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ABSTRACT

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars

from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for

Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic

gravitational-wave background. The presence of such a gravitational-wave background with a power-

law–spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
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of 1014, and this same model is favored over an uncorrelated common power-law–spectrum model with

Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical back-

ground distribution for these latter Bayes factors using a method that removes inter-pulsar correlations

from our data set, finding p = 10−3 (approx. 3σ) for the observed Bayes factors in the null no-correlation

scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields

p = 5 × 10−5–1.9 × 10−4 (approx. 3.5–4σ). Assuming a fiducial f−2/3 characteristic-strain spectrum,

as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is

2.4+0.7
−0.6 × 10−15 (median + 90% credible interval) at a reference frequency of 1 yr−1. The inferred

gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations

for a signal from a population of supermassive black-hole binaries, although more exotic cosmological

and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points

to the gravitational-wave origin of this signal.

Keywords: Gravitational waves – Black holes – Pulsars

1. INTRODUCTION

Almost a century had to elapse between Einstein’s pre-

diction of gravitational waves (GWs, Einstein 1916) and

their measurement from a coalescing binary of stellar-

mass black holes (Abbott et al. 2016). However, their

existence had been confirmed in the late 1970s through

measurements of the orbital decay of the Hulse–Taylor

binary pulsar (Hulse & Taylor 1975; Taylor et al. 1979).

Today, pulsars are again at the forefront of the quest to

detect GWs, this time from binary systems of central

galactic black holes.

Black holes with masses of 105–1010M� exist at the

center of most galaxies and are closely correlated with

the global properties of the host, suggesting a sym-

biotic evolution (Magorrian et al. 1998; McConnell &

Ma 2013). Galaxy mergers are the main drivers of hi-

erarchical structure formation over cosmic time (Blu-

menthal et al. 1984) and lead to the formation of

close massive–black-hole binaries long after the mergers

(Begelman et al. 1980; Milosavljević & Merritt 2003).

The most massive of these (supermassive black-hole bi-

naries, SMBHBs, with masses 108–1010M�) emit GWs

with slowly evolving frequencies, contributing to a noise-

like broadband signal in the nHz range (the GW back-

ground, GWB; Rajagopal & Romani 1995; Jaffe &

Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004;

McWilliams et al. 2014; Burke-Spolaor et al. 2019). If

all contributing SMBHBs evolve purely by loss of cir-

cular orbital energy to gravitational radiation, the re-

sultant GWB spectrum is well described by a simple

f−2/3 characteristic-strain power law (Phinney 2001).

∗ NASA Hubble Fellowship: Einstein Postdoctoral Fellow
† NANOGrav Physics Frontiers Center Postdoctoral Fellow
‡ Deceased
§ NSF Astronomy and Astrophysics Postdoctoral Fellow

However, GWB signals that are not produced by popu-

lations of inspiraling black holes may also lie within the

nHz band; these include primordial GWs from inflation,

scalar-induced GWs, and GW signals from multiple pro-

cesses arising due to cosmological phase transitions, such

as collisions of bubbles of the post-transition vacuum

state, sound waves, turbulence, and the decay of any

defects such as cosmic strings or domain walls that may

have formed (see, e.g., Guzzetti et al. 2016; Caprini &

Figueroa 2018; Domènech 2021, and references therein).

The detection of nHz GWs follows the template out-

lined by Pirani (1956, 2009), whereby we time the prop-

agation of light to measure modulations in the distance

between freely falling reference masses. Estabrook &

Wahlquist (1975) derived the GW response of electro-

magnetic signals traveling between Earth and distant

spacecraft, sparking interest in low-frequency GW de-

tection. Sazhin (1978) and Detweiler (1979) described

nHz GW detection using Galactic pulsars and (effec-

tively) the solar system barycenter as references, relying

on the regularity of pulsar emission and planetary mo-

tions to highlight GW effects. The fact that pulsars

are such accurate clocks enables precise measurements

of their rotational, astrometric, and binary parameters

(and more) from the times-of-arrival of their pulses,

which are used to develop ever-refining end-to-end tim-

ing models. Hellings & Downs (1983) made the cru-

cial suggestion that the correlations between the time-

of-arrival perturbations of multiple pulsars could reveal

a GW signal buried in pulsar noise; Romani (1989) and

Foster & Backer (1990) proposed that a pulsar timing

array (PTA) of highly stable millisecond pulsars (Backer

et al. 1982) could be used to search for a GWB. Nev-

ertheless, the first multi-pulsar, long-term GWB limits

were obtained by analyzing millisecond-pulsar residuals

independently, rather than as an array (Stinebring et al.

1990; Kaspi et al. 1994).
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Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines
of evidence for the presence of Hellings–Downs correlations in the 15-year NANOGrav data set. Throughout we refer to the
68.3%, 95.4%, and 99.7% regions of distributions as 1/2/3σ regions, even in two dimensions. (a): Bayesian “free-spectrum”
analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated stochastic process
at frequencies i/T , with T the total data set time span. The blue represents the posterior median and 1/2σ posterior bandsa

for a power-law model; the dashed black line corresponds to a γ = 13/3 (SMBHB-like) power-law, plotted with the median
posterior amplitude. See §3 for more details. (b): Posterior probability distribution of GWB amplitude and spectral exponent
in a HD power-law model, showing 1/2/3σ credible regions. The value γGWB = 13/3 (dashed black line) is included in the 99%
credible region. The amplitude is referenced to fref = 1 yr−1 (blue) and 0.1 yr−1 (orange). The dashed blue and orange curves
in the log10AGWB subpanel shows its marginal posterior density for a γ = 13/3 model, with fref = 1 yr−1 and fref = 0.1 yr−1,
respectively. See §3 for more details. (c): Angular-separation–binned inter-pulsar correlations, measured from 2,211 distinct
pairings in our 67-pulsar array using the frequentist optimal statistic, assuming maximum-a-posteriori pulsar noise parameters
and γ = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each includes
approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings–Downs curve. This binned
reconstruction accounts for correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black
line shows the Hellings–Downs correlation pattern, and the binned points are normalized by the amplitude of the γ = 13/3
common process to be on the same scale. Note that we do not employ binning of inter-pulsar correlations in our detection
statistics; this panel serves as a visual consistency check only. See §4 for more frequentist results. (d): Bayesian reconstruction
of normalized inter-pulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot
the marginal posterior densities (plus median and 68% credible values) of the correlations at the knots. The knot positions are
fixed, and are chosen on the basis of features of the Hellings–Downs curve (also shown as a dashed black line for reference): they
include the maximum and minimum angular separations, the two zero crossings of the Hellings–Downs curve, and the position
of minimum correlation. See §3 for more details.
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From a statistical-inference standpoint, the problem

of detecting nHz GWs in PTA data is analogous to

GW searches with terrestrial and future space-borne

experiments, in which the propagation of light be-

tween reference masses is modeled with physical and

phenomenological descriptions of signal and noise pro-

cesses. It is distinguished by the irregular observation

times, which encourage a time- rather than Fourier-

domain formulation, and by noise sources (intrinsic pul-

sar noise, interstellar-medium–induced radio-frequency–

dependent fluctuations, and timing-model errors) that

are correlated on timescales common to the GWs of in-

terest. This requires the joint estimation of GW sig-

nals and noise, which is similar to the kinds of global

fitting procedures already used in terrestrial GW ex-

periments, and proposed for space-borne experiments.

GW analysts have therefore converged on a Bayesian

framework that represents all noise sources as Gaussian

processes (van Haasteren et al. 2009; van Haasteren &

Vallisneri 2014), and relies on model comparison (i.e.,

Bayes factors, which are ratios of fully marginalized like-

lihoods) to define detection (see, e.g., Taylor 2021). This

Bayesian approach is nevertheless complemented by null

hypothesis testing, using a frequentist detection statis-

tic1 (the “optimal statistic” of Anholm et al. 2009; De-

morest et al. 2013; Chamberlin et al. 2015) averaged

over Bayesian posteriors of the noise parameters (Vige-

land et al. 2018).

The GWB—rather than GW signals from individu-

ally resolved binary systems—is likely to become the

first nHz source accessible to PTA observations (Rosado

et al. 2015). Because of its stochastic nature, the GWB

cannot be identified as a distinctive phase-coherent sig-

nal in the way of individual compact-binary-coalescence

GWs. Rather, as PTA data sets grow in extent and

sensitivity one expects to first observe the GWB as ex-

cess low-frequency residual power of consistent ampli-

tude and spectral shape across multiple pulsars (Ro-

mano et al. 2021; Pol et al. 2021). An observation fol-

lowing this behavior was reported in 2020 (Arzoumanian

et al. 2020, henceforth NG12gwb) for the 12.5-year data

set collected by the North American Nanohertz Observa-

tory for Gravitational waves (NANOGrav, McLaughlin

2013; Ransom et al. 2019), and then confirmed (Gon-

charov et al. 2021a; Chen et al. 2021) by the Parkes

Pulsar Timing Array (PPTA, Manchester et al. 2013)

and the European Pulsar Timing Array (EPTA, Desvi-

gnes et al. 2016), following many years of null results

and steadily decreasing upper limits on the GWB am-

1 See Jenet et al. (2006) for an early example of a cross-correlation
statistic for PTA GWB detection.

plitude. A combined International Pulsar Timing Ar-

ray (IPTA, Perera et al. 2019) data release consisting of

older data sets from the constituent PTAs also confirmed

this observation (Antoniadis et al. 2022). Nevertheless,

the finding of excess power cannot be attributed to a

GWB origin merely by the consistency of amplitude and

spectral shape, which could arise from intrinsic pulsar

processes of similar magnitude (Goncharov et al. 2022;

Zic et al. 2022), or from a common systematic noise such

as clock errors (Tiburzi et al. 2016). Instead, definitive

proof of GW origin is sought by establishing the pres-

ence of phase-coherent inter-pulsar correlations with the

characteristic spatial pattern derived by Hellings and

Downs (1983, henceforth HD): for an isotropic GWB,

the correlation between the GW-induced timing delays

observed at Earth for any pair of pulsars is a universal,

quasi-quadrupolar function of their angular separation

in the sky. Even though this correlation pattern is mod-

ified if there is anisotropy in the GWB—which may be

the case for a GWB generated by a SMBHB population

(Mingarelli et al. 2013; Taylor & Gair 2013; Cornish &

Sesana 2013; Mingarelli & Sidery 2014; Mingarelli et al.

2017; Roebber & Holder 2017)—the HD template is ef-

fective for detecting even anisotropic GWBs in all but

the most extreme scenarios (Cornish & Sesana 2013;

Cornish & Sampson 2016; Taylor et al. 2020; Bécsy et al.

2022; Allen 2023).

In this letter we present multiple lines of evidence

for an excess low-frequency signal with HD correlations

in the NANOGrav 15-year data set (Figure 1). Our

key results are as follows. The Bayes factor between

an HD-correlated, power-law GWB model and a spa-

tially uncorrelated common-spectrum power-law model

ranges from 200 to 1,000, depending on modeling choices

(Figure 2). The noise-marginalized optimal statistic,

which is constructed to be selectively sensitive to HD-

correlated power, achieves a signal-to-noise ratio of ∼ 5

(Figure 3 and Figure 4). We calibrated these detection

statistics by removing correlations from the 15-year data

set using the phase-shift technique, which removes inter-

pulsar correlations by adding random phase shifts to the

Fourier components of the common process (Taylor et al.

2017). We find false-alarm probabilities of p = 10−3 and

p = 5× 10−5 for the observed Bayes factor and optimal

statistic, respectively (see Figure 3).

