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The laser-interferometer space antenna (LISA) will be launched in the mid 2030s. It promises to observe
the coalescence of massive black-hole (BH) binaries with signal-to-noise ratios (SNRs) reaching thousands.
Crucially, it will detect some of these binaries with high SNR both in the inspiral and the merger-ringdown
stages. Such signals are ideal for tests of General Relativity (GR) using information from the whole waveform.
Here, we consider astrophysically motivated binary systems at the high-mass end of the population observable
by LISA, and simulate their LISA signals using the newly developed parametrised, multipolar, aligned-spin
effective-one-body model: pSEOBNRv5HM. This model includes the (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) and
(5, 5) harmonics. The merger-ringdown signal in this model depends on the binary properties (masses and
spins), and also on parameters that describe fractional deviations from the GR quasi-normal-mode (complex)
frequencies of the remnant BH. Performing full Bayesian analyses, we assess to which accuracy LISA will be
able to constrain deviations from GR in the ringdown signal when using information from the whole signal. We
find that these deviations can typically be constrained to within 10% and in the best cases to within 1%. We also
show that with this model we can measure the binary masses and spins with great accuracy even for very massive
BH systems with low SNR in the inspiral, thanks to having a consistent dependence on the binary parameters
in the merger-ringdown signal. In particular, individual source-frame masses can typically be constrained to
within 10% and as precisely as 1%, and individual spins can typically be constrained to within 0.1 and, in the
best cases, to within 0.001. Finally, we probe the accuracy of the SEOBNRv5HM waveform family by performing
synthetic injections of GR numerical-relativity waveforms. For the source parameters considered, when higher
harmonics are included and the SNR ≳ 87, we measure erroneous deviations from GR due to systematics in the
waveform model. These results confirm the need for improving waveform models to perform tests of GR with
binary BHs at high SNR with LISA.

I. INTRODUCTION

We are now well into the era of gravitational-wave (GW)
astronomy, with 90 observations of compact-object bina-
ries [1, 2] by the LIGO-Virgo-KAGRA (LVK) Collabora-
tion [3–5], and other claimed detections [6, 7]. The fourth ob-
serving run of the LVK Collaboration has just started, with the
promise of many new detections thanks to improved sensitiv-
ity [8]. In addition to unveiling an otherwise hardly detectable
population of binary black holes (BBHs) [9–13], constraining
the equation-of-state of neutron stars [14, 15] and inferring
astrophysical and cosmological information [16, 17], GWs al-
low us to test General Relativity (GR) [18–21] in the strong-
gravity and high-velocity regime, which is not accessible to
other experiments. Indeed, by comparing predictions for the
GW signal of a BBH within GR to the observed data we can
constrain deviations from GR.

One of the most promising approaches to probe deviations
from GR with GWs are the so-called “ringdown tests”. In
the last stage of the coalescence of a BBH, after the two BHs
have merged, the remnant BH is in a perturbed state and re-
laxes to a steady state configuration through GW emission.
This stage is called the ringdown. In this final stage, the sig-
nal is a superposition of damped sinusoids with frequencies
and damping times that depend exclusively on the properties
of the remnant [22–27]. Within GR, the “no-hair” conjecture
[28] tells us that those are the mass and the spin of the final
BH, since astrophysical BHs are expected to carry no electric
charge. Some gravity theories predict additional “hairs” for

BHs, due for instance to cosmological boundary conditions or
the presence of nearby matter [29–31] or to additional fields
[32–39]. In any case, the exact relation between the proper-
ties of the remnant and the spectrum of quasi-normal modes
(QNMs) (i.e., the sets of frequencies and damping times) is
theory-dependent [40–54]. By measuring two or more QNMs
we can test if the signal agrees with GR. This is the basic
idea behind BH spectroscopy [55, 56]. On the other hand, the
amount to which each mode is excited (i.e., its amplitude), and
the relative phases between them do depend on the properties
of the BHs in the binary and the binary dynamics [57–60].
Therefore, a consistent modelling of the merger-ringdown to-
gether with the inspiral can improve our ability to measure
the QNMs, and to constrain deviations from GR during the
ringdown. This is the approach followed in Refs. [61, 62],
where the authors developed a parametrised model of the
ringdown signal as part of the full inspiral-merger-ringdown
(IMR) waveforms [63, 64] in the effective one-body (EOB)
formalism [65, 66]. Such a model can be used to perform
parametrised (or theory-agnostic) ringdown tests of GR by al-
lowing the QNMs to deviate from their GR prediction: a de-
parture from the Kerr spectrum would be indicative of non-GR
effects. The model has also been extended to parametrise the
plunge-merger stages in Ref. [67], and to carry out theory-
specific tests of GR in the ringdown in Ref. [68]. Here,
we employ the parametrised ringdown test, which has al-
ready been applied to analyse the GW signals observed by
the LVK Collaboration, showing so far consistency with GR
[20, 21, 61, 62, 67]. The precision of the test has so far been
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limited by the low signal-to-noise ratio (SNR) of the sources,
which has led to measurement errors for the frequency and
decay time of the dominant QNM on the order of 10% and
20%, respectively, when combining events in a hierarchical
way [21]. More specifically, for LIGO-Virgo observations this
test can be applied only when both the pre- and post-inspiral
regimes have at least SNR ∼ 8, which has been the case for 12
binary systems [21]. The best single-event measurement [20]
has been obtained with GW150914, which has a total SNR of
24 [69]. Other approaches have also been developed to do BH
spectroscopy with LIGO-Virgo data [20, 21], using a superpo-
sition of damped sinusoids [70, 71], in some cases augmented
with QNM amplitudes calibrated to numerical-relativity (NR)
simulations.

Scheduled for launch in the mid-2030s, the laser-
interferometer space antenna (LISA) [72], will detect massive
BH binaries (MBHBs) with SNRs reaching thousands, some-
times both in the inspiral and in the merger-ringdown [73–
75]. MBHBs are therefore promising candidates for perform-
ing ringdown tests that use information from the full signal.
Previous studies on ringdown analysis with LISA [58, 74, 76]
focused on “pure” ringdown tests (i.e., using a superposition
of damped sinusoids after the merger) and employed simpli-
fied methods and criteria such as the Fisher matrix formal-
ism [77, 78] to estimate the measurement accuracy and the
distinguishability between QNMs. In this paper, we simulate
LISA observations of MBHBs and run full Bayesian analyses
on those in order to assess to which accuracy putative devia-
tions from GR in the ringdown could be constrained from such
observations when using information from the whole signal.
Furthermore, we make use of parametrised EOB waveforms
developed using the state-of-the-art multipolar aligned-spin
model SEOBNRv5HM 1 developed in Refs. [79–82]. Hence-
forth, we denote the parametrised model as pSEOBNRv5HM.

Since the expected population of MBHBs is highly uncer-
tain [73, 83–88], here we focus on a few astrophysically re-
alistic systems, compatible with the predictions of models
where MBHs form from heavy seeds [89]. For simplicity,
in this work we neglect the effect of spin-precession and ec-
centricity. Our study is performed by using the same wave-
form model for generating mock injections and for estimating
the parameters of the source. However, it is crucial to as-
sess if such tests of GR could be spoiled by the limited accu-
racy of our theoretical models when performed on real data.
Therefore, we assess the impact of systematics in waveform
modelling on ringdown tests by simulating mock LISA injec-
tions with waveforms from numerical relativity (NR) and us-
ing pSEOBNRv5HM waveforms to perform the Bayesian analy-
sis. Finally, we assess to which extent a consistent modelling
of the full signal allows us to measure the binary parameters
in GR also for systems that are merger-ringdown dominated
and have low SNR in the inspiral.

1 The generic name SEOBNRvnEPHM indicates that the version vn of the EOB
model is calibrated to NR simulations (NR), includes spin (S) and pre-
cessional (P) effects, eccentricity (E) and higher modes (HM, i.e. higher
harmonics).

