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The interior of neutron stars contains matter at the highest densities realized in our Universe.
Interestingly, theoretical studies of dense matter, in combination with the existence of two solar
mass neutron stars, indicate that the speed of sound cs has to increase to values well above the
conformal limit (c2s ∼ 1/3) before decreasing again at higher densities. The decrease could be
explained by either a strong first-order phase transition or a cross-over transition from hadronic
to quark matter. The latter scenario leads to a pronounced peak in the speed of sound reaching
values above the conformal limit, naturally explaining the inferred behavior. In this work, we use
the Nuclear-Physics Multi-Messenger Astrophysics framework NMMA to compare predictions of
the quarkyonic matter model with astrophysical observations of neutron stars, with the goal of
constraining model parameters. Assuming quarkyonic matter to be realized within neutron stars,
we find that there can be a significant amount of quarks inside the core of neutron stars with masses
in the two solar mass range, amounting to up to ∼ 0.13M⊙, contributing ∼ 5.9% of the total mass.
Furthermore, for the quarkyonic matter model investigated here, the radius of a 1.4M⊙ neutron star
would be 13.44+1.69

−1.54(13.54
+1.02
−1.04) km, at 95% credibility, without (with) the inclusion of AT2017gfo.

I. INTRODUCTION

Measurements of neutron stars’ masses, radii, and de-
formabilities serve as probes of the nuclear equation of
state (EOS) of neutron-rich matter at high density and
low temperature [1]. This part of the QCD phase di-
agram can not be accessed in lattice QCD simulations
due to the sign problem, which plagues the importance
sampling of gauge configurations. Thus, neutron star
measurements remain one of the few tools to explore
the behavior of dense cold matter. For instance, the
feasibility of constraining the EOS via measurement of
neutron stars’ tidal deformabilities with gravitational
waves has been demonstrated [2, 3]. Constraints on the
radius R of neutron stars obtained from gravitational-
wave data suggest that R < 13.5 km [4–7], which in
turn implies that the EOS of matter is soft at nuclear
densities, of the order of the nuclear saturation den-
sity nsat ≃ 0.16 fm−3. On the other hand, observa-
tions of heavy pulsars indicate that the EOS needs to
be sufficiently stiff at higher densities in order to sup-
port neutron stars with masses of more than twice the
solar mass [8–12].
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This soft-stiff behavior of the EOS also reveals an
interesting feature of the speed of sound (cs) in dense
matter as a function of density. The speed of sound
can be calculated with uncertainty estimates at nuclear
densities using chiral effective theory (EFT) [13–16] and
at very high density using perturbative QCD [17–19].
Thus, we know that the speed of sound cs is small,
c2s ≪ 1, at low densities, and approaches the conformal
bound of cs = 1/3 from below at very high densities.
At intermediate densities, where neither chiral EFT nor
perturbative QCD are applicable, the speed of sound
could, in principle, be a monotonic or nonmonotonic
function of baryon density. The soft-stiff EOS obtained
from neutron-star measurements reveals that the speed
of sound, in fact, is likely a non-monotonic function
of baryon density, violating the conformal bound at a
few times the nuclear saturation density [14, 20]. More
specifically, c2s increases monotonically from nuclear sat-
uration density to a few times the nuclear saturation
density, overshooting the conformal bound of 1/3 and
reaching a peak at intermediate densities. With even
larger densities, c2s then decreases below the conformal
bound, reaching a minimum and eventually increasing
to asymptotically approach the conformal bound from
below. Given that we do not have the tools to obtain
the EOS of dense matter from direct calculations in
QCD, it is important to assess various models which
can replicate this non-monotonic behavior of the speed
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of sound and simultaneously describe mass and radius
measurements of neutron stars.

One such model is “quarkyonic matter” [21–23] in
which a special arrangement of nucleons and quarks in
a combined Fermi sphere forces a peak in the sound
speed. In the quarkyonic model, the nucleon and quark
degrees of freedom (DOF) are described by a single
Fermi distribution function, as illustrated in Fig. 1. At
high densities, the Fermi momentum for the baryons is
large and the DOF deep within the Fermi sphere are
Pauli blocked. Creating a particle-hole excitation from
deep within the Fermi sea requires large energy and mo-
mentum, and so these DOF can be regarded as weakly
interacting. Since QCD is asymptotically free, we ex-
pect the existence of quark matter at high densities
where quarks behave as nearly free particles, thus mo-
tivating treating the DOF deep within the Fermi Sphere
as quarks. The DOF near the Fermi surface can, how-
ever, be excited with low energy and momentum trans-
fers. Thus, confining forces should remain important.
This motivates treating the DOF near the Fermi surface
as nucleons arising from quark correlations.

At low densities, the radius of the inner quark Fermi
sphere in the quarkyonic model is zero. As the density
increases, the inner quark Fermi sphere starts forming
at some threshold density. The peak in the speed of
sound arises right at those densities where the inner
quark Fermi sphere first appears. Interestingly, the in-
troduction of quarks in other models is typically accom-
panied by a first-order phase transition. A first-order
transition leads to a sudden decrease in the pressure
gradient, or equivalently, a sudden drop in the speed of
sound and a softening of the EOS. In the quarkyonic
picture, however, the transition to quark matter hap-
pens instead through a crossover with a milder decrease
in the pressure gradient, allowing for higher pressures
at high densities. Hence, in this model, the EOS re-
mains stiff. The quarkyonic model, therefore, differs
from other models of quark matter in this regard.

Although quarkyonic models have been successful in
producing a peak in the speed of sound, there have
not been any studies to infer the quarkyonic-matter
model parameters from astrophysical data. In par-
ticular, given an unconstrained quarkyonic model, we
would like to investigate what we can learn about the
model parameters from astrophysical data and what the
quark content is in neutron stars. In this paper, we an-
swer these questions using Bayesian analysis and adopt-
ing a quarkyonic excluded-volume model proposed in
Ref. [23].

