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We study quasiequilibrium sequences of binary neutron stars in the framework of Damour-Esposito-
Farese-type scalar-tensor theory of gravity with a massive scalar field, paying particular attention to the
case where neutron stars are already spontaneously scalarized at distant orbits, i.e., in the high-coupling
constant case. Although scalar effects are largely quenched when the separation a is Z3-6 times of the
Compton length scale that is defined by the scalar mass, we show that the interaction between the scalar
fields of the two neutron stars generates a scalar cloud surrounding the binary at the price of orbital energy
when a < 3-6 times of the Compton length scale. This enables us to constrain the scalar mass m, from
gravitational wave observations of binary neutron star mergers by inspecting the dephasing due to such
phenomenon. In particular, the event GW170817 is suggestive of a constraint of m, 2 10~ eV and the
coupling strength should be mild if the neutron stars in this system were spontaneously scalarized.
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I. INTRODUCTION

General relativity (GR) has been put against a variety of
observations and yet been challenged, while it has also
proven to be incomplete from the theoretical point of view
for its nonrenormalizability (e.g., [1,2]). Among the exten-
sions to GR present in the literature, Damour-Esposito-
Farese (DEF) type of scalar-tensor (ST) theory of gravity is
perhaps most widely considered. In such theory, the gravity
around a scalarized compact object acquires distinct feature
from that in GR, modifying the trajectory of orbiting
companions. In particular, the motion of binaries will be
influenced to deviate from the GR prediction if there is scalar
interaction between the two components at play. In addition,
scalar waves will be emitted from binaries consisting of
differently scalarized components, constituting extra loss of
orbital energy. Lacking the evidences of the aforementioned
two effects in the pulsar timing observation of neutron star-
white dwarf (NS-WD) binaries has placed strong constraints
on ST theories with a massless scalar field [3-8]. Such
constraints are rather stringent for the presence of a scalar
charge of neutron stars (NSs) [9,10]. These constraints can,
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however, be mitigated by the inclusion of scalar mass
my [11,12]. The scalar effects beyond the associated
Compton length scale, A.omp = fic/my, are smeared out,
thus naturally accounting for the nondetection of scalar
dynamics that could take place in these binaries.
In particular, the constraints by the pulsar timing are lifted
to a large extent if the scalar field has a light mass m >

107'%eV (corresponding to a Compton length scale
Keomp < 1.5 % 10° km) [12]. With this small mass, the
scalar interaction within NS-WD binaries and the emission
of scalar waves from them are suppressed, leading to the
identical orbital evolution with that in GR. Therefore,
including a scalar mass not only increases the dimension
of the parameter space by one, but unlocks the previously
ruled out region. However, NS-WD binaries could barely
put constraints on the massive theory since a light scalar field
is enough to lift the constraining power of pulsar timing
observations. On the other hand, an ever-stringent lower
bound on the scalar mass may be placed by premerger
gravitational waves (GWs) from coalescing binary neutron
stars (BNSs).

For BNS mergers, the growth of the scalar field can be
activated by the gravitational compactness of the binary,
defined as the ratio of the total mass to the orbital
separation, forming another kind of scalarization [13-16]
(see also [17-20] for semianalytical modeling) other than
the spontaneous ones [21,22]. In the same spirit as pulsar
timing constraints, the absence of both kinds of scalariza-
tion in the event GW170817 suggests that spontaneously
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scalarized NSs are unlikely present in the associated
coalescing BNS if the scalar field is massless [23]. To
probe massive ST theory by GW physics, a pursue of scalar
masses 10712-107!" eV is of particular interest since the
associated Compton length scale is comparable with or
smaller than the typical orbital separation of ~30-200 km
when the BNS comes in the detection window.

It is widely known that the uncertainty on the theory of
gravity is degenerate with that on the nuclear equations of
state (EOS) [24,25]. Among other things, the twin star in GR
predicted from some EOS embracing hadron-quark phase
transition has an analog in the ST theory [26]. Nonetheless,
certain scalar-induced phenomena have no counterparts in
GR, e.g., the presence of scalar-type GWs from binary
motions [27], core collapse of giant stars [28-32], and
radial [33] and polar [34] oscillations of NSs (see [35] for a
recent, extensive review). An observation of such ST-
exclusive effects can therefore probe the nature of gravity,
and limit the parameter space of ST theories without the
potential for misinterpreting EOS effects. The dynamics
during the late inspiral up to merger, and the associated GW
emission from BNSs in a ST theory that admits spontaneous
and/or dynamical scalarization may shed unique light on the
nature of gravity [36,37], thus deserving qualitative
investigation.

For mass of my2 1072 eV, the scalar effects are
shielded in the early inspiral and the interaction only
becomes dynamically important when the binary
approaches merger. Since the effects occur in a highly
nonlinear regime of the theory, it can only be investigated
numerically. Although certain attempts have been made in
the massless case (m, = 0) [13,15,38-40], numerical study
of the BNS dynamics in theories with a massive scalar field
has not been performed. We thus endeavor to address such
an issue numerically as a nontrivial scalar mass is necessary
to account for the aforementioned observations. For this
purpose, preparing appropriate initial data (ID) is rather
imperative in order to guarantee accurate simulations.

As the first step towards the derivation of accurate BNS
dynamics and the emitted GWs, we develop an ID code to
generate equilibrium states of BNSs, which are expected to
deliver certain information on the dynamics of coalescence
since the sequence of equilibria can be viewed as the
leading-order approximations of the inspiraling process.
In particular, the constructed equilibria can (i) offer an
approximate estimate on the luminosity of GWs [39,41], and
(i1) qualitatively investigate scalar effects in the inspiral
stage on top of (iii) paving the way toward future numerical-
relativity studies of BNS mergers. By scrutinizing the
constructed sequences, we found that a lower bound of
my > 10~!'! eV for strong couplings can be readily drawn.
Although quantitative analysis of the waveforms can supple-
ment the effort of waveform modeling (e.g., [42]) to examine
the imprint of modified gravity from GWs, the relevant
investigation will be deferred to later work in this series.