This paper is organised as follows. In Sec. II we present
the details of our parametrised EOB model, describe how the
synthetic LISA observations are generated, and lay down the
basis of our Bayesian analyses. In Sec. III we summarise
the astrophysical systems that we simulate. We present our
results when using the pSEOBNRv5HM model both for injec-
tion and parameter estimation in Sec. IV, then in Sec. V we
discuss the impact of systematics. Finally, we present our
conclusions in Sec. VI. In the appendices, we discuss how
the settings of pSEOBNRv5HM waveforms impact the param-
eter estimation, and we show that, in GR, SEOBNRv5HM and
IMRPhenomTHM [90], a time-domain waveform model from
the IMR phenomenological family [91–93], predict similar
measurement errors for the parameters of the source, and that
their measurement is little affected by adding the QNM devia-
tion parameters in the pSEOBNRv5HM model. Throughout this
paper we will use natural units in which c = G = 1.

II. METHODS

A. Parametrised waveform model

We consider a binary with BH component (detector-frame)
masses m1 and m2 and define the mass ratio q = m1/m2 ≥ 1
and the total mass Mt = m1 +m2. We limit to BHs moving on
quasi-circular orbits with aligned/anti-aligned spins (aligned
spins for short), and define the (dimensionless) spin variables
χ1 = S 1/m2

1 and χ2 = S 2/m2
2, which range between −1 and

1. We denote the luminosity distance of the source as DL and
the cosmological redshift as z. We adopt the cosmology de-
termined by the Planck mission (2018) [94]. Masses, times
and frequencies are in the detector-frame, unless they carry a
subscript s. Source-frame masses m1,s and m2,s are related to
the detector-frame ones by mi = (1 + z)mi,s.

The GW polarisations can be expanded in the basis of spin-
weight −2 spherical harmonics as

h+(Θ, ι, φ0; t)− ih×(Θ, ι, φ0; t) =
1

DL

∑
ℓ,m
−2Yℓm(ι, φ0) hℓm(Θ; t) ,

(2.1)
where the parameters (ι, φ0) denote the binary’s inclination
angle with respect to the direction perpendicular to the or-
bital plane and the azimuthal direction to the observer, re-
spectively, andΘ denotes the intrinsic parameters (masses and
spins) of the binary. We build our parametrised model using
the SEOBNRv5HM model [81] in GR, which includes several
higher harmonics, notably the (ℓ, |m|) = (2, 1), (3, 3), (3, 2),
(4, 4), (4, 3) and (5, 5) harmonics, in addition to the dominant
(2, 2) harmonic. For aligned-spin binaries hℓm = (−1)ℓh∗ℓ−m,
therefore, we focus on (ℓ,m) harmonics with m > 0.

In the EOB framework [66], the GW harmonics are decom-
posed as

hℓm(Θ, t) = hℓm(Θ, t)insp−plunge θ(tℓmmatch − t)

+ hℓm(Θ, t)merger−RD θ(t − tℓmmatch) ,
(2.2)

where θ(t) is the Heaviside step function, hinsp−plunge
ℓm corre-

sponds to the inspiral-plunge part of the waveform, while
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hmerger−RD
ℓm represents the merger-ringdown waveform. In par-

ticular, as explained in Ref. [81], tℓmmatch is chosen to be the
peak of the (2, 2) harmonic amplitude for all (ℓ,m) harmon-
ics except (5, 5), for which it is taken as the peak of the (2, 2)
harmonic minus 10Mt. In the following, we suppress the Θ
dependence for ease of notation.

For all harmonics, except for (ℓ, |m|) = (3, 2) and
(4, 3) which exhibit post-merger oscillations due to mode-
mixing [95, 96], the merger-ringdown waveform employs the
following ansatz [64, 81, 97],

hmerger-RD
ℓm (t) = ν Ãℓm(t) eiϕ̃ℓm(t) e−iσℓm0(t−tℓmmatch), (2.3)

where ν = m1m2/(m1+m2)2 is the symmetric mass ratio of the
binary, andσℓm0 is the complex frequency of the least-damped
QNM, having overtone number zero, of the remnant BH. We
define the corresponding oscillation frequency, fℓm0, and the
damping time, τℓm0, as

fℓm0 =
1

2π
Re (σℓm0) = −

1
2π
σI
ℓm0, (2.4a)

τℓm0 = −
1

Im (σℓm0)
= −

1
σR
ℓm0

. (2.4b)

The functions Ãℓm(t) and ϕ̃ℓm(t) are given by [64, 81, 97–
99]:

Ãℓm(t) = cℓm1,c tanh[cℓm1, f (t − tℓmmatch) + cℓm2, f ] + cℓm2,c, (2.5a)

ϕ̃ℓm(t) = ϕℓmmatch − dℓm1,c log

1 + dℓm2, f e
−dℓm1, f (t−tℓmmatch)

1 + dℓm2, f

 , (2.5b)

where ϕℓmmatch is the phase of the inspiral-plunge harmonic
(ℓ,m) at t = tℓmmatch.

The coefficients dℓm1,c and cℓmi,c (i = 1, 2) are constrained by the
requirement that the amplitude and phase of hℓm(t) are contin-
uously differentiable (C1) at t = tℓmmatch. This allows us to write
the coefficients cℓmi,c as [64, 81]:

cℓm1,c =
1

cℓm1, f ν

[
∂t |h

insp-plunge
ℓm (tℓmmatch)|

− σR
ℓm|h

insp-plunge
ℓm (tℓmmatch)|

]
cosh2 (cℓm2, f ), (2.6a)

cℓm2,c =
|hinsp-plunge
ℓm (tℓmmatch)|

ν
−

1
cℓm1, f ν

[
∂t |h

insp-plunge
ℓm (tℓmmatch)|

− σR
ℓm|h

insp-plunge
ℓm (tℓmmatch)|

]
cosh (cℓm2, f ) sinh (cℓm2, f ), (2.6b)

and dℓm1,c as

dℓm1,c =
[
ω

insp-plunge
ℓm (tℓmmatch) − σI

ℓm

] 1 + dℓm2, f

dℓm1, f d
ℓm
2, f

, (2.7)

where ω
insp-plunge
ℓm (t) is the frequency of the inspiral-plunge

EOB harmonic. The coefficients cℓmi, f and dℓmi, f are obtained
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FIG. 1. Time evolution near the merger, which occurs at t = 0, of
the SEOBNRv5HM (2, 2) harmonic amplitude (top panel) and instanta-
neous frequency (bottom panel) when varying the spin components
of a binary with mass ratio 2, assuming equal and aligned spins.

through fits to a large set of NR waveforms (∼ 440), span-
ning mass ratios up to 20 and spins up to 0.998, and BH
perturbation-theory merger-ringdown waveforms for mass ra-
tio 1000. Crucially, the fits depend on the binary’s masses and
spins Θ, and can be found in Appendix D of Ref. [81]. As
an example, we illustrate in Fig. 1 how the GW amplitude and
frequency of the (2,2) harmonic changes, during the late inspi-
ral, merger and ringdown, as the component spins are varied,
for a binary with mass ratio 2 and equal spins.

For the (3, 2) and (4, 3) harmonics, the mode-mixing be-
haviour is modelled by applying the previous construction to
the spheroidal harmonics [100] (3, 2, 0) and (4, 3, 0), which
feature a monotonic amplitude and frequency evolution [101].
The spheroidal (3, 2, 0) and (4, 3, 0) harmonics can be related
to the spherical harmonics by [81]

S h320(t) ≃
h32(t) µ∗2220 − h22(t) µ∗2320

µ∗2330 µ
∗
2220

, (2.8a)

S h430(t) ≃
h43(t) µ∗3440 − h33(t) µ∗3430

µ∗3330 µ
∗
3440

, (2.8b)

where µmℓℓ′n are harmonic mixing coefficients, obtained us-
ing fits from Ref. [102]. Thus, the (3, 2) and (4, 3) harmonics
are obtained by combining the (3, 2, 0) and (4, 3, 0) harmonics
with the (2, 2) and (3, 3) harmonics, inverting Eqs. (2.8a) and
(2.8b).

