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Abstract
We study Ricci-flat perturbations of gravitational instantons of Petrov type D.
Analogously to the Lorentzian case, the Weyl curvature scalars of extreme spin
weight satisfy a Riemannian version of the separable Teukolsky equation. As
a step toward infinitesimal rigidity of the type D Kerr and Taub-bolt families
of instantons, we prove mode stability, i.e. that the Teukolsky equation admits
no solutions compatible with regularity and asymptotic (local) flatness.

Keywords: gravitational instantons, mode stability, algebraically special,
Petrov type D

1. Introduction

A gravitational instanton is a complete and non-compact Ricci-flat Riemannian four-manifold
with quadratic curvature decay. There are a number of families of known examples, such as the
Riemannian Kerr instanton, and the Taub–NUT1 and Taub-bolt instantons. Furthermore, there
are some known general results about gravitational instantons, many of which hold under vari-
ous symmetry assumptions, such as the existence of a U(1) or U(1)×U(1) isometry group,
see e.g. [1–4]. In the compact case, we have the Besse conjecture [5], stating that all com-
pact Ricci-flat manifolds have special holonomy. This is a wide-open conjecture; there are no
known examples of compact Ricci-flat four-manifolds with generic holonomy, i.e. holonomy
group SO(4). This is in contrast to the the non-compact case, since there are examples of
gravitational instantons with generic holonomy. However, all known examples still satisfy the
weaker requirement of hermiticity, and it is therefore natural to conjecture that all gravitational

1 The acronym “NUT” is formed by the initials of E. Newman, L. Tamburino and T. Unti.
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instantons are Hermitian, see [1] where this conjecture is stated for the asymptotically locally
flat (ALF) case. A first step toward such a result is given by proving rigidity, i.e. for various
known examples of gravitational instantons, showing that there are no other Ricci-flat metrics
close to that metric.

In the recent paper [6], it was shown that rigidity holds for the Riemannian Kerr and Taub-
bolt families. However, infinitesimal rigidity, i.e. that Ricci-flat linear perturbations of these
instantons decaying sufficiently fast at infinity must be perturbations within the respective
family, is still open. Due to the fact that rigidity holds, and that the relevant families are smooth
manifolds, infinitesimal rigidity is equivalent to integrability, i.e. that any such Ricci-flat linear
perturbation integrates to a curve of Ricci-flat metrics.

It was shown in [7], that for perturbations of the Lorentzian Kerr metric whose frequency
lies in the upper half plane, and satisfying certain boundary conditions, the perturbations of the
Weyl scalars of extreme spin weight vanish identically. This result is known as mode stability.
Furthermore, mode stability for frequencies on the real axis was shown in [8]. As was shown in
[9], see also [10], perturbations of the Lorentzian Kerr metric whose Weyl scalars of extreme
spin weight vanish identically must be perturbations within the Kerr family, modulo gauge.

The following two main theorems of this paper show that the Riemannian analog of mode
stability holds in the ALF type D case2, the precise definitions of asymptotically flat (AF) and
ALF perturbations being given in sections 3.1 and 4.1, respectively.

Theorem 1. For Ricci-flat AF perturbations of the Riemannian Kerr metric, the perturbed

Weyl scalars Ψ̇0,
˙̃Ψ0 vanish identically.

Theorem 2. For Ricci-flat ALF perturbations of the Taub-bolt metric, the perturbedWeyl scal-

ars Ψ̇0,
˙̃Ψ0 vanish identically.

Based on these results, one might conjecture that infinitesimal rigidity in the previously
described sense holds for these instantons.

2. The Newman–Penrose formalism in Riemannian signature

The Newman–Penrose (NP) formalism [11], commonly used in general relativity, can be adap-
ted to a Riemannian signature (see [12, 13]). Let (l, l,m,m) be a tetrad of vector fields with
complex coefficients, in which the metric has the form

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (1)

When viewed as first order differential operators, we denote3 the vector fields l, l,m,m by
D,∆, δ,−δ̃, respectively. With respect to the tetrad (l, l,m,m), the Levi–Civita connection is
represented by 24 spin coefficients, denoted by Greek letters and defined to be the coefficients

2 By type D, we mean Petrov type D+D−, see [3, 4]. The only ALF instantons of type D are the Riemannian Kerr
and the Taub-bolt metrics.
3 Note that the symbol ∆ will be given different, unrelated meanings in sections 3 and 4. The current meaning of ∆
will be retained throughout all of section 2 and appendix A.
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in the right hand sides of the equations

1
2

(
l
a∇bla−ma∇bma

)
= γlb+ ϵlb−αmb+βmb, (2)

l
a∇bma =−νlb−πlb+λmb−µmb, (3)

ma∇bla = τ lb+κlb− ρmb+σmb, (4)

1
2

(
l
a∇bla+ma∇bma

)
= γ̃lb+ ϵ̃lb− β̃mb+ α̃mb, (5)

l
a∇bma = ν̃lb+ π̃lb− µ̃mb+ λ̃mb, (6)

ma∇bla =−τ̃ lb− κ̃lb+ σ̃mb− ρ̃mb. (7)