The astrophysical observations considered here are
the gravitational-wave detections of the binary neu-
tron star mergers GW170817 [24] and GW190425 [25]
by Advanced LIGO [26] and Advanced Virgo [27],
the GW170817-associated electromagnetic counter-
parts AT2017gfo [28], the NICER observations on PSR
J0030+0451[29, 30] and PSR J0740+6620 [31, 32], and
the radio observations on PSR J0348+4032 [10] and

PSR J1614-2230 [33].
This paper is organized as follows: We start by de-

scribing the employed quarkyonic-matter model [23] in
Section IIA. We then describe our Bayesian inference
approach in Section II B, and give a short description of
our implementation in Section IIC. Finally, we present
our results followed by our conclusions in Sections III
and IV.

II. METHODS

A. Quarkyonic-Matter EOS

A non-dynamic quarkyonic matter model was first
proposed in Ref. [21], followed by a dynamic model
for quarkyonic matter introduced in Ref. [22]. In this
dynamic model, both hadrons and quarks appear as
quasi-particles and are described using a single Fermi
distribution which has an outer shell of nucleons and an
inner sphere of quarks. The baryon density of nucleons
nN
B for a particular configuration of quarkyonic matter

is computed by evaluating the momentum space vol-
ume of the outer Fermi shell, whereas the quark baryon

density nQ
B is computed by evaluating the volume of

the inner sphere. The total baryon density is given by

the sum of the two: nB = nN
B + nQ

B . Thus, for a fixed
baryon density, one can vary the shell width made of
the nucleons (or the radius of the inner quark Fermi
sphere) while maintaining a constant nB, to probe dif-
ferent configurations of quarkyonic matter for that par-
ticular total baryon density. The dynamical model in
Ref. [22] also introduces an energy density functional
for the systems, defined as the sum of individual energy
density functionals of the nucleons and quarks. By min-
imizing the energy density functional for the quarkyonic
Fermi distribution with respect to the shell radius of the
quarkyonic phase space, one can find the equilibrium
quarkyonic matter configuration for a fixed baryon den-
sity. One can then construct the EOS of dense matter
by computing the energy density for the equilibrium
configuration as a function of density. Note that the
dynamical model of Ref. [22] considers only symmetric
nuclear matter. This model was extended to account for
the astrophysically more relevant system of pure neu-
tron matter in Ref. [23]. We use this extended model
in this work. In the next subsection, we describe the
construction of the relevant energy density functionals,
starting with the neutrons, and then moving on to the
quarks.

1. Neutron part of the EOS

In the excluded volume model for quarkyonic neu-
tron matter, we consider neutrons to be hard spheres
of volume vh exhibiting two spin DOFs. This allows us
to define an effective density for neutrons. If we insert
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FIG. 1. Illustration of the Fermi sphere for quarkyonic
matter at low baryon number densities before the quark
onset (left panel) and at high densities after the quark on-
set (right panel). The quark Fermi momentum in dynamic
quarkyonic-matter models well below n0 is negligible and
not shown in this figure.

N neutrons in a volume V , then the unoccupied volume
Vex is given by

Vex = V −Nvh ≡ V − N

n0
. (1)

In the above, we have defined the hard core density of
neutrons as n0 ≡ v−1

h . If we now add another neutron
to this N -neutron system, this extra neutron can only
occupy a volume vh within the available volume Vex.
This gives rise to an increased effective density for the
neutrons, which we will denote as the neutron excluded
volume density nN

ex:

nN
ex ≡ N

Vex
=

V nN
B

V − N
n0

=
nN
B

1− N
V n0

=
nN
B

1− nN
B

n0

. (2)

This implies that the neutron density nN
B is constrained

to be lower than the hard-core density n0 since other-
wise, the volume occupied by neutrons would be larger
than V . Because of this, the energy density associated
with nucleons will increase faster than that of a free
Fermi gas as a function of baryon number density. If
we then consider quarks to be free point particles, as
we will describe in the next subsection, the sum of the
energy density contributions from quarks and neutrons
will eventually be lower if some of the baryon density
is stored in quark DOF compared to a pure neutron
phase. This is the main idea behind this excluded vol-
ume model: as we increase the number of neutrons in
a constrained volume, it eventually becomes energeti-
cally favorable for some of those neutrons to split into
their constituent quarks, leading to a smooth crossover
between a hadronic phase and a quark matter phase.

Keeping in mind that the neutron excluded volume
density is the effective density for the neutrons, we can

write nN
ex in terms of neutron Fermi momentum ∆,

nN
ex = 2

∫ ∆

0

d3k

(2π)3
, (3)

where the factor of two accounts for the neutron’s two
spin DOF. From this, it follows that the non-interacting
pure neutron energy density functional for hard-core
neutrons is given by

ϵN = 2
(
1− nN

B

n0

)∫ ∆

0

d3k

(2π)3

√
M2

N + k2, (4)

where MN is the neutron mass.
To properly describe neutron stars, we will have to

include neutron interactions in our energy density func-
tional. For this, we use a potential ansatz inspired by
Ref. [21], and include a nuclear potential of the form

V (nN
B) = ãnN

B

(nN
B

ρ0

)
+ b̃nN

B

(nN
B

ρ0

)2
, (5)

where ρ0 is the saturation density, and ã and b̃ are
free parameters. The parameters ã < 0 and b̃ > 0
are to mimic the short-range repulsion and long-range
attraction between neutrons, respectively, at densities
nB ≲ 2ρ0.
However, this is not sufficient to reproduce the EOS

of low-density neutron matter. The excluded volume
energy density for the neutrons in Eq. (4) is desirable
at high densities to force quark onset, but the excluded
volume model has the undesirable feature of signifi-
cantly modifying the low-density neutron EOS as well.
In order to correct for this effect, Ref. [23] proposed the
following approach: We introduce a modified potential
Ṽ (nN

B), and the energy density functional

ϵN = 2
[
1−
(nN

B

n0

)] ∫ ∆

0

d3k

(2π)3

√
M2

N + k2+ Ṽ (nN
B), (6)

to minimize the effect of the excluded volume at low
density. Ṽ is designed such that in a low-density ex-
pansion in powers of nN

B/n0, the excluded volume en-
ergy density of Eq. 6 mimics the energy density of low
density neutron matter given by

ϵ = 2

∫ kF

0

d3k

(2π)3

√
k2 +M2

N + V (nN
N ) (7)

up to corrections that go as some high power in the

expansion parameter. Note that, nN
B = 2

∫ kF

0
d3k
(2π)3 .

