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Abstract
We study Ricci-flat perturbations of gravitational instantons of Petrov type D. Analogously to
the Lorentzian case, the Weyl curvature scalars of extreme spin-weight satisfy a Riemannian
version of the separable Teukolsky equation. As a step towards rigidity of the type D Kerr
and Taub-bolt families of instantons, we prove mode stability, i.e. that the Teukolsky equation
admits no solutions compatible with regularity and asymptotic (local) flatness.

1 Introduction
A gravitational instanton is a complete and non-compact Ricci-flat Riemannian four-manifold
with quadratic curvature decay. There are a number of families of known examples, such as
the Riemannian Kerr instanton, and the Taub–NUT and Taub-bolt instantons. There are some
known results about gravitational instantons, a large part of which hold under various symmetry
assumptions, such as the existence of a U(1) or U(1) × U(1) isometry group, see e.g. [1, 2, 7, 11]. In
the compact case, we have the Besse conjecture [6], stating that all compact Ricci-flat manifolds
have special holonomy. This is a wide-open conjecture; there are no known examples of compact
Ricci-flat four-manifolds with generic holonomy, i.e. holonomy group SO(4). This is in contrast
to the the non-compact case, since there are examples of gravitational instantons with generic
holonomy. However, all known examples still satisfy the weaker requirement of Hermiticity, and it is
therefore natural to conjecture that all gravitational instantons are Hermitian. A first step towards
such a result is given by proving rigidity, i.e. for various known examples of gravitational instantons,
showing that there are no other Ricci-flat metrics close to that metric.

It was shown in [16], that perturbations of the Lorentzian Kerr metric whose frequency lies in the
upper half plane, and satisfying certain boundary conditions, the perturbations of the Weyl scalars
of extreme spin weight vanish identically. This result is known as mode stability. Furthermore,
mode stability for frequencies on the real axis was shown in [5]. As was shown in [15], see also
[4], perturbations of the Lorentzian Kerr metric whose Weyl scalars of extreme spin weight vanish
identically must be perturbations within the Kerr family, modulo gauge.

The following two main theorems of this paper show that the Riemannian analog of mode
stability holds in the ALF type D case.1

Theorem 1. For Ricci-flat AF perturbations of the Riemannian Kerr metric, the perturbed Weyl
scalars Ψ̇0, ˙̃Ψ0 vanish identically.

1By type D, we mean Petrov type D+D−, cf. [1, 7]. The only ALF instantons of type D are the Riemannian Kerr
and the Taub-bolt metrics.
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Theorem 2. For Ricci-flat ALF perturbations of the Taub-bolt metric, the perturbed Weyl scalars
Ψ̇0, ˙̃Ψ0 vanish identically.

As a consequence, one might conjecture that rigidity in the above mentioned sense holds for
these two instantons.
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2 The Newman–Penrose Formalism in Riemannian Signature
The Newman–Penrose formalism [10], commonly used in general relativity, can be adapted to a
Riemannian signature (cf. [3, 9]). Let (l, l, m, m) be a tetrad of vector fields with complex coefficients,
in which the metric has the form 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (1)

When viewed as first order differential operators, we denote the vector fields l, l, m, m by D, ∆, δ, −δ̃,
respectively. With respect to the tetrad (l, l, m, m), the Levi-Civita connection is represented by 24
spin coefficients, denoted by Greek letters and defined to be the coefficients in the right hand sides
of the equations

1
2(la∇bla − ma∇bma) = γlb + ϵlb − αmb + βmb, (2)

l
a∇bma = −νlb − πlb + λmb − µmb, (3)

ma∇bla = τ lb + κlb − ρmb + σmb, (4)
1
2(la∇bla + ma∇bma) = γ̃lb + ϵ̃lb − β̃mb + α̃mb, (5)

l
a∇bma = ν̃lb + π̃lb − µ̃mb + λ̃mb, (6)

ma∇bla = −τ̃ lb − κ̃lb + σ̃mb − ρ̃mb. (7)

We also have the Weyl scalars:

Ψ0 = −W (l, m, l, m), Ψ1 = −W (l, l, l, m), Ψ2 = W (l, m, l, m),
Ψ3 = W (l, l, l, m), Ψ4 = −W (l, m, l, m),

(8)

Ψ̃0 = −W (l, m, l, m), Ψ̃1 = −W (l, l, l, m), Ψ̃2 = W (l, m, l, m),
Ψ̃3 = W (l, l, l, m), Ψ̃4 = −W (l, m, l, m),

(9)
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where W denotes the Weyl curvature tensor.
From the definitions, one sees immediately that Ψk = Ψ4−k and Ψ̃k = Ψ̃4−k, so that the Weyl

tensor is determined by the six scalars Ψ0, Ψ1, Ψ2, Ψ̃0, Ψ̃1, Ψ̃2, and that Ψ2 and Ψ̃2 are real. The
Weyl scalars of extreme spin weight are defined to be Ψ0, Ψ4, Ψ̃0 and Ψ̃4.

A tetrad (l, l, m, m) is said to be principal if Ψ0 = Ψ1 = Ψ̃0 = Ψ̃1 = 0. It can be shown that a
Ricci-flat four-manifold admits a principal tetrad if and only if it has type D. A proof of this fact in
the Lorentzian case can be found in [12, Chapter 7].

2.1 The Perturbation Equations
When referring to a perturbation ġ of a metric g, we are referring to a linear perturbation of g, i.e.
a symmetric two-tensor ġ. When g is Ricci-flat, we say that ġ is a Ricci-flat perturbation if it is
Ricci-flat to first order, i.e. if ġ ∈ ker((D Ric)g). In general, for a quantity depending on the metric
g, we let a dot above the quantity denote its derivative in the direction ġ. Then ġ is a Ricci-flat
perturbation if and only if Ṙic = 0.