In this paper, we pay particular attention to the sequences
of BNSs in which each NS is spontaneously scalarized, i.e.,
the coupling constant B is high [see Eq. (2)]. Broadly
speaking, inspiraling scalarized BNSs are speculated to be
classified into three stages depending on the following
three parameters: the orbital separation a, the gravitational
wavelength Zg,,, which is ~a*?M~'/2/2(> a) for binaries
in circular orbits with M the total mass of the binary, and
the Compton length scale, Zcqpyp. For (I) Ay, > @ >> Acomps
no effect associated with the scalar field appears and hence
the sequences of BNSs can be identical to those in GR; (II)
for ZAgy > Acomp X @, the scalar-wave emission is sup-
pressed because of the relation 2,y > A.mp, While the
interaction between the scalar clouds of the two NSs can
play a role in modifying the binary orbit; and (III) for
Acomp > Agw > a, both the scalar-wave emission and inter-
action of the two scalar clouds are present. For the
categories (II) and (III), the orbital evolution of the
BNSs can be different from that in GR. One of the primary
purposes of this paper is to confirm these speculations.

This paper is organized as follows. Section II briefly
reviews the ST theory under study, including the connec-
tion to other formalisms adopted in the literature, the
equations to be solved for quasiequilibrium states of
binaries, and the constraints on the theory parameters from
current observations of binary pulsar timing and GWs from
coalescing BNS. In Sec. III, we describe the asymptotic
properties of stationary spacetimes in this theory, which
provide quantitative measures for the quality of the qua-
siequilibrium states constructed here. Section IV forms the
main part of the article, where the sequences of BNS are
computed (Sec. I[VA), and demonstrates the scalar effects
in the binary evolution especially in terms of the cycles in
the GW (Sec. IV B). An elaboration on how the enhance-
ment of scalarization influences the onset of mass shedding
follows in Sec. IV C. Discussion and potential implications
of a detection of such effects are given in Sec. V.
Throughout this paper, we adopt the geometric units,
ie., G =1 = ¢, together with the reduced Plank constant
set to 7 = 1. The indices a, b, and ¢ denote the spacetime
components and i, j, and k the spatial components.

II. THEORETICAL AND OBSERVATIONAL
ASPECTS OF THE THEORY

A. Basic equations

The action of the scalar-tensor theory in the Jordan frame
is written as [43,44]

5 =165 [ v |oR =9, 49 - v
- [ @t o). (1)
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where R and V, are the Ricci scalar and covariant
derivative associated with the metric g, p is the rest-mass
density, and ¢ is the specific internal energy. In the action,
@(¢) describes the coupling between the metric and the
scalar field ¢, for which the following expression:

1

ol@) 132 B @)

is adopted in the present article with B as the dimensionless
coupling constant [15]. For latter use, we introduce the
variable ¢ via

2In¢p = ¢?, (3)

with respect to which the scalar potential,

2 2,2 42
v =20 (@)

is chosen for the scalar mass m, [45]. Along with the scalar
mass, a Compton length scale,

m¢ -1
%comp ~ 19.7 km<m> (5)

is introduced.
Denoting the Einstein tensor associated with the metric

gar s Gy, the equation of motion associated with the
action can then be written down as

1
Gab = 8”¢_1Tab + a)(¢)¢_2 |:va¢vb¢ - Egabvc¢vc¢:|

» 2m§S
+ ¢ (vavb¢ - gabvcvc¢) - B ¢1n ¢gab7 (6)
and

dw 4m5,¢2
—V . ¢pV©
AN

V, Vip= 5 !

e

|

where T, is the stress-energy tensor and 7 = T,%. The
equation of motion for the matter in the Jordan frame is the
same as in GR, i.e.,

V,T% = 0. (8)

The fluid is assumed to be a perfect fluid, for which the
stress-energy tensor has the form

T = phu®ub 4 Pg, 9)

where P is the pressure, h = 1 + ¢+ P/p is the specific
enthalpy, and u“ is the 4-velocity of the fluid, respectively.

B. Connection to the Einstein frame

To draw the connection to a large part of the literature,
where the Einstein frame is often considered due to certain
advantages with respect to the Jordan frame, we provide the
relations between these two frames in this subsection, while
we will stick to the Jordan frame in the rest of the article.
The scalar field in the Einstein frame, denoted by ¢, is
defined by assuming that the Weyl relation between the
metric fields in the two frames is

ab = A(D)* g (10)

where A(p) = ¢~/ = ¢fo?/2 and f, is a dimensionless
constant. Thus,

@ = \/-2Byp = VBp. (11)

In addition, the potential in the Einstein frame, V, related to
U via U = 4V¢?, is given by

L,
V:Emégaz, (12)

which makes clear the physical meaning of the parameter
my as the scalar mass.

The two parameters in the DEF theory are defined as the
asymptotic values of the first and second derivative of the
logarithmic coupling function [21,27]. Let the asymptotic
value of the Jordan frame scalar field be ¢, thus the one in
the Einstein frame being @, = ¢,/v/B by Eq. (11), one
then has

dInA Pogo
ApEf = Z == (13)
d Po \/E
and
d>InA
Poer = DT = fy = —B/2. (14)
4 Po

As long as the transformations of the fields between the two
frames are mathematically well-defined (e.g., one-to-one
relations should be guaranteed [46]), the physics can be
equally validly discussed in whichever frame [47].