The model proposed in Ref. [23] demands that the
two energy densities match upto corrections that go as
the (nN

B /n0)
3. The corresponding expression for Ṽ is

given by

Ṽ (nN
B) = V (nN

B)−
2

3

(3π2nN
B)

5/3

10π2MN

(nN
B

n0

)
− 5

9

(3π2nN
B)

5/3

10π2MN

(nN
B

n0

)2
. (8)
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2. Free quark part of the EOS

We will now discuss the energy density functional for
the quarks. We treat the quarks as almost free point
particles of mass Mq = MN/Nc = MN/3, where Nc

is the number of quark colors and fixed at Nc = 3.
The only effect of interactions of quarks is taken into
account through the constituent quark mass, Mq. Here,
we include two species of quarks, up and down, with
two spin DOFs. We can then express the contribution
to the baryon density from quarks in terms of the quark
Fermi momentum kqF, so that

nq
B = 2

∫ kq
F

0

d3k

(2π)3
, (9)

where q = {u,d} denotes the quark flavor, and the fac-
tor of two again comes from the spin DOF. The quark
energy density functional is then given by

ϵq = 2

∫ kq
F

0

d3k

(2π)3

√
M2

q + k2. (10)

Using this formulation of the quark part to the
EOS, it was previously found that the quark onset in
this model happens too abruptly, leading to a viola-
tion of causality and negative speeds of sound in some
cases [22]. Ref. [22] proposed to cure this issue by scal-
ing the quark density of states by a factor

g(k) =

√
Λ2 + k2

k
, (11)

where Λ is a free parameter. This modification is mo-
tivated by having the correct high energy behavior,
g(k) → 1 as k → ∞, which is consistent with a free
Fermi gas. The regulator Λ can be viewed as the energy
scale at which non-perturbative effects become unim-
portant. We should, therefore, expect Λ to be of the
same order of magnitude as the QCD confinement scale
ΛQCD.
However, Ref. [23] pointed out that this modifica-

tion to the quark density of states, while curing the
unphysical behavior of the speed of sound, introduces a
non-negligible density of quarks at all baryon densities,
which itself is unphysical. Ref. [23] proposed a rem-
edy to this effect by giving a density dependence to Λ,
Λ = Λ(nB), with

Λ(nB) =

{
Λ0

[
− 20

(
nB

n0

)7
+ 70

(
nB

n0

)6 − 84
(
nB

n0

)5
+ 35

(
nB

n0

)4]
for nB < n0 ,

Λ0 for nB ≥ n0 .
(12)

This choice is motivated as follows: We know that the
excluded volume quarkyonic matter model does not
produce quarks at low baryon density when the reg-
ulator Λ is set to zero. The need for a nonzero Λ arises
only to remedy the unphysical behavior of the speed of
sound at high densities. Thus, if we introduce a den-
sity dependence in Λ such that it is zero at low baryon
density and close to the QCD scale near the quark on-
set density, we will eliminate quarks at low densities
while also eliminating the unphysical behavior of the
speed of sound at high densities. If we then want all
thermodynamic properties to stay unaffected by Λ at
nB = 0, we need Λ(0) = dnΛ(0)/d(nB)

n = 0 for n ≤ 3.
Furthermore, we want Λ(nB) to be in full effect once a
significant amount of quarks is present. It is then nat-
ural to impose that Λ(nB) = Λ0 for nB ≥ n0, where Λ0

is a parameter of order ΛQCD. We further demand that
dnΛ(nB)/(dnB)

n is continuous for n ≤ 3 to ensure that
chemical potential, pressure, and speed of sound are all
smooth functions of nB. The polynomial (12) was cho-
sen as it is the lowest order polynomial that satisfies all
these criteria. However, as long as Λ(nB) follows the
properties discussed above, its exact functional form
is not found to be of significant importance [23]. The

quark energy density functional then becomes

ϵq = 2Nc

∫ kq
F

0

d3k

(2π)3

√
M2

q + k2

√
Λ2(nB) + k2

k
, (13)

where

kqF =
√

(3π2nq
B + Λ3(nB))2/3 − Λ2(nB) . (14)

We note that the introduction of a density dependent
Λ(nB) smears out the onset density for the quarks.
Hence, they appear gradually as a function of baryon
density [23]. However, the quark density is essentially
zero compared to the neutron density up to baryon den-
sities close to n0, and so the picture in Fig. 1 still holds.

To allow for two flavors of quarks (up and down), we
describe the total quark baryon density as

nQ
B = nu

B + nd
B , (15)

and relate the up (nu
B) and down (nd

B) quark baryon
densities by enforcing charge neutrality,

nd
B = 2nu

B . (16)
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Then, the total quark energy density functional is given
by

ϵQ = 2Nc

∑
q=u,d

∫ kq
F

0

d3k

(2π)3

√
M2

q + k2

√
Λ2(nB) + k2

k
.

