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We study quasi-equilibrium sequences of binary neutron stars in the framework of Damour-
Esposito-Farese-type scalar-tensor theory of gravity with a massive scalar field, paying particular
attention to the case where neutron stars are already spontaneously scalarized at distant orbits, i.e.,
in the high coupling constant case. Although scalar effects are largely quenched when the separation
a is & 3–6 times of the Compton length-scale that is defined by the scalar mass, we show that the
interaction between the scalar fields of the two neutron stars generates a scalar cloud surrounding
the binary at the price of orbital energy when a . 3–6 times of the Compton length-scale. This en-
ables us to constrain the scalar mass mφ from gravitational-wave observations of binary neutron star
mergers by inspecting the dephasing due to such phenomenon. In particular, the event GW170817
is suggestive of a constraint of mφ & 10−11 eV and the coupling strength should be mild if the
neutron stars in this system were spontaneously scalarized.

I. INTRODUCTION

General relativity (GR) has been put against a vari-
ety of observations and yet been challenged, while it has
also proven to be incomplete from the theoretical point
of view for its nonrenormalizability (e.g., [1, 2]). Among
the extensions to GR present in the literature, Damour-
Esposito-Farese (DEF) type of scalar-tensor (ST) theory
of gravity is perhaps most widely considered. In such
theory, the gravity around a scalarized compact object
acquires distinct feature from that in GR, modifying the
trajectory of orbiting companions. In particular, the mo-
tion of binaries will be influenced to deviate from the
GR prediction if there is scalar interaction between the
two components at play. In addition, scalar waves will
be emitted from binaries consisting of differently scalar-
ized components, constituting extra loss of orbital energy.
Lacking the evidences of the aforementioned two effects
in the pulsar timing observation of neutron star-white
dwarf (NS-WD) binaries has placed strong constraints on
ST theories with a massless scalar field [3–8]. Such con-
straints are rather stringent for the presence of a scalar
charge of neutron stars (NSs) [9, 10]. These constraints
can, however, be mitigated by the inclusion of scalar
mass mφ [11, 12]. The scalar effects beyond the associ-
ated Compton length-scale λcomp = ~c/mφ are smeared
out, thus naturally accounting for the non-detection of
scalar dynamics that could take place in these binaries.
In particular, the constraints by the pulsar timing are
lifted to a large extent if the scalar field has a light mass
mφ ≫ 10−16 eV (corresponding to a Compton length-
scale λcomp ≪ 1.5× 106 km) [12]. With this small mass,
the scalar interaction within NS-WD binaries and the
emission of scalar waves from them are suppressed, lead-
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ing to the identical orbital evolution with that in GR.
Therefore, including a scalar mass not only increases the
dimension of the parameter space by one, but unlocks
the previously ruled out region. However, NS-WD bina-
ries could barely put constraints on the massive theory
since a light scalar field is enough to lift the constrain-
ing power of pulsar timing observations. On the other
hand, an ever-stringent lower bound on the scalar mass
may be placed by pre-merger gravitational waves (GWs)
from coalescing binary neutron stars (BNSs).
For BNS mergers, the growth of the scalar field can

be activated by the gravitational compactness of the bi-
nary, defined as the ratio of the total mass to the or-
bital separation, forming another kind of scalarization
[13–16] (see also [17–20] for semi-analytical modeling)
other than the spontaneous ones [21, 22]. In the same
spirit as pulsar timing constraints, the absence of both
kinds of scalarization in the event GW170817 suggests
that spontaneously scalarized NSs are unlikely present in
the associated coalescing BNS if the scalar field is mass-

less [23]. To probe massive ST theory by GW physics,
a pursue of scalar masses 10−12–10−11 eV is of partic-
ular interest since the associated Compton length-scale
is comparable with or smaller than the typical orbital
separation of ∼ 30–200km when the BNS comes in the
detection window.
It is widely known that the uncertainty on the theory

of gravity is degenerate with that on the nuclear equa-
tions of state (EOS) [24, 25]. Among other things, the
twin star in GR predicted from some EOS embracing
hadron-quark phase transition has an analog in the ST
theory [26]. Nonetheless, certain scalar-induced phenom-
ena have no counterparts in GR, e.g., the presence of
scalar-type GWs from binary motions [27], core-collapse
of giant stars [28–32], and radial [33] and polar [34] os-
cillations of NSs (see [35] for a recent, extensive review).
An observation of such ST-exclusive effects can there-
fore probe the nature of gravity, and limit the parameter
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space of ST theories without the potential for misinter-
preting EOS effects. The dynamics during the late inspi-
ral up to merger, and the associated GW emission from
BNSs in a ST theory that admits spontaneous and/or dy-
namical scalarization may shed unique light on the nature
of gravity [36, 37], thus deserving qualitative investiga-
tion.

For mass of mφ & 10−12 eV, the scalar effects are
shielded in the early inspiral and the interaction only
becomes dynamically important when the binary ap-
proaches merger. Since the effects occur in a highly non-
linear regime of the theory, it can only be investigated
numerically. Although certain attempts have been made
in the massless case (mφ = 0) [13, 15, 38–40], numerical
study of the BNS dynamics in theories with a massive
scalar field has not been performed. We thus endeavour
to address such issue numerically as a non-trivial scalar
mass is necessary to account for the aforementioned ob-
servations. For this purpose, preparing appropriate ini-
tial data (ID) is rather imperative in order to guarantee
accurate simulations.

As the first step towards the derivation of accurate
BNS dynamics and the emitted GWs, we develop an ID
code to generate equilibrium states of BNSs, which are
expected to deliver certain information on the dynam-
ics of coalescence since the sequence of equilibria can be
viewed as the leading order approximations of the inspi-
raling process. In particular, the constructed equilibria
can (i) offer an approximate estimate on the luminosity
of GWs [39, 41], and (ii) qualitatively investigate scalar
effects in the inspiral stage on top of (iii) paving the way
toward future numerical-relativity studies of BNS merg-
ers. By scrutinising the constructed sequences, we found
that a lower bound ofmφ > 10−11 eV for strong couplings
can be readily drawn. Although quantitative analysis of
the waveforms can supplement the effort of waveform-
modelling (e.g., [42]) to examine the imprint of modified
gravity from GWs, the relevant investigation will be de-
ferred to later work in this series.