C. Gravitational field equations in quasiequilibria

We describe here the basic gravitational field equations
for computing quasiequilibria of BNSs in circular orbits.
Following previous works [48,49] (and see, e.g., [50] for a
review), we solve the constraint equations under the
maximal slicing condition, assuming conformal flatness
for the 3-spatial metric y;; = W=2f,; j» where W is a
conformal factor and f;; is the flat 3-metric.
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The momentum constraint is written as

0=M; =D,K'; —D,K —8x¢p~'J, + K, D;¢p

2 ¢
- (1+5-5 o0 -onj0. (15)

where D; denotes the covariant derivative with respect to
vij» Kij is the extrinsic curvature with K = K%, ® =
—a~'(9, — f*0,)p with « the lapse function and S* the
shift vector, and J; = aT,’. The Hamiltonian constraint is
written as

0=H=R+K>—K;;KJ—167¢~"p,
2 3
— (= —=Z¢? | (®* + DpD*

(B 2¢>( + DypD*p)
—2[~K®¢ + DD ¢ + (1 + ¢*) DypD* ¢
_2mé(p2¢

B 9

(16)

where R is the Ricci scalar with respect to y;;
and p,, = o?T".

The elliptic equations for generating binary ID (assum-
ing conformal flatness) are written down as (see [15,39] for
equations in ST theories with a massless scalar field)

m2e™\ 1 .. .
Aw — - (2 ¢ —Zw A Al
U4 ¢ '4 ( 7pp + 4B SW ij
1 2 b’
—571'31//5(0277]5_1—#1//5

1 3 y
—% (1 +35- er2>f’-’(0i¢)(0,~fﬂ)

1 )
+ Zx‘lco U(woy — xow)(0;), (17)

7T e o
Ay = 277 o0y (pn +25) + oA AY

3 3 5
_ 2B rTd ! — 2L 4,2 2
S B o T (4+4B>W myp=¢

—% <3 + % - %rpz)f”(dirp)(ajfp)

3 3
=W ef (wog — x0w)(9;9), (18)

. )
Ap' + gfl']aj(akﬁk) = 16x¢p~ yy™" f1IJ;
— 2y A (Ty "0, — y ' 0x)
— 2y~ A0, (19)

and

A = 27By ™' T — o7 (0:0) ;00
— 0 0 +wl o) (0,0) + myted,  (20)

where A denotes the flat Laplacian, y = W='/2, y = ay,
S =T,;7", and we used the definition

Al = y/“’(K’/ —gy’fK). (21)

We also assumed that the “momentum” of the scalar field ¢,
denoted by @, vanishes given that the scalar-radiation
reaction time scale is much longer than the orbital time
scale. From Eq. (20) we see that the asymptotic value of the
scalar field, ¢, can be oscillatory (e.g., [51]) or zero for
stationary solutions. We adopt the latter case in the present
work, i.e., @y =0. By modifying the elliptic equa-
tions (17)—(19) and introducing Eq. (20), we generalize
the public spectral code FUKA [52] to this ST theory for
generating the BNSs in quasiequilibrium.

Note that, for large distances, FUKA uses a compactified
domain to bring infinity to a finite numerical distance (this
allows in particular to properly impose boundary condi-
tions at infinity). Given the asymptotic exponential decay
of the scalar field ¢, its profile is better captured in such a
domain if Eq. (20) is rewritten in terms of an auxiliary
scalar field £ = @ cosh(m,r), which gives

A& = mg[2 cosh™2(myr) +ytp — 1]¢

2m,, tanh(mr :
| Zmy tanh(omyr) )§+2m¢ tanh(m,r)#0,¢
p

+ 2xBy Ep™' T — cosh™ (myr)E[f10,£0,&

— 2m & tanh(myr)?0,€ + m3E* tanh? (myr)]

- (o + ll/_laill/)[fijajf - m¢§tanh(m¢r)?i],
(22)

where 7 is the unit radial vector. The first term in the right-
hand side suggests a Helmholtzian nature of the equation,
which, however, asymptotically reduces to a Laplacian one
under the assumption of this paper that ¢p — 1 at r — 0.

D. Spontaneous scalarization with massive fields

In isolated NSs and for a given coupling strength B,
scalarization is triggered by tachyonic instability if the NS
exceeds a threshold compactness determined by the theory
parameters and the EOS. In particular, the conditions to be
met for spontaneous scalarization in a spherical NS are
approximately k> > 0 and kR, — /2 for k> = —(2zBT +

mfb) [45]. In the massless theory, the threshold is only

weakly EOS dependent for some coupling strength, given
that =7 =~ p [15,21,53,54]. However, this universality is
lost from the nonvanishing m, [55]. Instead of studying the
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FIG. 1. Boundaries of the scalarization projected on the mé -
B\/M, 4 plane for a variety of stellar masses, which separate
the upper region where stars do not harbour a static scalar field
from the lower region of scalarized NSs. Here the notations
M, 14=M,/14Mg and my _; = m,;/107"" eV are used, and
the APR4 EOS is adopted.

EOS dependence of the threshold, we focus on a particular
EOS (ARP4 [56]) and look at how the scalarization
criterion is modified by m.

In Fig. 1, we trace out the marginally scalarized
configuration on the mé—B\/AT* plane where M, denotes
the mass of the NS (see Sec. III B for more details on
defining stellar mass). We observe that the critical coupling
strength B for scalarization correlates approximately with
the squared mass of the scalar field, and the relation
depends only slightly on the specific stellar mass. For
the considered EOS, we find the fitting formula

e’ 12524 1542, (23)
— % ) ~1-=252x+ 1.54x2%,
1.6 x 107 eV

@)

Therefore, for a given scalar mass, the critical coupling
strength is approximately a function of M, . In particular,
the critical coupling strength B, for massless ST theories
is solved as

where

— M -1/2
B~ 96 * . 25
crit <14M@> ( )

We see also that the critical coupling strength increases
monotonically with m, (i.e., dBg;/dmy > 0). This ten-
dency continues up to the mass large enough to eliminate
scalarization for any coupling strength [12]. For NSs whose
typical radius is ~10 km, mass of my 22 x 107! eV
severely suppresses scalarization in NSs since the

associated Compton length is shorter than the stellar size.
We thus only consider masses smaller than this limit.

In addition, the presence of scalar hair provides extra
supporting force, thus sustaining more matter for a given
stellar mass (the meaning of stellar mass will be further
clarified in Sec. III B), i.e., the stellar rest mass

My = [ puty=gd's (26)

is larger for stronger scalarization. As an illustration,
assuming m, = 1.33x 107" eV, EOS APR4, and
M, = 135M, one has M, = 1.5021M for B = 15.5,
while M, increases by 0.015M, for B = 17.