Ricci-flat perturbations of the Lorentzian Kerr metric have been studied extensively, and in [14],
Teukolsky derived a well-known equation for the perturbation of the Weyl scalars of extreme spin
weight, for such perturbations of the metric. The following theorem gives a Riemannian analog of
that perturbation equation.

Theorem 3. Consider a Ricci-flat perturbation ġ of a Ricci-flat type D metric g. Relative to a
principal tetrad, the perturbation Ψ̇0 satisfies the equation

((D − 3ϵ + ϵ̃ − ρ̃ − 4ρ)(∆ − 4γ + µ) − (δ − α̃ − 3β + π̃ − 4τ)(δ̃ − 4α + π) − 3Ψ2)Ψ̇0 = 0, (10)

and the perturbation ˙̃Ψ0 satisfies the equation

((D − 3ϵ̃ + ϵ − ρ − 4ρ̃)(∆ − 4γ̃ + µ̃) − (δ̃ − α − 3β̃ + π − 4τ̃)(δ − 4α̃ + π̃) − 3Ψ̃2) ˙̃Ψ0 = 0. (11)

Proof. Since we have a principal tetrad, Ψ0 = Ψ̃0 = Ψ1 = Ψ̃1 = κ = κ̃ = σ = σ̃ = 0. The perturbed
versions of (116) and (121) become

(∆ − 4γ + µ)Ψ̇0 = (δ − 4τ − 2β)Ψ̇1 + 3σ̇Ψ2 (12)

and
(δ̃ − 4α + π)Ψ̇0 = (D − 4ρ − 2ϵ)Ψ̇1 + 3κ̇Ψ2 (13)

respectively. Operating on (12) with D and on (13) with δ, subtracting the resulting equations and
using the commutator relation (74), we get

(D(∆ − 4γ + µ) − δ(δ̃ − 4α + π))Ψ̇0 = ([D, δ] − 4Dτ − 2Dβ + 4δρ + 2δϵ)Ψ̇1 + (3Dσ̇ − 3δκ̇)Ψ2

(14)
= (−(α̃ + 3β − π̃ + 4τ)D + (3ϵ − ϵ̃ + ρ̃ + 4ρ)δ

− (D(4τ + 2β)) + (δ(4ρ + 2ϵ)))Ψ̇1 + (3Dσ̇ − 3δκ̇)Ψ2.

(15)
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We eliminate the first two terms in the first bracket on the right:
((D − 3ϵ + ϵ̃ − ρ̃ − 4ρ)(∆ − 4γ + µ) − (δ − α̃ − 3β + π̃ − 4τ)(δ̃ − 4α + π))Ψ̇0 = A1 + A2, (16)

where

A1 = ((−3ϵ + ϵ̃ − ρ̃ − 4ρ)(−4τ − 2β) − (−α̃ − 3β + π̃ − 4τ)(−4ρ − 2ϵ)
− (D(4τ + 2β)) + (δ(4ρ + 2ϵ))) (17)

and
A2 = (3(D − 3ϵ + ϵ̃ − ρ̃ − 4ρ)σ̇ − 3(δ − α̃ − 3β + π̃ − 4τ)κ̇)Ψ2. (18)

By using (81), (87) and (112), we see that A1 = 0. Also, from the fact that our metric has type D,
together with (120) and a suitable linear combination of (117) and (122), we have

DΨ2 = 3ρΨ2, δΨ2 = 3τΨ2. (19)
Therefore, by the Leibniz rule,

A2 = 3DΨ2 − 3δΨ2 + (3((D − 3ϵ + ϵ̃ − ρ̃ − 4ρ)σ̇) − 3((δ − α̃ − 3β + π̃ − 4τ)κ̇))Ψ2 (20)
= 3(((D − 3ϵ + ϵ̃ − ρ̃ − ρ)σ̇) − ((δ − α̃ − 3β + π̃ − τ)κ̇))Ψ2 (21)
= 3Ψ̇0Ψ2, (22)

where we used the linearization of (89) in the last step, showing that (10) holds. The proof of (11)
is similar, referring to the tilded equivalents of the NP equations instead.

3 The Riemannian Kerr Instanton
In Boyer-Lindquist coordinates (t, r, θ, ϕ), the Riemannian Kerr family of metrics is given by the
expression

g = Σ
∆ dr2 + Σ dθ2 + ∆

Σ (dt − a sin2 θ dϕ)2 + sin2 θ

Σ ((r2 − a2) dϕ + a dt)2. (23)

Here, M > 0 and a ∈ R are the parameters of the family, ∆ = ∆(r) = r2 − 2Mr − a2 and
Σ = r2−a2 cos2 θ, and the coordinates have the ranges r > r+, 0 < θ < π, where r± = M±

√
M2 + a2

are the roots of ∆. Like its Lorentzian counterpart, this metric is Ricci-flat. Note that ∆ has a
different meaning than in Section 2, and it will retain this new meaning throughout this section.

Now define new coordinates (t̃, r̃, θ, ϕ̃) by
r = M +

√
M2 + a2 cosh r̃,

t = 1
κ t̃,

ϕ = ϕ̃ − Ω
κ t̃,

(24)

where κ =
√

M2+a2

2Mr+
and Ω = a

2Mr+
. Then r is a smooth function of r̃2, and (23) gives

g = Σ(dr̃2 + dθ2 + (r̃2 + O(r̃4)) dt̃2 + (sin2 θ + O(sin4 θ)) dϕ̃2). (25)
Letting (r̃, t̃) be polar coordinates on R2 and letting (θ, ϕ̃) be spherical coordinates on S2, it
follows that g extends to a complete metric on R2 × S2, provided that we identify t̃ and ϕ̃ with
period 2π independently. Note that this is equivalent to performing the identifications (t, ϕ) ∼
(t + 2π

κ , ϕ − 2πΩ
κ ) ∼ (t, ϕ + 2π).
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3.1 The Separated Perturbation Equations in Coordinates
We shall be interested in a particular choice of complex null tetrad (l, l, m, m), called the Carter
tetrad, defined by

l = 1√
2∆Σ

(
(r2 − a2) ∂

∂t
− a

∂

∂ϕ

)
+ i

√
∆
2Σ

∂

∂r
, (26)

m = 1√
2Σ

∂

∂θ
− i√

2Σ

(
1

sin θ

∂

∂ϕ
+ a sin θ

∂

∂t

)
. (27)

Note that |l|g = |m|g = 1. The spin coefficients for the Carter tetrad are given explicitly in Section
A.1. For this tetrad we have

Ψ2 = M

(r − a cos θ)3 , Ψ̃2 = M

(r + a cos θ)3 , (28)

and all other Weyl scalars vanish. In particular, this is a principal tetrad.
We shall now analyze the perturbation equations in the Carter tetrad. The relevant properties

of the equations are given in the following four lemmas.