From the fact all inner products of the tetrad vectors are constant, it can also be seen that

α= β, γ =−ϵ, κ= ν, λ=−σ, µ=−ρ, π = τ, (8)

α̃= β̃, γ̃ =−ϵ̃, κ̃= ν̃, λ̃=−σ̃, µ̃=−ρ̃, π̃ = τ̃ . (9)

The Levi–Civita connection is thus represented by 6+ 6 independent complex scalars.
We also have the Weyl scalars:

Ψ0 =−W(l,m, l,m) , Ψ1 =−W
(
l, l, l,m

)
, Ψ2 =W

(
l,m, l,m

)
,

Ψ3 =W
(
l, l, l,m

)
, Ψ4 =−W

(
l,m, l,m

)
,

(10)

Ψ̃0 =−W(l,m, l,m) , Ψ̃1 =−W
(
l, l, l,m

)
, Ψ̃2 =W

(
l,m, l,m

)
,

Ψ̃3 =W
(
l, l, l,m

)
, Ψ̃4 =−W

(
l,m, l,m

)
,

(11)

where W denotes the Weyl curvature tensor.

From the definitions, one sees immediately thatΨk =Ψ4−k and Ψ̃k = Ψ̃4−k, so that theWeyl
tensor is determined by the 2+ 2 complex scalars Ψ0,Ψ1,Ψ̃0,Ψ̃1 and the 1+ 1 real scalars
Ψ2,Ψ̃2. The Weyl scalars of extreme spin weight are defined to be Ψ0,Ψ4,Ψ̃0 and Ψ̃4.

A tetrad (l, l,m,m) is said4 to be adapted if Ψ0 =Ψ1 = Ψ̃0 = Ψ̃1 = 0 and Ψ2,Ψ̃2 6= 0. It
can be shown that a Ricci-flat four-manifold admits an adapted tetrad if and only if it has type
D. A proof of this fact in the Lorentzian case can be found in [14, chapter 7].

2.1. The perturbation equations

When referring to a perturbation ġ of a metric g, we are referring to a linear perturbation of g,
i.e. a symmetric two-tensor ġ. When g is Ricci-flat, we say that ġ is a Ricci-flat perturbation
if it is Ricci-flat to first order, i.e. if ġ ∈ ker((DRic)g). In general, for a quantity depending on
the metric g, we let a dot above the quantity denote its derivative in the direction ġ. Then ġ is
a Ricci-flat perturbation if and only if Ṙic= 0.

Ricci-flat perturbations of the Lorentzian Kerr metric have been studied extensively, and
in [15], Teukolsky derived a well-known equation for the perturbation of the Weyl scalars
of extreme spin weight, for such perturbations of the metric. The following theorem gives a
Riemannian analog of that perturbation equation.

4 The corresponding notion in the Lorentzian setting is that of a principal tetrad.
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Theorem3. Consider a Ricci-flat perturbation ġ of a Ricci-flat typeDmetric g. For an adapted
tetrad, the perturbation Ψ̇0 satisfies the equation(
(D− 3ϵ+ ϵ̃− ρ̃− 4ρ)(∆− 4γ+µ)− (δ− α̃− 3β+ π̃− 4τ)

(
δ̃− 4α+π

)
− 3Ψ2

)
Ψ̇0 = 0,

(12)

and the perturbation ˙̃Ψ0 satisfies the equation(
(D− 3ϵ̃+ ϵ− ρ− 4ρ̃)(∆− 4γ̃+ µ̃)−

(
δ̃−α− 3β̃+π− 4τ̃

)
(δ− 4α̃+ π̃)− 3Ψ̃2

) ˙̃Ψ0 = 0.

(13)

Proof. Since we have an adapted tetrad, Ψ0 =Ψ1 = Ψ̃0 = Ψ̃1 = 0, and using (89) and (91)
along with their tilded versions, we also have κ= κ̃= σ = σ̃ = 0. The linearized versions
of (91) and (89) become

(∆− 4γ+µ)Ψ̇0 = (δ− 4τ − 2β)Ψ̇1 + 3σ̇Ψ2 (14)

and

(δ̃− 4α+π)Ψ̇0 = (D− 4ρ− 2ϵ)Ψ̇1 + 3κ̇Ψ2 (15)

respectively. Operating on (14) with D and on (15) with δ, subtracting the resulting equations
and using the commutation relation (76), we get(
D(∆− 4γ+µ)− δ

(
δ̃− 4α+π

))
Ψ̇0 = ([D, δ]− 4Dτ − 2Dβ+ 4δρ+ 2δϵ)Ψ̇1 +(3Dσ̇− 3δκ̇)Ψ2

(16)

= (−(α̃+ 3β− π̃+ 4τ)D+(3ϵ− ϵ̃+ ρ̃+ 4ρ))δ)Ψ̇1

− Ψ̇1(D(4τ + 2β)+ δ(4ρ+ 2ϵ))+ (3Dσ̇− 3δκ̇)Ψ2.