For our fiducial power-law model (f−2/3 for charac-

teristic strain and f−13/3 for timing residuals) and a

log-uniform amplitude prior, the Bayesian posterior of

GWB amplitude at the customary reference frequency

1 yr−1 is AGWB = 2.4+0.7
−0.6 × 10−15 (median with 90%

credible interval), which is compatible with current as-

trophysical estimates for the GWB from SMBHBs (e.g.,
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Burke-Spolaor et al. 2019; Agazie et al. 2023a). This cor-

responds to a total integrated energy density of Ωgw =

9.3+5.8
−4.0 × 10−9 or ρgw = 7.7+4.8

−3.3 × 10−17 ergs cm−3 (as-

suming H0 = 70 km/s/Mpc) in our sensitive frequency

band. For a more general model of the timing-residual

power spectral density with variable power-law exponent

−γ, we find AGWB = 6.4+4.2
−2.7 × 10−15, and γ = 3.2+0.6

−0.6.

See panel (b) of Figure 1 for AGWB and γ posteriors.

The posterior for γ is consistent with the value of 13/3

predicted for a population of SMBHBs evolving by GW

emission, although smaller values of γ are preferred;

however, the recovered posteriors are consistent with

predictions from astrophysical models (see Agazie et al.

2023a). We also note that, unlike our detection statistics

(which are calibrated under our modeling assumptions),

the estimation of γ is very sensitive to minor details in

the data model of a few pulsars.

The rest of this paper is organized as follows. We

briefly describe our data set and data model in §2. Our

main results are discussed in detail in §3 and §4; they

are supported by a variety of robustness and validation

studies, including a spectral analysis of the excess sig-

nal (§5.2), a correlation analysis that finds no signif-

icant evidence for additional spatially correlated pro-

cesses (§5.3), and cross-validation studies with single-

telescope data sets and leave-one-pulsar-out techniques

(§5.4). In the past two years we have performed an end-

to-end review of the NANOGrav experiment, to iden-

tify and mitigate possible sources of systematic error or

data set contamination: our improvements and consider-

ations are partly described in a set of companion papers:

on the NANOGrav statistical analysis as implemented

in software (Johnson et al. 2023), on the 15-year data

set (Agazie et al. 2023b, hereafter NG15), and on pulsar

models (Agazie et al. 2023c, hereafter NG15detchar).

More companion papers address the possible SMBHB

(Agazie et al. 2023a) and cosmological (Afzal et al. 2023)

interpretations of our results, with several more GW

searches and signal studies in preparation. We look for-

ward to the cross-validation analysis that will become

possible with the independent data sets collected by

other IPTA members.

2. THE 15-YEAR DATA SET AND DATA MODEL

The NANOGrav 15-year data set2 (NG15) con-

tains observations of 68 pulsars obtained between July

2004 and August 2020 with the Arecibo Observatory

2 While the time between the first and last observations we analyze
is 16.03 years, this data set is named “15-year data set” since no
single pulsar exceeds 16 years of observation; we will use this
nomenclature despite the discrepancy.

(Arecibo), the Green Bank Telescope (GBT), and the

Very Large Array (VLA), augmenting the 12.5-year data

set (Alam et al. 2021a,b) with 2.9 years of timing data

for the 47 pulsars in the previous data set, and with

21 new pulsars3. For this paper we analyze narrow-

band times of arrival (TOAs), which are computed sep-

arately for sub-bands of each receiver, and focus on

the 67 pulsars with a timing baseline ≥ 3 years. We

adopt the TT(BIPM2019) timescale and the JPL DE440

ephemeris (Park et al. 2021), which improves Jupiter’s

orbit with ranging and VLBI observations of the Juno

spacecraft. Uncertainties in the Jovian orbit impacted

NANOGrav’s 11-year GWB search (Arzoumanian et al.

2018; Vallisneri et al. 2020), but they are now negligible.

For each pulsar, we fit the TOAs to a timing model

that includes pulsar spin period, spin period derivative,

sky location, proper motion, and parallax. While not

all pulsars have measurable parallax and proper mo-

tion, we always include these parameters because they

induce delays with the same frequencies for all pulsars

(f = 0.5 yr−1 for parallax and f = yr−1 plus a lin-

ear envelope for proper motion), so there is a risk that

a parallax or proper motion signal could be misidenti-

fied as a GW signal. Fitting for these parameters in all

pulsars reduces our sensitivity to GWs at those frequen-

cies; however, this effect is minimal for GWB searches

since these frequencies are much higher than the fre-

quencies at which we expect the GWB to be signifi-

cant. For binary pulsars, the timing model includes also

five orbital elements for binary pulsars and additional

non-Keplerian parameters when these improve the fit as

determined by an F test. We fit variations in disper-

sion measure as a piecewise constant “DMX” function

(Arzoumanian et al. 2015; Jones et al. 2017). The in-

dividual analysis of each pulsar provides best-fit esti-

mates of the timing residuals δt, of white measurement

noise, and of intrinsic red noise, modeled as a power

law (Cordes 2013; Lam et al. 2017; Jones et al. 2017).4

White measurement noise is described by three param-

eters: a linear scaling of TOA uncertainties (“EFAC”),

white noise added to the TOA uncertainties in quadra-

ture (“EQUAD”), and noise common to all sub-bands

at the same epoch (“ECORR”), with independent pa-

rameters for every receiver/backend combination (see

NG15detchar). We summarize white noise by its maxi-

mum a posteriori (MAP) covariance C. See App. A for

more details of our instruments, observations, and data-

3 The data set is available at data.nanograv.org with the code used
to process it.

4 Throughout the paper we use “red noise” to describe noise whose
power spectrum decreases with increasing frequency.

http://data.nanograv.org
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reduction pipeline: a complete discussion of the data set

can be found in NG15.

In our Bayesian GWB analysis, we model δt as a fi-

nite Gaussian process consisting of time-correlated fluc-

tuations that include intrinsic red pulsar noise and (po-

tentially) a GW signal, along with timing-model uncer-

tainties (van Haasteren et al. 2009; van Haasteren &

Vallisneri 2014; Taylor 2021). The red noise is mod-

eled with Fourier basis F and amplitudes c (Lentati

et al. 2013). All Fourier bases (the columns of F ) are

sines and cosines computed on the TOAs with frequen-

cies fi = i/T , where T = 16.03 yr is the TOA ex-

tent. The timing-model uncertainties are modeled with

design-matrix basis M and coefficients ε. The single-

pulsar log likelihood is then

ln p(δt|c, ε) = −1

2

[
rTC−1r + ln det (2πC)

]
, (1)

with

r = δt− Fc−Mε. (2)

The prior for the ε is taken to be uniform with infinite

extent, so the posterior is driven entirely by the like-

lihood. The set of the {c} for all pulsars take a joint

normal prior with zero mean and covariance

〈caicbj〉 = δij (δabϕai + Φab,i) ; (3)

here a, b range over pulsars and i, j over Fourier com-

ponents; δij is Kronecker’s delta. The term ϕai de-

scribes the spectrum of intrinsic red noise in pulsar

a, while Φab,i describes processes with common spec-

trum across all pulsars and (potentially) phase-coherent

inter-pulsar correlations. The {c} prior ties together the

single-pulsar likelihoods (Equation 1) into a joint pos-

terior, p(c, ε,η|δt) ∝ p(δt|c, ε)p(c, ε|η)p(η), where we

have dropped subscripts to denote the concatenation of

vectors for all pulsars, and where η denotes all the hy-

perparameters (such as red-noise and GWB power spec-

trum amplitudes) that determine the covariances. We

marginalize over c and ε analytically, and use Markov

chain Monte Carlo techniques (see App. B) to estimate

p(η|δt) for different models of the intrinsic red noise and

common spectrum.

The data-model variants adopted in this paper all

share this probabilistic setup, but differ in the struc-

ture and parametrization of Φab,i. For a model with

intrinsic red noise only (henceforth irn), Φab,i = 0;

for common-spectrum spatially-uncorrelated red noise

(curn), Φab,i = δabΦCURN,i; for an isotropic GWB with

Hellings–Downs correlations (hd), Φab,i = Γ(ξab)ΦHD,i,

with Γ the Hellings–Downs function of pulsar angular

separations ξab

Γ(ξab) =
3

2
x ln(x)− 1

4
x+

1

2
+

1

2
δab, (4)

x =
1− cos ξab

2
. (5)

In NG12gwb we established strong Bayesian evidence for

curn over irn; finding that hd is preferred over curn

would point to the GWB origin of the common-spectrum

signal. We also investigate other spatial correlation pat-

terns, e.g., monopole or dipole, introduced in §5.3.

Throughout this paper, we set the spectral compo-

nents ϕai of intrinsic pulsar noise (which have units of

s2, as appropriate for the variance of timing residuals)

to a power law,

ϕai =
A2
a

12π2

1

T

(
fi
fref

)−γa
f−3

ref , (6)

introducing two dimensionless hyperparameters for each

pulsar: the intrinsic-noise amplitude Aa and spectral

index γa. We use log-uniform and uniform priors, re-

spectively, on these hyperparameters; their bounds are

described in App. B. More sophisticated intrinsic-noise

models are discussed in §5.1 and NG15detchar. In mod-

els curnγ and hdγ , the common spectra ΦCURN,i and

ΦHD,i follow Equation 6,

ΦCURN,i =
A2

CURN

12π2

1

T

(
fi
fref

)−γCURN

f−3
ref , (7)

ΦHD,i =
A2

HD

12π2

1

T

(
fi
fref

)−γHD

f−3
ref , (8)

introducing hyperparameters ACURN, γCURN and

AHD, γHD respectively. However, we set γHD = 13/3

for the GWB from a stationary ensemble of inspiraling

binaries, and refer to that fiducial model as hd13/3. For

specific “free spectrum” studies we will instead model

the individual ΦCURN,i or ΦHD,i elements, and refer to

models curnfree and hdfree. Throughout this article we

use frequencies fi = i/T with i = 1–30 for intrinsic noise

(f = 2–59 nHz), covering a frequency range over which

pulsar noise transitions from red-noise–dominated to

white–noise-dominated. For common-spectrum noise,

we limit the frequency range in order to reduce corre-

lations with excess white noise at higher frequencies.

Following NG12gwb, we fit a curnγ model enhanced

with a power-law break to our data, and limit fre-

quencies to the MAP break frequencies (i = 1–14 or

f = 2–28 nHz; see App. C).

3. BAYESIAN ANALYSIS

When fit to the 15-year data set, the curnγ and hdγ

models agree on the presence of a loud time-correlated
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intrinsic pulsar 
noise only (IRN)

common-
spectrum red 
noise (CURNγ)

HD-correlated, 
common spectrum 

red noise (HDγ)

1012.1±0.1 226 ± 70

HDγ + dipole

HDγ + monopole

0.6 ± 0.2

dipole

monopole

HDγ + sin
0.78 ± 0.09

(965 with 5 freqs.)

< 10–7

< 10–8

0.48 ± 0.01

Figure 2. Bayes factors between models of correlated red noise in the NANOGrav 15-year data set (see §5.3 and App. B). All
models feature variable-γ power laws. curnγ is vastly favored over irn (i.e., we find very strong evidence for common-spectrum
excess noise over pulsar intrinsic red-noise alone); hdγ is favored over curnγ (i.e., we find positive evidence for Hellings–Downs
correlations in the common-spectrum process); dipole and monopole processes are strongly disfavored with respect to curnγ ;
adding correlated processes to hdγ is disfavored. While the interpretation of “raw” Bayes factors is somewhat subjective, they
can be given a statistical significance within the hypothesis-testing framework by computing their background distributions and
deriving the p-values of the observed factors, e.g., Figure 3.

stochastic signal with common amplitude and spec-

trum across pulsars5. The joint AHD– γHD Bayesian

posterior is shown in panel (b) of Figure 1, with 1-D

marginal posteriors in the horizontal and vertical sub-

plots. The posterior medians and 5–95% quantiles are

AHD = 6.4+4.2
−2.7 × 10−15 and γHD = 3.2+0.6

−0.6. The thicker

curve in the vertical subplot is the AHD posterior for

the hd13/3 model, for which AHD,13/3 = 2.4+0.7
−0.6×10−15.