Lemma 1. For the Carter tetrad, the perturbation equation (10) is equivalent to the equation2

LΦ = 0, where Φ = Ψ−2/3
2 Ψ̇0 and

L = ∂

∂r
∆ ∂

∂r
+ 1

∆

(
(r2 − a2) ∂

∂t
− a

∂

∂ϕ
+ 2i(r − M)

)2
+ 8i(r + a cos θ) ∂

∂t

+ 1
sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

(
a sin2 θ

∂

∂t
+ ∂

∂ϕ
− 2i cos θ

)2
. (29)

Furthermore, if Φ is a solution to this equation coming from a perturbation of the metric, then
we can write

Φ(t, r, θ, ϕ) =
∑

m,ω,Λ

ei(mϕ−ωt)Rm,ω,Λ(r)Sm,ω,Λ(θ), (30)

where m runs over Z, ω runs over Ω + κZ, and for each choice of m, ω, Λ, the function R = Rm,ω,Λ
solves the equation RR = 0. The function S = Sm,ω,Λ is the unique solution to the boundary value
problem SS = 0, S′(0) = S′(π) = 0, where

R = d

dr
∆ d

dr
+ U(r), (31)

U(r) = − ((r2 − a2)ω + am + 2(r − M))2

∆ + 8rω − Λ (32)

and
S = 1

sin θ

d

dθ
sin θ

d

dθ
+ V (cos θ), (33)

V (x) = 8aωx − 1
1 − x2

(
aω(1 − x2) − m + 2x

)2 + Λ. (34)

2Note that the equation LΦ = 0 is the same equation as that occuring in the Lorentzian case (see [5, 16]), but
with t replaced with it, a replaced with −ia, and with s = −2.
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Here, S is normalized with respect to the L2 product with measure sin θ dθ, and the separation
constant Λ runs over the (countable set of) values for which such an S exists.

The same statement holds for the perturbation equation (11), if Φ is replaced by Φ̃, where
Φ̃ = Ψ̃−2/3

2
˙̃Ψ0.

Proof. The fact that (10) is equivalent to LΦ = 0 follows from a direct computation, using the
expressions for the spin coefficients in Section A.1.

Now note that the boundary value problem SS = 0, S′(0) = S′(π) = 0 is a Sturm-Liouville
problem. Thus, there exists an orthonormal L2 basis of functions {Sm,ω,Λ}Λ solving it, and
furthermore, we can perform a Fourier series decompositions in the coordinates (t, ϕ). From these
considerations, we can write (30), where

Rm,ω,Λ(r) = κ

4π2

∫ 2π/κ

0

∫ 2π

0

∫ π

0
e−i(mϕ−ωt)Φ(t, r, θ, ϕ)Sm,ω,Λ(θ) sin θ dθ dϕ dt. (35)

The fact that R = Rm,ω,Λ satisfies RR = 0 now follows directly from (35), along with the fact that
LΦ = 0.

For the statement involving Φ̃, the proof is entirely analogous.

Lemma 2. The equation RR = 0 is an ordinary differential equation in a complex variable r, which
has regular singular points at r = r±. The point r = ∞ is an irregular singular point of rank 1,
except when ω = 0, in which case it is a regular singular point. Thus, the equation RR = 0 is a
confluent Heun equation (see [13, Section 3]) when ω ̸= 0, and a hypergeometric equation (see [13,
Section 2]) when ω = 0. The characteristic exponents at r = r+ are

±
(

1 + 2Mr+ + am

r+ − r−

)
, (36)

and those at r = r− are

±
(

−1 + 2Mr− + am

r+ − r−

)
. (37)

When ω = 0, we have Λ ≥ 0, and the characteristic exponents at r = ∞ are

−3
2 ± i

√
7
2 + Λ. (38)

When ω ̸= 0, the equation RR = 0 admits normal solutions (see [8, Section 3.2]), near r = ∞, of
the asymptotic form

R ∼ e±rωr−1±2(Mω−1). (39)

Proof. The fact that r = r± are regular singular points follows directly from the fact that ∆ =
(r − r+)(r − r−), the statement about the type and rank of the singular point at r = ∞ follows
directly from the discussion in [8, Section 3.1], and the expressions for the characteristic exponents
can be seen from the discussion in [13, Section 1.1.3]. Letting R = y/

√
∆, the equation RR = 0 is

transformed into
d2y

dr2 + qy = 0, (40)
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where
q(r) = U(r)

∆ +
(

r+ − r−

2∆

)2
= −ω2 − 4ω(Mω − 1)

r
+ O(r−2). (41)

Following [8, Section 3.2], the equation RR = 0 therefore has normal solutions of the asymptotic
form

R ∼ e±rωr−1±2(Mω−1). (42)

Lemma 3. For a solution to the equation RR = 0 coming from a (globally smooth) perturbation of
the Kerr metric, the corresponding characteristic exponent at r = r+ is∣∣∣∣1 + 2Mr+ + am

r+ − r−

∣∣∣∣ . (43)

Proof. Since the set corresponding to r = r+ is compact, and by assumption, the perturbation Ẇ
of the Weyl tensor is continuous, Ẇ has bounded norm in a neighborhood of this set. Consequently,
since l and m have norm 1, it follows that Ψ̇0 = −Ẇ (l, m, l, m) is bounded near r = r+. Since
Ψ−2/3

2 = O(r2), it follows that Φ, and therefore R, is bounded near r = r+. The statement now
follows immediately.