(17)

We eliminate the first term on the right:(
(D− 3ϵ+ ϵ̃− ρ̃− 4ρ)(∆− 4γ+µ)− (δ− α̃− 3β+ π̃− 4τ)

(
δ̃− 4α+π

))
Ψ̇0 = A1 +A2, (18)

where

A1 = ((−3ϵ+ ϵ̃− ρ̃− 4ρ)(−4τ − 2β)− (−α̃− 3β+ π̃− 4τ)(−4ρ− 2ϵ)

− Ψ̇1(D(4τ + 2β)+ δ(4ρ+ 2ϵ)) (19)

and

A2 = 3((D− 3ϵ+ ϵ̃− ρ̃− 4ρ) σ̇− (δ− α̃− 3β+ π̃− 4τ) κ̇)Ψ2. (20)

By using (80), (85) and (88), we see that A1 = 0. For an adapted tetrad, (90) and (92) become

DΨ2 = 3ρΨ2, δΨ2 = 3τΨ2. (21)
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Therefore, by the Leibniz rule,

A2 = 3σ̇DΨ2 − 3κ̇δΨ2 + 3Ψ2((D− 3ϵ+ ϵ̃− ρ̃− 4ρ)σ̇− (δ− α̃− 3β+ π̃− 4τ)κ̇)) (22)

= 3Ψ2 ((D− 3ϵ+ ϵ̃− ρ̃− ρ) σ̇− (δ− α̃− 3β+ π̃− τ) κ̇) (23)

= 3Ψ̇0Ψ2, (24)

where we used the linearization of (84) in the last step, showing that (12) holds. The proof
of (13) is similar, referring to the tilded versions of the NP equations instead.

3. The Riemannian Kerr instanton

In Boyer–Lindquist coordinates (t,r,θ,ϕ), the Riemannian Kerr family of metrics is given by
the expression5

g=
Σ

∆
dr2 +Σdθ2 +

∆

Σ

(
dt− asin2 θdϕ

)2
+

sin2 θ
Σ

((
r2 − a2

)
dϕ+ adt

)2
. (25)

Here, M> 0 and a ∈ R are the parameters of the family, ∆=∆(r) = r2 − 2Mr− a2 and
Σ= r2 − a2 cos2 θ, and the coordinates have the ranges r> r+, 0< θ < π, where r± =M±√
M2 + a2 are the roots of ∆. Like its Lorentzian counterpart, this metric is Ricci-flat.
Now define new coordinates (̃t, r̃,θ, ϕ̃) by

r =M+
√
M2 + a2 cosh r̃,

t = 1
κ t̃,

ϕ = ϕ̃− Ω
κ t̃,

(26)

where κ=
√
M2+a2
2Mr+

and Ω= a
2Mr+

. Then r is a smooth function of r̃2, and (25) gives

g=Σ
(
dr̃2 + dθ2 +

(
r̃2 +O

(
r̃4
))

d̃t2 +
(
sin2 θ+O

(
sin4 θ

))
dϕ̃2
)
. (27)

Letting (r̃, t̃) be polar coordinates on R2 and letting (θ, ϕ̃) be spherical coordinates on S2, it
follows that g extends to a complete metric on R2 × S2, provided that we identify t̃ and ϕ̃
with period 2π independently. Note that this is equivalent to performing the identifications
(t,ϕ)∼ (t+ 2π

κ ,ϕ−
2πΩ
κ )∼ (t,ϕ+ 2π).

3.1. The separated perturbation equations in coordinates

We shall be interested in a particular choice of complex null tetrad (l, l,m,m), called theCarter
tetrad, defined by

l=
1√
2∆Σ

((
r2 − a2

) ∂
∂t

− a
∂

∂ϕ

)
+ i

√
∆

2Σ
∂

∂r
, (28)

m=
1√
2Σ

∂

∂θ
− i√

2Σ

(
1

sinθ
∂

∂ϕ
+ asinθ

∂

∂t

)
. (29)

5 Note that∆ has a different meaning in this section, unrelated to those given in sections 2 and 4. The current meaning
of ∆ will be retained throughout all of section 3 and appendix B.1.
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Note that |l|g = |m|g = 1. The spin coefficients for the Carter tetrad are given explicitly in
section B.1. For this tetrad we have

Ψ2 =
M

(r− acosθ)3
, Ψ̃2 =

M

(r+ acosθ)3
, (30)

and all other Weyl scalars vanish. In particular, this is an adapted tetrad.
We shall now analyze the perturbation equations in the Carter tetrad. The relevant properties

of the equations are given in the following four lemmas.

