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1 Introduction

Quantum entanglement entropy stands as a pivotal concept in quantum mechanics, offering
insight into the level of entanglement among distinct segments of a quantum system. By
quantifying the entanglement between different components, this entropy provides a metric for
the extent of shared information. Its implications span various facets of quantum mechanics,
encompassing quantum information theory, black hole physics, and condensed matter physics.
Notably, the entanglement entropy of subsystem A quantifies the entangled degrees of freedom
within a given quantum field theory [1–4]. Within the context of condensed matter physics,
this entropy displays divergence at critical junctures of quantum critical phase transitions,
assuming the role of an order parameter [5]. This phenomenon encapsulates the geometric
essence of field theories, manifested in an area law that draws parallels between subregion
entanglement entropy and black hole entropy.

Introducing the Ryu-Takayanagi formula establishes a holographic counterpart for entan-
glement entropy [8–10], emerging as a robust tool for dissecting strongly coupled systems
traditionally resistant to conventional analysis. In specific contexts, this formula has served
as an order parameter, signaling the onset of confinement/deconfinement phase transitions
within confining gauge theories [13–18].1 The transitions emanate from the interplay between
two minimal surfaces, resulting in the post-transition confinement phase entanglement entropy

1On the other hand, holographic quark anti-quark potential can distinguish confinement and topological
phases [19].
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becoming trivial at the infrared limit. Moreover, the holographic entanglement entropy (HEE)
emerges as a probing tool for phase transitions in holographic superconductors [20–26] as
well as for unveiling topological phases of matter [27].

The entropic c−function concept provides deeper insights into entanglement entropy in
quantum systems [11, 12]. It represents the logarithmic derivative of entanglement entropy
with respect to subsystem size, revealing the intricate interplay between entanglement and
subsystem dimensions. The general entropic c−function, proposed by [13], efficiently quantifies
degrees of freedom in confining theories and yields the central charge of the corresponding
conformal field theory (CFT) [28]. In the context of a quantum field theory dual to an
AdS soliton, the behavior of the entropic c−function, as it decreases with increasing length,
effectively serves as a probe for the deconfinement phase transition. Recently, a study [29]
computed the entropic c−function for a striped entangling surface in the same background.
Intriguingly, this function displays non-monotonic behavior with increasing background gauge
field strength. Importantly, the entropic c−function for the strip incorporates both A-type
and B-type anomalies due to the coexistence of these two anomaly types. Ref. [31] has derived
constraints on anisotropic RG flows from holographic entanglement entropy.

Our focus lies in assessing the degrees of freedom through entanglement entropy using a
spherical entangling surface, with a specific emphasis on anomaly effects. The renormalized
entanglement entropy, calculated from the entanglement entropy of this spherical surface,
offers a solution to the issue of cutoff dependence [30]. This renormalized quantity, independent
of the cutoff, measures degrees of freedom in quantum entangled states at an energy scale
of 1/l, yielding the central charge in conformal field theory (CFT). In the context of four-
dimensional (4D) CFT, it manifests as the A-type anomaly, in alignment with the C-theorem:
the renormalized entanglement entropy decreases in the infrared (IR) limit as anticipated.
Ref. [32] derived the renormalized entanglement entropy for a kink region which reduced
to a universal positive finite term in the UV limit.

The computation of renormalized entanglement entropy for a spherical entangling surface
within the AdS soliton framework with a gauge potential remains unexplored. The gauge
potential’s interpretation in this background involves a twisted boundary condition along
a circle within the cigar direction. This contributes to the negative Casimir energy of the
dual field theory, which can eventually become positive. An intriguing aspect emerges from
the interplay of Wilson lines, capable of inducing mass shifts in charged particles [33]. It
becomes desirable to capture such alterations through the renormalized entanglement entropy.
Conversely, contrasting the analysis presented in [29] for a striped entangling surface in the
same background, the renormalized entanglement entropy in R1,2 × S1 quantum field theory
exhibits solely B-type anomaly characteristics. Generally, this quantity doesn’t adhere to
the C-theorem. Therefore, an engaging pursuit lies in investigating this aspect, including
scenarios in higher-dimensional cases.

This study focuses on introducing a holographic renormalized entanglement entropy
(HREE), which encompasses the finite portion of entanglement entropy. We extensively
investigate HREE’s behavior across diverse scenarios to uncover the universal properties of
quantum phase transitions. Our analysis reveals a phase transition between disk and cylinder
geometries. The dominance of the disk type is evident for small l, while the cylinder shape
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prevails for larger l. This critical size marks the occurrence of a quantum phase transition.
Notably, this transition is an outcome of the large N limit and is absent in free theory. The
anticipated function of the renormalized entanglement entropy is to quantify the degrees of
freedom in the dual quantum field theory (QFT). We probe HREE’s response to changes in
operator mass and gauge potential. Specifically, as the operator mass decreases, we expect
HREE to increase significantly for larger l, given the decoupling of massive degrees of freedom.

The rest of this paper is organized as follows. In section II, we analyze the UV structure
of the entanglement entropy. We derive the renormalized entanglement entropy of QFT
dual to AdS solitons with gauge potential. We discuss properties of the renormalized
entanglement entropy in both odd and even dimensions. Section III mainly focuses on
holographic stress-energy tensors in AdS solitons with the gauge potential. In sections IV and
V, we analyze the quantum phase transition of HREE in higher dimensional backgrounds.
We end with conclusions and prospects in section VI. Some calculation details are presented
in the appendices.

2 The UV structure of the entanglement entropy

The d + 1-dimensional AdS solitons with gauge potential exhibit a geometry akin to a cigar.
In this setup, a compact circle gradually contracts to zero size in the bulk, completing the
geometry. This behavior is detailed in [29]. The dual theory on R1,d−2 × S1 transforms into
a confining theory with a discernible energy gap in this context. Notably, this theory incor-
porates Wilson lines along the S1 direction, which inherently alters the boundary conditions.