(17)

3. Full quarkyonic EOS

In the quarkyonic model, the free quarks and the
neutrons have a single Fermi distribution, where the
bottom of the neutron Fermi sea is set by the Fermi
momentum of the d-quarks, kdF. That is, kF ≡ Nck

d
F as

illustrated in Fig. 1. Combining Eqs. (6) and (17), the
total energy density functional is given by

ϵ =2
[
1−

(nN
B

n0

)] ∫ ∆

0

d3k

(2π)3

√
M2

N + k2 + Ṽ (nN
B) (18)

+ 2Nc

∑
q=u,d

∫ kq
F

0

d3k

(2π)3

√
M2

q + k2

√
Λ2(nB) + k2

k
,

where

∆ = (3π2nN
ex + k3F)

1/3 − kF . (19)

The equilibrium configuration at a given baryon density

is then found by minimizing ϵ with respect to either nQ
B

or kF. Once the equilibrium configuration is found, it
is straightforward to obtain the energy density of this
equilibrium configuration from the energy density func-
tional. Other interesting thermodynamic properties can
then be obtained using the thermodynamic relations

µ(nB) =
dϵ(nB)

dnB
, (chemical potential) (20)

P (nB) = nBµ(nB)− ϵ(nB) , (pressure) (21)

c2S(nB) =
dP (nB)

dϵ(nB)
, (speed of sound) (22)

for the equilibrium configuration.
We would like to point out some of the limitations

of the quarkyonic matter model employed here that
have not yet been discussed. First, we have assumed
the baryonic part to be purely made up of neutrons,
and have ignored beta equilibrium because it is not
trivial to treat the Fermi sphere for quarkyonic mat-
ter in a dynamic model when it involves more than one
species of nucleons. We note, whoever, that there are
non-dynamic quarkyonic matter models accounting for
beta-equilibrium [34, 35]. It can nevertheless be argued
that the fraction of protons to neutrons is less than
≲ 10% [21] and should, therefore, not have a significant
effect on neutron star masses and radii. Second, we
have only considered two flavors of quarks. In princi-
ple, strange quarks could be included as well and there
are three-flavor excluded volume models of quarkyonic

matter in the literature [36, 37]. However, the inclusion
of strange quarks introduces hyperons, for which the nu-
clear interactions are not well understood. This leads
to the introduction of additional free parameters, com-
licating the analysis in this paper. Recently, there have
been developments in mean-field approaches to quarky-
onic matter [38, 39] as well. However, we note that there
are no such models that dynamically set the neutron
shell width like the excluded volume model we present
here. We, therefore, leave the analysis of such mod-
els for future work. The quarkyonic model described in
this section was shown to be in agreement with neutron
star mass-radius data [23] for Λ0 close to the QCD scale
and n0 of the order of the nuclear saturation density.
In the next section, we are going to be agnostic about
these and the other model parameters and extensively
investigate what astrophysical data tells us about their
values, as well as the macroscopic significance of the
quarkyonic matter model, using a Bayesian approach.

B. Bayesian Inference

By using Bayes’ theorem, the posterior p(θ⃗|d,H) on

a set of parameters θ⃗ under the hypothesis H and with
data d is given by

p(θ⃗|d,H) =
p(d|θ⃗,H)p(θ⃗|H)

p(d|H)
→ P(θ⃗) =

L(θ⃗)π(θ⃗)
Z ,

(23)

where P(θ⃗), L(θ⃗), π(θ⃗), and Z are the posterior, like-
lihood, prior, and evidence, respectively. The prior de-
scribes our knowledge of the parameters before any ob-
servations. The likelihood quantifies how likely the hy-

pothesis can describe the data at a given point θ⃗ in
the parameter space. Finally, the evidence, also known
as the marginalized likelihood, marginalizes the likeli-
hood over the whole parameter space with respect to
the prior, i.e,

Z =

∫
V
dθ⃗L(θ⃗)π(θ⃗) . (24)

Two hypotheses, H1 and H2, can be compared by
calculating the odds ratio between them, O1

2, given by

O1
2 ≡ p(d|H1)

p(d|H2)

p(H1)

p(H2)
≡ B1

2Π
1
2 , (25)

where B1
2 and Π1

2 are the Bayes factor and prior odds,
respectively. If O1

2 > 1, H1 is more plausible than H2,
and vice versa. Throughout this work, the prior odds
is set to 1, in which case the Bayes factor is the same
as the odd ratio.
To combine multiple independent observations, we

express the likelihood as

L(θ⃗) =
∏
i

Li(θ⃗) , (26)
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where Li(θ⃗) is the likelihood corresponding to the i-th

observation. Therefore, the combined posterior P(θ⃗) is
given by

P(θ⃗) =
π(θ⃗)

Z L(θ⃗) = π(θ⃗)

Z
∏
i

Li(θ⃗) . (27)

C. Implementation

The Nuclear-Physics Multi-Messenger Astrophysics
framework NMMA [40, 41] has been known for its
capability and flexibility of including various multi-
messenger astrophysical observations, nuclear-theory
calculations, and heavy-ion collision experiments [42].
Here, however, we only consider the astrophysical ob-
servations to constrain our theoretical model so that we
obtain an astrophysics-only motivated result.

To calculate the likelihood for different observational
data given the quarkyonic EOS model, a similar ap-
proach as in previous works is used [43–46]. In par-

ticular, the likelihood of the EOS parameters E⃗ ≡
{ã, b̃, n0,Λ0} given the i-th observation is given by

L(E⃗) =

∫
dθ⃗macro

π(θ⃗macro|E⃗)

π(θ⃗macro)
P(θ⃗macro) , (28)

where θ⃗macro, π(θ⃗macro|E⃗), and π(θ⃗macro) are the macro-

scopic parameters of interest, and the priors on θ⃗macro

with and without an EOS imposed, respectively. The
inference logic is summarized in Fig. 2. The joint pos-
terior is explored using the Nested Sampling algorithm
Multinest [47] implemented in PyMultinest [48, 49].
The details of the likelihood evaluation for each obser-
vation are described in the following.

1. PSR J0348+4032 and PSR J1614-2230

The radio observations on PSR J0348+4042 [10], and
PSR J1614-2230 [33] have provided a lower bound on
the maximum mass of a neutron star. For these two
observations, the mass of the pulsar is the macroscopic
parameter of interest. The likelihood is given by

LPSR−j(E⃗) =

∫ mmax

0

dmP(m|PSR−j) , (29)

where P(m|PSR−j) is the posterior distribution of the
pulsar j’s mass, and mmax is the maximum mass sup-

ported by the EOS with parameter E⃗. We approxi-
mate the posterior distribution of the two pulsars to be
Gaussian with the reported values and 1-σ uncertainty,
similar to Ref. [40].