In the SEOBNRv5HM model constructed in Ref. [81], the
complex QNM frequencies in GR are obtained for each (ℓ,m)
harmonic as a function of the BH’s final mass and spin us-
ing the qnm Python package [103]. The BH’s mass and spin
are in turn computed using the fitting formulas of Refs. [104]
and [105], respectively. In this work, following the strategy
of Refs. [61, 62, 67, 71, 106–108], we introduce parametrised
fractional deviations to the QNM frequencies, which are free
parameters of the model (see Ref. [68] where the deviations
were mapped to specific gravity theories alternative to GR).
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FIG. 2. Amplitude in frequency domain in the TDI channel A broken into the contributions of each of the harmonics included in the
pSEOBNRv5HM model, Ãℓm. The latter is computed using the harmonic decomposition of Eq. (2.1) in the TDI equations (2.10a). The thin
black line shows the LISA PSD and the black-dashed lines the GW frequency at tc (i.e., the separation between the inspiral and merger-
ringdown regimes). We recall that tc is defined from the peak of h22, and that the computation of the TDI variables involves second derivatives
of the GW polarisation, leading to an offset between the maximum of h22 and those of A and E. Moreover, these quantities are defined in
time-domain, whereas we show here the frequency-domain amplitudes, and the time-domain peak typically corresponds to lower frequencies
than the frequency-domain one. We plot the amplitudes only for Mt,0 = 2 × 107 M⊙ and z0 = 3. For systems at z0 = 5, one should simply
rescale the amplitudes by 25, 924/47, 647 ≃ 0.54, and for systems with Mt,0 = 2 × 108 M⊙, one should multiply the amplitudes by 102 and the
frequencies by 10−1. As expected, the (2,2) harmonic is the loudest, followed by the (3,3), (4,4) and (5,5) harmonics. For high-spins systems
(upper row), the (3,2) and (4,3) harmonics are louder than the (2,1) harmonic, whereas the opposite is true for low-spins systems (lower row).

More explicitly, we perform the substitutions

fℓm0 → fℓm0 (1 + δ fℓm), (2.9a)
τℓm0 → τℓm0 (1 + δτℓm), (2.9b)

where for ease of notation we have dropped the zero overtone
subscript in the deviation parameters. We shall denote this
parametrised model as pSEOBNRv5HM. We note that allowing
σℓm0 to vary freely also modifies the cℓmi,c and dℓm1,c coefficients
in Eqs. (2.6a), (2.6b), and (2.7), which enter the amplitude and
phase functions Ãℓm(t) and ϕ̃ℓm(t). As a consequence, such a
modification can lead to deviations from the GR prediction
in the ringdown signal starting soon after the merger. The
plunge-merger stage of the waveform could be, in principle,
also modified, as done for example in Ref. [67], by introduc-
ing deviations with respect to the GR predictions to the time at
which the amplitude peaks, and to the value of the amplitude
and frequency at this instant, for each waveform harmonic.

Finally, the inspiral-plunge EOB waveforms (2.2) are com-
puted based on the two-body dynamics that are computed by

solving Hamilton’s equations with a suitable EOB Hamilto-
nian and radiation-reaction force (see Refs. [80, 81] for de-
tails).

B. Generation of LISA signals

We use the long-wavelength approximation [109] to com-
pute the response of LISA to an incoming GW, which is
valid when the GW wavelength is much larger than the LISA
arm length L (i.e., in terms of the GW frequency, when
2π f L/c ≪ 1). Given that L = 2.5 × 108m, this condi-
tion is satisfied for sources reaching maximum frequencies
of ∼ 10−3Hz, such as the MBHBs we consider in this work.
Under this approximation, LISA is somewhat similar to two
LIGO/Virgo-type detectors rotated with respect to each other
by π/4, and with angles of π/3 between the arms.

Transforming Eq. (47) of Ref. [110] to the time domain,
we find that under the long-wavelength approximation the
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time-delay-interferometry (TDI) variables A, E and T [111]
(which, for an interferometer with equal arms and equal noise
levels in each optical link, provide three noise-uncorrelated
datasets) are given by:

A = −3
√

2
(L

c

)2 [
F+(λ, β, ψ)ḧ+ + F×(λ, β, ψ)ḧ×

]
,

E = −3
√

2
(L

c

)2 [
F+(λ + π/4, β, ψ)ḧ+ + F×(λ + π/4, β, ψ)ḧ×

]
,

T = 0, (2.10a)

where F+ and F× are the antenna pattern functions:

F+(λ, β, ψ) = cos(2ψ)F+,0(λ, β) + sin(2ψ)F×,0(λ, β), (2.11a)
F×(λ, β, ψ) = − sin(2ψ)F+,0(λ, β) + cos(2ψ)F×,0(λ, β),

(2.11b)

F+,0(λ, β) =
1
2

(
1 + sin2 β

)
cos(2λ − π/3), (2.11c)

F×,0(λ, β) = sin2 β sin(2λ − π/3). (2.11d)

In the above equations, λ, β and ψ are the longitude, latitude
and polarisation in the LISA frame. We refer to Ref. [110] for
the relation between the angles in the LISA frame and those
in the solar-system-barycentre frame. As anticipated, this is
similar to the response of ground-based detectors. The main
difference is that it is the second derivatives of the waveform
polarisations that enter Eq. (2.10a). This comes as a conse-
quence of taking waveform differences in order to perform
TDI, with a time-step that goes to zero in the long-wavelength
approximation. Finally, because most of the SNR of the sig-
nals we consider is accumulated in the last stages of the evo-
lution (i.e., from a few hours to a few days), we do not take
into account the motion of LISA about the Sun. Therefore, λ,
β and ψ in Eq. (2.10a) are not varying with time. Henceforth,
we will use Ã and Ẽ to denote the Fourier transform of A and
E.

We generate EOB waveforms from the frequency
fgen = 5 × 10−5[Mt,0/(2 × 107M⊙)]Hz until the end of the sig-
nal. After transforming to the frequency-domain, we keep
the portion of the signal between fmin = 2 × 10−4[Mt,0/(2 ×
107M⊙)]Hz and fmax, to eliminate spurious features due to
Fourier transform. The maximum frequency is chosen such
that the frequency-domain amplitude is 1% of its maximum
value. We verified that our choice of fmin leads to a loss in
SNR of less than 2%.

The time and phase alignment of the signals is done in the
following way. We define the time to coalescence, tc, as the
moment the amplitude of the (2,2) harmonic reaches its peak,
and define the phase of coalescence, φc, as the phase of the
(2,2) harmonic contribution to the total waveform at tc. In
practice, the last step is done by choosing the azimuthal an-
gle φ0 such that the phase of −2Y22(ι, φ0) h22(tc) is φc. This
choice of φ0 is then propagated consistently to other har-
monics. We use tc to split between the inspiral and merger-
ringdown regimes. We note that tc for EOB waveforms coin-
cides with tℓmmatch in Eq. (2.2), for all (ℓ,m) harmonics except
(5, 5).

C. Bayesian analysis

We define the noise-weighted inner product between two
data streams, d1 and d2, as:

(d1|d2) = 4Re
[∫ +∞

0

d1( f )d∗2( f )
S n( f )

d f
]
, (2.12)

where S n( f ) is the power spectral density (PSD). In this work,
we use the SciRDv1 noise curve [112], which corresponds to
the scientific requirement for the LISA mission, and defines
pessimistic noise levels compared to current predictions. For
a given choice of the PSD, the SNR of a signal h is defined as
SNR =

√
(h|h).