In this paper, we pay particular attention to the se-
quences of BNSs in which each NS is spontaneously
scalarized, i.e., the coupling constant B is high [see
Eq. (2)]. Broadly speaking, inspiraling scalarized BNSs
are speculated to be classified into three stages depend-
ing on the following three parameters: the orbital sep-
aration a, the gravitational wavelength λgw, which is

≈ a3/2M−1/2/2(> a) for binaries in circular orbits with
M the total mass of the binary, and the Compton length-
scale λcomp. For (I) λgw > a ≫ λcomp, no effect as-
sociated with the scalar field appears and hence the se-
quences of BNSs can be identical to those in GR; (II) for
λgw > λcomp & a, the scalar-wave emission is suppressed
because of the relation λgw > λcomp, while the interaction
between the scalar clouds of the two NSs can play a role
in modifying the binary orbit; (III) for λcomp > λgw > a,
both the scalar-wave emission and interaction of the two
scalar clouds are present. For the categories (II) and
(III), the orbital evolution of the BNSs can be different

from that in GR. One of the primary purposes of this
paper is to confirm these speculations.
This paper is organized as follows. Section II briefly

reviews the ST theory studied, including the connection
to other formalisms adopted in the literature, the defini-
tion of ’mass’, and constraints on the theory parameters
from current observations of binary pulsar timing and
GWs from coalescing BNS. In Sec. III, we construct se-
quences of quasi-equilibrium states and elaborate on the
novel phenomenon coined as scalar-induced plunge. Dis-
cussion and potential implications of a detection of such
effects are given in Sec. V. Throughout this paper, we
adopt the geometric units, i.e., G = 1 = c, together with
the reduced Plank constant set to ~ = 1. The indices a,
b, and c denote the spacetime components and i, j, and
k the spatial components.

II. THEORETICAL AND OBSERVATIONAL

ASPECTS OF THE THEORY

A. Basic equations

The action of the scalar-tensor theory in the Jordan
frame is written as [43, 44]

S =
1

16π

∫

d4x
√−g

[

φR− ω(φ)

φ
∇aφ∇aφ− U(φ)

]

−
∫

d4x
√−gρ(1 + ε), (1)

whereR and∇a are the Ricci scalar and covariant deriva-
tive associated with the metric gab, ρ is the rest-mass
density, and ε is the specific internal energy. In the ac-
tion, ω(φ) describes the coupling between the metric and
the scalar field φ, for which the following expression:

1

ω(φ) + 3/2
= B lnφ, (2)

is adopted in the present article with B as the dimension-
less coupling constant [15]. For latter use, we introduce
the variable ϕ via

2 lnφ = ϕ2, (3)

with respect to which the scalar potential,

U(φ) =
2m2

φϕ
2φ2

B
, (4)

is chosen for the scalar mass mφ [45]. Along with the
scalar mass, a Compton length-scale,

λcomp ≈ 19.7 km
( mφ

10−11 eV

)−1

(5)

is introduced.
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Denoting the Einstein tensor associated with the met-
ric gab as Gab, the equation of motion associated with the
action can then be written down as

Gab =8πφ−1Tab + ω(φ)φ−2

[

∇aφ∇bφ− 1

2
gab∇cφ∇cφ

]

+ φ−1(∇a∇bφ− gab∇c∇cφ) −
2m2

φ

B
φ lnφgab,

(6)

and

∇a∇aφ =
1

2ω(φ) + 3

[

8πT − dω

dφ
∇cφ∇cφ+

4m2
φφ

2

B

]

,

(7)

where Tab is the stress-energy tensor and T = T a
a . The

equation of motion for the matter in the Jordan frame is
the same as in GR, i.e.,

∇aT
ab = 0. (8)

The fluid is assumed to be a perfect fluid, for which the
stress-energy tensor has the form

T ab = ρhuaub + Pgab, (9)

where P is the pressure, h = 1+ε+P/ρ is the specific en-
thalpy, and ua is the 4-velocity of the fluid, respectively.

B. Connection to the Einstein frame

To draw the connection to a large part of the litera-
ture, where the Einstein frame is often considered due
to certain advantages with respect to the Jordan frame,
we provide the relations between these two frames in this
subsection, while we will stick to the Jordan frame in the
rest of the article. The scalar field in the Einstein frame,
denoted by ϕ̄, is defined by assuming that the Weyl re-
lation between the metric fields in the two frames is

gab = A(ϕ̄)2gEab, (10)

where A(ϕ̄) = φ−1/2 = eβ0ϕ̄
2/2, and β0 is a dimensionless

constant. Thus,

ϕ =
√

−2β0ϕ̄ =
√
Bϕ̄. (11)

In addition, the potential in the Einstein frame, V , re-
lated to U via U = 4V φ2, is given by

V =
1

2
m2

φϕ̄
2, (12)

which makes clear the physical meaning of the parameter
mφ as the scalar mass.
The two parameters in the DEF theory are defined as

the asymptotic values of the first and second derivative
of the logarithmic coupling function [21, 27]. Let the

asymptotic value of the Jordan frame scalar field be ϕ0,
thus the one in the Einstein frame being ϕ̄0 = ϕ0/

√
B

by Eq. (11), one then has

αDEF =
d lnA

dϕ̄

∣

∣

∣

∣

ϕ0

=
β0ϕ0√
B
, (13)

and

βDEF =
d2 lnA

dϕ̄2

∣

∣

∣

∣

ϕ0

= β0 = −B/2. (14)

As long as the transformations of the fields between the
two frames are mathematically well-defined (e.g., one-to-
one relations should be guaranteed [46]), the physics can
be equally validly discussed in whichever frame [47].

C. Gravitational field equations in quasi-equilibria

We describe here the basic gravitational field equations
for computing quasi-equilibria of BNSs in circular orbits.
Following previous works [48, 49] (and see, e.g., [50] for
a review), we solve the constraint equations under the
maximal slicing condition, assuming conformal flatness
for the 3-spatial metric γij = W−2fij , where W is a
conformal factor and fij is the flat 3-metric.