Lemma 1. For the Carter tetrad, the perturbation equation (12) is equivalent to the equation6

LΦ = 0, where Φ =Ψ
−2/3
2 Ψ̇0 and

L=
∂

∂r
∆
∂

∂r
+

1
∆

((
r2 − a2

) ∂
∂t

− a
∂

∂ϕ
+ 2i(r−M)

)2

+ 8i(r+ acosθ)
∂

∂t

+
1

sinθ
∂

∂θ
sinθ

∂

∂θ
+

1

sin2 θ

(
asin2 θ

∂

∂t
+

∂

∂ϕ
− 2icosθ

)2

. (31)

Furthermore, if Φ is a solution to this equation coming from a perturbation of the metric,
then we can write

Φ(t,r,θ,ϕ) =
∑
m,ω,Λ

ei(mϕ−ωt)Rm,ω,Λ (r)Sm,ω,Λ (θ) , (32)

where m runs over Z, ω runs over Ω+κZ and for each choice of m,ω,Λ, the function
R= Rm,ω,Λ solves the equation RR= 0. The function S= Sm,ω,Λ is the unique solution to the
boundary value problem SS= 0, S ′(0) = S ′(π) = 0, where

R=
d
dr

∆
d
dr

+U(r) , (33)

U(r) =−
((
r2 − a2

)
ω+ am+ 2(r−M)

)2
∆

+ 8rω−Λ (34)

and

S=
1

sinθ
d
dθ

sinθ
d
dθ

+V(cosθ) , (35)

V(x) = 8aωx− 1
1− x2

(
aω
(
1− x2

)
−m+ 2x

)2
+Λ. (36)

Here, S is normalized with respect to the L2 product with measure sinθdθ, and the separation
constant Λ runs over the (countable set of) values for which such an S exists.
The same statement holds for the perturbation equation (13), if Φ is replaced by Φ̃, where

Φ̃ = Ψ̃
−2/3
2

˙̃Ψ0.

6 Note that the equation LΦ = 0 is the same equation as that occurring in the Lorentzian case (see [7, 8]), but with t
replaced with it, a replaced with −ia and with s=−2.

6
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Proof. The fact that (12) is equivalent to LΦ = 0 follows from a direct computation, using
the expressions for the spin coefficients in section B.1.

Now note that the boundary value problem SS= 0, S ′(0) = S ′(π) = 0 is a Sturm–Liouville
problem. Thus, there exists an orthonormal L2 basis of functions {Sm,ω,Λ}Λ solving it, and
furthermore, we can perform a Fourier series decompositions in the coordinates (t,ϕ). From
these considerations, we can write (32), where

Rm,ω,Λ (r) =
κ

4π2

ˆ 2π/κ

0

ˆ 2π

0

ˆ π

0
e−i(mϕ−ωt)Φ(t,r,θ,ϕ)Sm,ω,Λ (θ)sinθdθdϕdt. (37)

The fact that R= Rm,ω,Λ satisfies RR= 0 now follows directly from (37), along with the fact
that LΦ = 0.

For the statement involving Φ̃, the proof is entirely analogous.

Lemma 2. The equation RR= 0 is an ordinary differential equation in a complex variable r,
which has regular singular points at r= r±. The point r=∞ is an irregular singular point
of rank 1, except when ω= 0, in which case it is a regular singular point. Thus, the equation
RR= 0 is a confluent Heun equation (see [16, section 3]) when ω 6= 0, and a hypergeometric
equation (see [16, section 2]) when ω= 0. The characteristic exponents at r= r+ are

±
(
1+

2Mr+ + am
r+ − r−

)
, (38)

and those at r= r− are

±
(
−1+

2Mr− + am
r+ − r−

)
. (39)

When ω= 0, we have Λ⩾ 0, and the characteristic exponents at r=∞ are

−3
2
± i

√
7
2
+Λ. (40)

When ω 6= 0, the equationRR= 0 admits normal solutions (see [17, section 3.2]), near r=∞,
of the asymptotic form

R∼ e±rωr−1±2(Mω−1). (41)

Proof. The fact that r= r± are regular singular points follows directly from the fact that
∆= (r− r+)(r− r−), the statement about the type and rank of the singular point at r=∞
follows directly from the discussion in [17, section 3.1], and the expressions for the character-
istic exponents can be seen from the discussion in [16, section 1.1.3]. Letting R= y/

√
∆, the

equation RR= 0 is transformed into

d2y
dr2

+ qy= 0, (42)

where

q(r) =
U(r)
∆

+

(
r+ − r−
2∆

)2

=−ω2 − 4ω (Mω− 1)
r

+O
(
r−2
)
. (43)

7
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Following [17, section 3.2], the equationRR= 0 therefore has normal solutions of the asymp-
totic form

R∼ e±rωr−1±2(Mω−1). (44)

Lemma 3. For a solution to the equation RR= 0 coming from a (globally smooth) perturba-
tion of the Kerr metric, the corresponding characteristic exponent at r= r+ is∣∣∣∣1+ 2Mr+ + am

r+ − r−

∣∣∣∣ . (45)

Proof. Since the set corresponding to r= r+ is compact, and by assumption, the perturba-
tion Ẇ of the Weyl tensor is continuous, Ẇ has bounded norm in a neighborhood of this set.
Consequently, since l and m have norm 1, it follows that Ψ̇0 =−Ẇ(l,m, l,m) is bounded near
r= r+. Since Ψ

−2/3
2 = O(r2), it follows that Φ, and therefore R, is bounded near r= r+. The

statement now follows immediately.