Lemma 4. Let R be a solution to the equation RR = 0 coming from an asymptotically flat
perturbation of the Kerr metric. When ω = 0, none of the characteristic exponents at r = ∞ are
compatible with the asymptotic flatness assumption. When ω ̸= 0, exactly one of the asymptotic
normal solutions is compatible with this assumption, namely

R ∼ e−r|ω|r−1−2(Mω−1) sgn(ω). (44)

Proof. The assumption of asymptotic flatness means that ġ = O(r−1) as r → ∞, with corresponding
decay on derivatives. In particular, W = O(r−3), which means that Φ, and therefore R, decays
as r−1 as r → ∞. In particular, we must have limr→∞ R(r) = 0, and the result now follows
immediately.

3.2 Mode Stability
Equipped with the lemmas of the previous subsection, we are now in a position to prove Theorem 1.

Proof of Theorem 1. For r > r+ and −1 < x < 1, note that

U(r) + V (x) = − 16M(r + ax)
(r − ax)2

− (a2x(mx − 2) + 2a(x2 − 1)(M(rω − 1) + r) + r(m − 2x)(2M − r))2

(1 − x2)(∆ + (1 − x2)a2)∆

− (2M(ax + 3r) + (r − ax)(r + ax)(−axω + rω − 2))2

(r − ax)2(∆ + (1 − x2)a2)
< 0.

(45)
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Here, the strict negativity follows from that of the first term, which holds because r+ > |a|. By an
integration of parts, we have

U(r) ≤ U(r) +
∫ π

0

(
dS

dθ

)2
sin θ dθ = U(r) +

∫ π

0

(
SS − 1

sin θ

d

dθ

(
sin θ

dS

dθ

))
S sin θ dθ (46)

= U(r) +
∫ π

0
V (cos θ)S2 sin θ dθ =

∫ π

0
(U(r) + V (cos θ))S2 sin θ dθ < 0, (47)

where the last equality follows from (45) and the normalization of S. Multiplying (31) by R and
integrating, the first term being integrated by parts, we get

0 =
[
∆dR

dr
R

]r=∞

r=r+

−
∫ ∞

r+

(
∆
∣∣∣∣dR

dr

∣∣∣∣2 − U |R|2
)

dr. (48)

We claim that the first term vanishes; to see this, we consider the endpoints separately. Near r = ∞,
we have ∆ ∼ r2, while R and its derivative decays exponentially. Thus, the term in square brackets
decays exponentially, and in particular it goes to zero as r → ∞. Near r = r+, we know that
R is bounded. The characteristic exponent corresponding to R is either positive, in which case
dR
dr = o(r−1), or R is analytic in a neighborhood of r = r+, in which case dR

dr is bounded. In either
case, the product ∆ dR

dr goes to zero as r → r+, and from this it immediately follows that the term
in square brackets goes to zero.

We have thus shown that ∫ ∞

r+

(
∆
∣∣∣∣dR

dr

∣∣∣∣2 − U |R|2
)

dr = 0. (49)

Since U < 0, the terms in the integrand are both non-negative, and must therefore vanish. We
conclude that R vanishes identically.

4 The Taub-Bolt Instanton
The general Taub–NUT family of Ricci-flat metrics, depending on two parameters M, N > 0, is
given in coordinates (t, r, θ, ϕ) by

g = Σ
∆ dr2 + 4N2 ∆

Σ (dt + cos θ dϕ)2 + Σ(dθ2 + sin2 θ dϕ2), (50)

where ∆ = r2 − 2Mr + N2 and Σ = r2 − N2. Setting M = N yields the self-dual Taub–NUT metric,
a complete metric on R4.

Another metric of interest, the Taub-bolt metric, arises by letting M = 5
4 N , which we shall

do from now. We will now give a brief account of the regularity of this metric. Introducing the
coordinate system (t̃, r̃, θ̃, ϕ) by 

r = N
4 (5 + 3 cosh r̃),

t = 2t̃ − ϕ,

θ = 2 arctan( θ̃
2 ),

(51)
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we see that r is smooth as a function of r̃2, and that

g = Σ(dr̃2 + (r̃2 + O(r̃4)) dt̃2 + (1 + O(θ̃2)) dθ̃2 + (θ̃2 + O(θ̃4)) dϕ2 + O(r̃2θ̃2) dt̃dϕ). (52)

Viewing (θ̃, ϕ) as polar coordinates on R2 × {y} ⊆ R4, and viewing (r̃, t̃) as polar coordinates
on {x} × R2 ⊆ R4, it follows that g extends to a smooth metric on R4 ∼= C2, provided that we
identify t̃ and ϕ with period 2π independently. This is equivalent to making the identifications
(t, ϕ) ∼ (t + 4π, ϕ) ∼ (t + 2π, ϕ + 2π).

We can also introduce another coordinate system (t̂, r̃, θ̂, ϕ) by{
t = 2t̂ + ϕ,

θ = 2 arccot( θ̂
2 ),

(53)

so that

g = Σ(dr̃2 + (r̃2 + O(r̃4)) dt̂2 + (1 + O(θ̂2)) dθ̂2 + (θ̂2 + O(θ̂4)) dϕ2 + O(r̃2θ̂2) dt̂dϕ). (54)

In the same way as for the previous coordinate system, this shows that g extends to a smooth metric
on another copy of C2. Note that the identifications made to ensure regularity in the coordinate
system (t̃, r̃, θ̃, ϕ) also ensure regularity in the coordinate system (t̂, r̃, θ̂, ϕ). When defined on the
union of these copies of C2, this metric is complete.