To quantify the precision with which LISA observations
will estimate the parameters of a source, we work in a
Bayesian framework and compute the posterior distribution
on the source parameters, θ, given an observed dataset, d, us-
ing Bayes’ theorem:

p(θ|d) =
p(d|θ)p(θ)

p(d)
, (2.13)

where p(d|θ) is the likelihood, p(θ) is the prior and p(d) is the
evidence. As long as we are not interested in model selection,
the latter acts as a normalisation constant, and thus can be dis-
carded. We take the prior to be flat in the (detector-frame)
total mass, Mt, the mass-ratio, q, the spins, −1 ≤ χ1 ≤ 1 and
−1 ≤ χ2 ≤ 1, the time to coalescence, tc, and the phase at
coalescence, φc. For the systems we consider here, the intrin-
sic parameters Mt, q, χ1 and χ2 are typically well measured,
so that the actual priors have little importance. We take a flat
prior on ψ, cos(ι) and log10(DL) and fix the sky location (λ,
β) to its true value to facilitate the convergence of the chains.
Those parameters are not expected to correlate strongly with
intrinsic parameters [110], at least for aligned-spin binaries,
and so this simplification should not significantly affect our
conclusions. Finally, we take a flat prior between -1 and 1 for
the fractional deviations to the QNMs, δ fℓm and δτℓm. Assum-
ing noise to be stationary and Gaussian, the likelihood reads:

p(d|θ) ∝
∏

c∈[A,E]

exp
[
−

1
2

(dc − sc(θ)|dc − sc(θ))
]
. (2.14)

The posterior distribution is then sampled via a Markov-chain
Monte-Carlo algorithm (MCMC). We use the Eryn sampler
[113, 114] for this purpose.

III. ASTROPHYSICAL BINARY SYSTEMS

We consider a set of 16 binary systems, defined from all
possible combinations of the following choices of parameters:

• Mt,0 = 2 × 107M⊙ or Mt,0 = 2 × 108M⊙,

• q0 = 2 or q0 = 4,

• χ1,0 = χ2,0 = 0.9 or χ1,0 = 0.2, χ2,0 = 0.1,
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Mt,0 = 2 × 107 M⊙ Mt,0 = 2 × 108 M⊙
IMR Merger-Ringdown Inspiral IMR Merger-Ringdown Inspiral

χ1,0 = χ2,0 = 0.9 q0 = 2 3892 3715 1162 441 435 69
q0 = 4 3659 3547 897 47 472 53

χ1,0 = 0.2, χ2,0 = 0.1 q0 = 2 1894 1809 562 171 168 28
q0 = 4 1296 1231 404 118 117 20

TABLE I. Full IMR SNR and its decomposition into the contribution of the merger-ringdown and inspiral stages for the systems considered in
this work at z0 = 3. Values at z0 = 5 can be obtained by rescaling by 25, 924/47, 647 ≃ 0.54. We recall that the inspiral and merger-ringdown
SNRs add quadratically. All the systems we consider are merger-ringdown dominated, although some of them have high SNR in the inspiral
as well, up to thousands.

FIG. 3. Total SNR (black) and SNR in the individual harmonics (colours) for all the systems at z0 = 3. The values at z0 = 5 can be obtained
by rescaling by 25, 924/47, 647 ≃ 0.54. Circles show the full IMR SNR and squares the SNR in the inspiral stage.

• z0 = 3 (DL,0 = 25, 924 Mpc) or z0 = 5 (DL,0 =

47, 647 Mpc).

Subscripts 0 indicate the true value of the parameter used to
generate the synthetic injections. This set of systems lies in
the high-mass end of predictions for the population visible
to LISA, as predicted from semi-analytic models of MBH
populations that use heavy seeds for the MBH progenitors
[73, 83–88]. Different heavy seed scenarios have been pro-
posed, such as the collapse of proto-galactic disks as a result
of bar instabilities [115], the run-away collision of stars at the
centre of galaxies [116], or the direct collapse of gas at the
centre of galaxies [117] (see Ref. [89] for a review). Such
heavy systems are the ones expected to have higher SNR in
the merger-ringdown [74, 75], and are therefore the most rel-

evant ones to our analysis. In particular, very heavy systems
(Mt,0 = 2×108M⊙) are expected to have very little SNR in the
inspiral, and it is interesting to assess how well the parameters
of such systems can be measured. Focusing on such massive
systems is even more well-motivated following the latest re-
sults from pulsar-timing–array observations [118–121]. If the
apparent signal in the pulsar-timing–array data is generated
by massive black hole inspirals, it indicates that MBHs might
be more massive than originally expected. Semi-analytical
models predict a wide range of values for the mass-ratio, but
the vast majority of systems are predicted to have comparable
masses. This is also the domain where our current IMR mod-
els are the most reliable. The spin of a MBH typically depends
on the amount of gas surrounding it and on how it has ac-
quired mass and angular momentum through accretion [122].
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FIG. 4. Measurement error (90% confidence interval centred around the median) of intrinsic parameters. For mass parameters, we show the
errors relative to the injection value. We inject signals within GR and recover them with GR templates (i.e., we employ SEOBNRv5HM). All
points are doubled because of the two redshift possibilities, z0 = 3 (z0 = 5) yields larger (lower) SNR and lower (larger) errors. We show the
detector-frame total mass and the mass ratio in the top row, the source-frame individual masses in the middle one, and the dimensionless spins
in the bottom row. At leading order, measurement errors follow the 1/SNR trend.

We consider two possibilities in order to cover both the case
where MBHs are efficiently-spun up and the case they are not.
The relative alignment of the spins in a MBHB also depends
on the presence of gas around the binary. Mergers happen-
ing in a gas-rich environment tend to have aligned-spins due
to the Bardeen-Peterson effect [123, 124]. Binaries formed
through triplet interactions can also have misaligned spins, in
addition to having high eccentricity [85]. As discussed, we
neglect eccentricity and spin-precession here for simplicity,
and focus on quasi-circular binaries. Exploring different val-
ues for q, χ1 and χ2 is interesting because they affect how
much higher-harmonics are excited, and therefore how well it
is possible to constrain the QNMs other than the fundamental
one. Finally, the redshifts at which MBHBs coalesce depend
on when MBH seeds form and on the different time-scales at
play during the hardening of the binary [125–127]. In heavy-
seed models, MBHBs are expected to merge dominantly at
late times (i.e., low redshift). Since Mt is the detector-frame
total mass, changing the redshift only affects the SNR of the
system. Based on the predictions of semi-analytical models
[73, 83–88], we expect to observe up to a few tens of systems
similar to the ones we defined during the nominal mission du-
ration (four and a half years). For all binary systems we take
ι0 = π/3, ψ0 = π/3, λ0 = π/3, β0 = π/3 and φc,0 = 0.

In Fig. 2 we plot the frequency-domain amplitude of the
TDI variable A for the systems with Mt,0 = 2 × 107M⊙ and
z0 = 3, and the four combinations of mass ratio and spins. We
show the contribution of each harmonic, Ãℓm, using Eq. (2.1)
when computing the TDI variables (see Eq (2.10a)). The
black-dashed lines indicate the GW frequency at tc, which
we choose as the separation between the inspiral and merger-
ringdown regimes. As expected, the (2,2) harmonic is the
loudest, but higher-harmonics are also important, in particular
the (3,3), (4,4) and (5,5). This is better quantified in Fig. 3,
where we show the total SNR and the contribution of each
harmonic. We observe that the relative importance of the sub-
dominant (2,1), (3,2) and (4,3) harmonics depends primarily
on the spins: (2,1) is more dominant for low-spins systems,
whereas (3,2) and (4,3) are more dominant for high-spins sys-
tems. We note the very high SNR of some of these systems,
reaching a few thousands. Figure 3 also shows the inspiral
SNR, defined by using the GW frequency at tc as the upper
limit in the integral of Eq. (2.12). As anticipated, the sig-
nals of the systems we consider are merger-ringdown dom-
inated. In Table I, we give the IMR, merger-ringdown and
inspiral SNR of the systems at z0 = 3. Although systems with
Mt,0 = 2 × 107M⊙ (upper panel) still have high SNR also in
the inspiral, ∼ 1000, it is not the case for the very massive
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systems (Mt,0 = 2 × 108M⊙, lower panel), with inspiral SNRs
as low as ∼ 10.