We calculate the entanglement entropy in this theory. The spherical entangling surface
is chosen to have the topology Sd−3 × S1, where the entangling surface wraps another circle
S1 [34]. For d = 4, S1 × S1 is a cylinder with one identified direction, i.e., a torus. Because a
spherical entangling surface for QFT on R1,d−1 has a different topology Sd−2, we find that
the UV scaling structure is different from those of QFT on R1,d−1. According to [34], the
UV divergent structure of entanglement entropy SUV is of the form

SUV = Lϕ

R
SUV,0, (2.1)

where SUV,0 is the UV structure of entanglement entropy of QFT S
(0)
EE on R1,d−1 and Lϕ

is the periodicity along a circle S1 of the cigar.
Two UV scaling structures are related to each other. Using (2.1) and operating differ-

entiation on SEE , the renormalized entanglement entropy (the UV-independent part of the
entanglement entropy) then becomes [34]

Sren = 1
R

fd(R∂R)RSEE = Ld(R∂R)SEE

=


1

(d − 2)!!R∂R(R∂R − 2) . . . (R∂R − (d − 3))SEE , d = odd,

1
(d − 2)!! (R∂R + 1)(R∂R − 1) . . . (R∂R − (d − 3))SEE , d = even,

(2.2)
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where fd defines the operation of the renormalized entanglement entropy for R1,d−1 [30]:

fd(R∂R)S(0)
EE =


1

(d − 2)!! (R∂R − 1)(R∂R − 3) . . . (R∂R − (d − 2))S(0)
EE , d = odd,

1
(d − 2)!!R∂R(R∂R − 2) . . . (R∂R − (d − 2))S(0)

EE , d = even.
(2.3)

Recall that the first line in (2.2) is equivalent to the d − 1 dimensional renormalized entan-
glement entropy on R1,d−2 (the second line in (2.3)) up to coefficients.

Especially we obtain

Sren = R∂RSEE for d = 3, (2.4)

Sren = 1
3R∂R(R∂R − 2)SEE for d = 5. (2.5)

The formula (2.4) for QFT on R1,1 × S1 corresponds to the well-established expression of
the entropic c-function on R1,1. Through Kaluza-Klein reduction along S1, the renormalized
entanglement entropy effectively embodies the 2-dimensional entropic c−function in the low-
energy limit. In systems respecting Lorentz symmetry, the 2-dimensional entropic c-function
is both non-negative and monotonically increasing. For R ≪ Lϕ (in the UV limit), the
renormalized entanglement entropy mirrors the behavior of a 3-dimensional system. The
subregion’s topology is not a disk D but rather L×S1 with an interval L, while the entangling
surface forms S1. Moving to formula (2.5) for QFT on R1,3 × S1, it captures one variant
of the 4-dimensional renormalized entanglement entropy on R1,3. Kaluza-Klein reduction
along S1 approximates the renormalized entanglement entropy on R1,3 in the low-energy
regime. However, the behavior of the 4-dimensional renormalized entanglement entropy
can be either negative or positive, displaying non-monotonic tendencies. In this scenario,
the subregion’s topology does not correspond to a ball B4 but rather B3 × S1, while the
entangling surface takes the form of S2 × S1.

2.1 Renormalized entanglement entropy of 4d QFT

This section examines the entanglement entropy and renormalized entanglement entropy for
various cases: a free scalar, Dirac fermion, and a 4-dimensional conformal field theory (CFT)
on R1,2 × S1. Additionally, we provide an overview of the trace anomaly in general CFT,
which is intricately linked to the logarithmic term present in the entanglement entropy.

The entanglement entropy can be derived from the effective action w = − logZ in a
d(= 4)-dimensional manifold featuring conical singularities. By taking the limit n → 1, the
entanglement entropy assumes an analytical expression involving w on a manifold with such
singularities. Notably, the effective action w generally exhibits logarithmic divergence, which
is connected to the concept of conformal anomaly. We consider the infinitesimal rescaling
gµν → (1 − 2δλ)gµν . We then have

dw

dλ
= −2gµν δw

δgµν
= −

∫
d4x

√
g⟨T µ

µ⟩ (2.6)

The equation stands as the trace anomaly, indicating the deviation from the traceless condition
⟨T µ

µ⟩ = 0 within Quantum Field Theory (QFT) for Conformal Field Theory (CFT). The trace
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anomaly is characterized by polynomials of the curvature tensor, a formulation contingent on
the dimension d. Notably, in odd dimensions, the trace anomaly must satisfy the condition
of vanishing.

When we define the length scale R1 of the subregion, this scale is related to rescaling
the metric (2.6). Thus, one obtains the following formula:

R1∂R1SA = lim
n→1

(−2∂n

∫
dd+1xgµν(x)

δ

δgµν(x)
[w − nw|n=1])

× 1
2π

lim
n→1

∂n

(
⟨
∫

dd+1x
√

gTµ
µ(x)⟩Mn − n⟨

∫
dd+1x

√
gTµ

µ(x)⟩M1

)
.

(2.7)

Here, the entanglement entropy has been replaced with a function of the partition function in
the manifold with conical singularities. The above-mentioned formula relates the entanglement
entropy to the trace anomaly.

To evaluate the entanglement entropy, we examine a subsystem σ with a cylindrical
configuration where one direction is identified as ϕ ∼ ϕ + Lϕ. Interestingly, this subsystem
aligns with the one in QFT corresponding to d + 1-dimensional AdS solitons. Due to this, a
conical singularity arises, characterized by a curvature tensor proportional to a delta function.
The resulting logarithmic contribution to the entanglement entropy is expressed as SEE =
s log(ϵ/R1) + . . . , where ϵ represents the ultraviolet cut-off. Remarkably, this logarithmic
term can also be derived by integrating the entanglement entropy of a 3d free theory [35, 36].
s is expressed in terms of extrinsic curvatures [37]. According to [35, 36], s becomes

s = a

180

∫
∂σ

d2x
√

hE2 +
c

120

∫
∂σ

d2x
√

hI2, (2.8)

where E2 is the Euler density and I2 is a Weyl invariant. Compared with the normalization
of [30], we have a = 360a4 and c = 120c4. c = 1 for a real scalar and c = 6 for Dirac fermion.
Coefficients are consistent with trace anomalies.