These amplitudes are compatible with astrophysical ex-

pectations of a GWB from inspiraling SMBHBs (see

§6). The AHD posterior has essentially no support below

10−15.

The strong AHD– γHD correlation is an artifact of us-

ing the conventional frequency fref = 1 yr−1 in Equa-

tion 6, and it largely disappears when fref is moved to

the band of greatest PTA sensitivity; see the dashed con-

tours in panel (b) of Figure 1 for fref = (10 yr)−1. The

γHD posterior is in moderate tension with the theoretical
universal binary-inspiral value γHD = 13/3, which lies at

the 99% credible boundary: smaller values of γHD could

be an indication that astrophysical effects, such as stellar

scattering and gas dynamics, play a role in the evolution

of SMBHBs emitting GWs in this frequency range (see

§6 and Agazie et al. 2023a). This highlights the impor-

tance of measuring this parameter. Furthermore, its es-

timation is sensitive to details in the modeling of intrin-

sic red noise and of interstellar-medium timing delays in

a few pulsars (see the analysis in §5.2). Notably, in the

12.5-year data set γHD = 13/3 was recovered at ∼ 1σ

below the median (NG12gwb); this anomaly is reversed

in the newer data set. It is likely that more expansive

5 See App. B for details about our Bayesian methods, including
the calculation of Bayes factors.

data sets or more sophisticated chromatic noise models,

e.g., next generation Gaussian process models such as

in §5.1 (Goncharov et al. 2021b; Chalumeau et al. 2022;

Lam et al. 2018), will be needed to infer the presence of

possible systematic errors in γHD.

Our Bayesian analysis provides evidence that the

common-spectrum signal includes Hellings–Downs inter-

pulsar correlations. Specifically, the Bayes factor be-

tween the hdγ and curnγ models ranges from 200 (when

14 Fourier frequencies are included in Φi) to 1,000 (when

5 frequencies are included, as in NG12gwb). Results

are similar for hd13/3 vs. curn13/3. Figure 2 recapitu-

lates Bayes factors between a variety of models, includ-

ing some with the alternative spatial-correlation struc-

tures discussed in §5.3. The very peaked AHD posterior

in panel (b) of Figure 1, significantly separated from

smaller amplitudes, supports the very large Bayes fac-

tor between irn and curnγ . The 15-year data set fa-

vors hdγ over curnγ , and over models with monopolar

or dipolar correlations, and it is inconclusive about, i.e.,

gives roughly even odds for, the presence of spatially

correlated signals in addition to hdγ .

We can also regard the hdγ vs. curnγ Bayes factor as

a detection statistic in a hypothesis-testing framework,

and derive the p-value of the observed Bayes factor with

respect to its empirical distribution under the curnγ

model. We do so by computing Bayes factors on 5,000

bootstrapped data sets where inter-pulsar spatial corre-

lations are removed by introducing random phase shifts,

drawn from a uniform distribution from 0 to 2π, to

the common-process Fourier components (Taylor et al.

2017). This procedure alters inter-pulsar correlations to

have a mean of zero, while leaving the amplitudes of in-

trinsic pulsar noise and CURN unchanged, thus provid-
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Figure 3. Empirical background distribution of hdγ-to-curnγ Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed by the phase-shift technique (Taylor et al. 2017) to remove inter-pulsar correlations. We
only compute 5,000 Bayesian phase shifts, compared to 400,000 optimal statistic phase shifts, because of the huge computational
resources needed to perform the Bayesian analyses. For the optimal statistic, we also compute the background distribution using
27,000 simulations (orange line) and compare to an analytic calculation (green line). Dotted lines indicate Gaussian-equivalent
2σ, 3σ, and 4σ thresholds. The dashed vertical lines indicate the values of the detection statistics for the unshifted data sets.
For the Bayesian analyses, we find p = 10−3 (approx. 3σ); for the optimal statistic analyses, we find p = 5 × 10−5–1.9 × 10−4

(approx. 3.5–4σ).

ing a way to test the null hypothesis that no inter-pulsar

correlations are present. The resulting background dis-

tribution of Bayes factors is shown in the left panel of

Figure 3—they exceed the observed value in five of the

5,000 phase shifts (p = 10−3). We also performed sky

scramble analyses (Cornish & Sampson 2016), which

remove the dependence of inter-pulsar spatial correla-

tions on the angular separations between the pulsars by

attributing random sky positions to the pulsars. Sky

scrambles generate a background distribution for which

inter-pulsar correlations are present in the data but they

are independent of the pulsars’ angular separations: for

this distribution, we find p = 1.6×10−3. A detailed dis-

cussion of sky scrambles and the results of these analyses

can be found in App. F.

As in NG12gwb, we also carried out a minimally mod-

eled Bayesian reconstruction of the inter-pulsar correla-

tion pattern, using spline interpolation over seven spline-

knot positions. The choice of seven spline-knot posi-

tions is based on features of the Hellings–Downs pattern:

two correspond to the maximum and minimum angular

separations (0◦ and 180◦, respectively), two are chosen

to be at the theoretical zero crossings of the Hellings–

Downs pattern (49.2◦ and 121.8◦), one is at the theo-

retical minimum (82.5◦), and the final two are between

the end points and zero crossings (25◦ and 150◦) to al-

low additional flexibility in the fit. Panel (d) of Fig-

ure 1 shows the marginal 1-D posterior densities at these

spline-knot positions for a power-law varied-exponent

model. The reconstruction is consistent with the over-

plotted Hellings–Downs pattern; furthermore, the joint

2-D marginal posterior densities for the knots, not shown

in panel (d) of Figure 1, at the HD zero-crossings is con-

sistent with (0, 0) within 1σ credibility.

4. OPTIMAL STATISTIC ANALYSIS

We complement our Bayesian search with a frequen-

tist analysis using the optimal statistic (Anholm et al.

2009; Demorest et al. 2013; Chamberlin et al. 2015), a

summary statistic designed to measure correlated excess

power in PTA residuals. (Note that there is no accepted

definition of “optimal statistic” in modern statistical us-

age, but the term has become established in the PTA

literature to refer to this specific method, so we use it

for this reason.) It is enlightening to describe the op-

timal statistic as a weighted average of the inter-pulsar

correlation coefficients

ρab =
δtTaP−1

a Φ̃abP
−1
b δtb

Tr P−1
a Φ̃abP

−1
b Φ̃ba

, (9)

where δtTa are the residuals of pulsar a, and Pa =〈
δtaδt

T
a

〉
is their total auto-covariance matrix. The

cross-covariance matrix Φ̃ab encodes the spectrum of

the HD-correlated signal, normalized so that Φab =

A2Γ(ξab)Φ̃ab (see Pol et al. 2022), and where elements

of Φab are given by Equation 3. Indeed, the ρab have

expectation value A2Γ(ξab), but their variance σ2
ab =

(Tr P−1
a Φ̃abP

−1
b Φ̃ba)−1 +O(A4) is too large to use them

directly as estimators. Thus we assemble the optimal

statistic as the variance-weighted, Γ-template-matched

average of the ρab,

Â2 =

∑
a>b ρabΓ(ξab)/σ

2
ab∑

a>b Γ2(ξab)/σ2
ab

. (10)
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Figure 4. Optimal statistic S/N for HD correlations, dis-
tributed over curnγ (solid lines) and curn13/3 (dashed lines)
noise-parameter posteriors. The vertical lines indicate the
mean S/Ns. We find S/Ns of 5± 1 and 4± 1 for curnγ and
curn13/3, respectively.

This equation represents the optimal estimator of the

HD amplitude A2; it can also be interpreted as the

best-fit Â2 obtained by least-squares–fitting the ρab to

the Hellings–Downs model Â2 Γ(ξab). Because Â2 is a

function of intrinsic–red-noise and common-process hy-

perparameters through the Pa, we use the results of

an initial Bayesian-inference run to refer the statistic to

MAP hyperparameters, or to marginalize it over their

posteriors. As discussed in Vigeland et al. (2018), we

obtain more accurate values of the amplitude by this

marginalization.

To search for inter-pulsar correlations using the op-

timal statistic, we evaluate the frequency (the p-value)

with which an uncorrelated common-spectrum process

with parameters estimated from our data set would yield

Â2 greater than we observe. In the absence of a signal,

the expectation value of Â2 is zero, and its distribution

is approximately normal. Thus we divide the observed

Â2 by its standard deviation to define a formal signal-

to-noise ratio

S/N =

∑
a>b ρabΓ(ξab)/σ

2
ab[∑

a>b Γ2(ξab)/σ2
ab

]1/2 . (11)

Figure 4 shows the distribution of this S/N over curnγ

and curn13/3 noise-parameter posteriors, with S/Ns of

5 ± 1 and 4 ± 1, respectively (means ± standard de-

viations across noise-parameter posteriors). We use 14

frequency components to model the signal: the depen-

dence on the number of frequency components is very

weak.

Because the distribution of Â2 is only approximately

normal (Hazboun et al. 2023), the S/N of Equation 11

does not map analytically to a p-value, and it cannot

be interpreted as a “sigma” level. Instead, optimal-

statistic p-values can be computed empirically by re-

moving inter-pulsar correlations from the 15-year data

set with phase shifts (Taylor et al. 2017). We draw ran-

dom phase offsets from 0 to 2π for the common-process

Fourier components, which is equivalent to making uni-

form draws from the background distribution of CURN,

and ask how often a random choice of phase offsets

produces a HD-correlated signal. The right panel of

Figure 3 shows the distribution of noise-marginalized

S/N over 400,000 phase shifts. There are 19 phase

shifts with noise-marginalized S/N greater than ob-

served, with p = 5× 10−5. We compare the phase-shift

distribution with backgrounds obtained by simulation

(right panel of Figure 3, orange line) and analytic calcu-

lation (green line). For the former, we simulate 27,000

curnγ realizations using MAP hyperparameters from

the 15-yr data and compute the optimal-statistic S/N for

each; for the latter, we evaluate the generalized χ2 dis-

tribution (Hazboun et al. 2023) with median curnγ hy-

perparameters. Although neither method includes the

marginalization over noise-parameter posteriors, we find

good agreement with phase shifts, with p = 1.8 × 10−4

from simulations, and p = 1.9× 10−4 from the analytic

calculation. Finally, we use sky scrambles to compute

the p-value for the null hypothesis that inter-pulsar cor-

relations are present, but they have no dependence on

the angular separation between the pulsars, for which

we find p < 10−4 (see App. F).

Averaging the cross-correlations ρab in angular-

separation bins with equal numbers of pulsar pairs re-

veals the Hellings–Downs pattern, as shown in panel

(c) of Figure 1 for 15 bins. The ρab were evalu-

ated with MAP curn13/3 noise parameters. The black

dashed curve traces the expected correlations for an HD-

correlated background with the MAP amplitude; the

vertical error bars display the expected 1σ spreads of the

binned cross-correlations, accounting for the 〈ρabρcd〉
covariances induced by the HD-correlated process (Ro-

mano et al. 2021; Allen & Romano 2022). (Neglecting

those covariances yields 20–40% smaller spreads. Note

that they are not included in p-value estimates because

those are calculated under the null hypothesis of no spa-

tially correlated process.)