Computing the transition map between the two coordinate systems, we see that they are related
by (t̂, r̃, θ̂, ϕ) = (t̃ − ϕ, r̃, 4

θ̃
, ϕ). In other words, the two copies of C2 are glued together according to

the map

(C \ {0}) × C → (C \ {0}) × C,

(z1, z2) 7→
(

4
z1

, z2 · |z1|
z1

)
.

Topologically, this is the same thing as gluing two such copies along the map (z1, z2) 7→ ( 1
z1

, z2 · |z1|
z1

),
or equivalently, gluing together two copies of D

2 × C along the map

S1 × C → S1 × C,

(z1, z2) 7→
(

1
z1

,
z2

z1

)
.

(55)

We now claim that the manifold is diffeomorphic to CP 2 minus a point. To see this, consider
two of the projective coordinate charts for CP 2, (U0, ϕ0) and (U1, ϕ1), where

Ui = {[Z0 : Z1 : Z2] ∈ CP 2 | Zi ̸= 0}, (56)

and

ϕ0 : U0 → C2,

[Z0 : Z1 : Z2] 7→
(

Z1

Z0
,

Z2

Z0

)
,

ϕ1 : U1 → C2,

[Z0 : Z1 : Z2] 7→
(

Z0

Z1
,

Z2

Z1

)
.

9



Since U0 ∪ U1 = CP 2 \ {[0 : 0 : 1]}, it follows that the latter is topologically equivalent to two copies
of C2, glued together along the transition map

(C \ {0}) × C → (C \ {0}) × C,

(z1, z2) 7→
(

1
z1

,
z2

z1

)
.

Again, topologically this is the same thing as gluing together two copies of D
2 × C along the map

(55). This shows that the manifold is homeomorphic to CP 2 minus a point. To show that these are
diffeomorphic, we can replace the closed disk by an open disk of radius slightly larger than 1, gluing
the two spaces together along a thin open strip around S1. The gluing map will then be isotopic to
the corresponding transition map in CP 2.

4.1 The Separated Perturbation Equations in Coordinates
As for Kerr, we are interested in a particular choice of complex null tetrad (l, l, m, m), in this case
given by

l = 1√
2Σ

(
1

sin θ

(
cos θ

∂

∂t
− ∂

∂ϕ

)
+ i

∂

∂θ

)
, (57)

m =
√

∆
2Σ

∂

∂r
+ i
√

Σ/2∆
2N

∂

∂t
, (58)

satisfying |l|g = |m|g = 1.
The spin coefficients for this tetrad are given explicitly in Section A.2. For this tetrad, we have

Ψ2 = N

4(r − N)3 , Ψ̃2 = 9N

4(r + N)3 , (59)

and the rest of the Weyl scalars vanish. Thus, this is a principal tetrad, and we see that the
Taub-bolt metric is of type D.

The following four lemmas give the relevant properties of the perturbation equations (10) (11)
for our analysis. The proofs are entirely analogous to those in Section 3.1, and are therefore omitted.

Lemma 5. For the tetrad given in (57) and (58), the perturbation equation (10) is equivalent to
the equation LΦ = 0, where Φ = Ψ−2/3

2 Ψ̇0 and

L = ∂

∂r
∆ ∂

∂r
− 4N(r + N)

(r − N)2 + Σ2

4N2∆

(
∂

∂t
− i

N(4r2 − 11Nr + 3N2)
Σ(r − N)

)2

+ 1
sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

(
cos θ

∂

∂t
− ∂

∂ϕ
− 2i cos θ

)2
. (60)

Furthermore, if Φ is a solution to this equation coming from a perturbation of the metric, then
we can write

Φ(t, r, θ, ϕ) =
∑

m,ω,Λ

ei(mϕ−ωt)Rm,ω,Λ(r)Sm,ω,Λ(θ), (61)
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where m runs over 1
2Z, and ω runs over m + Z, and for each choice of m, ω, Λ, the function

R = Rm,ω,Λ solves the equation RR = 0, and the function S = Sm,ω,Λ solves the boundary value
problem SS = 0, S′(0) = S′(π) = 0, where

R = d

dr
∆ d

dr
+ U(r), (62)

U(r) = −4N(r + N)
(r − N)2 − Σ2

4N2∆

(
ω + N(4r2 − 11Nr + 3N2)

Σ(r − N)

)2

− Λ (63)

and
S = 1

sin θ

d

dθ
sin θ

d

dθ
+ V (cos θ), (64)

V (x) = − ((ω + 2)x + m)2

1 − x2 + Λ. (65)

The separation constant Λ runs over the (countable set of) values for which such an S exists, all of
which are non-negative.

The same statement holds if Φ is replaced by Φ̃ = Ψ̃−2/3
2

˙̃Ψ0, the operator L is replaced by L̃, and
the operator R replaced by R̃, defined in the same way but using a potential Ũ in place of U . Here,

L̃ = ∂

∂r
∆ ∂

∂r
− 36N(r − N)

(r + N)2 + Σ2

4N2∆

(
∂

∂t
+ i

N(4r2 − 19Nr + 13N2)
Σ(r + N)

)2

+ 1
sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

(
cos θ

∂

∂t
− ∂

∂ϕ
− 2i cos θ

)2
(66)

and

Ũ(r) = −36N(r − N)
(r + N)2 − Σ2

4N2∆

(
ω − N(4r2 − 19Nr + 13N2)

Σ(r + N)

)2

− Λ. (67)

Lemma 6. The equation RR = 0 is an ordinary differential equation in a complex variable r, which
has regular singular points at r = 2N and r = N/2. The point r = ∞ is an irregular singular point
of rank 1, except when ω = 0, in which case it is a regular singular point. Thus, the equation RR = 0
is a confluent Heun equation (see [13, Section 3]) when ω ̸= 0, and a hypergeometric equation (see
[13, Section 2]) when ω = 0. The characteristic exponents at r = 2N are

±(ω − 1), (68)

and those at r = N/2 are
±
(ω

4 − 1
)

. (69)

When ω = 0, the characteristic exponents at r = ∞ are

−3
2 ± i

√
7
2 + Λ. (70)

When ω ̸= 0, the equation RR = 0 admits normal solutions (see [8, Section 3.2]), near r = ∞, of
the asymptotic form

R ∼ e±rω/2N r−1±(5ω/4−2). (71)
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Lemma 7. For a solution to the equation RR = 0 coming from a (globally smooth) perturbation of
the Taub-bolt metric, the corresponding characteristic exponent at r = 2N is |ω − 1|.