E. Current constraints

Pulsar-timing observations in NS-WD binaries [4-6] or
in galactic NS-NS binaries [57] can constrain the param-
eters of ST theories based on scalar-wave emissivity
(assuming my < 107" eV). In fact, the ST theory with a
massless scalar field and a high coupling constant B = 9
(i.e., Pppr < —4.5) is ruled out by the network of pulsar
systems [9,10]. However, a tiny value of mg > %g\}v (here
Ao denotes the wavelength of scalar waves which is
comparable to the gravitational wavelength) can account
for the absence of scalar radiation and the reason is as
follows. The propagation group speed of scalar waves (v,)
with the frequency w,,, can be approximately written as

v, =/1- méa)g\% =(1+ mé%éw)_l/z, (27)

where we note that the relation between the wavelength and
frequency is Ag, = (@§y —mj)~"/2. This speed is much
slower than the speed of light for Zg,, > Aoy, thus essen-
tially prohibiting the scalar-wave emission (e.g., [11,31]).
Aside from the scalar-wave emissivity, the gravitational
field around scalarized NSs can be appreciably different
from that in GR within a few times of 2.y, (see Fig. 2
below). Accordingly, the orbital motion around the scalar-
ized NS should be modified for orbital separations com-
parable with 2,,,,. Such modification is, however, not seen
in the observations. A small value of the mass m; > 1/a

(~10716 eV for observed NS-WD systems) is then neces-
sary to circumvent the current observational constraint if
the NSs are scalarized (e.g., [12]). We note that this mass
range can also accommodate what is observed from the
triple system PSR J0337 4 1715 [58] (see Fig. 2 therein).
In addition, simultaneous mass-radius measurements by
monitoring rotating hot spot patterns of pulsars can also
probe the theory parameters [59,60], while the constraints
obtained in this way are currently weaker than the afore-
mentioned ones.
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FIG. 2. Relevant properties of isolated NSs in ST theories; deviation between (y — 1) and (y — 1) as a function of the areal radius y>r
(top) and the profile of the scalar field (bottom) for NSs with M, = 1.35M,. Theories with A, = 15 km (my = 1.33 x 107! eVv;
left) and Zcomp = 30 km (my = 6.65 x 10712 eV; right) are considered. For each scalar mass, four coupling strengths are adopted and
listed in the legend. Note that the NS for B = 15 and 2.y, = 15 km is not scalarized, and thus, the geometry is the same as in GR.
Vertical lines mark the first four times of the associated Compton length scale. The stellar radius (areal radius) for this model is

~11.1 km.

The tensorial gravitational waveforms observed
for a BNS can constrain the theory by measuring the
scalar-radiation-induced phase shift [61]. For the specific
event GW170817, the observation does not support sig-
nificant scalar effects in inspiral stages [23,62], while the
induced/dynamical scalarization in late-inspiral-to-merger
phase remains unconstrained due to the insufficient sensi-
tivity to the lase inspiral waveform. An upper limit of
B < 9-9.4 is thus suggested for a massless scalar field if the
two NSs are slowly rotating (cf. Fig. 13 in [23]; we note
again that their parameter is f = —B/2). This constraint
substantially prevents spontaneous scalarization in NSs. In
order to revive the existence of scalarized NSs, the
Compton length scale has to be much smaller than the
constraint from the pulsar systems, because the orbital
separation of inspiraling BNSs in the range of GW
observations is quite small, within ~20-200 km. However,
the scalar effects in this regime is not trivial, so that the
present numerical work is required; see Sec. IV for more
details.

Although much less stringent, the gravitational phenom-
ena in the solar system (e.g., Shapiro time delay measured
by Cassini tracking) put constraints on the scalar mass
my 2 10717 eV [11,63]. Possible constraints on the mas-
sive theories may also be placed by extreme mass-ratio
inspirals (EMRIs) where superradiance modifies orbital
dynamics [64], e.g., with the presence of floating orbits on
resonance “islands” [65], thus leading to phase shifts in
gravitational waveforms (much similar to the ramification
of non-Kerr black hole spacetimes [66,67]). However, it has

recently been pointed out that the scalar imprint in the
waveforms may be indistinguishable from GR waveform
baselines for m, <4 x 10712 eV [68].

III. VIRIAL THEOREM, TENSOR MASS, AND
ASYMPTOTIC BEHAVIOR OF THE GEOMETRY

In the present article, we assume the conformally flat
(Isenberg-Wilson-Mathews [48,49]) approximation (see
[69-72] for a construction without this approximation),
helical symmetry, and maximal slicing (i.e., K = 0) for the
spacetime. The quasiequilibrium states in this formalism
satisfies the viral relation [14,69,70,73]. Thus, we will
validate the numerical solutions of the quasiequilibria by
the virial theorem, which is described for massive ST
theory in Sec. IIl A. We then define the tensor mass in
Sec. III B, which characterizes the physical mass of the
system.

A. Virial theorem

Given that the asymptotic behavior of the scalar field in
the Einstein frame reads

M -
¢ =Go+—Fe+0(r7), (28)

we have the following relations for r — oo,

M -
? e 4 O(r72). (29)
.

@ =@+
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Since ¢ approaches ¢, exponentially at r — oo, the scalar
charges BM » does not contribute to the mass in the
system. Thus, the virial relation is written in the same form

as in GR (cf. [14])
My = M xpwm, (30)

where M ,py is the Arnowit-Deser-Misner (ADM) mass
and Mg denotes the Komar mass defined by

1
My = — ds vegb, 31
K 4, 72 appV4E (31)
where we have assumed the existence of a timelike Killing
vector & fulfilling n,&* = —a.