The momentum constraint is written as

0 = Mj = DiK
i
j −DjK − 8πφ−1Jj + ϕKj

iDiϕ

−
(

1 +
2

B
− ϕ2

2

)

ΦDjϕ− ϕDjΦ, (15)

where Di denotes the covariant derivative with respect
to γij , Kij is the extrinsic curvature with K = K k

k ,
Φ = −α−1(∂t − βk∂k)ϕ with α the lapse function and
βk the shift vector, and Ji = αT t

i . The Hamiltonian
constraint is written as

0 = H = R +K2 −KijK
ij − 16πφ−1ρh

−
(

2

B
− 3

2
ϕ2

)

(Φ2 +DkϕD
kϕ)

− 2
[

−KΦϕ+ ϕDkD
kϕ+ (1 + ϕ2)DkϕD

kϕ
]

−
2m2

φϕ
2φ

B
, (16)

where R is the Ricci scalar with respect to γij and ρh =
α2T tt.

The elliptic equations for generating binary ID (assum-
ing conformal flatness) are written down as (see [15, 39]
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for equations in ST theories with a massless scalar field)

∆ψ =− φ−1ψ5

(

2πρh +
m2

φφ
2ϕ2

4B

)

− 1

8
ψ−7ĀijĀ

ij

− 1

2
πBψ5ϕ2Tφ−1 −

m2
φφϕ

2

4
ψ5

− ψ

4

(

1 +
1

B
− 3

4
ϕ2

)

f ij(∂iϕ)(∂jϕ)

+
1

4
χ−1ϕf ij(ψ∂iχ− χ∂iψ)(∂jϕ), (17)

∆χ = 2πφ−1χψ4(ρh + 2S) +
7

8
χψ−8ĀijĀ

ij

− 3

2
πBχψ4ϕ2Tφ−1 −

(3

4
+

5

4B

)

χψ4m2
φϕ

2φ

− χ

4

(

3 +
1

B
− 3

4
ϕ2

)

f ij(∂iϕ)(∂jϕ)

− 3

4
ψ−1ϕf ij(ψ∂iχ− χ∂iψ)(∂jϕ), (18)

∆βi +
1

3
f ij∂j(∂kβ

k) = 16πφ−1χψ−1f ijJj

− 2χψ−7Āij(7ψ−1∂jψ − χ−1∂jχ)

− 2χϕψ−7Āij∂jϕ, (19)

and

∆ϕ = 2πBψ4ϕφ−1T − ϕf ij(∂iϕ)∂jϕ

− f ij(χ−1∂iχ+ ψ−1∂iψ)(∂jϕ) +m2
φψ

4ϕφ, (20)

where ∆ denotes the flat Laplacian, ψ =W−1/2, χ = αψ,
S = Tijγ

ij , and we used the definition

Āij = ψ10

(

Kij − 1

3
γijK

)

. (21)

We also assumed that the “momentum” of the scalar field
ϕ, denoted by Φ, vanishes given that the scalar-radiation
reaction time scale is much longer than the orbital time
scale. From Eq. (20) we see that the asymptotic value
of the scalar field, ϕ0, can be oscillatory (e.g., [51]) or
zero for stationary solutions. We adopt the latter case in
the present work, i.e., ϕ0 = 0. By modifying the elliptic
equations (17)–(19) and introducing equation (20), we
generalise the public spectral code FUKA [52] to this ST
theory for generating the BNSs in quasi-equilibrium.

Note that, for large distances, FUKA uses a compacti-
fied domain to bring infinity to a finite numerical distance
(this allows in particular to properly impose boundary
conditions at infinity). Given the asymptotic exponential
decay of the scalar field ϕ, its profile is better captured
in such a domain if Eq. (20) is rewritten in terms of an

FIG. 1. Boundaries of the scalarization projected on the
m2

φ − B
√

M⋆,1.4 plane for a variety of stellar masses, which
separate the upper region where stars do not harbour a static
scalar field from the lower region of scalarized NSs. Here the
notations M⋆,1.4 = M⋆/1.4 M⊙ and mφ,−11 = mφ/10

−11 eV
are used, and the APR4 EOS is adopted.

auxiliary scalar field ξ = ϕ cosh(mφr), which gives

∆ξ =m2
φ

[

2 cosh−2(mφr) + ψ4φ− 1
]

ξ

+
2mφ tanh(mφr)

r
ξ + 2mφ tanh(mφr)r̂

i∂iξ

+ 2πBψ4ξφ−1T − cosh−2(mφr)ξ
[

f ij∂iξ∂jξ

− 2mφξ tanh(mφr)r̂
i∂iξ +m2

φξ
2 tanh2(mφr)

]

− (χ−1∂iχ+ ψ−1∂iψ)
[

f ij∂jξ −mφξ tanh(mφr)r̂
i
]

,

(22)
where r̂i is the unit radial vector. The first term in the
right-hand side suggests a Helmholtzian nature of the
equation, which, however, asymptotically reduces to a
Laplacian one under the assumption of this paper that
φ→ 1 at r → ∞.

D. Spontaneous scalarization with massive fields

In isolated NSs and for a given coupling strength B,
scalarization is triggered by tachyonic instability if the
NS exceeds a threshold compactness determined by the
theory parameters and the EOS. In particular, the condi-
tions to be met for spontaneous scalarization in a spher-
ical NS are approximately k2 > 0 and kR⋆ → π/2 for
k2 = −(2πBT + m2

φ) [45]. In the massless theory, the
threshold is only weakly EOS-dependent for some cou-
pling strength, given that −T ≈ ρ [15, 21, 53, 54]. How-
ever, this universality is lost from the non-vanishing mφ

[55]. Instead of studying the EOS dependence of the
threshold, we focus on a particular EOS (ARP4 [56]) and
look at how the scalarization criterion is modified by mφ.
In Fig. 1, we trace out the marginally-scalarized con-

figuration on the m2
φ–B

√
M⋆ plane where M⋆ denotes
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the mass of the NS (see Sec. III B for more details
on defining stellar mass). We observe that the critical
coupling strength B for scalarization correlates approxi-
mately with the squared mass of the scalar field, and the
relation depends only slightly on the specific stellar mass.
For the considered EOS, we find the fitting formula

(

mφ

1.6× 10−11 eV

)2

≈ 1− 2.52x+ 1.54x2, (23)

where

x =

(

B

10

)(

M⋆

1.4M⊙

)1/2

. (24)

Therefore, for a given scalar mass, the critical coupling
strength is approximately a function of M⋆. In particu-
lar, the critical coupling strength Bcrit for massless ST
theories is solved as