E⃗ mi α ζmim m

Λi Λi mdyn
ej mwind

ejR R mmax

LPSRLNICER LGW190425 LGW170817 LAT2017gfoL = × × × ×

GW190425 GW170817J0740 + 6220 J0030 + 0451

FIG. 2. The inference logic of our multi-messenger analysis.
Each shaded node corresponds to parameter(s) to be sam-
pled. The unshaded nodes refer to the latent parameters
calculated based on the sample parameters and required
for the likelihood evaluation. An arrow pointing from A
to B refers to B depending on A. The NICER likelihood
LNICER ≡ LJ0740+6620×LJ0030+0451, and the PSR likelihood
LPSR ≡ LJ0348+4032 × LJ1614−2230. In total, eight neutron
stars are taken into account for the analysis.

2. PSR J0030+0451 and PSR J0740+6620

The Neutron Star Interior Composition Explorer
(NICER) mission aims to measure both the masses and
the radii of pulsars. It has provided estimates for the
mass and radius for the pulsars J0030+0451 [29, 30] and
J0740+6620 [31, 32]1. For J0740+6620, data from the
XMM-Newton telescope [51, 52] has been additionally
used for improving the total flux measurement.

The corresponding likelihood for the NICER mea-
surement of pulsar j is given by

LNICER−j(E⃗,m)

=

∫
dR PNICER−j(m,R)

π(m,R|E⃗)

π(m,R|I)

∝
∫

dR PNICER−j(m,R)δ(R−R(m, E⃗))

∝ PNICER−j(m,R = R(m, E⃗)) ,

(30)

where PNICER−j(m,R) is the joint-posterior distribu-
tion of mass and radius as measured by NICER and
we use the fact that i) the radius is a function of mass
for a given EOS, and ii) the prior for the mass and
radius is taken to be uniform in Refs. [29–32].2 Sim-
ilar to Ref. [42], we use the results of Ref. [29] for

1 An update of the NICER analysis on J0740+6620 is presented
in Ref. [50]. Due to the agreement between the previous results
and the updated one, here we are using the previously original
results.

2 The mass measurement for J0740+6620 using radio observa-
tions [53] is taken as the prior on the mass for the NICER
analysis on J0740+6620 [31, 32]. Hence, we consider it to be
part of the NICER likelihood for that star. Therefore, the prior
on the mass of J0740+6620 can be considered uniform.
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PSR J0030+0451, while for PSR J0740+6620 we av-
erage over the results presented in Refs. [31] and [32].

3. GW170817 and GW190425

By analyzing the gravitational-wave signals
GW170817 [24] and GW190425 [25], the masses
mi and the tidal deformability Λi of the two neu-
tron stars in the binary can be estimated3. The
corresponding likelihood is given by

LGW−j(E⃗,mi) =

∫
dΛi

π(mi,Λi|E⃗)

π(mi,Λi|I)
PGW−j(mi,Λi)

=

∫
dΛi

∏
i δ(Λi − Λ(mi; E⃗))

π(Λi|mi, I)

× π(mi|E⃗)

π(mi|I)
PGW−j(mi,Λi)

∝ PGW−j(mi,Λi)

π(Λi|,mi, I)

∣∣∣∣
Λi=Λ(mi;E⃗)

,

(31)
where PGW−j(mi,Λi) is the joint-posterior distribution
on mass and tidal deformability of the binary neutron
star j measured by its gravitational-wave signal. We
use that the tidal deformability is a function of mass
for a given EOS. For both events, we use the publicly
available posterior samples [57, 58].

4. AT2017gfo

For analyzing the observed kilonova AT2017gfo, we
have done the Bayesian inference with a Gaussian like-
lihood function given by

LEM(θ⃗) ∝ exp

−1

2

∑
ij

(
mj

i −mj,est
i (θ⃗)

σj
i

)2
 , (32)

where mj
i and σj

i are the observed apparent magnitude
and its corresponding statistical uncertainties, at ob-
servation time ti, respectively. Moreover, mj,est

i are the
theoretically predicted apparent magnitudes for a given
filter j (a passband for a particular wavelength inter-
val).

For this analysis, the model presented in Ref. [59]
is used. For this model, the macroscopic parameters

of interest are the dynamic ejecta mass mdyn
ej and the

wind ejecta mass mwind
ej . The dynamic ejecta refer to

the material ejected during the merger via torque and
shocks while the wind ejecta refer to material released
from the disk formed during the merger.

3 Note that it was also proposed that GW190425 originated from
a neutron-star-black-hole merger [54–56].

In order to connect the ejecta masses with the EOS
and the masses of the two neutron stars in the binary,
fits to numerical-relativity simulations are used. For

the dynamical ejecta mass mdyn
ej , the fit formula is given

by [60]

mdyn
ej,fit

10−3M⊙
=

(
a

C1
+ b

(
m2

m1

)n

+ c C1

)
+ (1 ↔ 2) ,

(33)
where mi and Ci are the masses and the compactness
of the two components of the binary and the best-fit
coefficients are given by a = −9.3335, b = 114.17, c =
−337.56, and n = 1.5465. As presented in Ref. [60], this
relation provides an accurate estimation of the ejecta
mass with an error that is well-approximated by a zero-
mean Gaussian with a standard deviation of 0.004M⊙.
Therefore, the dynamic ejecta mass is described by

mdyn
ej = mdyn

ej,fit + α , (34)

where α ∼ N (µ = 0, σ = 0.004M⊙).
For the wind ejecta mass, we assume it to be propor-

tional to the disk mass,

mwind
ej = ζ ×mdisk,fit , (35)

where ζ is an independent parameter in [0, 1). To es-
timate the disk mass mdisk, we follow the relation pre-
sented in Ref. [40],

log10

(
mdisk,fit

M⊙

)
= (36)

max

(
−3, a

(
1 + b tanh

(
c− (m1 +m2)M

−1
thr

d

)))
,

with a and b given by

a = ao + δa · ξ ,
b = bo + δb · ξ . (37)