B. Tensor mass

As the ADM mass in the Einstein frame decreases
monotonically when GWs propagate away and is positively
defined [74-76], we refer it to the mass of a given system
following, e.g., [14,77], and define it as the tensor mass Mt
to be distinguishable from the ADM mass in the Jordan
frame (M py)- As a specific example, the stellar mass
refers to the tensor mass of a NS, i.e., M, = M. In the
massless ST theories, the tensor mass is written as the sum
of the ADM mass and scalar charge [74]. As mentioned in
Sec. III A, the scalar charge does not contribute to the mass
of the system in the massive ST theories. Thus, we simply
have Mt = M py. If the virial theorem is satisfied, the
tensor mass is also equal to the Komar mass.

C. Asymptotic behavior of the geometry

In GR, the asymptotic behavior of y and y at a large
distance in isotropic coordinates is described as (e.g., [69])

M
y=1+—20+0(72), (32)
2r
My - M
y=1 —%JFO(;»-Z). (33)
r

Thus, the equality

(w—Dr=-(-1r, (34)

holds at r — oo, if the virial relation is satisfied. For
spherical stars in equilibrium, this relation is satisfied for
the entire region outside the stellar surface, r = R,,
because of the presence of Birkhoff’s theorem in
GR [78,79].

By contrast, Eq. (34) is satisfied only at r — o0 in ST
theories because the scalar clouds contribute to y and y in a
different way. The deviation from the equality of Eq. (34)
outside the star is considered as a manifestation of ST
theories. In particular, we plot in Fig. 2 the violation of the

equality of w — 1 = 1 — y (upper panels) and the profile of
@ (lower panels) for spherical NS models with
M, = 135Mg. Two scalar masses are considered with
the associated Compton length scale being Zcopp 2 15 km
(left) and 30 km (right). By picking several values of B for
each value of my, we consider NSs scalarized to different
extents. We see that the equality (34) holds for r > .oy,
while the deviation can be > 1072% for y?r < 4%com, Where
the amplitude of the scalar field is appreciably nonzero.
This clearly indicates that the presence of the scalar cloud
can appreciably modify the binary motion if the orbital
separation is smaller than a few times of Z .

It is also found that for larger values of B, the maximum
value of || is larger, and as a result, the region, in which the
equality of Eq. (34), is breached is wider. Thus, for larger
values of B, the scalar could modifies the binary motion
from a larger distance (see Sec. IVA).

IV. BINARY NEUTRON STARS IN
QUASIEQUILIBRIA

The major purpose of this paper is to clarify in which
cases the effect of the scalarization of NSs can be identified
by observing GWs from inspiraling BNSs. Given that the
current GW detectors are able to detect signals for
f ~20-10° Hz, where the separation between the members
of a BNS is less than ~200 km (for NS masses of ~1.4M ),
the scalar mass of interest will then be

my>1x10712 eV, (35)

associated with Compton length scales of < 200 km.
We consider my =4 x 1072 eV (Aomp ~ 50 km) and
mgy =133 X 1071 eV (Acomp & 15 km) as two canonical
cases to demonstrate the role played by the scalar mass, as
well as coupling strength, in the last several orbits of BNSs.
To model the hydrodynamical equilibria of NSs, we
adopted the piecewise-polytropic approximated EOS
APR4 [80]. The details of our implementation are essen-
tially the same as those in [50], and thus we will not repeat
them here.

Denoting the tensor masses of the two NSs when they
were in isolation as M, ; and M, ,, the total mass M;,; =
M, | + M, , is kept constant along each binary sequence.
In this work, we choose M;,; = 2.7M o, while consider two
values for the mass ratio, viz. ¢ = M, ,/M, ; = 1 and 0.8.
Each quasiequilibrium state on a particular sequence is
characterized by a dimensionless orbital angular velocity
M;:Q.p, and the orbital binding energy defined by

M — M;
E, = — i (36)
Minf

We compare the curves of Ey, as a function of M;,;Q,, with
that in GR and identify the effect of the scalar field.

064057-7



KUAN, VAN AELST, LAM, and SHIBATA

PHYS. REV. D 108, 064057 (2023)

Specifically, we will show that the scalar-related dynamical
response in the late time can noticeably expedite the merger
(Sec. IV B), while the orbital frequency at the last orbit
increases only slightly compared to the GR value [81,82]
(see also Sec. IV C).

The quality of the constructed configurations is exam-
ined by checking the violation of Eq. (30), i.e.,

My — M apm|

gvirial - ’ (37)

M ADM

which has been found to be less than 0.06% for our results.
In addition, we evolved some of the obtained quasiequili-
brium states with our numerical code (developed from the
previous code [15]) for a few orbits to validate our ID
solver. We confirmed that the BNSs have quasicircular
orbits with a small eccentricity of 1072, which is approx-
imately the same magnitude as that in [39].

A. Quasiequilibrium sequences

In Figs. 3 and 4, we plot the binding energy of binaries as
a function of their orbital frequency. To represent the
evolution track of a BNS, as least to the leading
order, the rest mass of binaries is constant along each
sequence [83], while we note that it may vary from one
sequence to another depending on B and m, (see Sec. II D).
The virial violation (37) for the constructed binaries is at
most 0.06%, i.e., much smaller than the absolute value of
the orbital binding energy. In both figures, we also show the
GR curve (solid-circle) constructed by the original
FUKA library [52] for the EOS APR4 (light blue) and
H4 (pink), and fourth-order post-Newtonian (PN) approxi-
mation [84,85] to clarify the scalar imprints. The deviation
of the numerically constructed sequences from the 4PN
prediction is denoted by AE;, (bottom panels). Estimating
the adiabatic tidal contribution by the difference between
the GR sequence and the 4PN estimates, we see that scalar
effects are similar to the enhanced tidal response for equal-
mass binaries, so that systems with a soft EOS in ST theory
could accidentally be identified as GR binaries with a stiffer
EOS (see also below).