B
mφ=0

crit ≈ 9.6

(

M⋆

1.4M⊙

)−1/2

. (25)

We see also that the critical coupling strength increases
monotonically with mφ (i.e., ∂Bcrit/∂mφ > 0). This ten-
dency continues up to the mass large enough to elim-
inate scalarization for any coupling strength [12]. For
NSs whose typical radius is ∼ 10 km, mass of mφ &
2×10−11 eV severely suppresses scalarization in NSs since
the associated Compton length is shorter than the stel-
lar size. We thus only consider masses smaller than this
limit.
In addition, the presence of scalar hair provides extra

supporting force, thus sustaining more matter for a given
stellar mass (the meaning of stellar mass will be further
clarified in Section III B), i.e., the stellar rest mass

Mb =

∫

ρut
√−gd3x (26)

is larger for stronger scalarization. As an illustration,
assuming mφ = 1.33× 10−11 eV, EOS APR4, and M⋆ =
1.35M⊙, one has Mb = 1.5021M⊙ for B = 15.5, while
Mb increases by 0.015M⊙ for B = 17.

E. Current Constraints

Pulsar-timing observations in NS-WD binaries [4–6] or
in galactic NS-NS binaries [57] can constrain the param-
eters of ST theories based on scalar-wave emissivity (as-
suming mφ . 10−19 eV). In fact, the ST theory with a
massless scalar field and a high coupling constant B & 9
(i.e., βDEF . −4.5) is ruled out by the network of pulsar
systems [9, 10]. However, a tiny value of mφ > λ−1

gw (here
λgw denotes the wavelength of scalar waves which is com-
parable to the gravitational wavelength) can account for
the absence of scalar radiation and the reason is as fol-
lows. The propagation group speed of scalar waves (vg)

with the frequency ωgw can be approximately written as

vg =
√

1−m2
φω

−2
gw = (1 +m2

φλ
2
gw)

−1/2, (27)

where we note that the relation between the wavelength
and frequency is λgw = (ω2

gw −m2
φ)

−1/2. This speed is
much slower than the speed of light for λgw ≫ λcomp,
thus essentially prohibiting the scalar-wave emission.
Aside from the scalar-wave emissivity, the gravita-

tional field around scalarized NSs can be appreciably dif-
ferent from that in GR within a few times of λcomp (see
Fig. 2 below). Accordingly, the orbital motion around the
scalarized NS should be modified for orbital separations
comparable with λcomp. Such modification is, however,
not seen in the observations. A small value of the mass
mφ ≫ 1/a (∼ 10−16 eV for observed NS-WD systems) is
then necessary to circumvent the current observational
constraint if the NSs are scalarized (e.g., [12]). We note
that this mass range can also accommodate what is ob-
served from the triple system PSR J0337+1715 [58] (see
Fig. 2 therein). In addition, simultaneous mass-radius
measurements by monitoring rotating hot spot patterns
of pulsars can also probe the theory parameters [59, 60],
while the constraints obtained in this way are currently
weaker than the aforementioned ones.
The tensorial gravitational waveforms observed for a

BNS can constrain the theory by measuring the scalar-
radiation-induced phase shift [61]. For the specific event
GW170817, the observation does not support significant
scalar effects in inspiral stages [23, 62], while the in-
duced/dynamical scalarization in late-inspiral-to-merger
phase remains unconstrained due to the insufficient sen-
sitivity to the lase inspiral waveform. An upper limit of
B . 9 − 9.4 is thus suggested for massless scalar field
if the two NSs are slowly rotating (cf. Fig. 13 in [23];
we note again that their parameter is β = −B/2). This
constraint substantially prevents spontaneous scalariza-
tion in NSs. In order to revive the existence of scalarized
NSs, the Compton length-scale has to be much smaller
than the constraint from the pulsar systems, because the
orbital separation of inspiraling BNSs in the range of GW
observations is quite small, within ∼ 20–200km. How-
ever, the scalar effects in this regime is not trivial, so
that the present numerical work is required; see Sec. IV
for more details.
Although much less stringent, the gravitational phe-

nomena in the solar system (e.g., Shapiro time delay mea-
sured by Cassini tracking) put constraints on the scalar
mass mφ & 10−17 eV [11, 63]. Possible constraints on
the massive theories may also be placed by extreme mass-
ratio inspirals (EMRIs) where superradiance modifies or-
bital dynamics [64], e.g., with the presence of floating
orbits on resonance ‘islands’ [65], thus leading to phase
shifts in gravitational waveforms (much similar to the
ramification of non-Kerr black hole spacetimes [66, 67]).
However, it has recently been pointed out that the scalar
imprint in the waveforms may be indistinguishable from
GR waveform baselines for mφ . 4× 10−12 eV [68].
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III. VIRIAL THEOREM, TENSOR MASS, AND

ASYMPTOTIC BEHAVIOR OF THE GEOMETRY

In the present article, we assume the conformally flat
(Isenberg-Wilson-Mathews [48, 49]) approximation (see
[69–72] for a construction without this approximation),
helical symmetry, and maximal slicing (i.e., K = 0) for
the spacetime. The quasi-equilibrium states in this for-
malism satisfies the viral relation [14, 69, 70, 73]. Thus,
we will validate the numerical solutions of the quasi-
equilibria by the virial theorem, which is described for
massive ST theory in Sec. III A. We then define the ten-
sor mass in Sec. III B, which characterizes the physical
mass of the system.

A. Virial theorem

Given that the asymptotic behavior of the scalar field
in the Einstein frame reads

ϕ̄ = ϕ̄0 +
Mϕ̄

r
e−mφr +O(r−2), (28)

we have the following relations for r → ∞,

ϕ = ϕ0 +

√
BMϕ̄

r
e−mφr +O(r−2). (29)

Since ϕ approachesϕ0 exponentially at r → ∞, the scalar
charges

√
BMϕ̄ does not contribute to the mass in the

system. Thus, the virial relation is written in the same
form as in GR (cf. [14])

MK =MADM, (30)

whereMADM is the Arnowitt–Deser–Misner (ADM) mass
and MK denotes the Komar mass defined by

MK = − 1

4πφ0

∮

∞

dSanbφ∇aξb, (31)

where we have assumed the existence of a timelike Killing
vector ξa fulfilling naξ

a = −α.