The parameter ξ is given by

ξ =
1

2
tanh (β (q − qtrans)) , (38)

where q ≡ m2/m1 ≤ 1 is the mass ratio and β and qtrans
are free parameters. The best-fitting parameters are
ao = −1.725, δa = −2.337, bo = −0.564, δb = −0.437,
c = 0.958, d = 0.057, β = 5.879, qtrans = 0.886. The
threshold mass Mthr is estimated to follow the predic-
tion presented in Ref. [61]. Because a fitting error in
the disk mass is degenerate with the proportionality
parameters ζ, no additional error parameters, similar
to α introduced in Eq. (34), are included. We point
out that the relations Eqs. (34) and (36) are generally
calibrated to a large set of numerical-relativity simula-
tions covering a large range of the parameter space, and
while these relations are found to be ‘quasi-universal’,
i.e., applicable independent of the exact EOS, they have
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Parameter Prior
ã Uniform(−50MeV, 50MeV)

b̃ Uniform(−50MeV, 50MeV)
n0 LogUniform(10−2nsat, 20nsat)
Λ0 LogUniform(10−5GeV, 10GeV)

TABLE I. Priors imposed for the EOS parameters in the
analysis. “Uniform(a, b)” is a uniform distribution in the
range of [a, b) and “LogUniform(a, b)” is a log-uniform
distribution in the range of [a, b). Therefore, if x ∼
LogUniform(a, b), log x ∼ Uniform(log a, log b).

not been tested against quarkyonic binary neutron stars
mergers, which could result in a hidden systematic un-
certainty in our analysis.

The likelihood for the EOS parameters E⃗ and the
component masses of the two neutron stars, mi is given
by

LAT2017gfo(E⃗,mi, α, ζ) (39)

=

∫
dmdyn

ej dmwind
ej

π(mdyn
ej ,mwind

ej |E⃗,mi, α, ζ)

π(mdyn
ej ,mwind

ej |I)
× PAT2017gfo(m

dyn
ej ,mwind

ej )

∝ PAT2017gfo(m
dyn
ej ,mwind

ej )|mdyn
ej =mdyn

ej (E⃗,mi,α),mwind
ej (E⃗,mi,ζ)

.

III. RESULTS

In the following section, we discuss the results of
our analysis of astrophysical multi-messenger observa-
tions when applying the quarkyonic EOS model. As
mentioned in Sec. II C 4, the ‘quasi-universal’ relations
needed for analyzing AT2017gfo have not been tested
against the quarkyonic model. Therefore, we report re-
sults without the inclusion of AT2017gfo as our main,
conservative results and results with the inclusion of
AT2017gfo in parentheses. All quoted values are medi-
ans with their 95% credible intervals unless mentioned
otherwise.

A. Estimation on EOS parameters

The priors for the EOS parameters ã, b̃, n0, and Λ0

are defined Tab. I. Additionally, we impose that

• each parameter sample results in a valid EOS, i.e.,

– the crust and core EOSs intercept, and

– the EOS explores densities beyond the
neutron-star crust,

• and the EOS produces stable neutron stars, indi-
cated by a stable M -R-Λ curve.

In Fig. 3, we show the priors and the posteriors with
their median values and with the uncertainty quoted at
95% credibility.

The posterior on ã skews towards positive values,
while the posterior on b̃ is centered around 0, with both
of them having sizeable uncertainty. This shows that
interactions with higher-order density dependences be-
tween neutrons are not pronounced within this model.
This finding can be attributed to the relatively low
n0, which indicates the characteristic density at which
quark matter starts to appear. This low n0 causes the
quark part of the EOS to dominate over the neutrons’
interactions. However, we note that there are large un-
certainties in the neutron matter parameters ã and b̃,
mainly due to the fact that we have only used astro-
physical observations to constrain them.

More interestingly, we find that the parameter n0 is
favored to be on the order of a few times the nuclear
saturation density, which is comparable to the densities
reached inside the heaviest neutron stars. This implies
that, assuming our quarkyonic matter model describes
supranuclear-dense matter, there will be a significant
amount of quarks in the core of neutron stars with
masses in the two-solar-mass range. We will investi-
gate this in more detail in the next section.

Finally, we comment on the parameter Λ0. As men-
tioned in section IIA 2, the inclusion of Λ0 was moti-
vated by regulating the infrared divergence that occurs
at low densities due to the non-perturbative effects of
QCD. We, therefore, expect that Λ0 ∼ ΛQCD. If we
take ΛQCD to be defined by the Landau pole of the QCD
strong coupling, one finds ΛQCD ∼ 200 − 400MeV, de-
pending on the renormalization scheme used [62]. This
is indeed consistent with what we obtain for Λ0, as seen
in Fig. 3. We emphasize that although this is an ex-
pected result, the value of Λ0 is extracted completely
by comparison with astrophysical data. It is interest-
ing and reassuring that observations of neutron stars
can constrain this microscopic parameter of our model
in a way that is consistent with expectations from QCD.
This is because the confinement scale is important for
the high-density behavior of the EOS, which, in turn,
has a high impact on the mass of a neutron star. Con-
versely, this explains, in part, why we are not able to
constrain ã and b̃ very well, as they mostly describe the
low-density behavior of the EOS. These findings are
consistent with similar results showing that the corre-
lation between the low- and high-density EOS can be
broken in neutron stars [63, 64].