For CFT on a cylinder of length Lϕ and radius l, s becomes

s = c

240
Lϕ

l
. (2.9)

By using the renormalized entanglement entropy for cylinder type topology in (2.2),
we obtain

Sren = 1
2(l∂l + 1)(l∂l − 1)SEE = s = cLϕ

240l
. (2.10)

This formula shows that the renormalized entanglement entropy agrees with the coefficient
s. Furthermore, according to [30], s agrees with the renormalized entanglement entropy for
a spherical entangling surface S2 as follows:

Sren = 1
2R∂R(R∂R − 2)SEE = s = a

90 . (2.11)

3 The AdS soliton with the gauge potential

The AdS soliton is achieved through a double Wick rotation of the AdS black hole, following
the Einstein equation. It corresponds to the QFT system with anti-periodic boundary
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conditions [38]. In our investigation, we apply this approach to the Reissner Nordstrom AdS
black hole [39], performing an analytical continuation of the metric in both temporal and
spatial dimensions. The metric of the AdS soliton with the gauge potential becomes [29]

ds2
d+1 = L2

z2

(
dz2

fd(z)
+ fd(z)dϕ2 − dt2 + dR2 + R2dΩd−3

)
,

Aϕ = a
(0)
ϕ

(
1−

(
z

z+

)d−2)
,

(3.1)

where

fd(z) = 1−
(
1 + ϵ̃z2

+a2
ϕ

)( z

z+

)d

+ ϵ̃z2
+a2

ϕ

(
z

z+

)2(d−1)
. (3.2)

Here, we set ϵ̃ = −1,2 and define a2
ϕ = a

(0)2
ϕ /γ2, where γ2 = (d−1)g2

eL2

(d−2)κ2 is a dimensionless
parameter. The gauge field a

(0)
ϕ acts as the source for the conserved current and induces a

non-zero VEV for the current, ⟨Jϕ⟩ ̸= 0. Alternatively, this gauge field can be interpreted as
a Wilson line, altering the boundary condition (twisted boundary condition) due to a gauge
transformation. As the Wilson line vanishes at the tip of the soliton (z = z+), the gauge
connection remains regular there. The radial coordinate z in (3.1) is confined to z ≤ z+,
while the ϕ direction follows the periodicity ϕ → ϕ + 1/M0 to prevent conical singularities.
The Kaluza-Klein mass M0 of the ϕ direction is given by

M0 = 1
4πz+

(
d + (d − 2)

a2
ϕ

z2
+

)
. (3.3)

The formula (3.3) can also be rewritten in terms of M0 and aϕ as follows:

z+ = d

2πM0 ±
√
4π2M2

0 − d(d − 2)a2
ϕ

. (3.4)

There is also a minus branch. However, z+ is divergent at small aϕ in that case, and the
background does not approach the AdSd+1 soliton. It can be shown that the solution with
the plus sign in (3.4) is always more stable than the one in the minus branch.

The boundary stress tensor T
(0)
µν for field theory dual to the above background was

computed in our previous work [29]. Here, we quote the results of the boundary stress tensor
for later use. For more details, please refer to [29]

T
(0)
tt = −T

(0)
xixi = −Ld−1

2κ2
1

zd
+

(
1− z2

+a2
ϕ

)
= −Ld−1

2κ2
1

zd
+

ᾱϕ, (3.5)

T
(0)
ϕϕ = dLd−1

2κ2
1

zd
+

(
1− z2

+a2
ϕ

)(
− 1 + 1

d

)
. (3.6)

with
āϕ = 1−

(
z+aϕ

)2
. (3.7)

2ϵ̃ = 1 for the Reissner Nordstrom AdS black hole.
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The boundary energy then is [40]

M = −Vd−2
M0

Ld−1āϕ

2κ2zd
+

. (3.8)

The boundary energy can change the sign when we change Wilson lines (gauge potential).M < 0 z+aϕ < 1
M > 0 z+aϕ > 1.

(3.9)

In other words, M is negative for aϕ < 2πM0/(d−1), while it can become positive when aϕ >

2πM0/(d−1). For aϕ = 0, it realizes Casimir energy of 4d SYM theory on R3×S1 [38]. This be-
havior is analogous to Casimir energy of fields with twisted boundary conditions in 2d CFT [33].
Casimir energy is different between the periodic and anti-periodic boundary conditions.

4 The holographic entanglement entropy

In this section, we compute the entanglement entropy [8, 9]. The entangling surface is specified
by z = 0 at R = l, and 0 ≤ ϕ ≤ Lϕ at a constant time slice in the background (3.1). Its
topology becomes S1×Sd−3, where S1 and Sd−3 be of radius Lϕ and l respectively. Note that
the topology of the entangling surface differs from the theory without the compactification
of the ϕ direction. The surface action becomes

A =
∫

dd−1xL = Ωd−3LϕLd−1
∫

dz
Rd−3

zd−1

√
1 + fṘ2, (4.1)

where L =
√
det gind and gind is the induced metric. The holographic entanglement entropy

is given by

SEE = 2π

κ2 A (4.2)

with A minimized. Recall that Ld−1/κ2 is dimensionless. We omit the AdS radius (L = 1)
for the convenience. We solve EOM derived from (4.1) to obtain the minimal surface. The
EOM of R become3

2z
(
d − R(z)f ′(z)R′(z)− 3

)
+ f(z)(2(d − 3)zR′(z)2 − R(z)(−2(d − 1)R′(z)

+zf ′(z)R′(z)3 + 2zR′′(z))) + 2(d − 1)f(z)2R(z)R′(z)3 = 0. (4.4)

One should specify the IR boundary condition. In fact, there are two kinds of RT surfaces, as
drawn in figure (1) schematically. The turning point of the disk type RT surface is R(zt) = 0.
Moreover, the surface of the disk type is smooth at the bulk. The embedding scalar must
satisfy R′(zt) = ∞. The surface ends at the tip of the soliton zt = z+ for a cylinder case.

3EOM in terms of z is

−f(z)
(
(d − 1)Rz′(R)2 + z(R)

(
(d − 3)z′(R) + rz′′(R)

))
+ (1 − d)Rf(z)2 − (d − 3)z(R)z′(R)3 = 0. (4.3)
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Figure 1. The RT surfaces corresponding to the small (left) and large (right) subsystem in the
AdS-Soliton background. If the subsystem is a spherical region, then the RT surface has a disk
(cylinder) topology for the small (large) subsystem.

Varying A in terms of l and fixing z = ϵ, the Hamiltonian-Jacobi method (please refer
to appendix A for a brief review of this method) becomes [30]

dA

dl
= −H(zt)

dzt

dl
−Π(ϵ)dR(ϵ)

dl
= −Π(ϵ)dR(ϵ)

dl
, (4.5)

where

Π = ∂L
∂Ṙ

= Ωd−3Ld−1Lϕ
Rd−3fṘ

zd−1
√
1 + fṘ2

, H = ΠṘ − L = −Ωd−3LϕRd−3Ld−1

zd−1
√
1 + fṘ2

. (4.6)

The first term of (4.5) drops out due to the following IR boundary conditions

R(zt) = 0, Ṙ(zt) = ∞, H(zt) = 0, for a disk,

dzt

dl
= dϵ

dl
= 0, for a cylinder.

(4.7)

Equation (4.5) only depends on the solution near the AdS boundary, and an asymptotic
expansion is useful.