B. Tensor Mass

As the ADM mass in the Einstein frame decreases
monotonically when GWs propagate away and is posi-
tively defined [74–76], we refer it to the mass of a given
system following, e.g., [14, 77], and define it as the tensor
massMT to be distinguishable from the ADMmass in the
Jordan frame (MADM). As a specific example, the stellar
mass refers to the tensor mass of a NS, i.e., M⋆ = MT.
In the massless ST theories, the tensor mass is written
as the sum of the ADM mass and scalar charge [74]. As
mentioned in Sec. III A, the scalar charge does not con-
tribute to the mass of the system in the massive ST the-
ories. Thus, we simply have MT = MADM. If the virial
theorem is satisfied, the tensor mass is also equal to the
Komar mass.

C. Asymptotic behavior of the geometry

In GR, the asymptotic behavior of ψ and χ at a large
distance in isotropic coordinates is described as (e.g.,
[69])

ψ = 1 +
MADM

2r
+O(r−2), (32)

χ = 1− 2MK −MADM

2r
+O(r−2). (33)

Thus, the equality

(ψ − 1)r = −(χ− 1)r, (34)

holds at r → ∞, if the virial relation is satisfied. For
spherical stars in equilibrium, this relation is satisfied
for the entire region outside the stellar surface, r = R⋆,
because of the presence of Birkhoff’s theorem in GR [78,
79].
By contrast, Eq. (34) is satisfied only at r → ∞ in ST

theories because the scalar clouds contribute to ψ and χ
in a different way. The deviation from the equality of
Eq. (34) outside the star is considered as a manifesta-
tion of ST theories. In particular, we plot in Fig. 2 the
violation of the equality of ψ − 1 = 1 − χ (upper pan-
els) and the profile of ϕ (lower panels) for spherical NS
models with M⋆ = 1.35M⊙. Two scalar masses are con-
sidered with the associated Compton length-scale being
λcomp ≃ 15 km (left) and 30 km (right). By picking sev-
eral values of B for each value of mφ, we consider NSs
scalarized to different extents. We see that the equal-
ity (34) holds for r ≫ λcomp, while the deviation can
be & 10−2% for ψ2r . 4λcomp where the amplitude of
the scalar field is appreciably non-zero. This clearly in-
dicates that the presence of the scalar cloud can appre-
ciably modify the binary motion if the orbital separation
is smaller than a few times of λcomp.
It is also found that for larger values of B, the max-

imum value of |ϕ| is larger, and as a result, the region,
in which the equality of Eq. (34), is breached is wider.
Thus, for larger values of B, the scalar could modifies the
binary motion from a larger distance (see Sec. IVA).

IV. BINARY NEUTRON STARS IN

QUASI-EQUILIBRIA

The major purpose of this paper is to clarify in which
cases the effect of the scalarization of NSs can be iden-
tified by observing GWs from inspiraling BNSs. Given
that the current GW detectors are able to detect signals
for f ≈ 20–103 Hz, where the separation between the
members of a BNS is less than ∼ 200km (for NS masses
of ∼ 1.4M⊙), the scalar mass of interest will then be

mφ ≥ 1× 10−12 eV, (35)

associated with Compton length scales of ≤ 200km.
We consider mφ = 4 × 10−12 eV (λcomp ≈ 50 km) and
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FIG. 2. Relevant properties of isolated NSs in ST theories: Deviation between (ψ − 1) and (χ − 1) as a function of the areal
radius ψ2r (top) and the profile of the scalar field (bottom) for NSs with M⋆ = 1.35M⊙. Theories with λcomp = 15 km
(mφ = 1.33 × 10−11 eV; left) and λcomp = 30 km (mφ = 6.65 × 10−12 eV; right) are considered. For each scalar mass, four
coupling strengths are adopted and listed in the legend. Note that the NS for B = 15 and λcomp = 15 km is not scalarized, and
thus, the geometry is the same as in GR. Vertical lines mark the first four times of the associated Compton length-scale. The
stellar radius (areal radius) for this model is ≈ 11.1 km.

mφ = 1.33× 10−11 eV (λcomp ≈ 15 km) as two canonical
cases to demonstrate the role played by the scalar mass,
as well as coupling strength, in the last several orbits of
BNSs. To model the hydrodynamical equilibria of NSs,
we adopted the piecewise-polytropic approximated EOS
APR4 [80]. The details of our implementation are es-
sentially the same as those in [50], and thus we will not
repeat them here.
Denoting the tensor masses of the two NSs when they

were in isolation asM⋆,1 andM⋆,2, the total massMinf =
M⋆,1+M⋆,2 is kept constant along each binary sequence.
In this work, we choose Minf = 2.7M⊙, while consider
two values for the mass ratio, viz. q = M⋆,2/M⋆,1 = 1
and 0.8. Each quasi-equilibrium state on a particular
sequence is characterized by a dimensionless orbital an-
gular velocity MinfΩorb and the orbital binding energy
defined by

Eb =
MT −Minf

Minf

. (36)

We compare the curves of Eb as a function of MinfΩorb

with that in GR and identify the effect of the scalar field.
Specifically, we will show that the scalar-related dynami-
cal response in the late time can noticeably expedite the
merger (Sec. IVB), while the orbital frequency at the last
orbit increases only slightly compared to the GR value
[81, 82] (see also Section IVC).
The quality of the constructed configurations is exam-

ined by checking the violation of Eq. (30), i.e.,

Evirial =
|MK −MADM|

MADM

, (37)

which has been found to be less than 0.06% for our re-
sults. In addition, we evolved some of the obtained quasi-
equilibrium states with our numerical code (developed
from the previous code [15]) for a few orbits to validate
our ID solver. We confirmed that the BNSs have quasi-
circular orbits with a small eccentricity of 10−2, which is
approximately the same magnitude as that in [39].