A perturbation ġ of the Kerr metric g is said to be AF if |ġ|g = O(r−1), with corresponding
decay on derivatives, i.e. |∇kġ|g = O(r−1−k) for every positive integer k. Here, r is the radial
coordinate of Kerr defined earlier, and the norm and covariant derivative is taken with respect
to g.

Lemma 4. Let R be a solution to the equation RR= 0 coming from an AF perturbation of
the Kerr metric. When ω= 0, none of the characteristic exponents at r=∞ are compatible
with the asymptotic flatness assumption. When ω 6= 0, exactly one of the asymptotic normal
solutions is compatible with this assumption, namely

R∼ e−r|ω|r−1−2(Mω−1) sgn(ω). (46)

Proof. By the assumption of asymptotic flatness, we have W= O(r−3), which means that Φ,
and therefore R, decays as r−1 as r→∞. In particular, we must have limr→∞R(r) = 0, and
the result now follows immediately.

3.2. Mode stability

Equipped with the lemmas of the previous subsection, we are now in a position to prove
theorem 1.

Proof of theorem 1. For r> r+ and −1< x< 1, note that

U(r)+V(x) =−16M(r+ ax)

(r− ax)2

−
(
a2x(mx− 2)+ 2a

(
x2 − 1

)
(M(rω− 1)+ r)+ r(m− 2x)(2M− r)

)2
(1− x2)(∆+ (1− x2)a2)∆

− (2M(ax+ 3r)+ (r− ax)(r+ ax)(−axω+ rω− 2))2

(r− ax)2 (∆+ (1− x2)a2)

< 0.
(47)

8
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Here, the strict negativity follows from that of the first term, which holds because r+ > |a|. By
an integration of parts, we have

U(r)⩽ U(r)+
ˆ π

0

(
dS
dθ

)2

sinθdθ = U(r)+
ˆ π

0

(
SS− 1

sinθ
d
dθ

(
sinθ

dS
dθ

))
Ssinθdθ

(48)

= U(r)+
ˆ π

0
V(cosθ)S2 sinθdθ =

ˆ π

0
(U(r)+V(cosθ))S2 sinθdθ < 0, (49)

where the last equality follows from (47) and the normalization of S. Multiplying (33) by R
and integrating, the first term being integrated by parts, we get

0=

[
∆
dR
dr
R

]r=∞

r=r+

−
ˆ ∞

r+

(
∆

∣∣∣∣dRdr
∣∣∣∣2 −U|R|2

)
dr. (50)

We claim that the first term vanishes; to see this, we consider the endpoints separately. Near
r=∞, we have ∆∼ r2, while R and its derivative decays exponentially. Thus, the term in
square brackets decays exponentially, and in particular it goes to zero as r→∞. Near r= r+,
we know that R is bounded. The characteristic exponent corresponding to R is either positive,
in which case dR

dr = o(r−1), or R is analytic in a neighborhood of r= r+, in which case dR
dr is

bounded. In either case, the product∆ dR
dr goes to zero as r→ r+, and from this it immediately

follows that the term in square brackets goes to zero.
We have thus shown that

ˆ ∞

r+

(
∆

∣∣∣∣dRdr
∣∣∣∣2 −U|R|2

)
dr= 0. (51)

Since U< 0, the terms in the integrand are both non-negative, and must therefore vanish. We
conclude that R vanishes identically.

4. The Taub-bolt instanton

The general Taub–NUT family of Ricci-flat metrics, depending on two parameters M,N> 0,
is given7 in coordinates (t,r,θ,ϕ) by

g=
Σ

∆
dr2 + 4N2∆

Σ
(dt+ cosθdϕ)2 +Σ

(
dθ2 + sin2 θdϕ2

)
, (52)

where ∆= r2 − 2Mr+N2 and Σ= r2 −N2. Setting M=N yields the self-dual Taub–NUT
metric, a complete metric on R4.

Another metric of interest, the Taub-bolt metric, arises by letting M= 5
4N, which we shall

do from now. We will now give a brief account of the regularity of this metric. Introducing the
coordinate system (̃t, r̃, θ̃,ϕ) by

7 Note that∆ has a different meaning in this section, unrelated to those given in sections 2 and 3. The current meaning
of ∆ will be retained throughout all of section 4 and appendix B.2.
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r = N

4 (5+ 3cosh r̃) ,

t = 2̃t−ϕ,

θ = 2arctan
(

θ̃
2

)
,

(53)

we see that r is smooth as a function of r̃2, and that

g=Σ
(
dr̃2 +

(
r̃2 +O

(
r̃4
))

d̃t2 +
(
1+O

(
θ̃2
))

dθ̃2 +
(
θ̃2 +O

(
θ̃4
))

dϕ2 +O
(
r̃2θ̃2

)
d̃tdϕ

)
.