Although each draw from the noise-parameter poste-

rior would generate a slightly different plot, as would

different binnings, the quality of the fit seen in Fig-

ure 1 provides a visual indication that the excess low-

frequency power in the 15-year data set harbors HD

correlations. The χ2 for this 15-bin reconstruction with

respect to the Hellings–Downs curve is 8.1, where we ac-

count for ρab covariance in constructing the bins, and the

covariance between bins in constructing the χ2 (Allen &

Romano 2022). This corresponds to a p-value of 0.75,
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calculated using simulations based on the hdγ model, or

0.92 if one assumes this value follows a canonical χ2 with

15 degrees of freedom. These p-values are representative

of what we find with different binnings: we find p > 0.3

when using eight to 20 bins (assuming a canonical χ2

distribution).

5. CHECKS AND VALIDATION

Prior to analyzing the 15-year data set, we extensively

reviewed our data collection and analysis procedures,

methods, and tools, in an effort to eliminate contamina-

tion from systematic effects and human error. Further-

more, the results presented in §3 and §4 are supported

by a variety of consistency checks and auxiliary stud-

ies. In this section we present those that offer evidence

for or against the presence of HD correlations, reveal

anomalies, or otherwise highlight features of note in the

data: alternative DM modeling (§5.1), the spectral con-

tent (§5.2) and correlation pattern (§5.3) of the excess-

noise signal, as well as the consistency of our findings

across data set “slices,” pulsars, and telescopes (§5.4).

5.1. Alternative DM models

In this paper and in previous GW searches (e.g.,

NG12gwb), we model fluctuations in the DM using

DMX parameters (a piecewise-constant representation,

see NG15). Adopting this DM model as the standard

makes it easier to directly compare the results here to

those in NG12gwb. An alternative model where DM

variations are modeled as a Fourier-domain Gaussian

process, DMGP, has been used by Antoniadis et al.

(2022), Chen et al. (2021), and Goncharov et al. (2021a).

The Fourier coefficients follow a power law similar to

those of intrinsic and common-spectrum red noise, but

their basis vectors include a ν−2 radio-frequency depen-

dence, and the component frequencies fi = i/T range

through i = 1–100. Under the DMGP model we also in-

clude a deterministic solar-wind model (Hazboun et al.

2022) and the two chromatic events in PSR J1713+0747

reported in Lam et al. (2018) which are modeled as de-

terministic exponential dips with the chromatic index

quantifying the radio-frequency dependence of the dips

left as a free parameter. If these chromatic events are

not modeled, they raise estimated white noise (Hazboun

et al. 2020). A detailed discussion of chromatic noise ef-

fects can be found in NG15detchar.

Using the DMGP model in place of DMX has minimal

effects on nearly all pulsars in the array. Only PSRs

J1713+0747 and J1600−3053 show notable differences

in their recovered intrinsic-noise parameters. However,

DMGP does affect the parameter estimation of common

red noise, as seen in Figure 5, shifting the posterior for
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Figure 5. curnγ posterior distributions using DMGP (red)
and DMX (blue) to model DM variations. The dashed line
marks γCURN = 13/3. While the posteriors are broadly con-
sistent, DMGP shifts the γCURN posterior to higher values,
making it more consistent with γCURN = 13/3.

γ to higher values that are more consistent with 13/3.

Despite this, we still recover HD correlations at the same

significance as when we use DMX to model fluctuations

in the DM, implying that the evidence reported for the

presence of correlations in this work is independent of

the choice of DM noise modeling.

5.2. Spectral analysis

Adopting power-law spectra for curn and hd is a

useful simplification that reduces the number of fit pa-

rameters and yields more informative constraints; fur-

thermore, it is expedient to identify hd13/3 with the

hypothesis that we are observing the GWB from SMB-

HBs. Nevertheless, the standard γ = 13/3 power law

for GW inspirals may be altered by astrophysical pro-

cesses such as stellar and gas friction in nuclei (see, e.g.,

Merritt & Milosavljević 2005 for a review), by apprecia-

ble eccentricity in SMBHB orbits (Enoki & Nagashima

2007), and by low-number SMBHB statistics (Sesana

et al. 2008). hdγ parameter recovery may also be biased

if intrinsic pulsar noise is not modeled well by a power

law. Indeed, our data show hints of a discrepancy from

the idealized hd13/3 model: the γHD posterior in panel

(b) of Figure 1 favors slopes much shallower than 13/3,

and the hdγ-to-curnγ Bayes factor drops from 1,000 to

200 when Fourier components at more than five frequen-

cies are included in the model.

We examine the spectral content of the 15-year data

set using the curnfree and hdfree models, which are

parametrized by the variances of the Fourier components

at each frequency. Their marginal posteriors are shown

in the left panel of Figure 6, where bin number i cor-

responds to fi = i/T , with T = 16.03 yr the extent of

the data set. For the purpose of illustration, we overlay

best-fit power laws that thread the posteriors in a way
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Figure 6. Left: Posteriors of Fourier component variance Φi for the curnfree (left) and hdfree (right) models (see §2), plotted
at their corresponding frequencies fi = i/T with T the 16.03-yr extent of the data set. Excess power is observed in bins 1–8
(somewhat marginally in bin 6); Hellings–Downs-correlated power in bins 1–5 and 8. The dashed line plots the best-fit power
law, which has γ ' 3.2 (as in panel (d) of Figure 1); the fit is pushed to lower γ by bins 1 and 8. The dotted line plots the best-fit
power law when γ is fixed to 13/3; it overshoots in bin 1 and undershoots in bin 8. Right: Posteriors of variance Φ2 in Fourier
bin 2 (f2 = 3.95 nHz) in a curnfree + hdfree + monopolefree + dipolefree model, showing evidence of a quasi-monochromatic
monopole process (dashed). No monopole or dipole power is observed in all other bins of that joint model, with ΦCURN,i and
ΦHD,i posteriors consistent with the left panel.

similar to the factorized PTA likelihood of Taylor et al.

(2022) and Lamb et al. (2023).

We deem excess power, either uncorrelated for

curnfree or correlated for hdfree, to be observed in a

bin when the support of the posterior is concentrated

away from the lowest amplitudes. No power of either

kind is observed above f8, consistent with the presence

of a floor of white measurement noise. Furthermore,

no correlated power is observed in bins 6 and 7, where a

power-law model would expect a smooth continuation of

the trend of bins 1–5 (cf. the dashed fit of Figure 6): this

may explain the drop in the Bayes factor. However, cor-

related power reappears in bin 8, pushing the fit toward

shallower slopes. Indeed, repeating the fit by omitting

subsets of the bins suggests that the low recovered γHD

is due mostly to bin 8 and to the lower-than-expected

correlated power found in bin 1. Obviously, excluding

those bins leads to higher γHD estimates.

To explore deviations from a pure power law that may

arise from statistical fluctuations of the astrophysical

background or from unmodeled systematics (perhaps re-

lated to the timing model), in App. D we relax the nor-

mal ck prior (cf. Equation 3) to a multivariate Student’s

t-distribution that is more accepting of mild outliers.

The resulting estimate of γCURN peaks at a higher value

and is broader than in curnγ , with posterior medians

and 5-95% quantiles of γCURN = 3.5+1.0
−1.0.

Similarly, spectral turnovers due to interactions be-

tween SMBHBs and their environments can result in

reduced GWB power at lower frequencies, which might

explain the slightly lower correlated power in bin 1. We

investigate this hypothesis in App. E using the turnover

spectrum of Sampson et al. (2015). For this curnturnover

model, the 15-year data favor a spectral bend below 10

nHz (near f5), but the Bayes factor against the standard

hdγ is inconclusive.

Future data sets with longer time spans and the com-

parison of our data set with those of other PTAs should

help clarify the astrophysical or systematic origin of

these possible spectral features.

5.3. Alternative correlation patterns

Sources other than GWs can produce inter-pulsar

residual correlations with spatial patterns other than

HD. For example, errors in the solar-system ephemerides

create time-dependent Roemer delays with dipolar cor-

relations (Roebber 2019; Vallisneri et al. 2020), and er-
rors in the correction of telescope time to an inertial

timescale (Hobbs et al. 2012, 2020) create an identical

time-dependent delay for all pulsars (i.e., a delay with

monopolar correlations).

Gair et al. (2014) showed that, for a pulsar array dis-

tributed uniformly across the sky, HD correlations can

be decomposed as

ΓHD,ab =

∞∑

l=0

gl Pl(cos ξab),

g0 = 0, g1 = 0, gl =
3

2
(2l + 1)

(l − 2)!

(l + 2)!
for l ≥ 2, (12)

where the Pl(cos ξab) are Legendre polynomials of order

l evaluated at the pulsar angular separation ξab. In other

words, a HD-correlated signal should have no power at

l = 0 or l = 1.
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Figure 7. Multiple-component optimal statistic for a Legen-
dre polynomial basis (Equation 12) with with lmax = 5. The
violin plots show the distributions of the normalized Legen-
dre coefficients A2

l = A2gl over curnγ noise-parameter pos-
teriors. The black dashed line shows the Legendre spectrum
of a pure-HD signal, with the median posterior Â2

HD.

We can perform a frequentist generic correlation

search using Legendre polynomials6 with the multiple-

component optimal statistic (MCOS; Sardesai & Vige-

land 2023)—a generalized statistic that allows multiple

correlation patterns to be fit simultaneously to the cor-

relation coefficients ρab. Figure 7 shows the constraints

on A2
l = A2gl obtained by fitting the correlations ρab to

this Legendre series using the MCOS and marginalizing

over curnγ noise-parameter posteriors. The quadrupo-

lar structure of the data is evident, along with a small

but significant monopolar contribution.

The same feature from the Legendre decomposition

appears if we use the MCOS to search for multiple cor-

relations simultaneously: a multiple regression analy-

sis favors models that contain both significant HD and

monopole correlations (see App. G). From simulations

of 15-year-like data sets (see App. H.1), we find a p-

value of 0.11 (approx. 2σ) for observing a monopole at

this significance or higher with a pure-HD injection of

amplitude similar to what we observe. We also per-

form a model-checking study to assess whether the ob-

served monopole is consistent with the hd13/3 model

(see App. H.2), and we find a p-value of 0.11 for pro-

ducing an apparent monopole when the signal is purely

hd13/3. Thus, we conclude that it is possible for a HD-

correlated signal to appear to have monopole correla-

tions in an optimal statistic analysis at this significance

level.

6 A Bayesian method for fitting correlations using Legendre poly-
nomials can be found in Nay et al. (2023).

In contrast, Bayesian searches for additional correla-

tions do not find evidence of additional monopole- or

dipole-correlated red noise processes: as shown in Fig-

ure 2, the Bayes factors for these processes are ∼ 1. We

also perform a general Bayesian search for correlations

using a curnfree + hdfree + monopolefree + dipolefree

model, which allows for independent uncorrelated and

correlated components at every frequency bin. We note

that this analysis is more flexible than the ones described

above, which assume a power-law power spectral den-

sity. We find no significant dipole-correlated power at

any frequency, and we find monopole-correlated power

only in the second frequency bin (f2 = 3.95 nHz); pos-

teriors of variance for that bin are shown in the right

panel of Figure 6.

Motivated by this finding, we perform a search for hdγ

+ sinusoid, which includes a deterministic sinusoidal

delay (applied to all pulsars alike, as appropriate for a

monopole) with free frequency, amplitude, and phase.

The sinusoid’s posteriors match the free-spectral analy-

sis in frequency and amplitude; however, the Bayes fac-

tor between hdγ + sinusoid and hdγ calculated using

two methods (Hee et al. 2015; Hourihane et al. 2023),

is only ∼ 1, so the signal cannot be considered statis-

tically significant. Astrophysically motivated searches

for sources that produce sinusoidal or sinusoid-like de-

lays in the residuals, such as an individual SMBHB or

perturbations to the local gravitational field induced by

fuzzy dark matter (Khmelnitsky & Rubakov 2014), also

yield Bayes factors ∼ 1. Thus we conclude that there

is some evidence of additional power at 3.95 nHz with

monopole correlations; however, the significance in the

Bayesian analyses is low, while the optimal-statistic S/N

could be produced by a HD-correlated signal. There-

fore, we cannot definitively say whether the signal is

present, or determine the source. We note that per-

forming an MCOS analysis after subtracting off real-

izations of a sinusoid using hdγ + sinusoid posteri-

ors reduces the (S/N)monopole ' 0 while (S/N)HD re-

mains unchanged, indicating that this single-frequency

monopole-correlated signal is likely causing the nonzero

monopole signal observed in the MCOS analysis.