A. Quasi-equilibrium sequences

In Figs. 3 and 4, we plot the binding energy of bina-
ries as a function of their orbital frequency. To represent
the evolution track of a BNS, as least to the leading or-
der, the rest mass of binaries is constant along each se-
quence [83], while we note that it may vary from one se-
quence to another depending on B andmφ (see Sec. II D).
The virial violation (37) for the constructed binaries is at
most 0.06%, i.e., much smaller than the absolute value
of the orbital binding energy. In both figures, we also
show the GR curve (solid-circle) constructed by the orig-
inal FUKA library [52] for the EOS APR4 (light blue)
and H4 (pink), and 4th order post-Newtonian (PN) ap-
proximation [84, 85] to clarify the scalar imprints. The
deviation of the numerically constructed sequences from
the 4PN prediction is denoted by ∆Eb (bottom panels).
Estimating the adiabatic tidal contribution by the differ-
ence between the GR sequence and the 4PN estimates,
we see that scalar effects are similar to the enhanced tidal
response for equal-mass binaries, so that systems with a
soft EOS in ST theory could accidentally be identified as
GR binaries with a stiffer EOS (see also below).
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FIG. 3. Quasi-equilibrium sequences for symmetric binaries
with each NS having 1.35M⊙. The binding energy is plotted
as a function of orbital frequency in the top, while the devia-
tion of various theories from the 4PN analytic estimates of GR
is shown in the bottom. Two EOS have been adopted for GR
sequences, viz. APR4 (blue-circle) and H4 (pink-circle), while
two scalar masses,mφ = 1.33×10−11 eV (top; λcomp ≃ 15 km)
and mφ = 4×10−12 eV (bottom; λcomp ≃ 50 km), are consid-
ered for ST sequences. Depending on different ST parameters,
scenarios of dynamical enhancement of the scalarization (col-
orful solid) and dynamical scalarization (dash-dotted) mani-
fest. The vertical gray lines relate the binary separation and
MinfΩorb based on the GR sequence.

For each considered scalar mass, we choose 4 coupling
strengthes that admit spontaneous scalarization (solid),
as well as one slightly below the critical value (dashed-
dotted). The former leads to the scenario of dynamical
enhancement of the scalarization at a close orbit, result-
ing from the scalar-cloud interaction (see the upper panel
of Fig. 5), while for the latter, the scenario is similar to
the so-called dynamical scalarization (see the lower panel

FIG. 4. Same as Fig. 3, but for asymmetric binaries with
1.5M⊙ + 1.2M⊙.

of Fig. 5), although the mechanism of the scalar-field
enhancement is identical for both cases. The dynami-
cal scalarization takes place for an orbital separation of
a . 1.7λcomp, slightly outside the Compton length scale,
while the dynamical enhancement of the scalarization can
do for more distant orbits of a . 3–6λcomp mainly con-
tingent on the scalar mass. This enhancement starts at
more distant orbits for larger values of B. The reason for
this enhancement of the scalar fields outside the Compton
length-scale is that even though the scalar field amplitude
of one star decays exponentially outside that scale, it still
has an appreciable value along the line connecting to its
companion when the orbital separation is close enough.
The same applies to the scalar field in the companion.
The interaction between the tails of the scalar field in-
duces a phenomenon similar to dynamical scalarization,
leading to the enhancement of the scalar cloud around
each NS. We note that for lower values of B with which
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FIG. 5. Radial profile of the scalar field for equal-mass bina-
ries at different stages, undergoing enhancement of scalariza-
tion (top) and dynamical scalarization (bottom). The color is
darker for closer separation, and the coupling strengthes are
set to B = 15.8 (top) and B = 15.2 (bottom), respectively.
The scalar mass here is assumed to be mφ = 1.33× 10−11 eV,
and APR4 EOS is adopted.

the maximum amplitude of the scalar field is low, i.e.,
ϕ . 10−2, the enhancement of the scalar amplitude does
not appreciably take place.

It is worth noting that BNSs follow the same evo-
lution track as in GR even if spontaneously scalarized
NS is present when a & 3–6λcomp for the cases consid-
ered here, viz. mφ = 1.33 × 10−11 eV (top panels) and
mφ = 4 × 10−12 eV (bottom panels) cases. This critical
distance within which the scalar imprint reveals matches
well with the size of the scalar cloud of an isolated NS
(Fig. 2). During this epoch [Stage (I) defined in Sec. I],
the scalar-wave emission is also negligible because the
relation λgw > λcomp is satisfied, and therefore, the ST
theory is likely indistinguishable from GR. This indicates
that for λcomp . 10 km (i.e., mφ & 2× 10−11 eV), the or-
bital evolution in this ST theory agrees with that in GR.

As the binary separation shrinks to a . 3–6λcomp while
λgw is still larger than λcomp [Stage (II)], we can observe
the bifurcation of scalarized sequences from GR ones in
both figures, though the scalar-emission is expected to be
highly suppressed by the scalar mass. This mφ-induced
suppression will however be eventually avoided when the
binary evolves to Stage (III). The difference between (II)
and (III) cannot be seen in quasi-equilibrium sequences
since the radiation is approximately ignored in construc-
tion. In a future work, we will revisit this aspect.

A word of caution is appropriate here. The curves of
Eb for a non-zero mass mφ cases are similar to those

FIG. 6. Deviation from 4PN approximant in the binding en-
ergy as a function of orbital frequency. Two EOSs, APR4
(blue curves) and H4 (purple curve), are employed. Einstein’s
gravity is assumed for both EOSs (solid curves), on top of
which the curve of one specific ST theory with EOS APR4 is
overplotted (dash-dot curve).

in GR assuming a stiffer NS EOS, where the NS radius
(i.e. tidal deformability) is high enough (see e.g., [50]).
For example, we plot in Fig. 6 the deviation from 4PN
binding energy for a sequence of a particular ST theory
with the EOS APR4, and for a GR sequence with the
EOS H4, for which the tidal deformability is about 3.5
times larger than that for EOS APR4 [86]. We see that
the two curves coincide when MinfΩorb < 0.03, indicat-
ing that the effect of the scalar-field interaction entangles
with that of the NS EOS until late-inspiral. On the other
hand, the curves of Eb for mφ = 4× 10−12 eV cannot be
reproduced by the NS EOS effect because the deviation
from the GR curve sets in at a distant orbit. An ap-
proximate estimate taking into account the previous GR
studies (e.g., [50]) gives that the tidal effect of the NS is
appreciable only forMinfΩorb & 0.02 (i.e., an orbital sep-
aration of ∼ 50km) for a NS with a radius of ∼ 15 km.
Therefore, if λcomp & 20 km, the scalar-field interaction
effect may be distinguished from the NS EOS effect as-
suming that the NS radius is less than 14 km [87, 88].
This suggests that by observing GWs from BNSs, the
mass of the scalar field could be bounded from below for
a hypothetically high value of B.