Lemma 8. Let R be a solution to the equation RR = 0 coming from an asymptotically locally flat
perturbation of the Taub-bolt metric. When ω = 0, none of the characteristic exponents at r = ∞
are compatible with the assumption of asymptotic local flatness. When ω ̸= 0, exactly one of the
asymptotic normal solutions is compatible with this assumption, namely

R ∼ e−r|ω|/2N r−1−(5ω/4−2) sgn(ω). (72)

Corresponding lemmas regarding the asymptotics of the equation R̃R = 0 also hold. We omit
them, since they are entirely analogous.

4.2 Mode Stability
Proof of Theorem 2. In this case, we see directly that U(r) < 0, and integrating the equation
RR = 0 by parts like in the proof of Theorem 1, we see that R vanishes identically. The case
involving the equation R̃R = 0 is entirely analogous.

A Newman–Penrose Equations
We have the Newman–Penrose commutation relations:

[∆, D]η = (γ + γ̃)Dη + (ϵ + ϵ̃)∆η − (π + τ̃)δη − (π̃ + τ)δ̃η, (73)
[D, δ]η = −(α̃ + β − π̃)Dη − κ∆η + (ϵ − ϵ̃ + ρ̃)δη + σδ̃η, (74)
[δ, ∆]η = −ν̃Dη − (α̃ + β − τ)∆η + (−γ + γ̃ + µ)δη + λ̃δ̃η, (75)
[δ̃, D]η = (α + β̃ − π)Dη + κ̃∆η − σ̃δη + (ϵ − ϵ̃ − ρ)δ̃η, (76)
[δ̃, ∆]η = −νDη − (α + β̃ − τ̃)∆η + λδη + (γ − γ̃ + µ̃)δ̃η, (77)
[δ̃, δ]η = (−µ + µ̃)Dη + (−ρ + ρ̃)∆η + (α − β̃)δη + (−α̃ + β)δ̃η. (78)

In terms of the spin coefficients, the vacuum Einstein equations become

−Dγ + ∆ϵ = Ψ2 − γ̃ϵ − γ(2ϵ + ϵ̃) − κν + βπ + απ̃ + ατ + πτ + βτ̃ , (79)
−Dγ̃ + ∆ϵ̃ = Ψ̃2 − γϵ̃ − γ̃(ϵ + 2ϵ̃) − κ̃ν̃ + α̃π + β̃π̃ + β̃τ + α̃τ̃ + π̃τ̃ , (80)
−Dτ + ∆κ = Ψ1 − 3γκ − γ̃κ + π̃ρ + πσ + ϵτ − ϵ̃τ + ρτ + στ̃ , (81)
−Dτ̃ + ∆κ̃ = Ψ̃1 − γκ̃ − 3γ̃κ̃ + πρ̃ + π̃σ̃ + σ̃τ − ϵτ̃ + ϵ̃τ̃ + ρ̃τ̃ , (82)
−Dν + ∆π = Ψ3 − 3ϵν − ϵ̃ν + γπ − γ̃π + µπ + λπ̃ + λτ + µτ̃ , (83)
−Dν̃ + ∆π̃ = Ψ̃3 − ϵν̃ − 3ϵ̃ν̃ + λ̃π − γπ̃ + γ̃π̃ + µ̃π̃ + µ̃τ + λ̃τ̃ , (84)
−∆β + δγ = α̃γ + 2βγ − αλ̃ − β(γ̃ + µ) + ϵν̃ + νσ − γτ − µτ, (85)

∆α̃ − δγ̃ = Ψ̃3 − βγ̃ + β̃λ̃ + α̃(−γ + µ) − ϵ̃ν̃ − ν̃ρ̃ + γ̃τ + λ̃τ̃ , (86)
−Dβ + δϵ = Ψ1 − α̃ϵ − βϵ̃ − γκ − κµ + ϵπ̃ + βρ̃ + ασ + πσ, (87)
−Dα̃ + δϵ̃ = − βϵ̃ − γ̃κ − κ̃λ̃ + ϵ̃π̃ + π̃ρ̃ + α̃(ϵ − 2ϵ̃ + ρ̃) + β̃σ, (88)
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−Dσ + δκ = Ψ0 − α̃κ − 3βκ + κπ̃ + 3ϵσ − ϵ̃σ + ρσ + ρ̃σ − κτ, (89)
Dρ̃ − δκ̃ = 3α̃κ̃ + βκ̃ − κ̃π̃ − ϵρ̃ − ϵ̃ρ̃ − ρ̃2 − σσ̃ + κτ̃ , (90)
∆µ − δν = λλ̃ + γµ + γ̃µ + µ2 − α̃ν − 3βν − ν̃π + ντ, (91)

−∆λ̃ + δν̃ = − Ψ̃4 + γλ̃ − 3γ̃λ̃ − λ̃µ − λ̃µ̃ + ν̃(3α̃ + β + π̃) − ν̃τ, (92)
−Dµ + δπ = Ψ2 − ϵµ − ϵ̃µ − κν − α̃π + βπ + ππ̃ + µρ̃ + λσ, (93)
−Dλ̃ + δπ̃ = ϵλ̃ − 3ϵ̃λ̃ − κν̃ + α̃π̃ − βπ̃ + π̃2 + λ̃ρ̃ + µ̃σ, (94)
−∆σ + δτ = κν̃ − λ̃ρ + 3γσ − γ̃σ − µσ + α̃τ − βτ − τ2, (95)

