntsen,
950	T. K. (2019). BVOC–aerosol–climate feedbacks investigated using
951	NorESM. Atmospheric Chemistry and Physics, 19(7), 4763–4782. doi:
952	10.5194/acp-19-4763-2019
953	Svenning, JC., Pedersen, P. B. M., Donlan, C. J., Ejrnæs, R., Faurby, S., Galetti,
954	M., Vera, F. W. M. (2016). Science for a wilder Anthropocene: Synthesis
955	and future directions for trophic rewilding research. Proceedings of the Na-
956	tional Academy of Sciences of the United States of America, 113(4), 898–906.
957	doi: $10.1073/\text{pnas}.1502556112$
958	Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P.,
959	Wohlfahrt, G. (2010, October). Contrasting response of European forest and
960	grassland energy exchange to heatwaves. Nature Geoscience, $3(10)$, 722–727.

-36-

961	doi: 10.1038/ngeo950
962	Teuling, A. J., Taylor, C. M., Meirink, J. F., Melsen, L. A., Miralles, D. G., Heer-
963	waarden, C. C. v., Arellano, J. VG. d. (2017, January). Observational
964	evidence for cloud cover enhancement over western European forests. Nature
965	Communications, $\mathcal{S}(1)$. doi: 10.1038/ncomms14065
966	Thonicke, K., Bahn, M., Lavorel, S., Bardgett, R. D., Erb, K., Giamberini, M.,
967	Rammig, A. (2020a). Advancing the Understanding of Adaptive Capacity of
968	Social-Ecological Systems to Absorb Climate Extremes. Earth's Future, $\mathcal{S}(2)$.
969	doi: 10.1029/2019EF001221
970	Thonicke, K., Bahn, M., Lavorel, S., Bardgett, R. D., Erb, K., Giamberini, M.,
971	Rammig, A. (2020b). Advancing the understanding of adaptive capacity of
972	social-ecological systems to absorb climate extremes. $Earth's Future, 8(2),$
973	e2019 EF001221.
974	Ukkola, A. M., Pitman, A. J., Donat, M. G., De Kauwe, M. G., & Angélil, O.
975	(2018). Evaluating the Contribution of Land-Atmosphere Coupling to Heat
976	Extremes in CMIP5 Models. Geophysical Research Letters, 45(17), 9003–9012.
977	doi: 10.1029/2018GL079102
978	van der Velde, I. R., van der Werf, G. R., Houweling, S., Maasakkers, J. D., Bors-
979	dorff, T., Landgraf, J., \ldots others (2021). Vast co2 release from australian fires
980	in 2019–2020 constrained by satellite. Nature, $597(7876)$, $366-369$.
981	van Heerwaarden, C. C., Mol, W. B., Veerman, M. A., Benedict, I., Heusinkveld,
982	B. G., Knap, W. H., Fiedler, S. (2021, February). Record high solar ir-
983	radiance in Western Europe during first COVID-19 lockdown largely due to
984	unusual weather. Communications Earth & Environment, $2(1)$, 1–7. doi:
985	10.1038/s43247-021-00110-0
986	Vári, Á., Kozma, Z., Pataki, B., Jolánkai, Z., Kardos, M., Decsi, B., others
987	(2022). Disentangling the ecosystem service 'flood regulation': Mechanisms
988	and relevant ecosystem condition characteristics. $Ambio$, 1–16.
989	Violle, C., Navas, ML., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier,
990	E. (2007). Let the concept of trait be functional! Oikos, $116(5)$, 882–892.
991	von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl,
992	A., Mahecha, M. D. (2018, March). Impacts of droughts and extreme-
993	temperature events on gross primary production and ecosystem respiration: a

994	systematic assessment across ecosystems and climate zones. <i>Biogeosciences</i> ,
995	15(5), 1293-1318. doi: 10.5194/bg-15-1293-2018
996	Werner, C., Meredith, L. K., Ladd, S. N., Ingrisch, J., Kübert, A., Haren, J. v.,
997	Williams, J. (2021, December). Ecosystem fluxes during drought and recovery
998	in an experimental forest. Science. doi: 10.1126/science.abj6789
999	Wirth, C. (2005). Fire regime and tree diversity in boreal forests: implications for
1000	the carbon cycle. In Forest diversity and function: temperate and boreal sys-
1001	<i>tems</i> (pp. 309–344). Springer.
1002	Witze, A., et al. (2022). Extreme heatwaves: surprising lessons from the record
1003	warmth. Nature, 608(7923), 464–465.
1004	Yachi, S., & Loreau, M. (1999, February). Biodiversity and ecosystem productivity
1005	in a fluctuating environment: The insurance hypothesis. Proceedings of the Na-
1006	tional Academy of Sciences, $96(4)$, 1463–1468. doi: 10.1073/pnas.96.4.1463
1007	Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S.,
1008	Gentine, P. (2019, September). Land–atmosphere feedbacks exacerbate concur-
1009	rent soil drought and atmospheric aridity. Proceedings of the National Academy
1010	of Sciences, $116(38)$, 18848–18853. doi: 10.1073/pnas.1904955116
1011	Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M.,
1012	\dots others (2020). A typology of compound weather and climate events. <i>Nature</i>
1013	reviews earth & environment, 1(7), 333-347. doi: 10.1038/s43017-020-0060-z