B. Cycles in gravitational waveform

The above conclusion can be further evidenced by look-
ing at the number of cycles, N , from a given orbital fre-
quency up to merger. Here we estimateN in an adiabatic
manner by integrating the orbital frequency along the
quasi-equilibrium states. Following [39, 50], we express
the energy balance equation as

dEb

dt
= −F , (38)
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Binary components (mφ, B) N

1.35M⊙ + 1.35M⊙

(0.03, 10.5) 25.66
(0.03, 11) 24.62
(0.03, 12) 23.33
(0.03, 15) 21.86
(0.03, 19) 19.80

(0.1 , 15.2) 27.27
(0.1 , 16) 26.65
(0.1 , 17) 25.92
(0.1 , 20) 22.13
(0.1 , 30) 21.13

1.5M⊙ + 1.2M⊙

(0.03, 10) 27.46
(0.03, 11) 24.60
(0.03, 12) 23.74
(0.03, 15) 22.34
(0.03, 18) 20.60

(0.1 , 14.5) 27.71
(0.1 , 16) 27.34
(0.1 , 17) 26.64
(0.1 , 20) 24.60
(0.1 , 29) 20.84

TABLE I. Number of cycles when the binary evolves during
fgw = 240–957 Hz for a variety of ST parameters. In this
table we present the dimensionless scalar mass with a note
that mφ = 0.1 = 1.33 × 10−11 eV.

.

FIG. 7. Parameter space of the considered massive ST theory.
Relation (23) for stellar masses of 1.5M⊙ (purple), 1.35M⊙

(green), and 1.2M⊙ (pink) are plotted as dashed lines. The
markers present the viability of the corresponded ST theory
after GW170817 especially for binaries with spontaneously
scalarized NSs (filled markers). Specifically, circles (crosses)
denote (un)acceptable parameters concerning with the two
chosen binary configurations, while triangle marks the theory
only allowed by the 1.5M⊙ + 1.2M⊙ binary.

whereby the orbit shrinks at the rate,

dΩorb

dt
= − F

dEb/dΩorb

. (39)

An orbit number of

N =
1

2π

∫

Ωorb

dΩorb/dt
dΩorb

= − 1

2πMinf

∫

x3/2

F(x)

dEb

dx
dx (40)

will accumulate during the inspiral when the orbital
frequency evolves from Ωi to Ωe, where we introduce
x = (MinfΩorb)

2/3. In numerical integration of Eq. (40),
we adopt the ansatz (cf. Eq. (68) of [50]),

Eb = E4PN
b + ax6 + bx7 + cx8, (41)

to fit the derivative of binding energy with respect to
Ωorb. Here we adopt 4PN result of the binding energy
as the principle part (E4PN

b ; Eq. (5.6) of [84]), and a, b,
and c are the fitting coefficients. In our consideration of
energy flux, we ignore the scalar radiation based on two
reasons: (i) the emissivity of such radiation is limited over
most of the orbital evolution, and (ii) the energy loss via
scalar channel is already subdominant to that via tra-
ditional GW in the massless ST theory as estimated by
[39], let alone the situation in massive ST theory. There-
fore, we adopt the 3.5PN approximation for the energy
flux, which is given by (Eq. (314) of [89])

F =
32

5
ν2x5

{

1 +

(

−1247

336
− 35

12
ν

)

x+ 4πx3/2

+

(

−44711

9072
+

9271

504
ν +

65

18
ν2
)

x2

+

(

−8191

672
− 583

24
ν

)

πx5/2

+

[

6643739519

69854400
+

16

3
π2 − 1712

105
γE − 856

105
ln(16x)

+

(

−134543

7776
+

41

48
π2

)

ν − 94403

3024
ν2 − 775

324
ν3

]

x3

+

(

−16285

504
+

214745

1728
ν +

193385

3024
ν2
)

πx7/2

}

, (42)

where ν = q/(1 + q)2 is the symmetric mass ratio.
Regulating the upper and lower limits of the inte-

gration such that the associated GW frequencies are
fgw ≃ 240 Hz (MinfΩorb = 0.01) and fgw ≃ 957 Hz
(MinfΩorb = 0.04) , we list the accumulated GW cycles
in Tab. I. Consider the almost stiffest and softest EOS
that are allowed by GW170817, which are H4 and APR4
[90], respectively, the number of cycles obtained in GR
are 27.45 and 26.24, respectively, for q = 1, while there
are 27.71 and 26.03 cycles for q = 0.8. Therefore, the
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FIG. 8. Mass-shedding indicator as a function of orbital frequency for binaries 1.35M⊙ + 1.35M⊙ (top) and 1.5M⊙ +
1.2M⊙ (bottom). Sequences with dynamical enhancement of the scalarization are shown as solid curves, those with dynamical
scalarization as dashed-dotted curves, and the GR sequence is the dotted-solid curve. The ARP4 EOS is employed to model
NSs.

uncertainty in the EOS can also be interpreted as the
ambiguity of the gravity theory if the resulted N in a
certain ST theory lies between those for EOS APR4 and
H4.

Together with cases with other values ofmφ not shown
in the table, our results are summarized in Fig. 7 where
the circles and crosses denote the acceptable and unac-
ceptable parameters with respect to the observational re-
sults of GW170817. Focusing on systems involving spon-
taneously scalarized NSs (filled markers), we see that
scalar mass of mφ ≤ 10−11 eV can hardly account for
the variation due to EOS, and thus are disfavored after
GW170817 in the event that one of NS be spontaneously
scalarized. It is also interesting to note that there are
some parameters allowed by 1.5M⊙+1.2M⊙ binaries are
exhibited by equal-mass binaries, and thus more strin-
gent constraint is concluded from the cases with q = 1.
For systems with small mass ratio, the scalarization in
the lighter star is much weaker than that in the heavier
star, and thus the strength of scalar interaction between
the binary is inconsequential. This somehow contradicts
the intuitive feeling that one gained from the experience
that the more strict constraint is obtained from increas-
ingly asymmetric binaries when analysing the pulsar tim-
ing observations in the massless theory, where the emis-
sivity of scalar wave will not be switched off by the scalar

mass. Here, instead, the merger is accelerated due to the
excess in the lost of orbital energy when developing scalar
cloud in the binary.