∆ρ̃ − δτ̃ = Ψ̃2 − κ̃ν̃ − γρ̃ − γ̃ρ̃ + µρ̃ + λ̃σ̃ + α̃τ̃ − βτ̃ + τ τ̃ , (96)
−δβ̃ + δ̃α̃ = Ψ̃2 − αα̃ + 2α̃β̃ − ββ̃ + ϵ̃µ − ϵ̃µ̃ + γ̃ρ − γ̃ρ̃ − µ̃ρ̃ + λ̃σ̃, (97)

δα − δ̃β = Ψ2 − αα̃ + 2αβ − ββ̃ − ϵµ + ϵµ̃ − γρ − µρ + γρ̃ + λσ, (98)
∆α − δ̃γ = Ψ3 − β̃γ − αγ̃ + βλ + αµ̃ − ϵν − νρ + λτ + γτ̃ , (99)

−∆β̃ + δ̃γ̃ = αγ̃ − α̃λ − β̃(γ − 2γ̃ + µ̃) + ϵ̃ν + ν̃σ̃ − γ̃τ̃ − µ̃τ̃ , (100)
Dα − δ̃ϵ = 2αϵ + β̃ϵ + γκ̃ + κλ − ϵπ − πρ − α(ϵ̃ + ρ) − βσ̃, (101)

−Dβ̃ + δ̃ϵ̃ = Ψ̃1 − αϵ̃ − γ̃κ̃ − κ̃µ̃ + ϵ̃π + β̃(−ϵ + ρ) + α̃σ̃ + π̃σ̃, (102)
Dρ − δ̃κ = 3ακ + β̃κ − κπ − ϵρ − ϵ̃ρ − ρ2 − σσ̃ + κ̃τ, (103)

−Dσ̃ + δ̃κ̃ = Ψ̃0 − ακ̃ − 3β̃κ̃ + κ̃π − ϵσ̃ + 3ϵ̃σ̃ + ρσ̃ + ρ̃σ̃ − κ̃τ̃ , (104)
−δµ̃ + δ̃λ̃ = Ψ̃3 − αλ̃ + 3β̃λ̃ − α̃µ̃ − βµ̃ + µπ̃ − µ̃π̃ + ν̃ρ − ν̃ρ̃, (105)

δλ − δ̃µ = Ψ3 − α̃λ + 3βλ − αµ − β̃µ − µπ + µ̃π − νρ + νρ̃, (106)
−∆λ + δ̃ν = − Ψ4 − 3γλ + γ̃λ − λµ − λµ̃ + ν(3α + β̃ + π) − ντ̃ , (107)

∆µ̃ − δ̃ν̃ = λλ̃ + γµ̃ + γ̃µ̃ + µ̃2 − αν̃ − 3β̃ν̃ − νπ̃ + ν̃τ̃ , (108)
Dλ − δ̃π = 3ϵλ − ϵ̃λ + κ̃ν − απ + β̃π − π2 − λρ − µσ̃, (109)

−Dµ̃ + δ̃π̃ = Ψ̃2 − ϵµ̃ − ϵ̃µ̃ − κ̃ν̃ − απ̃ + β̃π̃ + ππ̃ + µ̃ρ + λ̃σ̃, (110)
−δσ̃ + δ̃ρ̃ = Ψ̃1 + κ̃(µ − µ̃) − αρ̃ − β̃ρ̃ + 3α̃σ̃ − βσ̃ + ρτ̃ − ρ̃τ̃ , (111)

δρ − δ̃σ = Ψ1 + κ(−µ + µ̃) − α̃ρ − βρ + 3ασ − β̃σ − ρτ + ρ̃τ, (112)
∆ρ − δ̃τ = Ψ2 − κν − γρ − γ̃ρ + µ̃ρ + λσ + ατ − β̃τ + τ τ̃ , (113)

−∆σ̃ + δ̃τ̃ = κ̃ν − λρ̃ − γσ̃ + 3γ̃σ̃ − µ̃σ̃ + ατ̃ − β̃τ̃ − τ̃2. (114)

Finally, we have the Bianchi identities:

DΨ̃3 − ∆Ψ1 + δΨ2 − δΨ̃2 = Ψ̃4κ̃ + 2Ψ̃1λ̃ + 2Ψ1(γ − µ) + Ψ0ν − 3Ψ̃2π̃

+ 2Ψ̃3(ϵ̃ − ρ̃) + 2Ψ3σ − 3Ψ2τ,
(115)

−∆Ψ0 + δΨ1 = 4Ψ0γ − Ψ0µ + 3Ψ2σ − 2Ψ1(β + 2τ), (116)
DΨ̃2 − δΨ̃1 = 2Ψ̃3κ̃ + Ψ̃0λ̃ + 2Ψ̃1(α̃ − π̃) − 3Ψ̃2ρ̃, (117)
DΨ̃4 − δΨ̃3 = 4Ψ̃4ϵ̃ + 3Ψ̃2λ̃ − 2Ψ̃3(α̃ + 2π̃) − Ψ̃4ρ̃, (118)

−∆Ψ2 + δΨ3 = − 3Ψ2µ + 2Ψ1ν + Ψ4σ + 2Ψ3(β − τ), (119)
−∆Ψ1 + δΨ2 = 2Ψ1(γ − µ) + Ψ0ν + 2Ψ3σ − 3Ψ2τ, (120)
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DΨ1 − δ̃Ψ0 = 3Ψ2κ + Ψ0(4α − π) − 2Ψ1(ϵ + 2ρ), (121)
DΨ2 + DΨ̃2 − δΨ̃1 − δ̃Ψ1 = 2Ψ3κ + 2Ψ̃3κ̃ + Ψ0λ + Ψ̃0λ̃ + 2Ψ1(α − π)