For each considered scalar mass, we choose four
coupling strengths that admit spontaneous scalarization
(solid), as well as one slightly below the critical value
(dashed-dotted). The former leads to the scenario of
dynamical enhancement of the scalarization at a close
orbit, resulting from the scalar-cloud interaction (see the
upper panel of Fig. 5), while for the latter, the scenario
is similar to the so-called dynamical scalarization (see
the lower panel of Fig. 5), although the mechanism of the
scalar-field enhancement is identical for both cases. The
dynamical scalarization takes place for an orbital separation
of a < 1.7%cqmp, slightly outside the Compton length scale,
while the dynamical enhancement of the scalarization can
do for more distant orbits of a < 3-6%.y, mainly
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FIG. 3. Quasiequilibrium sequences for symmetric binaries
with each NS having 1.35M. The binding energy is plotted
as a function of orbital frequency in the top, while the deviation of
various theories from the 4PN analytic estimates of GR is shown
in the bottom. Two EOS have been adopted for GR sequences,
viz. APR4 (blue-circle) and H4 (pink-circle), while two scalar
masses, my = 1.33 X 107! eV (top; Aeomp = 15 km) and my =
4 x 10712 eV (bottom; %o, ~ 50 km), are considered for ST
sequences. Depending on different ST parameters, scenarios of
dynamical enhancement of the scalarization (colorful solid) and
dynamical scalarization (dash-dotted) manifest. The vertical gray
lines relate the binary separation and M;,;Q.,, based on the GR
sequence.

contingent on the scalar mass. This enhancement starts
at more distant orbits for larger values of B. The reason for
this enhancement of the scalar fields outside the Compton
length scale is that even though the scalar field amplitude of
one star decays exponentially outside that scale, it still has
an appreciable value along the line connecting to its
companion when the orbital separation is close enough.
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FIG. 4. Same as Fig. 3, but for asymmetric binaries with
1.5Mg + 1.2M .

The same applies to the scalar field in the companion. The
interaction between the tails of the scalar field induces a
phenomenon similar to dynamical scalarization, leading to
the enhancement of the scalar cloud around each NS. We
note that for lower values of B with which the maximum
amplitude of the scalar field is low, i.e., ¢ < 1072, the
enhancement of the scalar amplitude does not appreciably
take place.

It is worth noting that BNSs follow the same evolution
track as in GR even if spontaneously scalarized NS is
present when a 2 3-62,,, for the cases considered here,
viz. my=133x10""" eV (top panels) and m, =
4 x 107'2 eV (bottom panels) cases. This critical distance
within which the scalar imprint reveals matches well with
the size of the scalar cloud of an isolated NS (Fig. 2).
During this epoch [Stage (I) defined in Sec. I], the
scalar-wave emission is also negligible because the relation

0
0.1k
S--0.2F \ / a (km)"
\ / 0
—35
-0.3F —38 1
44
59
0.4 . f
80 -60 -40 -20 0 20 40 60 80
r (km)
0 — —
-0.05 +
S L0.1f a (km)-
—30
—32
-0.15+ —35

1

-80  -60  -40  -20 0 20 40 60 80

FIG. 5. Radial profile of the scalar field for equal-mass binaries
at different stages, undergoing enhancement of scalarization (top)
and dynamical scalarization (bottom). The color is darker for
closer separation with the orbital separation « listed in the legend.
The coupling strengthes are set to B = 15.8 (top) and B = 15.2
(bottom), respectively, while the scalar mass is assumed to be
my =1.33 x 107" eV. We adopt the APR4 EOS for NSs.

Row > Acomp 1s satisfied, and therefore, the ST theory is
likely indistinguishable from GR. This indicates that for
Aeomp S 10 km (ie., my 2 2 x 107! eV), the orbital evo-
lution in this ST theory agrees with that in GR.

As the binary separation shrinks t0 @ < 3-6%y, While
Agy 1s still larger than 2, [Stage (ID)], we can observe the
bifurcation of scalarized sequences from GR ones in both
figures, though the scalar emission is expected to be highly
suppressed by the scalar mass. This m-induced suppres-
sion will however be eventually avoided when the binary
evolves to Stage (II1). The difference between (II) and (IIT)
cannot be seen in quasiequilibrium sequences since the
radiation is approximately ignored in construction. In a
future work, we will revisit this aspect.

A word of caution is appropriate here. The curves of E
for a nonzero mass my, cases are similar to those in GR
assuming a stiffer NS EOS, where the NS radius (i.e., tidal
deformability) is high enough (see e.g., [50]). For example,
we plot in Fig. 6 the deviation from 4PN binding energy for
a sequence of a particular ST theory with the EOS APR4,
and for a GR sequence with the EOS H4, for which the tidal
deformability is about 3.5 times larger than that for EOS
APR4 [86]. We see that the two curves coincide when
M;+Qon < 0.03, indicating that the effect of the scalar-
field interaction entangles with that of the NS EOS
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until late-inspiral. On the other hand, the curves of E;, for
my =4 x 10712 eV cannot be reproduced by the NS EOS
effect because the deviation from the GR curve sets in at a
distant orbit. An approximate estimate taking into account
the previous GR studies (e.g., [50]) gives that the tidal
effect of the NS is appreciable only for M; Q. = 0.02
(i.e., an orbital separation of ~50 km) for a NS with a
radius of ~15 km. Therefore, if .y, 2 20 km, the scalar-
field interaction effect may be distinguished from the
NS EOS effect assuming that the NS radius is less than
14 km [87,88]. This suggests that by observing GWs from
BNSs, the mass of the scalar field could be bounded from
below for a hypothetically high value of B.