C. Mass-shedding Criterion

The contact of the two NSs could be understood as
the moment when one of them loses the feature of being
individual. An indicator of such loss of integrity is the
formation of a cusp along the direction towards the com-
panion, which can be quantitatively assessed through the
ratio between the radial gradient of enthalpy at the pole
and at the equatorial point facing the companion [50, 91].
In particular, a dimensionless factor [91],

χms =

(

∂ lnh

∂r

)

eq

(

∂ lnh

∂r

)−1

pole

, (43)

is useful to identify cusp formation: χms = 1 for static
NSs, while χms = 0 when the cusp is constituted. Since
spectral methods cannot resolve well the NS if a cusp
is formed at the region closest to the companion, it is
unfeasible to construct configuration with χms ≪ 1. In
addition, conformal flatness is unlikely to be a fair ap-
proximation at very close orbits. In this work, the clos-



12

est configurations we generated are at a stage less than
1 orbit, i.e., . 2 ms, before merger.
Figure 8 shows the mass-shedding indicator χms as a

function of the orbital frequency for the symmetric (top
panels) and asymmetric (bottom panels) binaries under
our consideration. Several features are observed, includ-
ing (i) the binaries pertaining to the stiffer EOS H4 start
to contact at a lower orbital frequency since the tidal
effect is more pronounced; (ii) dynamical scalarization
does not affect much Ωorb at the onset of mass shedding;
(iii) the deformation indicator χ at a given Ωorb is less for
increasingly scalarized configuration, which is due to the
extra attractive force provided by the scalar field, and is
in line with the finding of [15] that the central density
of NS components keep increasing until merger while a
decrease is seen shortly before the merger in GR. How-
ever, for the viable ST parameters summarised in Fig. 7,
the onset of mass-shedding does not sizeably affected by
scalar effects.

V. SUMMARY AND DISCUSSION

In order to consistently investigate the constraints
that could be obtained from observed gravitational wave-
forms, detailed understanding of the dynamics during
late-inspiral-to-merger is requisite. Owing to the non-
linearity manifesting in this regime, numerical-relativity
simulation is crucial and serves as the unique tool for this
purpose. Constructing quasi-equilibrium states as ID is
therefore the first step for the accurate modelling of the
gravitational waveforms. We provided reliable ID of bi-
naries consisting of two spontaneously scalarized NSs in
massive ST theories since a massless scalar field is ex-
cluded by pulsar-timing observations for theories with a
high coupling constant B. The scalar mass gives rise to
certain hurdles in solving the elliptic-type equation (20)
due to the exponentially-decaying behavior of the scalar
field [Eq. (28)]. An auxiliary scalar field ξ is introduced
for better treatment by the spectral code FUKA [52], and
is solved for according to the modified equation (22).
For equilibrium states of binaries generated here, the

asymptotic equality (30), dictated by the virial theorem,
is met within 0.06%, and some of them have been evolved
for a few orbits to reaffirm that the quasi-circular motion
is guaranteed. The constructed binary configurations
thus provide the essential setup for future numerical-
relativity study of BNSs in massive ST theories. In addi-
tion to future use, qualitative characteristics of the scalar
influence can be readily extracted by comparing the equi-
libria to GR ones. In particular, it is confirmed that the
quasi-equilibrium sequences in the ST theory are indis-
tinguishable from that in GR until the orbital separation
becomes approximately 3–6 times the Compton length
scale of the scalar field, i.e., a & 3–6λcomp. Then, at
a ∼ 3–6λcomp, the enhancement of the scalar field sets
in due to the interaction of the scalar clouds of the two
NSs (Figs. 3 and 4). Accordingly, the gravitational fields

will be modified, resulting in the deviation of the quasi-
equilibrium sequences from GR.
To quantify the deviation of sequences in ST from

those in GR, we estimate the number of cycles in GWs
accumulating over a certain range of orbital frequency
[Eq. (40)]. The tolerance in the stiffness of EOS con-
cluded from GW170817 roughly spans over from the EOS
APR4 to H4 [36, 88], and thus we adopt the EOS APR4
to derive conservative bounds on the ST parameters, pro-
vided that the scalar effects contribute to waveforms in
a similar way as tidal effects (Fig. 6). We found that
the cycles undergone by GWs indeed decrease with a
stronger scalar cloud (Tab. I) and/or a stiffer EOS. The
error budget in N defined by the EOS APR4 to H4 can
thus be translated to the upper bound on the scalar-
induced dephasing in waveforms. Comparing the cycles
of ST binaries pertaining to the EOS APR4 to those of
GR binaries following the EOS H4, our results are sum-
marised in Fig. 7, where a lower bound ofmφ & 10−11 eV
can be reckoned. We also noticed that the most stringent
limit is placed by equal-mass binaries, implying that the
derived constraint on the scalar mass assuming a spon-
taneously scalarized NS is in part of the BNS should be
robust even though we do not span over a wide range
of mass ratio. For mφ & 10−11 eV and a mild coupling
strength B . 17, the scalar-cloud interaction effect is not
appreciable during the inspiral stage of BNSs despite that
both members are scalarized, and can be seen only when
the binary is just outside the last stable orbit. The on-
set of mass-shedding for plausible ST theories essentially
matches to the GR cases (cf. Figs. 7 and Fig. 8).
It is important to note yet another layer of complica-

tion for the degeneracy between tidal effects, both adia-
batic [92] and dynamical ones, and the late enhancement
of scalarization, either dynamically triggered or through
interacting scalar clouds as suggested by Figs. 3 and 4
(see also [40]). It has been known that NSs’ tidal re-
sponse will be modified in ST theories with a massless
scalar field so that (i) the tidal effect will appear at 3PN
order [3] or even at 1PN order [93] in the case of dynam-
ical scalarization, (ii) the Love number will increase or
decrease depending on the compactness and the ST pa-
rameters [94–96], and (iii) a novel class of Love number
is introduced by the scalar field, leading to, e.g., dipolar
tidal effects [97, 98]. Relevant studies in the massive ST
theory have not been addressed to our knowledge, and
a numerical study of scalar-induced modulation in finite-
size effects will constitute an essential step toward testing
ST theories with GW physics. In this series of investiga-
tion, we hope to address this issue to some extent.
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[82] F.-L. Julié, V. Baibhav, E. Berti, and

A. Buonanno, Phys. Rev. D 107, 104044 (2023),
arXiv:2212.13802 [gr-qc].
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