+ 2Ψ̃1(α̃ − π̃) − 3Ψ2ρ − 3Ψ̃2ρ̃,
(122)

DΨ3 − ∆Ψ̃1 − δ̃Ψ2 + δ̃Ψ̃2 = Ψ4κ + 2Ψ1λ + 2Ψ̃1(γ̃ − µ̃) + Ψ̃0ν̃ − 3Ψ2π

+ 2Ψ3(ϵ − ρ) + 2Ψ̃3σ̃ − 3Ψ̃2τ̃ ,
(123)

−∆Ψ2 − ∆Ψ̃2 + δΨ3 + δ̃Ψ̃3 = − 3Ψ2µ − 3Ψ̃2µ̃ + 2Ψ1ν + 2Ψ̃1ν̃ + Ψ4σ

+ Ψ̃4σ̃ + 2Ψ3(β − τ) + 2Ψ̃3(β̃ − τ̃),
(124)

−∆Ψ̃3 + δ̃Ψ̃4 = − 2Ψ̃3(γ̃ + 2µ̃) + 3Ψ̃2ν̃ + Ψ̃4(4β̃ − τ̃), (125)
DΨ̃1 − δΨ̃0 = 3Ψ̃2κ̃ + Ψ̃0(4α̃ − π̃) − 2Ψ̃1(ϵ̃ + 2ρ̃), (126)
DΨ̃2 − δΨ̃1 = 2Ψ̃3κ̃ + Ψ̃0λ̃ + 2Ψ̃1(α̃ − π̃) − 3Ψ̃2ρ̃, (127)

−∆Ψ̃0 + δ̃Ψ̃1 = 4Ψ̃0γ̃ − Ψ̃0µ̃ + 3Ψ̃2σ̃ − 2Ψ̃1(β̃ + 2τ̃), (128)
−∆Ψ3 + δΨ4 = − 2Ψ3(γ + 2µ) + 3Ψ2ν + Ψ4(4β − τ), (129)
−∆Ψ2 + δΨ3 = − 3Ψ2µ + 2Ψ1ν + Ψ4σ + 2Ψ3(β − τ), (130)

DΨ4 − δ̃Ψ3 = 4Ψ4ϵ + 3Ψ2λ − 2Ψ3(α + 2π) − Ψ4ρ, (131)
−∆Ψ1 + δΨ2 = 2Ψ1(γ − µ) + Ψ0ν + 2Ψ3σ − 3Ψ2τ, (132)

DΨ3 − δ̃Ψ2 = Ψ4κ + 2Ψ1λ − 3Ψ2π + 2Ψ3(ϵ − ρ), (133)
DΨ3 − δ̃Ψ2 = Ψ4κ + 2Ψ1λ − 3Ψ2π + 2Ψ3(ϵ − ρ). (134)

A.1 Spin Coefficients for Kerr

α = r cos θ − a

(r − a cos θ)2
√

2Σ sin θ
, (135)

β = r cos θ − a

(r − a cos θ)2
√

2Σ sin θ
, (136)

γ = i(−∆/(r − a cos θ) + r − M)
2
√

2∆Σ
, (137)

ϵ = i(−∆/(r − a cos θ) + r − M)
2
√

2∆Σ
, (138)

κ = 0, (139)
λ = 0, (140)

µ = −
i
√

∆/2Σ
r − a cos θ

, (141)

ν = 0, (142)

π = − a sin θ

(r − a cos θ)
√

2Σ
, (143)

ρ = −
i
√

∆/2Σ
r − a cos θ

, (144)
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σ = 0, (145)

τ = − a sin θ

(r − a cos θ)
√

2Σ
, (146)

α̃ = − r cos θ + a

(r + a cos θ)2
√

2Σ sin θ
, (147)

β̃ = − r cos θ + a

(r + a cos θ)2
√

2Σ sin θ
, (148)

γ̃ = i(−∆/(r + a cos θ) + r − M)
2
√

2∆Σ
, (149)

ϵ̃ = i(−∆/(r − a cos θ) + r − M)
2
√

2∆Σ
, (150)

κ̃ = 0, (151)
λ̃ = 0, (152)

µ̃ = −
i
√

∆/2Σ
r + a cos θ

, (153)

ν̃ = 0, (154)

π̃ = − a sin θ

(r + a cos θ)
√

2Σ
, (155)

ρ̃ = −
i
√

∆/2Σ
r + a cos θ

, (156)

σ̃ = 0, (157)

τ̃ = − a sin θ

(r + a cos θ)
√

2Σ
. (158)

A.2 Spin Coefficients for Taub-Bolt

α = N(r + N)2

8Σ
√

2∆Σ
, (159)

β = N(r + N)2

8Σ
√

2∆Σ
, (160)

γ = i cot θ

2
√

2Σ
, (161)

ϵ = i cot θ

2
√

2Σ
, (162)

κ = 0, (163)
λ = 0, (164)
µ = 0, (165)
ν = 0, (166)
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π = −
(r + N)

√
∆/2Σ

Σ , (167)

ρ = 0, (168)
σ = 0, (169)

τ = −
(r + N)

√
∆/2Σ

Σ , (170)

α̃ = − 9N(r − N)
8(r + N)

√
∆Σ

, (171)

β̃ = − 9N(r − N)
8(r + N)

√
∆Σ

, (172)

γ̃ = i cot θ

2
√

2Σ
, (173)

ϵ̃ = i cot θ

2
√

2Σ
, (174)

κ̃ = 0, (175)
λ̃ = 0, (176)
µ̃ = 0, (177)
ν̃ = 0, (178)

π̃ =
√

∆/2Σ
r + N

, (179)

ρ̃ = 0, (180)
σ̃ = 0, (181)

τ̃ =
√

∆/2Σ
r + N

. (182)
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