B. Cycles in gravitational waveform

The above conclusion can be further evidenced by
looking at the number of cycles, N, from a given orbital
frequency up to merger. Here we estimate A in an adiabatic
manner by integrating the orbital frequency along the
quasiequilibrium states. Following [39,50], we express
the energy balance equation as

dE,
—r =" (38)

whereby the orbit shrinks at the rate,

An orbit number of

1 'Q'orb
S . M)
N=s5, / dQ, . /di o

1 x3? dE,
- [Ty 4
2aMiye ) F(x) dx * (40)

will accumulate during the inspiral when the orbital
frequency evolves from ; to ., where we introduce
x = (MpiQ0m)*>. In numerical integration of Eq. (40), we
adopt the ansatz [cf. Eq. (68) of [50]],

Ey = EfPN + ax® + bx" + cx, (41)

to fit the derivative of binding energy with respect to Q.
Here we adopt 4PN result of the binding energy as the
principle part [E7N; Eq. (5.6) of [84]], and a, b, and ¢ are
the fitting coefficients. In our consideration of energy flux,
we ignore the scalar radiation based on two reasons: (i) the
emissivity of such radiation is limited over most of the
orbital evolution, and (ii) the energy loss via scalar channel
is already subdominant to that via traditional GW in
the massless ST theory as estimated by [39], let alone
the situation in massive ST theory. Therefore, we adopt the

Ao, - _ 7 ] (39) 3.5PN approximation for the energy flux, which is given by
dt dEy/dQq [Eq. (314) of [89]]
|
32, 1247 35 4711 9271 65 8191 583
_ 24 1 _Leml 9 Aid)2 L LT I _evb Jed 5/2
d 5”{ +< 336 12”)x+ = +< 9072+504”+18”)x +( 672 24”)’”‘
6643739519 16 , 1712 856, (o (194543 AL\ OMO3 , 75 )
—— - ——VE— = X - — WV — 1 |X
69854400 ' 3 105 "* 7 105 7776 ' 48 3024 © T 324
16285 214745 193385 ,\ .,
- , 42
+< s04 1728 Y 3004 ”)”x (42)

where v = ¢/(1 + ¢)? is the symmetric mass ratio.
Regulating the upper and lower limits of the integration
such that the associated GW frequencies are f,,, ~ 240 Hz
(MianOI‘b = 001) and fgW ~ 957 Hz (Minfgorb = 004),
we list the accumulated GW cycles in Table I. The almost
stiffest and softest EOS that are allowed by GW170817
have been estimated to be H4 and APR4, respectively,
through the analysis where GR is assumed as the theory of
gravity [90]. We however adopt them to elaborate possible
constraints on the ST theory that could be placed by this
event. The number of cycles obtained in GR are 27.45 and
26.24 for APR4 and H4, respectively, for ¢ = 1, while there
are 27.71 and 26.03 cycles for g = 0.8. Therefore, the
uncertainty in the EOS can also be interpreted as the

|
ambiguity of the gravity theory if the resulted AV in a certain
ST theory lies between those for EOS APR4 and H4.
Together with cases with other values of m not shown in
the table, our results are summarized in Fig. 7 where the
circles and crosses denote the acceptable and unacceptable
parameters with respect to the observational results of
GW170817. Focusing on systems involving spontaneously
scalarized NSs (filled markers), we see that scalar mass of
m, < 107! eV can hardly account for the variation due to
EOS, and thus are disfavored after GW170817 in the event
that one of NS be spontaneously scalarized. It is also
interesting to note that there are some parameters allowed
by 1.5My + 1.2M, binaries are exhibited by equal-mass
binaries, and thus more stringent constraint is concluded
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TABLE I. Number of cycles when the binary evolves during
Sow = 240-957 Hz for a variety of ST parameters. In this table
we present the dimensionless scalar mass with a note that
my =0.1=133x10"" eV.

Binary components (my, B) N

1.35M¢ + 1.35M (0.03, 10.5) 25.66
(0.03, 11) 24.62
(0.03, 12) 23.33
(0.03, 15) 21.86
(0.03, 19) 19.80
(0.1, 15.2) 27.27
(0.1, 16) 26.65
0.1, 17) 25.92
(0.1, 20) 22.13
(0.1, 30 21.13

1.5Mg + 1.2M (0.03, 10) 27.46
0.03, 11) 24.60
(0.03, 12) 23.74
(0.03, 15) 22.34
(0.03, 18) 20.60
0.1, 14.5) 27.71
0.1, 16) 27.34
0.1, 17) 26.64
(0.1, 20) 24.60
(0.1, 29) 20.84

from the cases with ¢ = 1. For systems with small mass
ratio, the scalarization in the lighter star is much weaker
than that in the heavier star, and thus the strength of scalar
interaction between the binary is inconsequential. This
somehow contradicts the intuitive feeling that one gained
from the experience that the more strict constraint is
obtained from increasingly asymmetric binaries when
analysing the pulsar timing observations in the massless

0-06 1 7‘% —113x10 1oV, B=1d7] ‘ ‘
GR APR4
0051 _GR 1

0.01 0.015 0.02 0.025 0.03 0.035 0.04
Mianorb

FIG. 6. Deviation from 4PN approximant in the binding energy
as a function of orbital frequency. Two EOSs, APR4 (blue curves)
and H4 (purple curve), are employed. Einstein’s gravity is
assumed for both EOSs (solid curves), on top of which the
curve of one specific ST theory with EOS APR4 is overplotted
(dash-dot curve).

theory, where the emissivity of scalar wave will not be
switched off by the scalar mass. Here, instead, the merger is
accelerated due to the excess in the lost of orbital energy
when developing scalar cloud in the binary.

C. Mass-shedding criterion

The contact of the two NSs could be understood as the
moment when one of them loses the feature of being
individual. An indicator of such loss of integrity is the
formation of a cusp along the direction towards the
companion, which can be quantitatively assessed through
the ratio between the radial gradient of enthalpy at the pole
and at the equatorial point facing the companion [50,91]. In
particular, a dimensionless factor [91],

dlnh olnh\ -1
)(ms:<ar> <ar> ’ (43)
eq pole

is useful to identify cusp formation: y,,, = 1 for static NSs,
while y,,c = 0 when the cusp is constituted. Since spectral
methods cannot resolve well the NS if a cusp is formed at
the region closest to the companion, it is unfeasible to
construct configuration with y,, < 1. In addition, con-
formal flatness is unlikely to be a fair approximation at very
close orbits. In this work, the closest configurations we
generated are at a stage less than 1 orbit, i.e., <2 ms, before
merger.