We compute the asymptotic expansion of the embedding scalar near z = 0. The UV
behavior of R(z) has the following ansatz:

R(z) = l + b0 log
z

l
+

∑
n=1

(
an + bn log

(
z

l

))
zn, (4.8)

where the log term arises in (4.8) similar to the Fefferman-Graham expansion of fields in the
AdS spacetime [41, 42]. We can determine coefficients an and bn after substituting the ansatz
mentioned above into (4.4). Below we will analyze the cases with d = 4, 5, 3 in detail.

4.1 d = 4

Let us begin with the d = 4 case, where the boundary QFT lives on R1,2 × S1, and the
topology of the entangling surface becomes S1 × S1. By substituting expansion of R(z) near
the boundary z = 0 (4.8) into equation of motion, one can obtain

R(z) = l − z2

4l
+ a4(l)z4 + z4

32l3
log z

l
+ . . . (4.9)

Here the higher order terms can be determined by parameters l and a4(l). The coefficient a4(l)
can not be determined from the UV expansion of the EOM. Instead, a4(l) has information
determined by the IR boundary condition.

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
9

Substituting (4.9) into (4.5), the l derivative of the surface becomes
dA

2πLϕdl
= −4la4(l)−

3
32l2

+ 1
2ϵ2 − 1

8l2
log

(
ϵ

l

)
+ . . . (4.10)

The divergent structure of (4.10) is
1
2ϵ2 − 1

8l2
log

(
ϵ

l

)
. (4.11)

Divergent pieces are defined up to a logarithmic term. Because the inside of the log term should
be dimensionless, there are no unique ways to remove it. However, the renormalized entangle-
ment entropy is finite and does not depend on the cut-off. Thus, it has unique descriptions.

We compute the renormalized entanglement entropy, corresponding to DOF at an energy
scale E ∼ 1/l. According to (2.2), the 4d renormalized entanglement entropy becomes

Sren = L4(l∂l)S = 1
2(l∂l + 1)(l∂l − 1)S = 1

2(l
2S′′ + lS′ − S), (4.12)

where we have used the commutation relation [∂l, l∂l] = ∂l. Recall that the central charge
of d = 4 N = 4 SYM is a = π5L8/κ2

10 = N2/4, where κ2
10 = π3L5κ2. The renormalized

entanglement entropy depends on the entangling surface and the trace anomaly [30] as follows:

Sd=4
ren = 2a4

∫
∂A

d2x
√

hE2 + c4

∫
∂A

d2x
√

hI2, (4.13)

where ∂A is the entangling surface (see also [9, 37]). In 4 dimensions, we have an A-type
anomaly a4 and a B-type anomaly c4 on the entangling surface. E2 is the Euler density
and I2 is a Weyl invariant. For the spherical entangling surface ∂A = S2,

∫
d2x

√
hE2 = 2

and the Weyl invariant is zero. Thus, Sd=4
ren = 4a4. The renormalized entanglement entropy

will satisfy the C-theorem in that case. Because the entangling surface is S1 × S1 for
QFT on R1,2 × S1, however, the Euler number is zero. Only the B-type anomaly remains.
The renormalized entanglement entropy can be non-monotonic since there is no universal
C-theorem for B-type anomalies.

To compute the renormalized entanglement entropy, we need a4(l), l appearing in (4.9)
and S (not confused with anomaly a4 in (4.13)). A numerical result of a4(l) is obtained in
figure 2. For pure imaginary aϕ, it leads to results of geometric entropy [43]. The geometric
entropy is related to entanglement entropy via the double Wick rotation [44, 45]. The disk
shape is dominant for small l, and the cylinder shape is dominant for large l. a4(l) becomes
multi-valued near the phase transition at a critical length between disk and cylinder surfaces.
Multi-valued behavior is also observed for other aϕ.

Substituting the boundary expansion (4.9) into the action (4.1) and expanding at a small
z, we obtain the following divergent part of A = Afin + Adiv:

Adiv

2πLϕ
= l

2ϵ2 + 1
8l

log
(

ϵ

l

)
. (4.14)

Thus, the divergent structure of entanglement entropy A is

A = 2πLϕ

(
l

2ϵ2 + log ϵ

8l

)
+ Sfin(l), (4.15)

where the log dependence is included in the finite part Sfin. Sfin = Afin − 2πLϕ
1
8l

log l.
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Figure 2. a4 as a function of l. The disk shape dominates the behavior for small l, while the cylinder
shape dominates the behavior for large l. Left: aϕ = i

2 . The critical length of the phase transition is
lc = 0.66. Right: aϕ = 1√

2 . The critical length is lc = 1.26.

0.2 0.4 0.6 0.8 1.0 1.2
M0l

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Afin

2π

0.40 0.45 0.50
M0l

-0.84

-0.82

-0.80

-0.78

-0.76

-0.74

Afin

2π

Figure 3. Left: the finite part of on-shell action Afin for aϕ = i
2 , 0, 2

3 , 1√
2 . The figure shows that

the entanglement entropy increases with the Wilson line aϕ increase. The quantum phase transition
happens when M0lc = 0.21, 0.23, 0.32, 0.4. Right: closed-up figure of Afin for aϕ = 1√

2 .

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
M0l

-1

1

2

κ
2

4π
2

Sren

Figure 4. Sren for d = 4. The renormalized entanglement entropy is plotted for several
aϕ. aϕ = i

2 , 0, 2
3 , 1√

2 from the left to the right. The renormalized entanglement entropy
non-monotonically behaves near critical lengths. The quantum phase transition happens when
M0lc = 0.21, 0.23, 0.32, 0.4.
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0.20 0.25 0.30 0.35 0.40 0.45
M0l

-1

1

2

κ
2

4π
2

Sren

Figure 5. Sren for d = 4. The renormalized entanglement entropy for several M0: M0 = 1/π, 2/5, 3/5
from the right to the left. The renormalized entanglement entropy non-monotonically behaves near
critical lengths. The quantum phase transition occurs when M0lc = 0.24, 0.27, 0.4. The figure shows
that massive modes Ml > 1 decouple others soon. The final states will be product states.

To find minimal surfaces, one must compute the on-shell action of (4.1). Minimal surfaces
between the disk and the cylinder dominate the phase in figure 3. The quantum phase
transition occurs at a critical length lc. Yellow and Blue curves show that the confinement
occurs and decreases DOF [13, 14, 46]. Recall that aϕ increases Casimir energy of dual QFT,
and then the entanglement entropy increases with the increase of aϕ.