IV. MEASURING SOURCE PROPERTIES AND QNMS
WITH MBHB OBSERVATIONS

We work with zero-noise injections, as these are well suited
to the goals of understanding systematics and measurement
uncertainties [128], and perform three types of analyses us-
ing the SEOBNRv5HM and pSEOBNRv5HM models as synthetic-
signal injections and templates:

1. we inject a synthetic signal without deviations from GR
(i.e., SEOBNRv5HM) and use templates in the Bayesian
analyses not allowing for deviations from GR (i.e.,
SEOBNRv5HM),

2. we inject a synthetic signal without deviations from
GR (i.e., SEOBNRv5HM) and use templates in the
Bayesian analyses allowing for deviations from GR
(i.e., pSEOBNRv5HM),

3. we inject a synthetic signal with deviations from
GR (i.e., pSEOBNRv5HM) and use templates in the
Bayesian analyses allowing for deviations from GR
(i.e., pSEOBNRv5HM).

The first type of analysis will estimate how well the param-
eters of MBHBs can be constrained assuming GR is correct. It
is the first study of this kind using EOB waveforms. The sec-
ond will tell us how well the deviation parameters of QNMs
can be constrained, and the third for which values of the devia-
tion parameters we can detect non-GR effects in the ringdown.
We perform these mock injections for all MBHBs described
in Sec. III.

A. Measurement of source parameters in GR

We show in Fig. 4 the width of the 90% confidence interval
centred around the median for the intrinsic parameters (i.e.,
the masses and spins) as a function of the SNR of the system.
The colour, shape and filling of the point indicate respectively
the total mass, spin and mass ratio of the system, indicated in
the legends. Each point is doubled because of the two red-
shifts used: z0 = 3 (z0 = 5) corresponds to the largest (small-
est) SNR and the smallest (largest) measurement error. Note
that we show the detector-frame total mass in the top row and
the source-frame individual masses in the middle one. For all
systems the parameters are well constrained, and we find that
the error (or relative error for the mass parameters) goes as
1/SNR, as expected in the high SNR regime [77, 78, 129].
This relation is more scattered for the spin parameters, es-
pecially for χ1: systems with q0 = 4 have better spin mea-
surement, in agreement with [75]. This is because for such
systems (non-filled points), higher harmonics become more
dominant (see Figs. 2 and 3) and help improve the measure-
ment of the spins. It is remarkable that even for very massive

FIG. 5. Corner plot for the system with Mt,0 = 2×108 M⊙, χ1,0 = 0.2,
χ2,0 = 0.1, q0 = 4, z0 = 3, SNR=118. The blues lines show the
injection and the red ones a secondary mode. Contours show the
68%, 90%, and 95% confidence intervals, and dashed lines the 0.05
and 0.95 quantiles. On the upper-right part, we show the inferred
properties of the remnant. The multi-modality observed in the bi-
nary parameters is due to combinations of intrinsic parameters that
yield remnant properties compatible with the true values within the
measurement uncertainty, as can be seen from the absence of clear
multi-modality in M f and a f .

systems (red points), which usually have low SNR in the in-
spiral, we get tight constraints on their parameters, similarly
to what [130] found. This is the benefit of using a fully con-
sistent modelling of the IMR signal, since in our model the
merger-ringdown signal also informs us on the parameters of
the component BHs in the binary.

For very massive systems with low SNR, we find a multi-
modality in intrinsic parameters, as illustrated in Fig. 5. Sec-
ondary modes arise from combinations of parameters that
yield remnant parameters compatible with the true ones within
the measurement uncertainty, as shown in the upper-right part
of Fig. 5. As a consequence, the merger-ringdown signal re-
mains quasi-identical to the synthetic injection. This can be
seen in Fig. 6, where we compare the waveform of the injected
parameters (in blue in Fig. 5) to the one with parameters from
one of the secondary maxima (in red in Fig. 5). The early part
of the inspiral signal is fairly different, but this has little im-
portance because the system is merger-ringdown dominated,
and the SNR in the inspiral is very small (∼ 10, see Fig. 3 and
Table I).

In Appendix A we discuss the impact of the tolerance
of the integrator used to solve the Hamilton equations and
compute the EOB waveforms. In Appendix B we com-
pare the measurement errors obtained with pSEOBNRv5HM to
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FIG. 6. Comparison between synthetic-injection waveform and the
one at a secondary maximum (same colour code as in Fig. 5). The
late inspiral and merger-ringdown signals match almost perfectly.
The early inspiral signals are dephased, but the SNR in the inspi-
ral is so low that it makes little difference.

the ones obtained with the IMR phenomenological model
IMRPhenomTHM [90], finding comparable results.

B. Measurement of QNMs and possible deviations from GR

We now turn our attention to QNM measurements and con-
straints on deviations from GR using MBHB observations
with LISA.

1. GR injections

First, we consider the case where the injected signal is com-
patible with GR, and allow for non-zero deviations when run-
ning the Bayesian analysis. In Figs. 7 and 8, we show the
width of the 90% confidence interval centred around the me-
dian on the deviation parameters (i.e., ∆δ fℓm and ∆δτℓm). We
find that deviations to the frequency are generally better con-
strained than those to the damping time. As a consequence
of the higher SNR of the dominant (2, 2), (3, 3), (4, 4) and
(5, 5) harmonics, fractional deviations to their QNMs are bet-
ter constrained than those to the sub-dominant (2, 1), (3, 2)
and (4, 3) harmonics. For the former, δ fℓm and δτℓm are typi-
cally constrained within 0.1 and even within 0.01 for the sys-
tems with Mt,0 = 2 × 107M⊙ (blue points), and follow the
1/SNR trend, with some scatter for higher harmonics (espe-
cially the (3, 3) and (5, 5) harmonics) that depends on the mass
ratio. Here again, the reason for this is that for systems with
q0 = 4 (non-filled points), higher harmonics are more excited
(see Figs. 2 and 3), so we are able to better constrain devia-
tions in their QNMs, in agreement with [74]. Deviations in
sub-dominant harmonics are poorly constrained for very mas-
sive systems (red points), ∆δ fℓm and ∆δτℓm ∼ 1, which given
our prior range, translates into uninformative measurements.
This is due to the low SNR of these harmonics. However,
we get rather good constrains, within 0.1, for systems with
Mt,0 = 2×107M⊙ (blue points). We also find that for low-spin
systems (circles) deviations to the (2, 1) harmonic are better

constrained than the ones to the (3, 2) and (4, 3) harmonics,
whereas the opposite happens for high-spin systems (squares),
in agreement with our remark on their relative predominance
in Sec. III. We show the impact of allowing for deviations
from GR on the measurement of intrinsic parameters in Ap-
pendix C.

We translate these constraints on the fractional deviations
into measurements of the QNMs in Fig. 9, where we show
some representative examples of 90% confidence regions on
the QNMs of all the harmonics included in pSEOBNRv5HM.
The upper-left panel shows a best-case scenario, where all
QNMs can be perfectly distinguished. It illustrates that the
Rayleigh criterion often used to decide on the distinguisha-
bility of QNMs [58, 59, 74, 131, 132] is actually too strin-
gent. Indeed, as can be seen from the upper-left panel of
Fig. 9, the one-dimensional projection of the 90% confidence
regions onto the y-axis (damping time) can overlap (e.g., for
the (4, 4) and (4, 3) QNMs), although the two-dimensional re-
gions are well separated. Thus, one should really consider
the two-dimensional regions in order to decide on the distin-
guishability of QNMs, as pointed out in Ref. [71]. The upper-
right and lower-left panel illustrate cases where not all QNMs
can be resolved. As expected from our comments above, for
a high-spin system such as the one shown in the upper-right
panel, deviations to the (2, 1) QNM are poorly constrained,
so its measurement uncertainty contour encloses that of the
(2, 2) mode. Similarly, the lower-left panel shows a low-spin
system, for which the (4, 3) QNM measurement uncertainty
contour contains the (4, 4) one. Finally, the lower-left panel
shows a worst-case scenario where the QNMs cannot be dis-
tinguished due to the large uncertainty on the sub-dominant
harmonics. Note that the system in the lower-left panel has a
total mass of 2 × 107M⊙, illustrating that the confidence re-
gions of QNMs are not always all well-separated for systems
with Mt,0 = 2 × 107M⊙, although they do tend to yield better
results than for systems with Mt,0 = 2 × 108M⊙, as illustrated
in Figs. 7 and 8.