Similar hints of a monopolar signal (though weaker)

were found in the NANOGrav 12.5-year data set, unsur-

prisingly given that it is a subset of the current data set.

To exercise due diligence, we audited the correction of

telescope time to GPS time at the Arecibo Observatory

and at the Green Bank Telescope, and found nothing

that could explain our observations. The subsequent

steps in the time-correction pipeline rely on very accu-

rate atomic clocks and are unlikely to introduce consid-

erable systematics (Petit 2022). An important test will
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be whether this signal persists in future data sets. If this

monopolar feature is a truly an astrophysical signal, we

would expect it to increase in significance as our data

set grows. Comparisons with other PTAs and combined

IPTA data sets will also provide crucial insight.

5.4. Dropout and cross-validation

The GWB is by its nature a signal affecting all of the

pulsars in the PTA, although it may appear more signif-

icant in some based on their observing time span, noise

properties, and on the particular realization of pulsar

and Earth contributions (Speri et al. 2023). One way

to assess the significance of the GWB in each pulsar is

a Bayesian dropout analysis (Aggarwal et al. 2019; Ar-

zoumanian et al. 2020), which introduces a binary pa-

rameter that turns on and off the common signal (or its

inter-pulsar correlations) for a single pulsar, leaving all

other pulsars unchanged. The Bayes factor associated

with this parameter, also referred to as the “dropout

factor,” describes how much each pulsar likes to “par-

ticipate” in the common signal.

Figure 8 plots curnγ vs. irn dropout factors for all

67 pulsars (blue). We find positive dropout factors (i.e.,

dropout factors > 2) for an uncorrelated common pro-

cess in twenty pulsars, while only one has a dropout

factor < 0.5. For comparison, in the NANOGrav 12.5-

year data set ten pulsars showed positive dropout fac-

tors for an uncorrelated common process, while three

had negative dropout factors. We also show HD corre-

lations vs. curnγ dropout factors (orange). For these,

the uncorrelated common process is always present in

all pulsars, but the cross-correlations for all pulsar pairs

involving a given pulsar may be dropped from the like-

lihood. We find positive factors for HD correlations vs.

curnγ in seven pulsars, while three are negative. We

expect more pulsars to have positive dropout factors for

curnγ vs. irn than for Hellings–Downs vs. curnγ be-

cause the Bayes factor comparing the first two models

is significantly higher than the one comparing the sec-

ond two models (see Figure 2). Negative dropout factors

could be caused by noise fluctuations or they could be

an indication that more advanced chromatic noise mod-

eling is necessary (Alam et al. 2021a). They could also

be caused by the GWB itself, which induces both corre-

lated and uncorrelated noise in the pulsars (the so-called

“Earth terms” and “pulsar terms”; Mingarelli & Min-

garelli 2018).

In addition to Bayes factors, the goodness-of-fit of

probabilistic models can be evaluated by assessing their

predictive performance (Gelman et al. 2013). Specifi-

cally, given that the GWB is correlated across pulsars,

we can (partially) predict the timing residuals δta of
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Figure 8. Support for curnγ (blue) and hdγ correlations
(orange) in each pulsar, as measured by a dropout analy-
sis. Dropout factors greater than 1 indicate support for the
curnγ or hdγ while those less than 1 show that the pulsar
disfavors it. We find significant spread in the dropout factors
among pulsars with long observation times, but overall more
pulsars favor curnγ participation and hdγ correlations than
disfavor them.

pulsar a from the residuals δt−a of all other pulsars by

way of the “leave-one-out” posterior predictive likelihood

(PPL)

p(δta|δt−a) =

∫
dθa p(δta|θa) p(θa|δt−a), (13)

where θa are all the parameters and hyperparameters

that affect pulsar a in a given model. As discussed in

Meyers et al. (2023), we compare the predictive perfor-

mance of curn13/3 and hd13/3 for each pulsar in turn

by taking the ratio of the corresponding leave-one-out

PPLs. These ratios are closely related to the dropout

factors plotted in Figure 8. Multiplying the PPL ratios

for all pulsars yields the pseudo Bayes factor (PBF).

For the 15-year data set we find PBF15 yr = 1,400 in

favor of hd13/3 over curn13/3. The PBF does not have

a “betting odds” interpretation, but we obtain a crude

estimate of its significance by building its background

distribution on 40 curn13/3 simulations with the MAP

log10ACURN inferred from the 15-year data set. For all

simulations except one, the PBF favors the null hypoth-

esis, and log10 PBF15 yr is displaced by approx. three

standard deviations from the mean log10 PBF.

A different sort of cross-validation relies on evaluating

the optimal statistic for temporal subsets of the data

set, as in Hazboun et al. (2020). In the regime where



NANOGrav 15-year Gravitational-Wave Background 15

6.0 8.0 10.0 12.0 14.0 16.0
Years in data set

−2

0

2

4

6

S/
N

HD S/N

20

30

40

50

60

N
ps

rs

Number of pulsars

Figure 9. S/N growth as a function of time and number of
pulsars. As we move from left to right we add an additional
six months of data at each step. New pulsars are added
when they accumulate three years of data. The blue violin
plot shows the distribution of the optimal statistic S/N over
curnγ noise parameters. The dashed orange line shows the
number of pulsars used for each time slice.

the lowest frequencies of our data are dominated by the

GWB, the optimal statistic S/N should grow with the

square root of the time span of the data and linearly

with the number of pulsars in the array (Siemens et al.

2013); in this regime increasing the number of pulsars is

the best way to boost PTA sensitivity to the GWB. To

verify that this is indeed the case, we analyze “slices”

of the data set in six-month increments, starting from

a six-year data set. Once a new pulsar accumulates

three years of data, we add it to the array. We per-

form a separate Bayesian curnγ analysis for each slice

and calculate the Hellings–Downs optimal statistic over

the noise-parameter posterior. In Figure 9, we plot the

S/N distributions against time span and the number of

pulsars. As expected, we observe essentially monotonic

growth associated with the increase in the number of
pulsars.

The signal should also be consistent between tim-

ing observations made with Arecibo and GBT. To test

this, we analyze the two split-telescope data sets (see

App. A); both show evidence of common-spectrum ex-

cess noise. Figure 10 shows Arecibo (orange) and GBT

(green) curnγ posteriors, which are broadly consistent

with each other and with full-data posteriors (blue).

Arecibo yields log10A = −14.02+0.18
−0.22 and γ = 2.78+0.70

−0.64

(medians with 68% credible intervals), while GBT yields

log10A = −14.2+0.15
−0.17 and γ = 3.37+0.40

−0.38.

The split-telescope data sets are significantly less sen-

sitive to spatial correlations than the full data set, be-

cause they have fewer pulsars and therefore pulsar pairs

(see Figure 12 of App. A). Nevertheless, we can search

them for spatial correlations using the optimal statis-

tic. We find a noise-marginalized Hellings–Downs S/N

1 2 3 4 5
γCURN

−1
5.0
−1

4.5
−1

4.0
−1

3.5

lo
g 1

0
A

C
U

R
N

Entire PTA
AO only
GBT only

Figure 10. curnγ posterior distributions for Arecibo (or-
ange) and GBT (green) split-telescope data sets, and for the
full data set (blue). The dashed line marks γCURN = 13/3.
The posteriors for the split-telescope data sets are consistent
with each other and with the posteriors for the full data set.

of 2.9 for Arecibo and 3.3 for GBT, consistent with the

split-telescope data sets having about half the number

of pulsars as the full data set. The S/Ns for Arecibo

and GBT are comparable: while telescope sensitivity,

observing cadence, and distribution of pulsars all affect

GWB sensitivity, the dominant factor is the number of

pulsars because the S/N scales linearly with the num-

ber of pulsars but only as ∝ (σ
√
c)−1/γ , where σ is the

residual root-mean-squared, and c is the observing ca-

dence (Siemens et al. 2013). We also note that the dis-

tributions of angular separations probed by Arecibo and

GBT are similar, although GBT observes more pulsar

pairs with large angular separations (see Figure 12).

6. DISCUSSION

In this letter we have reported on a search for an

isotropic stochastic GWB in the 15-year NANOGrav

data set. A previous analysis of the 12.5-year

NANOGrav data set found strong evidence for ex-

cess low-frequency noise with common spectral prop-

erties across the array, but inconclusive evidence for

Hellings–Downs inter-pulsar correlations, which would

point to the GW origin of the background. By con-

trast, the 12.5-year data disfavored purely monopo-

lar (clock-error–like) and dipolar (ephemeris-error–like)

correlations. Subsequent independent analyses by the

PPTA and EPTA collaborations reported results con-

sistent with ours (Goncharov et al. 2021a; Chen et al.

2021), as did the search of a combined data set (Anto-

niadis et al. 2022)—a syzygy of tantalizing discoveries

that portend the rise of low-frequency GW astronomy.

We analyzed timing data for 67 pulsars in the 15-year

data set (those that span > 3 years), with a total time

span of 16.03 years, and more than twice the pulsar pairs

than in the 12.5-year data set. The common-spectrum

stochastic signal gains even greater significance and is
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detected in a larger number of pulsars. For the first time,

we find compelling evidence of Hellings–Downs inter-

pulsar correlations, using both Bayesian and frequen-

tist detection statistics (see Figure 1), with false-alarm

probabilities of p = 10−3 and p = 5× 10−5–1.9× 10−4,

respectively (see Figure 3).

The significance of Hellings–Downs correlations in-

creases as we increase the number of frequency com-

ponents in the analysis up to five, indicating that the

correlated signal extends over a range of frequencies.

A detailed spectral analysis supports a power-law sig-

nal, but at least two frequency bins show deviations

that may skew the determination of spectral slope (Fig-

ure 6). These discrepancies may arise from astrophysi-

cal or systematic effects. Furthermore, slope determi-

nation changes significantly using an alternative DM

model (Figure 5). The study of spatial correlations with

the optimal statistic confirms a Hellings–Downs quasi-

quadrupolar pattern (Figure 7 and panel c of Figure 1),

with some indications of an additional monopolar signal

confined to a narrow frequency range near 4 nHz. How-

ever, the Bayesian evidence for this monopolar signal is

inconclusive, and we could not ascribe it to any astro-

physical or terrestrial source (e.g., an individual SMBHB

or errors in the chain of timing corrections).

The GWB is a persistent signal that should increase in

significance with number of pulsars and observing time

span. This is indeed what we observe by analyzing slices

of the data set (see Figure 9). Furthermore, the signal is

present in multiple pulsars (Figure 8), and can be found

in independent single-telescope data sets (Figure 10).

We are preparing a number of other papers searching

the 15-year data set for stochastic and deterministic sig-

nals, including an all-sky, all-frequency search for GWs

from individual circular SMBHBs. This search, together

with the same analysis of the 12.5-year data set (Arzou-

manian et al. 2023), indicates that the spectrum and

correlations we observe cannot be produced by an indi-

vidual circular SMBHB.

If the Hellings–Downs-correlated signal is indeed an

astrophysical GWB, its origin remains indeterminate.