Sfin is different from Sren because the cut-off dependence is removed at Sren. Actually,
Sfin is related to Sren via

Sren = 1
2(l

2S′′
fin + lS′

fin − Sfin). (4.16)

Considering (4.10), Sfin(l) satisfies the following relation:

S′
fin(l) = 2πLϕ

(
− 4la4(l)−

3
32l2

+ 1
8l2

log(l)
)

. (4.17)

Due to (4.17), S′′
fin or A′′

fin becomes

S′′
fin

2πLϕ
= 5

16l3
− log(l)

4l3
− 4la′

4(l)− 4a4(l),

A′′
fin

2πLϕ
= − 1

16l3
− 4la′

4(l)− 4a4(l).
(4.18)

Recall that (4.18) is the finite part of the minimal surface A. The renormalized entanglement
entropy Sren is finite. Substituting (4.17) and (4.18) into (4.16), Sren is rewritten as follows:

κ2Sren
4π2Lϕ

= −4l2a4(l)− 2l3a′
4(l) +

7
64l

− Afin
2

= −4l2a4(l)− 2l3a′
4(l) + 2

∫ l

l′a4(l′)dl′ + 1
8l

+ cr, (4.19)

The coefficient of 1/l comes from only the logarithmic term of S, which is brought from the
Weyl anomaly. The formula (4.19) also depends on a function of a4(l) unlike the holographic
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entanglement entropy of the spherical entangling surface in 4 dimensions [9]. For the spherical
entangling surface, here, HREE describes the A type anomaly in CFT: Sd=4

ren = 4a4. Recall
that QFT dual to the AdS soliton with gauge potential breaks conformal invariance. The
first three terms in (4.19) represent terms breaking conformal invariance and the last term
is to realize the small l limit of HREE (CFT behavior) [37].

Figure 4 shows the renormalized entanglement entropy Sren for several aϕ. It becomes
non-monotonic behavior, which is similar to a behavior of GPPZ flow [30]. Intuitively, the
renormalized entanglement entropy is also a detector of the effective DOF of entangling
states at the energy scale El ∼ 1. For large energy E/M0 ∼ 1/(M0l) > 1, Sren decreases as a
function of lM0. Because the degrees of freedom with Wilson lines contribute to large aϕ and
energy, however, Sren slowly decreases until the critical length (see green and red curves). For
small E/M0 < 1, the renormalized entanglement entropy can not detect effective DOF and
can almost become a constant. Even if the renormalized entanglement entropy increases after
the quantum phase transition, it satisfies a kind of C-theorem: Sren(l → 0) > Sren(l → ∞).

4.2 d = 5

We proceed with d = 5 case, where the AdS boundary expansion for d = 5 has the fol-
lowing form

R(z) = l − z2

3l
− 5z4

54l3
+ z5a5(l) . . . , (4.20)

Similar to the case a4(l) discussed in the previous section, the parameter a5(l) is not
determined from the AdS boundary expansion but determined from the IR boundary condition.
Numerically, a5(l) is plotted in figure 6 for fixed values of M0 and aϕ. Once we have the
expansion (4.20), by making use of (4.5), we can obtain the following derivative

1
Ω2Lϕ

dA

dl
= 2l

3ϵ3 − 5l2a5(l), (4.21)

where Ω2 = 4π. The first term is the cut-off dependent term. There are no log divergences.
The finite part of dA/dl is determined by the second term, which is similar to d = 3 cases: a
term corresponding to trace anomaly is not present in odd dimensions.

Substituting the expansion (4.20) into the action (4.1) and expanding in terms of small z,
we can obtain the divergent part of entanglement entropy which has the following divergent
structure

A(l) = 4πLϕ

(
l2

3ϵ3 − 4
9ϵ

)
+ Afin(l). (4.22)

Since the second term in the parentheses does not depend on l, O(ϵ−1) part is absent
in (4.21). The l dependence of A(l) differs from the CFT one. We plotted the finite part
of the entanglement entropy in figure 7, where it is shown that the disk-shaped RT surface
dominates the behavior for small l and cylinder shape dominates for large l. The finite part
Afin has the quantum phase transition at the critical length. Making use of (4.21) and (4.22),
the finite part satisfies the following relation

A′
fin(l)

4πLϕ
= −5l2a5(l). (4.23)

– 12 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
9
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l
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0.008

0.009

0.010

a5

Figure 6. a5 as function of l with T = 1
π , aϕ = 1

2 in the case of d=5. The red line corresponds to
disk shaped RT surface and the blue line corresponds to a cylinder shape. The critical length of the
phase transition is lc = 1.57.

0.4 0.6 0.8 1.0 1.2
M0l

-10

-5

5

10

Afin

0.490 0.495 0.500 0.505 0.510
M0l

3.15

3.20

3.25

3.30
Afin

Figure 7. Left: the finite part of A for aϕ = i/2, 0, 1/2, 2/
√
15 from left to right. Right: close-up

version of aϕ = 1/2 curve. There is a phase transition at the critical length.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
M0 l

-0.2

-0.1

0.1

0.2

0.3

κ 2

8π 2

Sren

0.3 0.4 0.5 0.6
M0 l

-0.2

-0.1

0.1

0.2

0.3

κ 2

8π 2

Sren

Figure 8. Left: the renormalized entanglement entropy for aϕ = i/2, 0, 1/2, 2/
√
15. Renormalized

entanglement entropy non-monotonically behaves. For large aϕ, DOF slowly decreases. Right: the
renormalized EE for aϕ = 2/

√
15. Mass is changed from M0 = 1/2, 2/5, 1/π. Massive modes quickly

decrease.
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Next consider the 5-dimensional renormalized entanglement entropy defined in (2.2),
which is

Sren = 1
3 l∂l(l∂l − 2)S. (4.24)

Substituting (4.22), the renormalized entanglement entropy can be rewritten as

Sren(l) =
l

3(−A′
fin(l) + lA′′

fin(l)) = −5
3 · 4πLϕ · l3(a5(l) + la′

5(l)). (4.25)

The renormalized entanglement entropy is plotted in figure 8 with different aϕ. The renor-
malized entanglement entropy counts the DOF of the entangling states at an energy scale
E ∼ 1/l. It has non-monotonic behaviors. The quantum phase transition happens at critical
limits. And Sren approaches to zero at large distances. Figure 8 (right) shows that massive
DOF decouples other modes at low energy soon. This behavior is easily seen when aϕ = 0,
where scaling symmetry M0 → λM0, l → λ−1l arises. This is the symmetry of the action and
EOM. Scaling symmetry simultaneously rotates aϕ when it is nonzero. The scaling symmetry
implies that the critical length is inversely proportional to M0: lc = c5/M0. The quantum
phase transition quickly occurs for large masses, while it slowly occurs for small masses. After
the phase transition, the renormalized entanglement entropy gradually becomes constant.