Figure 8 shows the mass-shedding indicator y, as a
function of the orbital frequency for the symmetric (top
panels) and asymmetric (bottom panels) binaries under our
consideration. Several features are observed, including
(i) the binaries pertaining to the stiffer EOS H4 start to
contact at a lower orbital frequency since the tidal effect is
more pronounced; (ii) dynamical scalarization does not
affect much Q4 at the onset of mass shedding; and (iii) the
deformation indicator y at a given €y, is less for increas-
ingly scalarized configuration, which is due to the extra
attractive force provided by the scalar field, and is in line
with the finding of [15] that the central density of NS
components keep increasing until merger while a decrease
is seen shortly before the merger in GR. However, for the
viable ST parameters summarized in Fig. 7, the onset of
mass shedding does not sizeably affected by scalar effects.

V. SUMMARY AND DISCUSSION

In order to consistently investigate the constraints that
could be obtained from observed gravitational waveforms,
detailed understanding of the dynamics during late-inspi-
ral-to-merger is requisite. Owing to the nonlinearity man-
ifesting in this regime, numerical-relativity simulation is
crucial and serves as the unique tool for this purpose.
Constructing quasiequilibrium states as ID is therefore the
first step for the accurate modelling of the gravitational
waveforms. We provided reliable ID of binaries consisting
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FIG. 7. Parameter space of the considered massive ST theory.
Relation (23) for stellar masses of 1.5M (purple), 1.35M
(green), and 1.2M, (pink) are plotted as dashed lines. The
markers present the viability of the corresponded ST theory after
GW170817 especially for binaries with spontaneously scalarized
NSs (filled markers). Specifically, circles (crosses) denote (un)
acceptable parameters concerning with the two chosen binary
configurations, while triangle marks the theory only allowed by
the 1.5M g + 1.2M, binary.

of two spontaneously scalarized NSs in massive ST
theories since a massless scalar field is excluded by
pulsar-timing observations for theories with a high cou-
pling constant B. The scalar mass gives rise to certain
hurdles in solving the elliptic-type equation (20) due to the
exponentially decaying behavior of the scalar field
[Eq. (28)]. An auxiliary scalar field £ is introduced for
better treatment by the spectral code FUKA [52], and is
solved for according to the modified Eq. (22).

For equilibrium states of binaries generated here, the
asymptotic equality (30), dictated by the virial theorem, is
met within 0.06%, and some of them have been evolved for
a few orbits to reaffirm that the quasicircular motion is
guaranteed. The constructed binary configurations thus
provide the essential setup for future numerical-relativity
study of BNSs in massive ST theories. In addition to future
use, qualitative characteristics of the scalar influence can be
readily extracted by comparing the equilibria to GR ones.
In particular, it is confirmed that the quasiequilibrium
sequences in the ST theory are indistinguishable from that
in GR until the orbital separation becomes approximately
3-6 times the Compton length scale of the scalar field, i.e.,
a 2 3—6A.omp- Then, at a ~ 3—62 .oy, the enhancement of
the scalar field sets in due to the interaction of the

scalar clouds of the two NSs (Figs. 3 and 4).
Accordingly, the gravitational fields will be modified,
resulting in the deviation of the quasiequilibrium sequences
from GR.

To quantify the deviation of sequences in ST from those
in GR, we estimate the number of cycles in GWs
accumulating over a certain range of orbital frequency
[Eq. (40)]. The tolerance in the stiffness of EOS concluded
from GW 170817 roughly spans over from the EOS APR4
to H4 [36,88], and thus we adopt the EOS APR4 to derive
conservative bounds on the ST parameters, provided that
the scalar effects contribute to waveforms in a similar way
as tidal effects (Fig. 6). We found that the cycles under-
gone by GWs indeed decrease with a stronger scalar cloud
(Table 1) and/or a stiffer EOS. The error budget in N
defined by the EOS APR4 to H4 can thus be translated to
the upper bound on the scalar-induced dephasing in
waveforms. Comparing the cycles of ST binaries pertain-
ing to the EOS APR4 to those of GR binaries following
the EOS H4, our results are summarized in Fig. 7, where a
lower bound of m,, > 10~'! eV can be reckoned. We also
noticed that the most stringent limit is placed by equal-
mass binaries, implying that the derived constraint on the
scalar mass assuming a spontaneously scalarized NS is in
part of the BNS should be robust even though we do not
span over a wide range of mass ratio. For m 2 107! eV
and a mild coupling strength B <17, the scalar-cloud
interaction effect is not appreciable during the inspiral
stage of BNSs despite that both members are scalarized,
and can be seen only when the binary is just outside the
last stable orbit. The onset of mass shedding for plausible
ST theories essentially matches to the GR cases
(cf. Figs. 7 and 8).

It is important to note yet another layer of complication
for the degeneracy between tidal effects, both adiabatic [92]
and dynamical ones, and the late enhancement of scalari-
zation, either dynamically triggered or through interacting
scalar clouds as suggested by Figs. 3 and 4 (see also [40]).
It has been known that NSs’ tidal response will be modified
in ST theories with a massless scalar field so that (i) the
tidal effect will appear at 3PN order [3] or even at 1PN
order [93] in the case of dynamical scalarization, (ii) the
Love number will increase or decrease depending on the
compactness and the ST parameters [94-97], and (iii) a
novel class of Love number is introduced by the scalar
field, leading to, e.g., dipolar tidal effects [98,99]. Relevant
studies in the massive ST theory have not been addressed to
our knowledge, and a numerical study of scalar-induced
modulation in finite-size effects will constitute an essential
step toward testing ST theories with GW physics. In this
series of investigation, we hope to address this issue to
some extent.
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Mass-shedding indicator as a function of orbital frequency for binaries 1.35M¢ + 1.35M, (top) and 1.5Mq + 1.2M

(bottom). Sequences with dynamical enhancement of the scalarization are shown as solid curves, those with dynamical scalarization as
dashed-dotted curves, and the GR sequence is the dotted-solid curve. The ARP4 EOS is employed to model NSs.
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