The posterior of the radius of neutron stars as a
function of mass is shown in Fig. 4. Within this
quarkyonic-matter model, the radius of a 1.4M⊙ neu-
tron star, R1.4, is estimated to be 13.44+1.69

−1.54(13.54
+1.02
−1.04)

km, at 95% credibility, without (with) the inclusion
of AT2017gfo; the kilonova observation significantly
tightens the radius constraint. The extracted value
for R1.4 is higher than in previous estimations (e.g.
Tab. 1 in Ref. [41]), reflecting the difference of model-
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FIG. 3. Posterior on the microscopic parameters of the quarkyonic EOS model. The 2D contours are shown at 68% and 95%
levels. The priors on each of the parameters are also shown (grey). In addition to the distributions shown in Tab. I, the priors
shown additionally impose that the resulting EOS can support a neutron star.

independent and model-dependent data analyses of
neutron-star observations, as well as the absence of the
constraint from chiral effective field theory at low den-
sities [14]. The latter also contributes to the wide pos-

teriors on ã and b̃.

B. Presence of quark matter

To study the presence of quarks in the core of neu-
tron stars, we estimate the maximum quark baryon

density max{nQ
B} and the maximum quark-to-baryon

ratio max{nQ
B/nB}. That is, we consider the density

of quarks and quark-to-baryon ratio inside the center
of the neutron star with largest mass. The estimated

distributions of max{nQ
B} and max{nQ

B/nB} are shown
in Fig. 5 and Fig. 6, respectively. In both cases, we re-
weighted the distributions to respect a log-uniform prior
to enhance the impact of astrophysical observations.
Based on the estimated distributions, the quarkyonic

model is predicting max{nQ
B} ≳ 1nsat and the ratio

Without AT2017gfo With AT2017gfo

mq[M⊙] mq/m[%] mq[M⊙] mq/m[%]

GW170817-m1 0.01+0.02
−0.01 0.41+1.45

−0.37 0.00+0.02
−0.00 0.34+1.36

−0.31

GW170817-m2 0.00+0.01
−0.00 0.23+0.91

−0.20 0.00+0.01
−0.00 0.25+1.07

−0.22

GW190425-m1 0.02+0.05
−0.02 0.98+2.88

−0.94 0.02+0.06
−0.02 0.98+3.16

−0.94

GW190425-m2 0.01+0.03
−0.01 0.52+1.79

−0.48 0.01+0.03
−0.01 0.51+1.96

−0.47

PSR J0030+0451 0.01+0.03
−0.01 0.40+1.65

−0.36 0.01+0.03
−0.01 0.40+1.74

−0.37

PSR J0740+6620 0.05+0.11
−0.05 2.57+5.41

−2.48 0.05+0.12
−0.05 2.57+5.82

−2.47

Maximal mass 0.13+0.14
−0.10 5.87+6.72

−4.72 0.13+0.14
−0.11 5.86+7.08

−4.87

TABLE II. Estimated quark core mass mq within neutron
stars and the associated mass fraction mq/m for the stars.

max{nQ
B/nB} ≳ 10%, showing a significant presence of

quarks within the most massive neutron stars.

To give a concrete picture of the abundance of quarks
in neutron stars, we further estimate the total mass that
the free quarks contribute to neutron stars, see Tab. II.
As expected, the quark core mass is low for most of the
neutron stars. However, PSR J0740+6620, which is one
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FIG. 4. Posterior on the neutron star radius as a function
of mass. The darker/solid (lighter/dashed) band shows the
68% (95%) credible interval of the radius at a given mass.
The prior band is shown in the 95% band.
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FIG. 5. Posterior on the maximum quark density observed
within a neutron star. The posterior and prior are re-
weighted such that the prior on the maximum quark density
is log-uniform, i.e., uniform in lognQ

B .

of the most massive neutron stars observed, would carry
about ∼ 0.05M⊙ of free quarks, or ∼ 2.6% of its mass.
For a neutron star at maximum mass, the quark core
can grow to ∼ 0.13M⊙, or ∼ 5.9% of the stellar mass.

Moreover, a strong presence of free quarks shows a
correlation with macroscopic parameters. In Fig. 7,
we show a corner plot connecting the maximum quark

baryon density max{nQ
B}, the quark mass in the

maximal-mass neutron star MQ
TOV and the associated

radius RTOV. We observe a strong positive correla-
tion between the quark core mass and the radius for
the maximal mass neutron star within the quarkyonic-
matter model. Although it may seem to be counter-
intuitive that stars containing quarks have large radii,
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FIG. 6. Posterior on the maximum quark-to-baryon ratio
observed within a neutron star. The posterior and prior are
re-weighted such that the prior on the ratio is log-uniform,
i.e., uniform in lognQ

B/nB.
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FIG. 7. Posterior on the (log10) maximum quark baryon

density max{nQ
B}, the (log10) quark core mass for maximal

mass neutron star MQ
TOV and the associated radius RTOV.

A strong positive correlation is observed between the quark
core mass and the radius, and between maximum quark
baryon density and quark core mass.

this positive correlation can be attributed to the high
contribution of the nucleonic matter to the radius of
the neutron star.

C. Speed of sound and normalized trace anomaly

We further examine the speed of sound within neu-
tron stars and show it as a function of density in Fig. 8.
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B/nB|max cs . A strong negative correlation

is observed between the maximum speed of sound and the
ratio nQ

B/nB|max cs .

It is obvious that the quarkyonic-matter model violates
the conformal limit of c2s = 1/3 at about 3 times the nu-
clear saturation density, but the speed of sound drops
below that limit at higher densities. For comparison,
the range predicted by chiral effective field theory is
also shown in Fig. 8, and is on the lower end of the
quarkyonic-matter prediction. The maximum speed-
of-sound, the densities at which the maximum occurs,
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FIG. 10. Posterior on the normalized trace anomaly ∆ta as a
function of density. The darker/solid (lighter/dashed) band
show the 68% (95%) credible interval of the speed of sound
at a given density. The prior band is shown in the 95%
band. Moreover, the predicted range based on the chiral
effective field theory calculation of Ref. [14] is shown up to
1.5nsat.

and the quark-to-baryon ratio at this density are shown
in the corner plot in Fig. 9. The estimate for the max-
imum speed of sound and its density agree with the
result reported in Ref. [65], in which a nonparametric
EOS model is used. The maximum speed of sound and
the quark-to-baryon ratio show a strong negative cor-
relation, reflecting the intuition that quark matter is
generally softer than nucleonic matter.