(54)

Viewing (θ̃,ϕ) as polar coordinates on R2 ×{y} ⊆ R4, and viewing (r̃, t̃) as polar coordinates
on {x}×R2 ⊆ R4, it follows that g extends to a smooth metric on R4 ∼= C2, provided that we
identify t̃ and ϕ with period 2π independently. This is equivalent to making the identifications
(t,ϕ)∼ (t+ 4π,ϕ)∼ (t+ 2π,ϕ+ 2π).

We can also introduce another coordinate system (̂t, r̃, θ̂,ϕ) by{
t = 2̂t+ϕ,

θ = 2arccot
(

θ̂
2

)
,

(55)

so that

g=Σ
(
dr̃2 +

(
r̃2 +O

(
r̃4
))

d̂t2 +
(
1+O

(
θ̂2
))

dθ̂2 +
(
θ̂2 +O

(
θ̂4
))

dϕ2 +O
(
r̃2θ̂2

)
d̂tdϕ

)
.

(56)

In the same way as for the previous coordinate system, this shows that g extends to a smooth
metric on another copy of C2. Note that the identifications made to ensure regularity in the
coordinate system (̃t, r̃, θ̃,ϕ) also ensure regularity in the coordinate system (̂t, r̃, θ̂,ϕ). When
defined on the union of these copies of C2, this metric is complete.

Computing the transition map between the two coordinate systems, we see that they are
related by (̂t, r̃, θ̂,ϕ) = (̃t−ϕ, r̃, 4

θ̃
,ϕ). In other words, the two copies of C2 are glued together

according to the map

(C \ {0})×C→ (C \ {0})×C,

(z1,z2) 7→
(

4
z1
,z2 ·

|z1|
z1

)
.

Topologically, this is the same thing as gluing two such copies along the map (z1,z2) 7→ ( 1
z1
,z2 ·

|z1|
z1
), or equivalently, gluing together two copies of D

2 ×C along the map

S1 ×C→ S1 ×C,

(z1,z2) 7→
(

1
z1
,
z2
z1

)
.

(57)

We now claim that the manifold is diffeomorphic toCP2 minus a point. To see this, consider
two of the projective coordinate charts for CP2, (U0,ϕ0) and (U1,ϕ1), where

Ui =
{
[Z0 : Z1 : Z2] ∈ CP2 | Zi 6= 0

}
, (58)
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and

ϕ0 : U0 → C2,

[Z0 : Z1 : Z2] 7→
(
Z1
Z0
,
Z2
Z0

)
,

ϕ1 : U1 → C2,

[Z0 : Z1 : Z2] 7→
(
Z0
Z1
,
Z2
Z1

)
.

Since U0 ∪U1 = CP2 \ {[0 : 0 : 1]}, it follows that the latter is topologically equivalent to two
copies of C2, glued together along the transition map

(C \ {0})×C→ (C \ {0})×C,

(z1,z2) 7→
(

1
z1
,
z2
z1

)
.

Again, topologically this is the same thing as gluing together two copies of D
2 ×C along the

map (57). This shows that the manifold is homeomorphic to CP2 minus a point. To show that
these are diffeomorphic, we can replace the closed disk by an open disk of radius slightly larger
than 1, gluing the two spaces together along a thin open strip around S1. The gluing map will
then be isotopic to the corresponding transition map in CP2.

4.1. The separated perturbation equations in coordinates

As for Kerr, we are interested in a particular choice of complex null tetrad (l, l,m,m), in this
case given by

l=
1√
2Σ

(
1

sinθ

(
cosθ

∂

∂t
− ∂

∂ϕ

)
+ i

∂

∂θ

)
, (59)

m=

√
∆

2Σ
∂

∂r
+
i
√
Σ/2∆
2N

∂

∂t
, (60)

satisfying |l|g = |m|g = 1.
The spin coefficients for this tetrad are given explicitly in section B.2. For this tetrad, we

have

Ψ2 =
N

4(r−N)3
, Ψ̃2 =

9N

4(r+N)3
, (61)

and the rest of the Weyl scalars vanish. Thus, this is an adapted tetrad, and we see that the
Taub-bolt metric is of type D.

The following four lemmas give the relevant properties of the perturbation equations (12)
(13) for our analysis. The proofs are entirely analogous to those in section 3.1, and are therefore
omitted.