5 d = 3 (a striped shape)

In this section, we analyze the holographic entanglement entropy for d = 3. The configuration
for d = 3 is equal to a striped boundary shape. We start with d dimensional striped shapes,
and d = 3 is a special case. To consider a striped shape, we replace R2dΩd−3 with

∑
dx2

⊥ in
d + 1 dimensional AdS soliton with a gauge field (3.1) as follows:

ds2
d+1 = L2

z2

(
dz2

fd(z)
+ fd(z)dϕ2 − dt2 + dR2 +

∑
dx2

⊥

)
, (5.1)

where R is along (−∞, ∞) unlike the radial direction of polar coordinate systems.
We consider a strip with a length of l along the R direction (−l/2 ≤ R ≤ l/2) and choose

R = R(z) as an embedding scalar. The surface action becomes

As =
∫

dd−1xL = 2Vd−3LϕLd−1
∫

dz
1

zd−1

√
1 + fṘ2, (5.2)

where Vd−3 was used to replace the volume of d− 3 dimensional space spanned by x⊥. Factor
2 comes from two contributions of the minimal surface. Note that the lagrangian density
of (5.2) does not depend explicitly on R. This simplifies the analysis for a rectangular
region more than for a circular region. The momentum doesn’t explicitly depend on R for
a striped boundary shape. Solving the condition Π =const and imposing the IR boundary
condition dz/dR|z=zt = 0, we have

Ṙ = 1√√√√fd(z)
(

fd(z)z
2(d−1)
t

fd(zt)z2(d−1) − 1
) . (5.3)
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κ 2
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L
2

Figure 9. Left: s3(l) = dAs/(3Lϕdl) as a function of lM0. The curve is for aϕ = i/2, 0, 1, 2/
√
3

from the left to the right. The phase transition happens at critical lengths lc = 0.15, 0.19, 0.24, 0.34
in units of 1/M0 from the left to the right, respectively. s3(l) has two values. The physical curve
(an upper one) is consistent with the strong subadditivity. Right: Sren for d = 3. The curve is for
aϕ = 0, 1, 2/

√
3 from the left to the right. Sren monotonically decreases as a function of lM0. Sren

becomes 0 at a large distance. It implies that theory is a product state there [47].

0.10 0.15 0.20 0.25 0.30 0.35 0.40
lM0

1

2

3

4

5

κ 2
Sren

2π 2
L
2

Figure 10. Sren for d = 3. The curve is for aϕ = 2/
√
3. M0 = 3/5, 2/5, 1/π from the left to the

right. Sren monotonically decreases as a function ozimf lM0. The phase transition happens at critical
lengths lcM0 = 0.19, 0.23, 0.34 from the left to the right, respectively. It implies that massive modes
M > 1/l quickly decouple others and remain product states.

This formula demonstrates that z = zt is the turning point dz/dR|z=zt = 0. The equation (5.3)
gives the profile of the minimal surface satisfying R(ϵ) = −l/2 and R(zt) = 0.

Using the AdS boundary expansion R′(z) = dsd(l)zd−1 + . . . , R(z) is expanded as follows

R(z) = − l

2 + sd(l)zd . . . , (5.4)

where
sd(l) =

√
fd(zt)

dzd−1
t

. (5.5)

The Hamilton-Jacobi equation for a striped shape has the same form as (4.5)

dAs

dl
= −Π(ϵ)dR(ϵ)

dl
, (5.6)
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where
Π = ∂L

∂Ṙ
= 2Vd−3Ld−1Lϕ

fṘ

zd−1
√
1 + fṘ2

(5.7)

and H(zt) = 0 due to the IR boundary condition. When (5.3) is substituted into (4.5),
the l derivative of the surface becomes

dAs

Vd−3LϕLd−1dl
= dsd(l) =

√
fd(zt)
zd−1

t

. (5.8)

Note that the minimal surface must satisfy strong subadditivity. It requires that the minimal
surface must be concave [48] as follows:

A′′
s = dVd−3LϕLd−1s′d(l) = Vd−3LϕLd−1 ∂zt

∂l
∂zt(dsd(l)) ≤ 0. (5.9)

Actually, one can show the following inequality:

∂zt(dsd(l)) ≡
h(zt)

2
√

fd(zt)
=

(−2(d − 1)z−d
t + (d − 2)(1− a2

ϕz2
0)z−d

0 )
2
√

fd(zt)
< 0. (5.10)

because h(z) satisfies the following condition:4

h(0) = −∞, h(z0) = (−d − (d − 2)(aϕz0)2)z−d
0 < 0, h′(z) = 2d(d − 1)z−d−1 > 0. (5.12)

According to [29], in addition, ∂zt/∂l has two values. It is positive for a minimal surface
and negative for an unphysical curve.

Next, we consider the case in which the minimal surface is disconnected. We focus
on d = 3. From

d
dz

∂L
∂Ṙ

= ∂L
∂R

= 0 (5.13)

where
L ≡ 1

z2

√
1 + fṘ2, (5.14)

it is easy to see that one of the solutions is R = const, which is for the disconnected minimal
surface. Then the area of the surface is

As = 2Lϕ

∫ zt

ϵ
dz

1
z2 = 2Lϕ

(1
ϵ
− 1

zt

)
, (5.15)

and the corresponding entanglement entropy

SEE = 4πLϕ

κ

(1
ϵ
− 1

zt

)
, (5.16)

where zt = z+. The finite part of SEE is −4πLϕ/(κz+). For disconnected surfaces, s3(l) = 0.
4When aϕ is pure imaginary aϕ = ia′

ϕ, the second condition is replaced with

h(z0) = −
4π(

√
4π2 + d(d − 2)(a′

ϕ/M0)2 − 2π)
(a′

ϕ/M0)2(d − 2) < 0. (5.11)
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One can compute the renormalized entanglement entropy from the entanglement entropy
SEE . We apply the renormalized entanglement entropy formula defined in (2.2): Sren = l∂lS

substituting d = 3. Because dual 3-dimensional QFT theory is defined on R1,1×S1, the renor-
malized entanglement entropy will give the result of 2d QFT on R1,1 in the low energy limit.