We find some cases of multi-modality in the deviation pa-
rameters, as illustrated in Fig. 10. They can be understood
by looking at the corresponding values of QNMs. Indeed, the
frequency of the secondary mode in the (2,1) QNM matches
the frequency of the (3,2) QNM. Because their damping times
are poorly constrained, they are fairly compatible. Thus, this
multi-modality can be understood as the sub-dominant har-
monics trying to “match” each other.

2. Non-GR injections

We now consider non-GR injections, and we generate syn-
thetic signals with non-zero deviations to the QNMs. De-
viations to GR in the QNM frequencies have been derived
in non-GR theories and typically vary in the range 0.01–
0.1 or even smaller. In the spherically symmetric case (i.e.,
non-spinning BHs), they were computed in theories such
as Einstein-Maxwell-dilaton [133], dynamical Chern-Simons
gravity [42], Einstein-dilaton-Gauss-Bonnet gravity [40, 41,
134], higher-curvature gravity theories [53], and for some
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FIG. 7. Width of the 90% confidence interval on δ fℓm centred around the median for GR injections.

FIG. 8. Width of the 90% confidence interval on δτℓm centred around the median for GR injections.
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(a) Mt,0 = 2 × 107 M⊙, χ1,0 = χ2,0 = 0.9, q0 = 4, z0 = 3, SNR=3659. (b) Mt,0 = 2 × 108 M⊙, χ1,0 = χ2,0 = 0.9, q0 = 4, z0 = 3, SNR=475.

(c) Mt,0 = 2×107 M⊙, χ1,0 = 0.2, χ2,0 = 0.1, q0 = 2, z0 = 5, SNR=1030. (d) Mt,0 = 2 × 108 M⊙, χ1,0 = 0.2, χ2,0 = 0.1, q0 = 2, z0 = 5, SNR=93.

FIG. 9. 90% confidence interval on the QNMs for four different systems. Crosses indicate the true values. Between columns only the total
mass varies, and between rows mass ratio, spins, and redshift vary, keeping the same total mass. In every case, the synthetic injection is GR.
The top-left panel illustrates why the usual Rayleigh criterion for resolvability is too stringent, although the one-dimensional damping time
posteriors overlap, the two-dimensional ones are well-separated. That case corresponds to a “best-case scenario”. The other panels show cases
where not all 7 QNMs can be distinguished. The (2,1), (3,2) and (4,3) modes are typically less-well constrained due to their lower SNR (see
also Figs. 7 and 8).

solutions in massive (bi)gravity [135–137]. Recently, the
computation of QNMs for spinning BHs in non-GR theo-
ries has received much attention, since the remnant BHs we
are observing with LIGO and Virgo have typically spins of
about 0.7. They include the Kerr-Newman case in Einstein-
Maxwell theory [44–47], Einstein scalar Gauss-Bonnet grav-
ity [50, 51], higher-curvature gravity theories [52, 53] and dy-
namical Chern-Simnons theory [54]. Estimates for QNMs of
spinning BHs in non-GR theories have also used the connec-
tion between the light ring and QNMs [41, 138–140], which
is formally only valid in the eikonal ℓ → ∞ limit, and are
known to fail to describe some families of QNMs when addi-
tional degrees of freedom are present [41].

Here, we assume the fractional deviation to GR to be 0.01
for all harmonics, both for frequencies and damping times.
In Figs. 11 and 12, we show the width of the 90% confi-
dence interval centred around the median for δ fℓm and δτℓm.
As a rule of thumb, we consider that a deviation can be mea-
sured when it is larger than the measurement error. Graphi-
cally, this corresponds to the points that are below the black-
dashed lines on Figs. 11 and 12. For this value of the deviation
(i.e., 0.01), we find that it could be detected in the frequency

of the (2,2), (3,3), (4,4) and (5,5) harmonics of systems with
Mt,0 = 2× 107M⊙, and for the higher SNR ones we could also
detect this deviation in their damping time. We note that the
errors shown in Figs. 11 and 12 are very similar to the ones
we find when injecting GR signals (see Figs. 7 and 8). We
also perform injections with deviations of 0.1 and 0.001 (not
shown here), and find again similar errors. Therefore, we can
extrapolate the results presented here and read from those fig-
ures which values of the deviations would be needed to detect
them. For instance, a deviation of 0.1 could be detected for
almost all systems presented here, both in the frequency and
the damping time of the dominant harmonics (left column),
and for the higher SNR systems, even of the sub-dominant
harmonics (right column). Detecting a deviation in several
harmonics, preferably both in the frequency and the damping
time, would reinforce our confidence that we are truly observ-
ing effects in gravity theories alternative to GR.
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(a) Deviation parameters (b) QNMs

FIG. 10. Reduced corner plot of deviation parameters and QNMs for a GR injection of the system Mt,0 = 2 × 108, χ1,0 = χ2,0 = 0.9, q0 = 2,
z0 = 5, SNR=240. We find a multi-modality in the δ f21 posterior, which is the less well measured harmonic for this system. This leads to a
secondary mode in the f21 posterior at frequencies that match f32. Given that the damping times of the two harmonics are poorly measured and
their posterior fairly compatible, this suggests that the (2,1) harmonic is trying to “match” the (3,2) harmonic and vice versa.

FIG. 11. Width of the 90% confidence interval centred around the median for δ fℓm for injections with δ fℓm = δτℓm = 0.01, as indicated by the
black-dashed lines.
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FIG. 12. Width of the 90% confidence interval centred around the median for δτℓm for injections with δ fℓm = δτℓm = 0.01, as indicated by the
black-dashed lines.

V. IMPACT OF SYSTEMATICS

In order to assess if the lack of accuracy in waveform
modelling could spoil ringdown tests of GR, we gener-
ate synthetic injections with NR waveforms and recover
them with pSEOBNRv5HM templates. We use the waveform
SXS:BBH:2125 from the Simulating eXtreme Spacetimes
Collaboration [141] at the highest available resolution. It pro-
vides the signal of a BBH with mass ratio 2 and aligned spins
of magnitude 0.3. We perform injections for the four total
mass and redshift combinations detailed in Sec. III. When run-
ning our Bayesian analysis, we allow for deviations from GR
in the QNMs.

First, we consider the case where the injected signal con-
tains only the dominant (2,2) harmonic, and include in the
pSEOBNRv5HM templates the same harmonic content. We
compare in Fig. 13 the posteriors obtained for injections with
different total masses, both at z0 = 5, giving SNR = 67 and
927, respectively. The injected values (blue lines) are well
within the 90% confidence regions for the heavier system
(black), having total mass Mt,0 = 2×108M⊙. However, due to
its much higher SNR, the parameter estimation of the lighter
system (red), having total mass Mt,0 = 2 × 107M⊙, is strongly
biased. In particular, a deviation from GR in the frequency of
the (2,2) QNM is erroneously detected with high confidence.
Next, we inject NR signals containing all the harmonics in-
cluded in pSEOBNRv5HM and use templates with full harmonic

content in the Bayesian analysis. As can be seen in Fig. 14,
once we include higher harmonics (red), even for the more
massive system the posterior shifts further from the true val-
ues while getting narrower, making it barely compatible with
the true parameters. In particular, the true values of the GR
deviation parameters lie at the edge of the 90% confidence re-
gions. We stress that the worsening for the system shown in
Fig. 14 is less due to the moderate increase in SNR than to the
inclusion of higher harmonics, as we have verified by com-
paring to the results of the same system at z0 = 3 (not shown
here). The latter has an SNR of 123 with only the (2,2) har-
monic, and for that system the parameter estimation is less bi-
ased when including only the (2,2) harmonic as for the system
in Fig. 14 when including all harmonics. We have also veri-
fied (not shown here) that, when including higher harmonics
for systems with Mt,0 = 2 × 107M⊙, GR is excluded at higher
confidence than in the (2,2) only case shown in red in Fig. 13.