11
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Lemma 5. For the tetrad given in (59) and (60), the perturbation equation (12) is equivalent
to the equation LΦ = 0, where Φ =Ψ

−2/3
2 Ψ̇0 and

L=
∂

∂r
∆
∂

∂r
− 4N(r+N)

(r−N)2
+

Σ2

4N2∆

(
∂

∂t
− i

N
(
4r2 − 11Nr+ 3N2

)
Σ(r−N)

)2

+
1

sinθ
∂

∂θ
sinθ

∂

∂θ
+

1

sin2 θ

(
cosθ

∂

∂t
− ∂

∂ϕ
− 2icosθ

)2

. (62)

Furthermore, if Φ is a solution to this equation coming from a perturbation of the metric,
then we can write

Φ(t,r,θ,ϕ) =
∑
m,ω,Λ

ei(mϕ−ωt)Rm,ω,Λ (r)Sm,ω,Λ (θ) , (63)

where m runs over 1
2Z, and ω runs over m+Z, and for each choice of m,ω,Λ, the function

R= Rm,ω,Λ solves the equationRR= 0, and the function S= Sm,ω,Λ solves the boundary value
problem SS= 0, S ′(0) = S ′(π) = 0, where

R=
d
dr

∆
d
dr

+U(r) , (64)

U(r) =−4N(r+N)

(r−N)2
− Σ2

4N2∆

(
ω+

N
(
4r2 − 11Nr+ 3N2

)
Σ(r−N)

)2

−Λ (65)

and

S=
1

sinθ
d
dθ

sinθ
d
dθ

+V(cosθ) , (66)

V(x) =− ((ω+ 2)x+m)2

1− x2
+Λ. (67)

The separation constant Λ runs over the (countable set of) values for which such an S exists,
all of which are non-negative.

The same statement holds if Φ is replaced by Φ̃ = Ψ̃
−2/3
2

˙̃Ψ0, the operator L is replaced by
L̃, and the operator R replaced by R̃, defined in the same way but using a potential Ũ in place
of U. Here,

L̃=
∂

∂r
∆
∂

∂r
− 36N(r−N)

(r+N)2
+

Σ2

4N2∆

(
∂

∂t
+ i

N
(
4r2 − 19Nr+ 13N2

)
Σ(r+N)

)2

+
1

sinθ
∂

∂θ
sinθ

∂

∂θ
+

1

sin2 θ

(
cosθ

∂

∂t
− ∂

∂ϕ
− 2icosθ

)2

(68)

and

Ũ(r) =−36N(r−N)

(r+N)2
− Σ2

4N2∆

(
ω−

N
(
4r2 − 19Nr+ 13N2

)
Σ(r+N)

)2

−Λ. (69)
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Lemma 6. The equation RR= 0 is an ordinary differential equation in a complex variable
r, which has regular singular points at r= 2N and r= N/2. The point r=∞ is an irregular
singular point of rank 1, except when ω= 0, in which case it is a regular singular point. Thus,
the equation RR= 0 is a confluent Heun equation (see [16, section 3]) when ω 6= 0, and a
hypergeometric equation (see [16, section 2]) when ω= 0. The characteristic exponents at
r= 2N are

±(ω− 1) , (70)

and those at r= N/2 are

±
(ω
4
− 1
)
. (71)

When ω= 0, the characteristic exponents at r=∞ are

−3
2
± i

√
7
2
+Λ. (72)

When ω 6= 0, the equationRR= 0 admits normal solutions (see [17, section 3.2]), near r=∞,
of the asymptotic form

R∼ e±rω/2Nr−1±(5ω/4−2). (73)

Lemma 7. For a solution to the equation RR= 0 coming from a (globally smooth) perturba-
tion of the Taub-bolt metric, the corresponding characteristic exponent at r= 2N is |ω− 1|.

A perturbation ġ of the Taub-bolt metric is said to be ALF if it decays as O(r−1), with
corresponding decay on derivatives, just like the definition of AF perturbations of the Kerr
metric given in section 3.1.

Lemma 8. Let R be a solution to the equationRR= 0 coming from an ALF perturbation of the
Taub-bolt metric. When ω= 0, none of the characteristic exponents at r=∞ are compatible
with the assumption of asymptotic local flatness. When ω 6= 0, exactly one of the asymptotic
normal solutions is compatible with this assumption, namely

R∼ e−r|ω|/2Nr−1−(5ω/4−2) sgn(ω). (74)

Corresponding lemmas regarding the asymptotics of the equation R̃R= 0 also hold. We
omit them, since they are entirely analogous.

4.2. Mode stability

Proof of theorem 2. In this case, we see directly that U(r)< 0, and integrating the equation
RR= 0 by parts like in the proof of theorem 1, we see that R vanishes identically. The case
involving the equation R̃R= 0 is entirely analogous.

Data availability statement

No new data were created or analyzed in this study.
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Appendix A. Newman–Penrose equations

Given an equation expressed in terms of the spin coefficients,Weyl scalars and tetrad derivative
operators, we can apply the tilde operation, given by formally replacing any such quantity x by
the tilded quantity x̃. Here, we adopt the convention that ˜̃x= x, D̃= D and ∆̃ = ∆. The result
is a new, a priori independent equation, the tilded version of the original equation.