The renormalized entanglement entropy can be written in terms of l and s3(l) as follows:
κ2

2πLϕL2 Sren = ldAs

LϕL2dl
= 3ls3(l) =

l
√

f(zt)
z2

t

, (5.17)

where S = 2π
κ2 As. Note that the central charge of 3d dual CFT is 32L2/(πG4) =

26√2N3/2√k/(3π), where k is the Chern-Simons level. For the disconnected surface, we
see that the entanglement entropy does not depend on the size l of the entangling surface
at the boundary, which means

Sren = l∂lSEE = 0. (5.18)

We plotted dAs/(3Lϕdl) = s3(l) in figure 9 (left). Because the concavity of the entanglement
entropy [49, 50] means A′′

s ≤ 0, A′
s monotonically decreases as a function of l. We plotted

the renormalized entanglement entropy in figure 9 (right). The renormalized entanglement
entropy detects the DOF of the entangling states at the energy scale El ∼ 1 again. Because
massive degrees of freedom decouple in the low energy limit, Sren decreases as a function of l

(with energy E ∼ 1/l).5 This monotonic behavior (S′
ren(l) ≤ 0) will also be the consequence

of Lorentz symmetry and strong subadditivity [48]. The quantum phase transition happens at
critical lengths lcM0 = 0.19, 0.24, 0.34 for aϕ = 0, 1, 2/

√
3, respectively. Sren becomes 0 at

large distances. Figure 10 changes M0 after fixing aϕ. It shows that massive modes M0 > 1/l

quickly decouple others at low energy, remaining product states. When aϕ = 0, one can recover
scaling symmetry M0 → λM0, l → λ−1l, in addition to bulk parameters. This is the symmetry
of the action and EOM. Scaling symmetry simultaneously changes aϕ if it is nonzero. Thus,
the critical length is the same as those for different M0 and is given by M0 = c/lc, where c is
a constant. The phase transition happens soon for large masses and slowly for small masses.

Our results agree with the fact that the renormalized entanglement entropy is equal to the
formula of the entropic c-function l∂lSEE on R1,1, which becomes observable in renormalizable
theory. The entropic c-function on R1,1 counts DOF and depends on the radius l(∼ 1/E)
including the information in SEE(l1)−SEE(l2) (l1 > l2). It is known that the c function for a
massive scalar field exponentially decreases for large r [11]. Finally, there remains no degree
of freedom (zero entropic c function) at a large distance. Recall that the trace anomaly exists
in 2 dimensions. The monotonic quantity is the Euler term in the trace anomaly there.

5.1 Small subregions

By employing the our previous results, where zt can be expressed in terms of l for small l [29]

zt =
l

2e−1 − 2k−1
+ l4āϕ (−4e−1 + 4k−1 + π)

256z3
+ (e−1 − k−1) 5 + l5 (1− āϕ)

160z4
+ (e−1 − k−1) 5

+
l7ā2

ϕ

(
−302e−1k−1 + 126e2

−1 − 84πe−1 + 176k2
−1 + 84πk−1 + 21π2)

172032z6
+ (e−1 − k−1) 9 + . . . ,

(5.19)

5Another entropic c function non-monotonically behaves in [29] and it does not satisfy a c-theorem. The
non-monotonic behavior occurs due to the competition between a power of l and dAs/dl.
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we obtain

dAs

LϕL2dl
= 4 (e−1 − k−1) 2

l2
− lπāϕ

16
(
z3

+ (e−1 − k−1) 2) + 9l2 (āϕ − 1)
40z4

+ (e−1 − k−1) 2

+
5l4ā2

ϕ

(
80e−1k−1 − 80k2

−1 − 21π2)
86016z6

+ (e−1 − k−1) 6 + . . . (5.20)

= 8π3

l2Γ
(

1
4

)4 −
8lāϕΓ

(
5
4

)4

π2z3
+

+
9(āϕ − 1)l2Γ

(
1
4

)4

80π3z4
+

+
5(20− 21π)ā2

ϕl4Γ
(

1
4

)12

688128π8z6
+

+ . . . ,

where we have defined āϕ = 1 − (z+aϕ)2. For the notation e−1, k−1 please refer to [29] for
more details. The expansion (5.20) agrees with the holographic entanglement entropy in [29],
and the formula (5.8) is also valid for other dimensions realizing the holographic entanglement
entropy. The result is compared with our previous paper [29] in the appendix B.

6 Summary and discussion

We computed holographic EE and the renormalized EE in the AdS soliton with the gauge
potential for several dimensions. The disk shape of the minimal surface was dominant for
small l, and the cylinder shape was dominant for large l as similar to [34]. The quantum
phase transition occurs at a critical size of the subregion.

The renormalized EE, a universal part of EE independent of the cutoff, was computed
by operating differentiation on EE [30]. By containing modes with KK mass and considering
the low energy limit, we continuously derived from odd dimensional renormalized EE to the
formula of d − 1 dimensional renormalized EE.6 Actually, the ϕ circle shrinks to zero at the
tip of the AdS soliton (z = z+), which is probed for large l. The logarithmic term is absent
since we don’t have a Weyl anomaly in odd dimensions. This is a sort of topology change
in the entanglement entropy. In any dimension, massive modes M0l > 1 decouple others as
a decrease of energy as shown in figure 10 and then product states are retained. For high
energy limit (l ≪ Lϕ), the renormalized EE recovers behaviors of the original dimensions
because the renormalized EE measures the degrees of freedom in a state with energy E ∼ 1/l.
Because the degrees of freedom with Wilson lines contribute to large aϕ and high energy, the
renormalized EE slowly changes until the critical length (see figure 9). The paper [52] also
tracked the entanglement entropy across dimensions and found transitions.

For the extremal limit M0 = 0 (aϕ is pure imaginary), the metric (3.1) becomes

ds2
e = L2

z2

(
dz2

fe(z)
+ fe(z)dϕ2 − dt2 + dR2 + R2dΩd−3

)
, (6.1)

where fe(z) = 1 − 2d−2
d−2

(
z

z+

)d
+ d

d−2

(
z

z+

)2(d−1)
and a2

ϕz2
+ = − d

d−2 . The extremal limit is
special because the ϕ direction is not compactified (Lϕ → ∞). According to [34], the cylinder
type topology doesn’t exist in the extremal limit because it does not satisfy proper boundary

6Note that the topology of the subregion is not one ball Bd−1 but the ball and a circle Bd−2 × S1 with the
periodicity Lϕ. Interpreting this S1 as one perpendicular direction to Bd−2 with the endpoint identified will
be convenient.
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conditions at the tip. Thus, there is only a disk type surface. It shows that there are no
phase transitions. Moreover, the KK modes become massless. It is a gapless system. These
gapless excitation will become entangled pairs even at a large length of interval. It implies
that product states don’t appear. Even if there are no phase transitions, the renormalized
entanglement entropy is still non-monotonic.