This is not surprising since the accuracy of the SEOBNRv5
model degrades when including higher harmonics, as com-
prehensive comparisons to ∼ 440 NR waveforms and NR sur-
rogate models have shown [81]. We note that in Ref. [62],
the authors performed a similar study for LIGO detectors at
design sensitivity, and found the GR value of QNMs to be
well within the 90% confidence interval even when injecting
an NR waveform with an SNR of 75. The main difference to
our analysis is that whereas the SNR in Ref. [62] was equally
spread between inspiral and merger-ringdown stages, here all
the binary systems we consider are merger-ringdown domi-
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FIG. 13. Corner plot of intrinsic and deviation parameters for NR
injections recovered with pSEOBNRv5HM templates. Contours show
the 68%, 90%, and 95% confidence intervals, and dashed lines the
0.05 and 0.95 quantiles. We compare the results for Mt,0 = 2×108 M⊙
(black) and Mt,0 = 2 × 107 M⊙ (red), both have q0 = 2, χ1,0 = χ2,0 =

0.3 and are placed at z0 = 5. To ease comparison, we have rescaled
the total mass to the injected value. In each case, both injection and
templates contain only the (2,2) harmonic. The heavier system has
lower SNR, and the impact of mismodelling is small when including
only the (2,2) harmonic, so that the injected values (in blue) are well
within the 90% confidence regions. It is nonetheless relevant for the
lighter system, due to its much higher SNR. In the latter case, one
would be misled into thinking that the frequency of the (2,2) QNM
departs from the Kerr prediction. The spins are poorly measured for
the heavy system due to the absence of higher harmonics.

nated. This is the regime where our templates are less reliable,
leading to larger biases.

Furthermore, in the high-SNR limit, the presence of bi-
ases in parameter estimation can also be predicted from a
simpler indistinguishability criterion [142–146], based on the
mismatch between two waveforms h1 and h2

M = 1 −
(h1 | h2)

√
(h1 | h1) (h2 | h2)

. (5.1)

Specifically, if two waveforms fulfill the condition

M <
D

2 SNR2 , (5.2)

for a given PSD and SNR, they are considered indistinguish-
able, and systematic errors from waveform inaccuracies are
expected to be smaller than statistical errors. The prefactor D
is not known precisely, but it can be estimated as the num-
ber of intrinsic parameters whose measurability is affected
by model inaccuracy [145], or can be tuned by considering

FIG. 14. Same as Fig. 13, but now comparing results when including
only the (2,2) harmonic (black) versus when including all harmon-
ics of pSEOBNRv5HM (red), for Mt,0 = 2 × 108 M⊙ and z0 = 5. The
inclusion of higher harmonics worsens the match between NR and
pSEOBNRv5HM waveforms, leading to significant biases in all param-
eters, in particular the GR deviation ones. Note that when including
all harmonics, the deviation parameters for all QNMs are allowed to
vary, and we find similar biases for all of them, but we show only
the posterior for deviations in the (2,2) harmonic because of space
limitation.

synthetic injections at increasing SNR [146]. Being suffi-
cient, but not necessary, the criterion is generally too conser-
vative, and, if it is violated, biases do not necessarily arise
(e.g., see [81, 147]. Nonetheless, we can check whether the
biases we observe are consistent with such a criterion. Tak-
ing D = 6, the criterion predicts mismatches of 6.7 × 10−4

(Mt,0 = 2×108M⊙ system including only the (2,2) harmonic),
3.5 × 10−6 (Mt,0 = 2 × 107M⊙ system including only the (2,2)
harmonic) and 4.0 × 10−5 (Mt,0 = 2 × 108M⊙ system includ-
ing all higher harmonics), below which systematic errors are
expected to be subdominant.

For the Mt,0 = 2 × 108M⊙ system including only the (2,2)
harmonic the mismatch 2 of the SEOBNRv5HM model against
the NR simulation SXS:BBH:2125 is 5.9 × 10−5, and one
would not expect biases, as we also observe in the synthetic
injection we perform. On the other hand, for the Mt,0 =

2 × 107M⊙ system including only the (2,2) harmonic and for
the Mt,0 = 2 × 108M⊙ system including all higher harmonics,
the values of the mismatch are 7.3×10−5 and 7.5×10−3 respec-
tively, and are both above the indistinguishability threshold,

2 We consider specifically the sky-and-polarisation-averaged, SNR-weighted
mismatch defined as in Sec. V of Ref. [81].
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therefore the presence of the biases we observe could have
been predicted.

These studies show that because of the high SNRs that we
will reach with LISA, the accuracy requirement for wave-
forms is much more stringent than for current ground-based
detectors. Moreover, our results suggest that particular atten-
tion should be drawn to the modelling of higher harmonics,
as their inclusion increases biases. Let us stress that even the
NR waveforms we currently use are not accurate enough for
SNRs of thousands [81, 146] and would need to be improved
by at least one order of magnitude.

VI. CONCLUSION

Gravitational-wave observations have provided us with
brand-new opportunities to test GR. In particular, ringdown
tests are one of the most promising possibilities to detect de-
viations from GR. In this work, we have assessed how a fully
consistent modelling of the IMR signal will allow us to per-
form high-precision ringdown tests with MBHB observations
by LISA. To do so, we have performed synthetic injections
of astrophysically realistic systems, and analysed them with
templates in GR (SEOBNRv5HM) and with parameterised de-
viations from GR (pSEOBNRv5HM), using the newly released
SEOBNRv5HM waveform family [79–82, 148]. More specifi-
cally, the pSEOBNRv5HM templates allow for deviations to the
QNMs (frequency and damping time) of all the harmonics in-
cluded in the model. All our analyses have been done in a
fully Bayesian framework.

First, we have considered the case where we use the GR
SEOBNRv5HM templates both for the synthetic injection and
the Bayesian analysis. We find that having a consistent mod-
elling of the whole signal allows us to measure the parameters
of the binary accurately, even for signals with very little SNR
in the inspiral (e.g., very massive MBHBs with total mass
∼ 108M⊙). Source-frame masses can typically be measured
within 10% and even within 1% for systems with total mass
∼ 107M⊙. Spins can be measured within 0.1 and down to
0.001 for the primary BH. Second, we have shown that devia-
tions to the QNMs of the dominant harmonics (i.e., the (2,2),
(3,3), (4,4) and (5,5) harmonics), can be constrained within
10% and down to 1% for systems with total mass of the or-
der 107M⊙. Those are also the magnitude of deviations that
we could measure in a non-GR signal. Converting the mea-
surement of fractional deviations into measurements of QNM
frequencies, we find that for most systems we could accurately
measure and distinguish the QNMs of several harmonics, up
to all 7 seven included in the pSEOBNRv5HMmodel in the most
favourable cases (i.e., total mass 107M⊙, mass ratio ∼ 2 − 4,
highly spinning and at z ∼ 3).

Then, we have assessed the impact of systematics on ring-
down tests by using NR waveforms to perform synthetic injec-
tions and analysing them with pSEOBNRv5HM. We have found
that, in particular when higher harmonics are included, pa-
rameter estimation is significantly biased, leading to the erro-
neous detection of deviations from GR in high SNR signals.
The results we have obtained when using pSEOBNRv5HM for

the injection and the Bayesian analysis give us a sense of the
incredibly high precision to which we will be able to perform
ringdown tests with LISA. However, in order not to jeopar-
dise those tests, the accuracy of our waveform models needs
to be improved far beyond current standards, which is one of
the major challenges facing the GW community over the next
few years.