We have the Newman–Penrose commutation relations, given by the four equations

[D,∆]ψ =−(γ+ γ̃)Dψ − (ϵ+ ϵ̃)∆ψ+(π + τ̃)δψ+(π̃+ τ) δ̃ψ , (75)

[D, δ]ψ =−(α̃+β− π̃)Dψ −κ∆ψ+(ϵ− ϵ̃+ ρ̃)δψ+σδ̃ψ , (76)

[∆, δ]ψ = ν̃Dψ +(α̃+β− τ)∆ψ+(γ− γ̃−µ)δψ− λ̃δ̃ψ , (77)

[δ, δ̃]ψ = (µ− µ̃)Dψ +(ρ− ρ̃)∆ψ+(−α+ β̃)δψ+(α̃−β)δ̃ψ, (78)

together with their tilded versions8.
In terms of the spin coefficients, the vacuum Einstein equations become

Dα− δ̃ϵ=−β̃ϵ− γκ̃−κλ+π (ϵ+ ρ)+α(−2ϵ+ ϵ̃+ ρ)+βσ̃, (79)

Dβ− δϵ=Ψ1 − α̃ϵ−κ(γ+µ)+ ϵπ̃+β (−ϵ̃+ ρ̃)+ (α+π)σ, (80)

Dγ−∆ϵ=Ψ2 − γ̃ϵ− γ (2ϵ+ ϵ̃)−κν+π (β+ τ)+α(π̃+ τ)+βτ̃ , (81)

Dλ− δ̃π =−κ̃ν+π (α− β̃+π)+λ(−3ϵ+ ϵ̃+ ρ)+µσ̃, (82)

Dρ− δ̃κ= κ(−3α− β̃+π)+ ρ(ϵ+ ϵ̃+ ρ)+σσ̃− κ̃τ, (83)

Dσ− δκ=Ψ0 +(3ϵ− ϵ̃+ ρ+ ρ̃)σ−κ(α̃+ 3β− π̃+ τ) , (84)

Dτ −∆κ=Ψ1 − (3γ+ γ̃)κ+ π̃ρ+(ϵ− ϵ̃+ ρ)τ +σ (π + τ̃) , (85)

∆ρ− δ̃τ =−Ψ2 +κν+(γ+ γ̃− µ̃)ρ−λσ− τ(α− β̃+ τ̃), (86)

δα− δ̃β =−Ψ2 +α(α̃− 2β)+ββ̃+ ϵ(µ− µ̃)+ (γ+µ)ρ− γρ̃−λσ, (87)

δρ− δ̃σ =−Ψ1 +κ(µ− µ̃)+ (α̃+β)ρ+(−3α+ β̃)σ+(ρ− ρ̃)τ. (88)

together with their tilded versions.

8 For the first and last equation, applying the tilde operation results in the same equations, up to sign. For the second
and third equation, it results in two new, independent equations.
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Finally, we have the Bianchi identities, given by the equations

δ̃Ψ0 −DΨ1 = (4α−π)Ψ0 − 2(ϵ+ 2ρ)Ψ1 + 3κΨ2, (89)

δ̃Ψ1 −DΨ2 = λΨ0 + 2(α−π)Ψ1 − 3ρΨ2 + 2κΨ3, (90)

∆Ψ0 − δΨ1 = 4γΨ0 −µΨ0 − 2(β+ 2τ)Ψ1 + 3σΨ2, (91)

∆Ψ1 − δΨ2 = νΨ0 + 2(γ−µ)Ψ1 − 3τΨ2 + 2σΨ3. (92)

together with their tilded versions.

Appendix B. Spin coefficients

B.1. Riemannian Kerr

α= β =
rcosθ− a

(r− acosθ)2
√
2Σsinθ

, (93)

γ = ϵ=
i(−∆/(r− acosθ)+ r−M)

2
√
2∆Σ

, (94)

µ= ρ=−
i
√
∆/2Σ

r− acosθ
, (95)

π = τ =− asinθ

(r− acosθ)
√
2Σ

, (96)

α̃= β̃ =− rcosθ+ a

(r+ acosθ)2
√
2Σsinθ

, (97)

γ̃ = ϵ̃=
i(−∆/(r+ acosθ)+ r−M)

2
√
2∆Σ

, (98)

µ̃= ρ̃=−
i
√
∆/2Σ

r+ acosθ
, (99)

π̃ = τ̃ =− asinθ

(r+ acosθ)
√
2Σ

, (100)

κ= λ= ν = σ = κ̃= λ̃= ν̃ = σ̃ = 0. (101)

B.2. Taub-bolt

α= β =
N(r+N)2

8Σ
√
2∆Σ

, (102)

γ = ϵ= γ̃ = ϵ̃=
icotθ

2
√
2Σ

, (103)

π = τ =−
(r+N)

√
∆/2Σ

Σ
, (104)

α̃= β̃ =− 9N(r−N)

8(r+N)
√
∆Σ

, (105)
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π̃ = τ̃ =

√
∆/2Σ
r+N

, (106)

κ= λ= µ= ν = ρ= σ = κ̃= λ̃= µ̃= ν̃ = ρ̃= σ̃ = 0. (107)
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