In section 5, we analyzed striped surfaces for d = 3. Our results demonstrated that the
renormalized EE is positive (non-negative) and satisfies the C theorem. After dimensional
reduction, the renormalized entanglement entropy of 2d QFT with Kaluza-Klein modes
will also be consistent with the C theorem of the 2-dimensional entropic c−function. We
showed that when d = 3, the renormalized EE for the entangling boundary with a striped
shape decreases monotonically and jumps to zero when the size of the entangling surface
becomes large, which means that it probes a first-order phase transition and the corresponding
boundary field theory runs into a product state at the low energy scale. Unlike the generalized
entropic c−function studied in [29], the renormalized EE here behaves monotonically even
for the large value of gauge potential aϕ, and since aϕ can increase the degrees of freedom
and the increase of aϕ leads to the increase of the renormalized EE, which implies that the
renormalized EE is counting the degrees of freedom (DOF) of the boundary field theory.

We analyzed the striped entangling surface in the previous analysis and computed an
entropic c−function. This entropic c−function is always positive and non-monotonically
behaves. The phase transition happens at a critical length. The non-monotonic behavior is
caused by the effective DOF of Wilson lines along the S1 direction. That is, effective DOF
increases the renormalized entanglement entropy. It implies that this Wilson line will decrease
the mass of particles such as glueballs [51] because particles of small mass contribute to the
entropic c−function at large l. On the other hand, in higher dimensions, HREE can become
negative near the phase transition point, different from an entropic c−function. This will be
considered as an artifact in the large N and strongly coupled limit. The two are similar in
the quantum phase transition’s presence and the Wilson lines’ effect. The gauge potential
will decrease the mass of particles such as glueballs. Thus, more DOF will contribute to
HREE and let it increase at a large distance.
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A Hamilton-Jacobi equations

In the appendix, we give a brief review of the Hamilton-Jacobi method used in analyzing
minimal surfaces in (4.5). We introduce the following action

S =
∫ t2

t1
L(q, q̇, t)dt. (A.1)

– 19 –



J
H
E
P
0
1
(
2
0
2
4
)
0
7
9

We assume that the field q can change at the boundary times t1 and t2. Moreover, we allow
changes of times t1(t2) into t′1(t′2), respectively. The variation of the action becomes

δS =
∫ t′2

t′1

dtL(q′, q̇′, t)dt −
∫ t2

t1
dtL(q, q̇, t)dt

=
∫ t′2

t2
L(q′, q̇′, t)dt +

∫ t2

t1
(L(q′, q̇′, t)− L(q, q̇, t))dt +

∫ t1

t′1

L(q′, q̇′, t)dt

= L(q′, q̇′, t2)δt2 − L(q′, q̇′, t1)δt1 +
∂L
∂q̇

δq

∣∣∣∣
t2

− ∂L
∂q̇

δq

∣∣∣∣
t1

,

(A.2)

where the EOM is used in the second line. We did not assume δq = 0 at the time boundary
t1 and t2. We use the following transformation

∂L
∂q̇

δq

∣∣∣∣
ti

= ∂L
∂q̇i

δqi −
∂L
∂q̇i

q̇iδti, (A.3)

where δqi = q′(t′i)− q(ti). The variation of the action becomes the total derivative as follows:

δS = −Hδt2 +Hδt1 +
∂L
∂q̇

δq2 −
∂L
∂q̇

δq1. (A.4)

It shows that
∂S

∂t2
= −H,

∂S

∂t1
= H,

∂S

∂q2
= ∂L

∂q̇2
= p2,

∂S

∂q1
= − ∂L

∂q̇1
= −p1. (A.5)

Thus, the motion in which (A.4) becomes the total derivative is possible.

B Hamilton-Jacobi equations for small l

We derive the Hamilton-Jacobi equation for a striped shape for d = 5, 6 in this appendix.
When we restrict to the small size l of the subregion, we can use the analytic expression.
The Hamilton Jacobi equation is given by eq. (5.6) and eq. (5.8).

We consider d = 5 first. The turning point, zt is expanded in the small l limit (see [29]),

zt =
5lΓ

(
9
8

)
2
√

πΓ
(

13
8

) −
15625l6āϕ

(
3Γ

(
3
4

)
Γ
(

9
8

)6
Γ
(

13
8

)
− 5Γ

(
9
8

)7
Γ
(

5
4

))
1536π3z5

hΓ
(

3
4

)
Γ
(

13
8

)7

−
1953125l9(āϕ − 1)Γ

(
9
8

)9

2304π9/2z8
hΓ

(
13
8

)9 + O(l11).

(B.1)

The Hamilton-Jacobi equation becomes

dAs

V2LϕL4dl
=

√
f(zt)
z4

t

(B.2)

=
16π2Γ

(
13
8

)4

625l4Γ
(

9
8

)4 −
25lāϕΓ

(
9
8

)2
Γ
(

5
4

)
12
√

πz5
hΓ

(
3
4

)
Γ
(

13
8

)2 +
15625(āϕ − 1)l4Γ

(
9
8

)4

288π2z8
hΓ

(
13
8

)4 + O(l6).
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For d = 6, zt is expanded in terms of small l as follows:

zt =
3lΓ

(
11
10

)
√

πΓ
(

8
5

) −
2187āϕl7

(
7Γ

(
7
10

)
Γ
(

8
5

)
− 12Γ

(
11
10

)
Γ
(

6
5

))
Γ
(

11
10

)7

70π7/2z6
hΓ

(
7
10

)
Γ
(

8
5

)8

−
885735(āϕ − 1)l11Γ

(
11
10

)11

22π11/2z10
h Γ

(
8
5

)11 + O(l13).

(B.3)

The Hamilton-Jacobi equation becomes

dAs

V3LϕL5dl
=

√
f(zt)
z5

t

=
π5/2Γ

(
8
5

)5

243l5Γ
(

11
10

)5 −
18lāϕΓ

(
11
10

)2
Γ
(

6
5

)
7
√

πz6
hΓ

(
7
10

)
Γ
(

8
5

)2

+l5(āϕ − 1)
4374Γ

(
11
10

)5

11π5/2z10
h Γ

(
8
5

)5 + O(l7). (B.4)
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