In this work, we have focused on MBHB systems that are in
the high-mass end of predictions for LISA observations, typ-
ically produced in astrophysical models where MBHs form
from the evolution of heavy seeds [89]. This is because those
are the ones for which we expect the highest SNR in the
merger-ringdown [74, 75]. However, it would be interesting
to assess how observations of lighter systems, which might
be more numerous, could be used to detect deviations from
GR in the ringdown. Also, we have neglected the effect of
spin-precession and eccentricity, which might not be appro-
priate, in particular if MBHBs harden through triplet interac-
tions [85]. Finally, the waveform model we used in this work
allows for deviations from GR only in the ringdown, whereas,
if deviations are present, we should expect them to affect the
whole signal. Different theory-agnostic formalisms have been
proposed to account for deviations in the inspiral [149–151],
typically by modifying the post-Newtonian expansion of the
GW phase [152], and progress has recently been made to ac-
count for deviations in the plunge-merger stage [67]. It would
be interesting to assess how to link modifications in different
parts of the signal, or at least to assess how the constraints
change when accounting for all possible modifications. We
leave these studies for future work.
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Appendix A: Settings for the SEOBNR waveforms

SEOBNR waveforms are generated by numerically integrat-
ing the EOB equations of motion (e.g., see Ref. [81]). They
are computed up to a given accuracy that depends on the tol-
erance used in the integration. As a consequence, at fixed
tolerance, the waveform function is not smooth on the mani-
fold of waveform parameters, and the inner product between
waveforms (Eq. (2.12)) is an oscillating function on that man-
ifold. For low SNR systems, these oscillations are negligible,

https://git.ligo.org/waveforms/software/pyseobnr
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since they correspond to very small changes in the likelihood
between neighbouring points, but for high SNRs these oscil-
lations become important. This is illustrated in Fig. 15, where
we plot the log-likelihood as a function of χ2 for “standard-
tolerance” and “low-tolerance” waveforms, keeping all the
other parameters at their true value. When using the stan-
dard tolerance, the likelihood shows many local extrema, and
can reach very small values even close to the synthetic injec-
tion (indicated by the blue line). For comparison, the mini-
mum log-likelihood in the parameter estimation runs done for
this paper are typically ∼ −15. The smoothness of the log-
likelihood improves significantly when using low-tolerance
waveforms. The counterpart of this improvement is a slow-
ing down of the waveform computation. Our low-tolerance
waveforms are ∼ 5 times slower to compute than the ones with
the standard SEOBNRv5HM configuration. We stress that the ef-
fect of these oscillations is exaggerated by looking at one slice
of the parameter space (i.e., keeping all the other parameters
fixed). Variations in other parameters compensate for these
oscillations, and make these local extrema less pronounced.
However, as we show in Fig. 16, the existence of several local
extrema makes the posterior non-Gaussian and the marginal
one-dimensional distributions can peak away from the true
value. This is similar to the effect discussed in Sec. V.C of
Ref. [110] in the context of sky localisation with LISA. For the
system shown in Fig. 16, this apparent bias disappears when
using low-tolerance waveforms. Let us stress that this appar-
ent bias is an effect of projecting a non-Gaussian posterior
onto one-dimensional posteriors. As indicated by the black
and red lines, in each case, the maximum-posterior points
found by our sampler are close to the injection point, as ex-
pected when using flat priors. All the results presented in the
main body of this paper were obtained using low-tolerance
waveforms.

FIG. 15. Log-likelihood as a function of χ2 when using two dif-
ferent tolerances, when integrating the EOB equations of motion,
for a system with Mt,0 = 2 × 108 M⊙, χ1,0 = χ2,0 = 0.9, q0 = 2,
z0 = 3, SNR=441. When using waveforms computed with standard
tolerance, the likelihood can be a very non-smooth function of the
binary parameters, inducing secondary maxima, and yielding very
small values even close to the injected value.

For some systems, this apparent bias persists even when
using low-tolerance waveforms, as shown in Fig. 17. In or-

FIG. 16. Comparison between parameter estimation results when
using low-tolerance waveforms (black) and standard ones (red) for
the same system as in Fig. 15. Blue lines indicate the injection point,
black and red symbols indicate the maximum-posterior point of the
low-tolerance and standard-tolerance runs, respectively. The non-
smoothness of the likelihood function illustrated in Fig. 15 induces
secondary maxima over the parameter space. Those lead to very non-
Gaussian distributions and induce an apparent bias when projecting
onto one-dimensional posteriors. However, as indicated by the black
and red lines, the maximum-posterior point is close to the synthetic
injection, as expected when using flat priors.

der to further validate the argument that this is caused by
the non-smoothness of the waveform across parameter space,
we compare to the results obtained using the IMRPhenomTHM
waveform model [90]. This is an IMR time-domain approxi-
mant, built from a phenomenological approach, in the spirit of
the frequency-domain approximants of the phenomenological
family of templates [91–93, 154–156]. It is based on post-
Newtonian expressions [152] augmented by phenomenolog-
ical terms fitted against NR simulations, and also calibrated
to SEOBNR waveforms (where NR data are not available). It
includes the same harmonics as pSEOBNRv5HM, except for the
sub-dominant (3,2) and (4,3) harmonics. For non-precessing
systems, the waveform is an analytic smooth function of the
waveform parameters. Thus, the likelihood function is smooth
across the parameter space, and we observe no apparent bias,
even when looking at one-dimensional projections, as can be
seen from Fig. 17. We stress that after the waveform has been
generated in the time domain, the steps to compute the likeli-
hood and perform parameter estimation are exactly the same
for the two models.
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FIG. 17. Comparison of the parameter estimation results ob-
tained using low-tolerance SEOBNRv5HM waveforms (black) and
IMRPhenomTHM (red) waveforms for a system with Mt,0 = 2×108 M⊙,
χ1,0 = 0.2, χ2,0 = 0.1, q0 = 2, z0 = 3, SNR=171. The latter shows
no apparent bias when looking at one-dimensional marginalised pos-
teriors, because the IMRPhenomTHM waveform is a smooth function
across the parameter space, and so is the likelihood, and for high
SNRs the posterior is fairly Gaussian.

Appendix B: Comparison of measurements to IMRPhenomTHM

Here, we run Bayesian analyses for all the binary systems
described in Sec. III using the IMRPhenomTHMwaveform, both
for the synthetic injection and parameter estimation. We re-
strict ourselves to the GR case. In Fig. 18, we show how
the measurement errors on intrinsic parameters compare when
using the IMRPhenomTHM and the SEOBNRv5HM waveforms.
Black lines corresponds to y = x. We see that the estimates
are in good agreement, with a slight discrepancy for the error
on spins, in particular in the case of high-spin systems (cir-
cles). In this regime, our current waveforms are less accurate,
so the agreement between them is worse (see also compar-
isons between these two waveform models in Ref. [81]).

Appendix C: Errors on intrinsic parameters when allowing for
deviations to GR

We show in Fig. 19 the error on intrinsic parameters in the
case we inject a GR signal and allow for deviations from GR
when performing the Bayesian analysis, complementing the
results of Sec. IV B 1. Black lines indicate y = x. All mea-
surements worsen due to the higher number of parameters, but
remain comparable to the pure GR case.
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FIG. 18. Comparison between the measurement errors with SEOBNRv5HM (x-axes) and with IMRPhenomTHM (y-axes). Black lines show y = x.
Errors are similar, with a slightly higher discrepancy for the spins, in particular for high-spin systems (circles).

FIG. 19. Comparison of the measurement error on intrinsic parameters when setting deviation parameters to 0 (x-axes) and when letting them
vary (y-axes) for a GR injection. Black lines show y = x. Measurements worsen when allowing for deviations from GR to vary, but remain
comparable to the GR case.
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