Among the many possible sources in the PTA frequency

band, numerous studies have focused on the unresolved

background from a population of close-separation SMB-

HBs. The SMBHB population is a direct byproduct

of hierarchical structure formation, which is driven by

galaxy mergers (e.g., Blumenthal et al. 1984). In a

post-merger galaxy, the SMBHs sink to the center of

the common merger remnant through dynamical inter-

actions with their astrophysical environment, eventually

leading to the formation of a binary (Begelman et al.

1980). GW emission from a SMBHB at nHz frequencies

is quasi-monochromatic because the binaries evolve very

slowly. Under the assumption of purely GW-driven bi-

nary evolution, the expected characteristic-strain spec-

trum is ∝ f−2/3 (or f−13/3 for pulsar-timing residuals).

The GWB spectrum may also feature a low-frequency

turnover induced by the dynamical interactions of bi-

naries with their astrophysical environment (e.g., with

stars or gas, see Armitage & Natarajan 2002; Sesana

et al. 2004; Merritt & Milosavljević 2005) or possibly by

non-negligible orbital eccentricities persisting to small

separations (Enoki & Nagashima 2007). We find little

support for a low-frequency turnover in our data (see

App. E).

The GWB amplitude is determined primarily by

SMBH masses and by the occurrence rate of close bi-

naries, which in turn depends on the galaxy merger

rate, the occupation fraction of SMBHs, and the binary

evolution timescale; population models predict ampli-

tudes ranging over more than an order of magnitude

(Rajagopal & Romani 1995; Wyithe & Loeb 2003; Jaffe

& Backer 2003; McWilliams et al. 2014; Sesana 2013),

under a variety of assumptions. Figure 11 displays a

comparison of hdγ parameter posteriors with power-law

spectral fits from an observationally constrained semi-

analytic model of the SMBHB population constructed

with the holodeck package (Kelley et al. 2023). This

particular set of SMBHB populations assumes purely

GW-driven binary evolution, and uses relatively nar-

row distributions of model parameters based on liter-

ature constraints from galaxy-merger observations (see,

e.g., Tomczak et al. 2014). While the amplitude recov-

ered in our analysis is consistent with models derived

directly from our understanding of SMBH and galaxy

evolution, it is toward the upper end of predictions im-

plying a combination of relatively high SMBH masses

and binary fractions. A detailed discussion of the GWB

from SMBHBs in light of our results is given in Agazie

et al. (2023a).

In addition to SMBHBs, more exotic cosmological

sources such as inflation, cosmic strings, phase transi-

tions, domain walls, and curvature-induced GWs can

also produce detectable GWBs in the nHz range (see,

e.g., Guzzetti et al. 2016; Caprini & Figueroa 2018, and

references therein). Similarities in the spectral shapes of

cosmological and astrophysical signals make it challeng-

ing to determine the origin of the background from its

spectral characterization (Kaiser et al. 2022). The ques-

tion could be settled by the detection of signals from

individual loud SMBHBs or by the observation of spa-

tial anisotropies, since the anisotropies expected from

SMBHBs are orders of magnitude larger than those pro-

duced by most cosmological sources (Caprini & Figueroa
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Figure 11. Posteriors of hdγ amplitude (for fref = 1 yr−1)
and spectral slope for the 15-year data set (blue), compared
to power-law fits to simulated GWB spectra (red, dashed)
from a population of SMBHBs generated by holodeck (Kel-
ley et al. 2023) under the assumption of purely GW-driven
binary evolution, and narrowly distributed model parame-
ters based on galaxy merger-observations. We show 1/2/3σ
regions, and the dashed line indicates γ = 13/3. The broad
contours confirm that population variance can lead to a sig-
nificant spread of spectral characteristics.

2018; Bartolo et al. 2022). We discuss these models in

the context of our results in Afzal et al. (2023).

The EPTA and Indian Pulsar Timing Array (InPTA;

Joshi et al. 2018), PPTA, and Chinese Pulsar Timing

Array (CPTA; Lee 2016) collaborations have also re-

cently searched their most recent data for signatures of

a gravitational-wave background (Antoniadis et al. 2023;

Reardon et al. 2023; Xu et al. 2023), and an upcoming

IPTA paper will compare the results of these searches.

The IPTA’s forthcoming Data Release 3 will combine

the NANOGrav 15-year data set with observations from

the EPTA, PPTA, and InPTA collaborations, compris-

ing about 80 pulsars with time spans up to 24 years, and

offering significantly greater sensitivity to spatial cor-

relations and spectral characteristics than single-PTA

data sets. Future PTA observation campaigns will im-

prove our understanding of this signal and of its astro-

physical and cosmological interpretation. Longer data

sets will tighten spectral constraints on the GWB, clar-

ifying its origin (Pol et al. 2021). Greater numbers of

pulsars will allow us to probe anisotropy in the GWB

(Pol et al. 2022) and its polarization structure (see, e.g.,

Arzoumanian et al. 2021, and references therein). The

observation of a stochastic signal with spatial correla-

tions in PTA data, suggesting a GWB origin, expands

the horizon of GW astronomy with a new Galaxy-scale

observatory sensitive to the most massive black-hole sys-

tems in the Universe and to exotic cosmological pro-

cesses.
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Positioning and Power in Academic Publishing: Players,

Agents and Agendas, ed. F. Loizides & B. Schmidt, IOS

Press, 87 – 90

Lam, M. T., Cordes, J. M., Chatterjee, S., et al. 2017, ApJ,

834, 35, doi: 10.3847/1538-4357/834/1/35

Lam, M. T., Ellis, J. A., Grillo, G., et al. 2018, ApJ, 861,

132, doi: 10.3847/1538-4357/aac770

Lamb, W. G., Taylor, S. R., & van Haasteren, R. 2023,

arXiv e-prints, arXiv:2303.15442,

doi: 10.48550/arXiv.2303.15442

Lee, K. J. 2016, in Astronomical Society of the Pacific

Conference Series, Vol. 502, Frontiers in Radio

Astronomy and FAST Early Sciences Symposium 2015,

ed. L. Qain & D. Li, 19

Lentati, L., Alexander, P., Hobson, M. P., et al. 2013,

PhRvD, 87, 104021, doi: 10.1103/PhysRevD.87.104021

Luo, J., Ransom, S., Demorest, P., et al. 2021, ApJ, 911,

45, doi: 10.3847/1538-4357/abe62f

Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ,

115, 2285, doi: 10.1086/300353

Manchester, R. N., Hobbs, G., Bailes, M., et al. 2013,

PASA, 30, e017, doi: 10.1017/pasa.2012.017

McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184,

doi: 10.1088/0004-637X/764/2/184

McLaughlin, M. A. 2013, Classical and Quantum Gravity,

30, 224008, doi: 10.1088/0264-9381/30/22/224008

McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014,

ApJ, 789, 156, doi: 10.1088/0004-637X/789/2/156

Merritt, D., & Milosavljević, M. 2005, Living Reviews in
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APPENDIX

A. ADDITIONAL DATA SET DETAILS

The observations included in the NANOGrav 15-year

data set were performed between July 2004 and August

2020 with the 305-m Arecibo Observatory (Arecibo), the

100-m Green Bank Telescope (GBT), and, since 2015,

the 27 25-m antennae of the Very Large Array (VLA).

We used Arecibo to observe the 33 pulsars that lie within

its declination range (0◦ < δ < +39◦); GBT to ob-

serve the pulsars that lie outside of Arecibo’s range,

plus J1713+0747 and B1937+21, for a total of 36 pul-

sars; the VLA to observe the seven pulsars J0437−4715,

J1600−3053, J1643−1224, J1713+0747, J1903+0327,

J1909−3744, and B1937+21. Six of these were also ob-

served with Arecibo, GBT, or both; J0437−4715 was

only visible to the VLA. Figure 12 shows the sky loca-

tions of the 67 pulsars used for the GWB search (top)

and the distribution of angular separations for the pulsar

pairs (bottom).

Initial observations were performed with the ASP

(Arecibo) and GASP (GBT) systems, with 64-MHz

bandwidth (Demorest 2007). Between 2010 and 2012,

we transitioned to the PUPPI (Arecibo) and GUPPI

(GBT) systems, with bandwidths up to 800 MHz (Du-

Plain et al. 2008; Ford et al. 2010). We observe pulsars

in two different radio-frequency bands in order to mea-

sure pulse dispersion from the interstellar medium: at

Arecibo, we use the 1.4 GHz receiver plus either the 430

MHz or 2.1 GHz receiver (and the 327 MHz receiver for

early observations of J2317+1439); at GBT, we use the

820 MHz and 1.4 GHz receivers; at the VLA, we use the

1.4 GHz and 3 GHz receivers with the YUPPI system.

In §5.4 we analyze also two split-telescope data sets:

33 pulsars for Arecibo, and 35 for GBT (excluding

J0614−3329, which was observed for less than three

years). For the two pulsars timed by both telescopes

(J1713+0747 and B1937+21), we partition the timing

data between the telescopes and obtain independent

timing solutions for each. We do not analyze a VLA-only

data set, which would have shorter observation spans

and significantly reduced sensitivity.

B. BAYESIAN METHODS & DIAGNOSTICS

The prior probability distributions assumed for all

analyses in this paper are listed in Table 1. We use

Markov chain Monte Carlo (MCMC) techniques to sam-

ple randomly from the joint posterior distribution of our

model parameters. Marginal distributions are obtained

simply by considering only the parameter of interest
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Figure 12. Top: Sky locations of the 67 pulsars used in the
15-year GWB analysis. Markers indicate which telescopes
observed the pulsar. Bottom: Distribution of angular sepa-
rations probed by the pulsars in the full data set (orange),
the Arecibo data set (blue), and the GBT data set (red).
Because Arecibo and GBT mostly observed pulsars at differ-
ent declinations, there are few inter-telescope pairs at small
angular separations, resulting in a deficit of pairs for the full
data set in the first bin.

in each sample. To assess convergence of our MCMC
runs beyond visual inspection we use the Gelman–Rubin

statistic, requiring R̂ < 1.01 for all parameters (Gelman

& Rubin 1992; Vehtari et al. 2021). We performed most

runs discussed in this paper with the PTMCMC sampler

(Ellis & van Haasteren 2017) and postprocessed sam-

ples with chainconsumer (Hinton 2016).