Recently, the authors of Ref. [66] suggested that a
peak in the speed of sound, as in Fig. 8, is a sign of
strongly-coupled conformal matter. This was demon-
strated by examining the behaviour of the normalized
trace anomaly, which is defined as

∆ta ≡ 1

3
− P

ϵ
. (40)

From the definition it is evident that, as matter ap-
proaches conformality, ∆ta → 0. Even though the
speed of sound and the trace anomaly are closely re-
lated, the behavior at intermediate densities is different
and provides complementary information. By express-
ing the sound speed in terms of the trace anomaly and
its derivative, Ref. [66] showed that the peak in the
sound speed is, in fact, not a violation of the confor-
mal bound, but it is a steep approach to the confor-
mal limit. In this work, we check this interpretation
by computing the trace anomaly as a function of the
density, see Fig. 10, and comparing it with the behav-
ior of the sound speed. In Fig. 10, we show that at
n ∼ 6nsat, ∆ta → 0, as can be inferred from the be-
havior of the speed of sound in Fig. 8. However, at
intermediate densities, ∆ta decreases towards its con-
formal value, exactly at those densities where we find
a peak in the sound speed. These results are similar to
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what was observed in Ref. [66]. Note, however, that the
quarkyonic-matter model employed in this work does
not explicitly include any interactions between quarks
and therefore it cannot be interpreted as strongly cou-
pled matter. This suggests that inferring the presence
of strongly coupled conformal matter from neutron-star
observations is non-trivial since the corresponding char-
acteristic behaviour of the trace anomaly can also be
produced by weakly interacting matter.

Given the presence of quarks within the neutron stars
within the quarkyonic-matter model, we further inves-
tigate the consistency between the model and the per-
turbative QCD (pQCD) calculations of the EOS at
∼ 40nsat [18]. Following the approach of Ref. [67], we
connect to the integral pQCD constraints of Ref. [68] at
the maximum-mass configuration because we are inter-
ested only in the EOS of stable neutron stars.4 We use
the parameters associated with the maximally massive
neutron star, i.e., the associated central pressure pTOV,
the baryon number density nTOV and the chemical po-
tential µTOV to check if a given EOS is consistent with
the high-density pQCD constraint by verifying

1. ∆pmin < ppQCD − pTOV < ∆pmax, and,

2. nTOV < npQCD,

where ppQCD and npQCD are functions of µpQCD, which
is set to 2.6GeV. Furthermore, ∆pmin and ∆pmax are
calculated using Eqs. (12) and (13) of Ref. [69] respec-
tively. If the proposed EOS satisfies both of the above
criteria, it has a consistency of 100% and 0% other-
wise. Since the pQCD calculation [18] depends on the
renormalization scale parameter X, we calculate the
consistency of a given EOS with pQCD by marginal-
izing over X ∼ LogUniform(1, 4). Given the posterior
samples, without (with) the inclusion of AT2017gfo, the
average consistency, i.e., the average of the aforemen-
tioned calculation over all EOSs, is 99.88% (99.89%)
with a minimum consistency of 93.9% (94.7%). There-
fore, we conclude that the quarkyonic-matter model is
consistent with pQCD calculations.

IV. CONCLUSIONS

In this work, we have studied a dynamic quarkyonic-
matter model for supranuclear matter inside neu-
tron stars. This model is employed within the nu-
clear multi-messenger astrophysics framework, which
includes radio and X-ray (NICER) observations of pul-
sars, gravitational-wave observations from binary neu-
tron star mergers, in particular GW170817, and elec-
tromagnetic observations of the kilonova associated

4 See Ref. [69] for a similar analysis but with a matching density
of 10nsat.

with GW170817. Assuming that the quarkyonic-matter
model describes neutron stars, we constrain the proper-
ties of quarkyonic matter using astrophysical observa-
tions. The main results can be summarized as follows:

• We constrained the four model parameters with-
out (with) AT2017gfo at 95% credibility to be

ã = 2.62+18.83
−12.00(3.52

+20.27
−12.70)MeV,

b̃ = −1.10+8.20
−7.53(−1.30+8.77

−8.12)MeV,

n0 = 3.86+2.08
−1.38(3.85

1.98
−1.36)nsat,

Λ0 = 306.51+120.87
−92.72 (305.76+108.07

−105.03)MeV. (41)

• The model is predicting a substantial presence of
quarks within neutron stars, in particular:

– The maximum quark baryon density exceeds
1nsat,

– The maximum quark-to-baryon ratio ex-
ceeds 10% and

– The mass contribution due to quarks can
reach ∼ 0.13M⊙, attributing to ∼ 6% of the
neutron star’s mass.

• The quarkyonic-matter model predicts a peak in
the speed-of-sound in neutron stars, and the con-
formal limit is subsequently restored at ∼ 6nsat.

• The quarkyonic-matter model predicts R1.4 =
13.44+1.69

−1.54(13.54
+1.02
−1.04) km at 95% credibility level,

without (with) the inclusion of AT2017gfo.

Our work demonstrates that the quarkyonic-matter
model can explain the current observations on neutron
stars and allows for a significant presence of quarks
within them. It is, therefore, a viable alternative to
other models, including free quarks. Although it is im-
possible to establish the existence of quarkyonic mat-
ter with current neutron-star observations, future ob-
servations using next-generation gravitational-wave ob-
servatories, such as the Einstein telescope [70, 71] or
Cosmic Explorer [72], will likely provide crucial new
data. Together with advancements in theoretical nu-
clear physics, this will allow us to better understand
the nature of dense matter in the future.
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