In NG12gwb we use an analytic approximation for the

uncertainty of marginalized-posterior statistics (Wilcox

2012). Here we instead adopt a boostrap approach:

we resample the original MCMC samples (with replace-

ment) to generate new sets that act as independent sam-

pling realizations. We then calculate the distributions of

the desired summary statistics (e.g., quantiles, marginal-

ized posterior values) over these sets. From these distri-

butions, we determine central values and uncertainties

(either medians and 68% confidence intervals, or means

and standard deviations).
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Table 1. Prior distributions used in all analyses performed in this paper.

parameter description prior comments

white noise

Ek EFAC per backend/receiver system Uniform [0, 10] single-pulsar analysis only

Qk [s] EQUAD per backend/receiver system log-Uniform [−8.5,−5] single-pulsar analysis only

Jk [s] ECORR per backend/receiver system log-Uniform [−8.5,−5] single-pulsar analysis only

intrinsic red noise

Ared red-noise power-law amplitude log-Uniform [−20,−11] one parameter per pulsar

γred red-noise power-law spectral index Uniform [0, 7] one parameter per pulsar

all common processes, free spectrum

ρi [s2] power-spectrum coefficients at f = i/T log-Uniform in ρi [−18,−8] one parameter per frequency

all common processes, power-law spectrum

A common process strain amplitude log-Uniform [−18,−14] (γ = 13/3) one parameter for PTA

log-Uniform [−18,−11] (γ varied) one parameter for PTA

γ common process power-law spectral index delta function (γ = 13/3) fixed

Uniform [0, 7] one parameter for PTA

all common processes, broken–power-law spectrum

A broken–power-law amplitude log-Uniform [−18,−11] one parameter for PTA

γ broken–power-law low-freq. spectral index Uniform [0, 7] one parameter per PTA

δ broken–power-law high-freq. spectral index delta function (δ = 0) fixed

fbend [Hz] broken–power-law bend frequency log-Uniform [−8.7,−7] one parameter for PTA

` broken–power-law high-freq. transition sharpness delta function (` = 0.1) fixed

all common processes, t-process spectrum

A power-law amplitude log-Uniform [−18,−11] one parameter for PTA

γ power-law spectral index Uniform [0, 7] one parameter per PTA

xi modification factor Inverse Gamma Distribution one parameter per frequency

all common processes, turnover spectrum

A turnover power-law amplitude log-Uniform [−18,−11] one parameter for PTA

γ turnover power-law high-freq. spectral index Uniform [0, 7] one parameter per PTA

κ turnover power-law low-freq. spectral index Uniform [0, 7] one parameter per PTA

f0 [Hz] turnover power-law bend frequency log-Uniform [−9,−7] one parameter for PTA

all common processes, cross-correlation spline model

y normalized cross-correlation values at spline Uniform [−0.9, 0.9] seven parameters for PTA

knots (10−3, 25, 49.3, 82.5, 121.8, 150, 180)◦

We rely on a variety of techniques to perform Bayesian

model comparison. The first is thermodynamic integra-

tion (e.g., Ogata 1989; Gelman & Meng 1998), which

computes Bayesian evidence integrals directly through

parallel tempering: we run Nβ MCMC chains that ex-

plore variants of the likelihood function raised to dif-

ferent exponents β, then approximate the evidence for

model H as

ln p(d|H) =

∫ 1

0

〈ln p(d|θ)〉β dβ ≈ 1

Nβ

∑

β

〈ln p(d|θ)〉β ,

(B1)

where all likelihoods and posteriors are computed

within model H, θ denotes all of the model’s parame-

ters, and the expectation 〈ln p(d|θ)〉β is approximated

by MCMC with respect to the posterior pβ(θ|d) ∝
p(d|θ,H)βp(θ,H). The inverse temperatures β are

spaced geometrically, as is the default in PTMCMC.

To compare nested models, which differ by “freezing”

a subset of parameters, we also use the Savage–Dickey

density ratio (Dickey 1971): if models H and H0 differ

by the fact that (say) θ0 is frozen to 0 in the latter, then

p(d|H0)/p(d|H) = p(θ0 = 0|d,H)/p(θ0 = 0|H).

When comparing disjoint models with different like-

lihoods (e.g., hd versus curn), we use product-space

sampling (Carlin & Chib 1995; Godsill 2001). This

method treats model comparison as a parameter estima-

tion problem, where we sample the union of the unique

parameters of all models, plus a model-indexing param-

eter that activates the relevant likelihood function and

parameter space of one of the sub-models. Bayes fac-

tors are then obtained by counting how often the model

index falls in each activation region and taking ratios of

those counts.

In some situations, it can be difficult to sample a com-

putationally expensive model directly. In these cases,

we sample a computationally cheaper approximate dis-

tribution and reweight those posterior samples to es-

timate the posterior for the computationally expensive

model (Hourihane et al. 2023). The reweighted poste-

rior can be used in the thermodynamic-integration or

Savage–Dickey methods. In addition, the mean of the

weights yields the Bayes factor between the expensive
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and approximate models, which may be of direct interest

(e.g., hd can be approximated by curn). We estimate

Bayes-factor uncertainties using bootstrapping and, for

product-space sampling, with the Markov-model tech-

niques of Cornish & Littenberg (2015) and Heck et al.

(2019).

C. BROKEN POWER-LAW MODEL

As shown in NG12gwb, the simultaneous Bayesian es-

timation of white measurement noise and of red-noise

processes described by power laws biases the recovery

of the spectral index of the latter (Lam et al. 2017;

Hazboun et al. 2019). Just as in NG12gwb and An-

toniadis et al. (2022), we impose a high-frequency cutoff

on the red-noise processes. To choose the cutoff fre-

quency, we perform inference on our data with a curnγ

model modified so that the common process has power

spectral density

S(f) =
A2

12π2

(
f

fref

)−γ [
1 +

(
f

fbreak

)1/`
]`γ

f−3
ref ;

(C2)

then set the cutoff to the MAP fbreak. Equation C2 is

fairly generic, allowing for separate spectral indices at

low (γ) and high (δ) frequencies. The break frequency

fbreak dictates where the broken power law changes spec-

tral index, while ` (which we set to 0.1) controls the

smoothness of the transition.

The marginal posterior for fbreak, obtained in the

factorized-likelihood approximation using the tech-

niques of Lamb et al. (2023), has median and 90% cred-

ible region of 3.2+5.4
−1.2 × 10−8 Hz, and a MAP value of

2.75× 10−8 Hz. The latter is close to f14 = 14/T in our

frequency basis (with T the total span of the data set),

so we use 14 frequencies to model common-spectrum

noise processes (see §2 and NG12gwb).

D. T -PROCESS SPECTRUM MODEL

The free-spectrum analysis of our data (§5.2 and Fig-

ure 6) shows that the frequency bins at f1, f6, f7, and

f8 appear to be in tension with a pure power law, skew-

ing the estimation of γ and reducing the hd13/3 vs.

curn13/3 Bayes factor. Assuming that those frequency

components reflect unmodeled systematics or stronger-

than-expected statistical fluctuations, we can make our

inference more robust to such outliers with a “fuzzy”

power-law model that allows the individual Φi to vary

more freely around their expected values. To wit, we

introduce the t-process spectrum (TPS)

ΦTPS,i = xiΦpowerlaw,i with x ∼ invgamma(xi; 1, 1),

(D3)

where Φpowerlaw,i follows Equation 6 and x follows the

inverse gamma distribution with parameters α = β = 1;

the resulting Gaussian mixture yields a Student’s-t dis-

tribution for the ΦTPS,i. Figure 13 shows curnγ power-

law posteriors and curnTPS modified power-law posteri-

ors, obtained in the factorized-likelihood approximation

(Taylor et al. 2022; Lamb et al. 2023) and compared

to curnfree bin variances. The TPS model is spread

more widely and deviates from the perfect power law at

bins f1, f6, f7, and f8, as expected. The right panel of

Figure 13 shows the joint log10A, γ posteriors for curnγ

and curnTPS. The latter is more consistent with steeper

power laws, and it includes γ = 13/3 at 1σ credibility.

E. TURNOVER MODEL

The final parameterized spectral model that we in-

vestigate is motivated by the idea that the dynamics

of SMBHBs are influenced by their environments at

sub-parsec separations (Armitage & Natarajan 2002;

Sesana et al. 2004; Merritt & Milosavljević 2005). These

interactions affect binary evolution and the resulting

spectrum of the GWB. The process of bringing two

SMBHs together after galaxy mergers involves a com-

plex chain of interactions: despite significant theoretical

work, the lack of observational constraints makes it dif-

ficult to draw any conclusions. PTAs, however, provide

a unique opportunity to probe the timescale over which

two SMBHs evolve from the merger of their galaxies to

a bound binary that produces GW signals in the PTA

sensitivity band.

When dynamical interactions dominate orbital evo-

lution, binaries will traverse the GW spectrum more

quickly, reducing GW emission compared to a GW-

driven inspiral. This kind of behavior is captured by

the turnover model (Sampson et al. 2015):

S(f) =
A2

12π2

(
f

fref

)−γ [
1 +

(
f0

f

)κ]−1

f−3
ref . (E4)

This is qualitatively similar to the broken power law dis-

cussed earlier, except that here f0 represents the GW

frequency at which typical binary evolution transitions

from environmentally dominated (at lower frequencies

and wider separations) to GW-dominated (at higher fre-

quencies and smaller separations). The parameter κ

controls the shape of the spectrum below f0, and de-

pends on the orbital-evolution mechanism. Note that

the actual turning point of the spectrum is not at f0

but at fbend = f0 × (3κ/4− 1)1/κ (NG9gwb).

Applying this model to our data, we find hints of de-

partures from a pure power law: the transition frequency

f0 lies below 10 nHz with 65% credibility, while the

bend frequency lies below 10 nHz with 75% credibility.
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Figure 13. Power-law (curnγ , blue) and t-process power-law (curnTPS, orange) spectral posteriors. Left: reconstructed
spectra, compared to free-spectral bin-variance posteriors (curnTPS, violin plots). Right: joint (log10A, γ) posteriors. The
“fuzzy” t-process allows local deviations from a perfect power law, producing wider constraints that are more consistent with
γ = 13/3 (dashed line).

Nevertheless, Bayesian comparison of this curnturnover

model with curnγ reports an inconclusive Bayes fac-

tor of 1.46±0.02 in favor of curnturnover. Furthermore,

the estimation of curnturnover parameters is sensitive to

DM modeling (see §5.1). While the spectra are broadly

consistent whether we use DMX or DMGP to model DM

fluctuations, there are differences in the power at certain

frequencies that lead to differences in the turnover pa-

rameters. This is discussed in greater detail in Agazie

et al. (2023a).

F. SKY SCRAMBLES

In the sky-scramble method (Cornish & Sampson

2016), inter-pulsar correlations are analyzed as if the

pulsars occupied random sky positions, with the purpose

of creating a background distribution of PTA detection

statistics for null-hypothesis testing, in alternative to

phase shifts (Taylor et al. 2017; see §3 and §4). If a cor-

related signal is present in the data, phase shifts and sky

scrambles actually test different null hypotheses: phase

shifts test the hypothesis that no inter-pulsar correla-

tions are present, while sky scrambles assume that inter-

pulsar correlations are present at the level measured in

the data, but test the hypothesis that these correlations

have no dependence on angular separation.

As is the convention in the literature, we require that

scrambled overlap reduction functions (ORFs) be inde-

pendent of each other and of the unscrambled ORF us-

ing a match statistic,

M̄ =

∑
a,b6=a ΓabΓ

′
ab√(∑

a,b6=a ΓabΓab

)(∑
a,b6=a Γ′abΓ

′
ab

) , (F5)

where Γab and Γ′ab are two different ORFs. For the

sky scrambles used in our analysis, the scrambled ORFs

have M̄ < 0.1 with respect to the unscrambled ORF,

and M̄ < 0.17 with each other. We generate 10,000

sky scrambles, owing to the difficulty in obtaining large

numbers of scrambled ORFs that satisfy the match

threshold; because of limitations of computational re-

sources, we obtain our detection statistics for 5,000 of

those ORFs. Figure 14 shows the resulting background

distributions for the hdγ-to-curnγ Bayes factor (left

panel) and the optimal-statistic S/N (right panel). The

Bayes factors exceed the observed value in eight of the

5,000 sky scrambles (p = 1.6 × 10−3), while none of

the sky scrambles have noise-marginalized mean S/N

greater than observed (p < 10−4).

We note that the null distribution recovered by the

sky scrambles is not very sensitive to the choice of

match threshold for |M̄ | . 0.2. Figure 15 compares

the null distributions when the match threshold for all

ORFs with each other and with the unscrambled ORF

is set to |M̄ | < 0.17 (blue), |M̄ | < 0.1 (orange), and

|M̄ | < 0.08 (green). There is very little difference among

the distributions; however, imposing a smaller thresh-

old means that fewer sky scrambles can be used (6,043

with |M̄ | < 0.1 and 1,534 with |M̄ | < 0.08, compared

to 10,000 with |M̄ | < 0.17), which limits the precision

with which the p-value can be measured. We find no

evidence that the recovered null distribution is biased

when including sky scrambles with matches up to 0.17.
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Figure 14. Empirical background distribution of hdγ-to-curnγ Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed in 5,000 sky scrambles, which erases the dependence of inter-pulsar correlations on the
angular separation between the pulsars. Dotted lines indicate Gaussian-equivalent 2σ, 3σ, and 4σ thresholds. The dashed
vertical lines indicate the values of the detection statistics for the unscrambled data set. We find p = 1.6 × 10−3 (approx. 3σ)
for the Bayesian analysis, and p < 10−4 (> 3σ) for the optimal-statistic analysis.

Table 2. Multiple-correlation optimal statistic best-fit coefficients Â2
k, S/Ns, and AIC probabilities

HD Correlations Monopole Correlations Dipole Correlations

Model Â2
HD S/N Â2

mo S/N Mean Â2
di S/N p(AIC)

HD only 6.8(9)× 10−30 4(1) · · · · · · · · · · · · 3× 10−2

Monopole only · · · · · · 1.1(1)× 10−30 4(1) · · · · · · 6× 10−3

Dipole only · · · · · · · · · · · · 1.5(3)× 10−30 4(1) 8× 10−4

HD + monopole 5.5(8)× 10−30 3.4(8) 8(1)× 10−31 2.9(8) · · · · · · 1

HD + dipole 5.5(8)× 10−30 3.2(7) · · · · · · 8(2)× 10−31 1.7(7) 6× 10−2

monopole + dipole · · · · · · 8(1)× 10−31 2.7(7) 9(2)× 10−31 1.9(6) 1× 10−2

HD + monopole + dipole 5.1(8)× 10−30 2.9(6) 7(1)× 10−31 2.4(6) 3(2)× 10−31 0.6(4) 0.48

Note—All values were computed for the 15-year data set, assuming a power-law power spectral density using the 14 lowest
frequency components. Here Â2, S/N, and AIC are marginalized over pulsar noise parameters with fixed γ = 13/3. The numbers
in parentheses represent the mean least-squares errors for the Â2

k coefficients and standard deviations over noise-parameter
posteriors for S/Ns. We compute p(AIC) with respect to the model with the lowest mean AIC (i.e., HD + monopole).

G. MULTIPLE-CORRELATION OPTIMAL

STATISTIC

The multiple-correlation optimal statistic (MCOS;

Sardesai & Vigeland 2023) fits the inter-pulsar corre-

lation coefficients ρab with a linear model that includes

multiple components with different correlation patterns,

but with the same spectral shape. The linear-model co-

efficients are the squared amplitudes of the components.

Within such a model, the significance of each component

can be quoted as a S/N given by its best-fit coefficient di-

vided by the fit error. Just as for the noise-marginalized

optimal statistic (Vigeland et al. 2018), the posterior

distribution of pulsar noise parameters induces a distri-

bution of MCOS statistics.

We fit the 15-year data with models that include HD,

monopole, and dipole-correlated components in various

combinations. Table 2 lists the noise-marginalized am-

plitude estimates and S/N for all models. The goodness-

of-fit of the models can be compared using the Akaike

Information Criterion (AIC; Akaike 1998):

AIC = 2k + χ2 , (G6)

where k is the number of model parameters and χ2 is

the fit’s chi-squared, computed without accounting for

GW-induced ρab correlations. (This can be thought of

as a pseudo-Bayes factor, with the factor of 2k imposing

an Occam penalty.) The relative probability of a model

compared to the most-favored model is then given by

p(AIC) = exp [(AICmin −AIC)/2] , (G7)

where AICmin is the minimum AIC across all models.

Table 2 lists the AIC probabilities, computed by av-

eraging the AIC of each model over pulsar noise pa-

rameters. The HD-correlated model is preferred among
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Figure 15. Comparison between empirical background dis-
tributions for the noise-marginalized optimal statistic, as
computed by the sky-scramble technique. We show distri-
butions computed using a match threshold of M̄ < 0.17
(blue), M̄ < 0.1 (orange), and M̄ < 0.08 (green). Dotted
lines indicate Gaussian-equivalent 2σ, 3σ, and 4σ thresholds.
The dashed vertical lines indicate the values of the detection
statistics for the unscrambled data set. We find little differ-
ence between the background distributions computed using
different match thresholds, modulo the fact that imposing
a smaller threshold yields fewer sky scrambles, which limits
the precision to which the p-value can be measured.

the models with a single correlated process. The mod-

els with both HD and monopole correlations are pre-

ferred among all models: for a model with HD and

monopole correlations, we find S/N of 3.4± 0.8 for HD

correlations and 2.9 ± 0.8 for monopolar correlations,

while for a model with HD, monopole, and dipole cor-

relations, we find S/N of 2.9 ± 0.6 for HD correlations,

2.4 ± 0.6 for monopole correlations, and 0.6 ± 0.4 for

dipole correlations (means ± standard deviations across

noise-parameter posteriors). The statistical significance

of these S/Ns can be quantified empirically using sim-

ulations of 15-year–like data sets (see App. H.1), which
report p-values < 10−2 and ' 4× 10−2 for the observed

mean HD and monopole statistics across data replica-

tions with no spatially correlated injections.

As discussed in Sardesai & Vigeland (2023), the opti-

mal statistic and the MCOS are metrics of the apparent

spatial correlation pattern of the data, but they have

a limited ability to identify its actual source. That is

because a real HD signal may also excite the monopole

optimal statistic and the monopole component of the

MCOS; conversely, a real monopolar signal may also ex-

cite the HD optimal statistic and the HD component

of the MCOS; and so on. The S/Ns quoted in Table 2

quantify how often we would expect to measure the ob-

served value of the optimal statistic if only uncorrelated

noise is present, but they do not describe how often one

type of correlated noise would produce a given value of

the optimal statistic for a different type of correlation.
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Figure 16. Results of the MCOS analysis, which prefers a
model including both HD and monopole correlations. Top:
MCOS S/N for HD correlations (solid blue) and monopole
correlations (dashed orange), marginalized over curn13/3

noise-parameter posteriors. The vertical lines indicate the
mean S/Ns. We find a S/N of 3.4 ± 0.8 for HD correla-
tions and 2.9 ± 0.8 for monopole correlations. Bottom:
Binned cross-correlations ρab (black error bars), computed
with MAP noise parameters from a curn13/3 run. The
solid blue and dashed orange curves show best-fit HD and
HD+monopole correlation patterns, corresponding to Â2 =
6.8×10−30 and to Â2

HD = 5.5×10−30, Â2
monopole = 8×10−31,

respectively. The monopolar component accounts for the
vertical shift of the cross-correlations with respect to the HD
curve. We use the standard version of the optimal statistic
that does not include inter-pulsar correlations to compute
ρab, so the points and errors do not match those shown in
panel (c) of Figure 1.

This effect can be characterized using simulations (see

App. H.1), which report a p-value of 0.11 for the ob-

served mean monopole statistic when a HD-correlated

signal with the MAP 15-year amplitude is included in

the simulated data sets. We conclude that there are

some indications of a possible monopole-correlated sig-

nal in the data with S/N comparable to but smaller than

the S/N for HD correlations; however, from simulations

we conclude that it is possible for such a signal to appear

in an MCOS analysis if only a HD-correlated stochastic

process is present.
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Figure 17. Top: MCOS HD S/N values recovered in
the three simulations described in App. H.1, compared to
the MCOS HD S/N measured in the real data set (vertical
dashed red line), which has p-values of < 10−2 for simula-
tions i and iii, and 0.64 for simulations ii. Bottom: MCOS
monopole S/N values recovered in the three simulations,
compared to the real-data MCOS monopole S/N (vertical
dashed red line), which has p-values of 4× 10−2, 1.1× 10−1,
and < 10−2 for simulation i, ii, and iii respectively.

H. MULTIPLE-CORRELATION OPTIMAL

STATISTIC SIMULATIONS

In this appendix we obtain the distribution of the

MCOS over an ensemble of simulated data sets, with

the goal of characterizing the probability that the ob-

served S/Ns could have been produced by pulsar noise

alone, or by a GWB with HD correlations. Unlike our

Bayesian analysis, the MCOS prefers a model that in-

cludes both HD and monopolar components. So we are

especially interested in asking how frequently we may

expect the observed MCOS monopole if the data con-

tain only the GWB. In Apps. H.1 and H.2 we present two

different types of simulations: “astrophysical,” where we

generate synthetic data with MAP noise parameters in-

ferred from the 15-year data set, both with and without

the GWB; and “model checking,” where we create data

replications following the hd13/3 posteriors for the real

data set. Note that neither simulation attempts to ac-

count for the monochromatic character of the putative

monopolar signal (see §5.2).

H.1. Astrophysical simulations

Following Pol et al. (2021), we generate simulated data

sets adopting MAP pulsar-noise parameters obtained

from the real data independently for each pulsar; these

“noise runs” include an additional power-law process to

reduce contamination between the putative GWB and

the pulsars’ intrinsic red noise (Taylor et al. 2022). We

produce 100 realizations each of three different simu-
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Figure 18. Distribution of real-data and replicated MCOS
monopole S/Ns. Each point represents a draw η(k) from
hd13/3 posterior, which is used to simulate δtsim,(k) and to
compute both S/Ns. The replicated monopole S/N is greater
for 11% of the simulations.

lations: (i) injecting no spatially correlated power-law

GWB or excess uncorrelated common-spectrum noise;

(ii) injecting a spatially correlated power-law GWB with

amplitude 2.7× 10−15 and spectral index 13/3; and (iii)

injecting no GWB or common-spectrum noise, but omit-

ting the additional power-law process in the estimation

of intrinsic pulsar noise, with the goal of testing how

often excess common-spectrum noise is recognized as a

spatially correlated GWB.

We compute HD + monopole + dipole MCOS S/Ns

for all synthetic data sets (see Figure 17). The mean

HD S/Ns observed in the real data (see App. G) corre-

spond to p-values of < 10−2 for simulations (i) and (iii),

and 0.64 for simulation (ii). The mean monopole S/Ns

observed in the real data set correspond to p-values of

4 × 10−2, 1.1 × 10−1, and < 10−2 for simulations (i),

(ii), and (iii) respectively. We conclude that it is un-

likely that we would measure HD correlations at the

level observed in real data when no correlated signal

is present (simulation (i)) or when only uncorrelated

common-spectrum red noise is present (simulation (iii)).

In addition, the HD S/Ns obtained from a HD-correlated

GWB injection (simulation (ii)) are fully consistent with

the S/N observed in real data. By contrast, the observed

monopole S/N could have been produced by intrinsic

pulsar noise alone, or by a real HD signal.

H.2. Model-checking simulations

In App. H.1 we have tackled the question of monopole

S/N significance using simulations based on real-data

MAP estimates ηMAP of pulsar-noise and GW param-

eters. In this appendix we adopt a procedure with
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a stronger Bayesian flavor, evaluating the MCOS on

a population of data replications created using hd13/3

as a generative model with noise hyperparameters η

drawn from the hd13/3 real-data posterior. This can be

seen also as a Bayesian model-checking exercise (Gelman

et al. 1996, 2013): if we find that the summary statis-

tic of interest (the monopole MCOS) has a much more

extreme value in real data than in data replications,

we should suspect that the data model (here hd13/3)

is missing something.

We perform the test by drawing 500 parameter vectors

{η(k)} from the hd13/3 real-data posterior; for each η(k)

we simulate a data set δtsim,(k) ∼ p(δt|η(k)) and com-

pare MCOS(δtsim,(k);η(k)) with MCOS(δt;η(k)). Our

notation emphasizes the dependence of the MCOS on

the pulsar noise parameters through the P matrices in

Equation 9. Figure 18 shows the resulting distribution

of monopole S/Ns. The replicated monopole S/N is

greater than its observed counterpart for 11% of the

draws. Thus, it is plausible that the MCOS could mea-

sure the observed monopole S/N in data that contain

only a HD-correlated GWB. Conversely, the observed

monopole S/N does not by itself suggest that hd13/3 is

misspecified.
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