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1 Introduction

As an embodiment of the holographic principle [1, 2], the Anti-de Sitter gravity/conformal
field theory (AdS/CFT) correspondence [3-5] establishes a connection between a quantum
gravity theory in AdS space and a conformal field theory on the boundary. This equivalence is
encapsulated in the Gubser-Klebanov-Polyakov-Witten (GKPW) relation, where the partition
function of the conformal field theory with operator sources equals the gravity partition
function with prescribed boundary conditions

(e #0)cpr = Za[o) (1.1)

In the most helpful limit to exploit this correspondence, the classical gravity on-shell action
becomes the generating functional of connected correlators of the strongly-coupled CFT

Icrr([éo] = Ig,on—shen[¢o] (1.2)

Correlators are computed by functional differentiation of the generating functional, which
amounts to solving the perturbative boundary value problem for the bulk fields’ equation
of motion. This involves varying the boundary value of the bulk fields and solving for
the corresponding variation of the on-shell configuration in the bulk. The near-boundary
behavior is well-established, allowing the extraction of holographic correlators [6-9]. However,
solving the global boundary value problem is generally intricate, exemplified in cases like
pure gravity [10].

Although the prescription is clear, explicit computation of holographic Euclidean corre-
lators in the GKPW approach has been limited to pure AdS space and its quotient spaces,
such as thermal AdS where the method of images can be applied (e.g., see [11] for thermal
bootstrap emphasis). In our prior work [12], we computed holographic torus correlators of
the stress tensor. This study focuses on Euclidean thermal two-point correlators of the stress
tensor and U(1) current in four-dimensional CFTs. Beyond the Hawking-Page transition [13],



the thermal state holographically corresponds to a five-dimensional Fuclidean AdS planar
black hole [14]. Correlators are derived by solving perturbative boundary value problems in
Einstein’s gravity and Maxwell theory for the U(1) gauge field in the black hole background.
Two important steps are involved. The first is to appropriately fix the gauge and impose
regularity boundary conditions at the horizon, ensuring a unique solution. The second step
identifies the equations of motion as the Heun equation [15], and solves the boundary value
problems with the connection relation of local solutions. The general connection relation
was established in [16], and it has been applied to exact thermal correlators in Minkowski
signature [17, 18], and employed in various black hole perturbation problems [19-24]. In our
case, the Heun equations feature degenerate local monodromy, with characteristic exponents
differing by an integer. We compute the connection relation by taking a limit of the generic
case. Ultimately, we obtain exact two-point correlators for the U(1) current and stress tensor
in the scalar and shear channels (as defined in [25]).

Thermal two-point correlators, also known as thermal spectral functions, have many
important applications and have been studied in [25] using gauge invariants in each channel.
In the final discussion section, we comment on our approach to holographic computation
and relevant applications of thermal two-point correlators.

2 Holographic setup

We start by reviewing the basics of holographic computation independent of the bulk back-
ground geometry. For Einstein’s gravity, it’s customary to work in the Fefferman-Graham
gauge [6, 26] near the conformal boundary

dr?

1 o
2 7
ds” = T + 2 gij(r, x)dz'da? (2.1)

and in dimension four, we have the series expansion

0 2 4 4
gij = gl(j) + r2g§j) + r4gz(j) +rtlog rhl(j) + ... (2.2)
(0)
i
point correlator of the stress tensor,! with appropriate renormalization, is given by [7, 27, 28]

The background metric of the holographic field theory ~;; corresponds to g,.”, and the one-

4 4 1 (0 O pOky _ LpOpOkr 1 (0)
(Tyj) = e gz(j - gggj (P2 — Py /PO) — §Pik)Pj * 4 ZP(O)PU‘ (2.3)

(0)
ij
flat background, so the terms of Schouten tensor do not contribute. We have

where PZ(-?) is the Schouten tensor of g;.”. In our case, the holographic field theory lives on a

SR
4GB
The Einstein equation near the conformal boundary determines the series (2.2) in terms

) “4)
) 1)

(Tij) = (2.4)

of g;;/ and g;;’ or equivalently the one point correlator (7j;), and imposes holographic

LOur convention for the stress tensor is, for classical field theories, 6,5 = % f dV'T;;6v". For quantum

theories (T;;) = 2%. The integration measure is assumed to be included in the definition of the functional

derivative.



Ward identities of conservation and the Weyl anomaly on (T;;). Near boundary solutions of
the Einstein equation are in one-to-one correspondence to the pair (7v;;, (T3;)). The global
geometry of the bulk spacetime fully determines the one-point correlator as a functional
of the boundary metric, from which we can compute multi-point correlators by functional
differentiation. In particular for two-point correlator we have

6(Tyj(x))
vk (y)

Similarly, for the U(1) gauge field, we can put it in the radial gauge near the conformal

(Tij(2)Ti(y)) = —2 (2.5)

boundary using the Fefferman-Graham coordinates of the bulk metric
A= A(r,x)dz’ (2.6)
with the series expansion
A; = Al(-o) + T2A§2) + r?log TBZ@) +... (2.7)
The one-point correlator with appropriate renormalization is given by
(J;) = —2A% (2.8)

The Maxwell equation near the conformal boundary determines the series (2.7) in terms of
AEO) and AZ(-Q) or equivalently the one point correlator (J;), and imposes the holographic Ward
identity of conservation on (.J;). The global geometry of the bulk spacetime fully determines
(J;). Multi-point correlators are computed by taking functional derivative with respect to
the source A, for two point correlator we have
6(Ji(x))
Ji(x)J; = 2.9
(Ji(x)J;(y)) 54 () (2.9)
Now we specialize in the holographic correlators from the five-dimensional AdS planar
black hole. The black hole is a solid cylinder B? x R3 with the metric

1

1 4N\ — 4
ds? = — l(1 = p) dp® + (1 - ﬂ)dﬂ +di?

(2.10)
p I I

The period of Euclidean time ¢, namely the inverse temperature, is § = wpg. The conformal
boundary is at p = 0, and the horizon is at p = pg, being the R3 axis of the cylinder. The
standard Fefferman-Graham radial coordinate r is related to p by

r

p= (2.11)

rd

L+ o

For simplicity, we set pg = 1 in the metric, effectively working in the unit of py, and we
will recover pg dependence when final results are obtained. As a convention, we label
bulk spacetime coordinate indices by Greek alphabets u, v, p, ..., the boundary spacetime
coordinate indices by Roman alphabets i, j, k, . . . and the boundary space indices by a, b, c, . . ..



3 U(1) current

Now, we work on the boundary value problem of the U(1) gauge field, beginning with
gauge-fixing. We can put it in the radial gauge A, = 0 in the region 0 < p < 1 (excluding the
horizon) by a U(1) gauge transformation. For a global solution, its restriction to the region
0 < p < 1 must have a regular limit going to the horizon p = 1. Therefore, we formulate the
boundary value problem in the radial gauge, with the boundary condition that the solution
has a regular limit as p — 1 after a gauge transformation. To work out the explicit form of
the boundary condition, we introduce the “cylindrical radial coordinate” s

1
cosh 2s = —

(3.1)

Near the horizon p — 1 or s — 0, the metric takes the form of Euclidean metric in “cylindrical
coordinates”

ds® ~ ds® + sd(2t)* + di* (3.2)

and the horizon is properly covered by the “Cartesian coordinates”

X =scos2t
Y = ssin2¢
r=7 (3.3)

The gauge field is regular at the horizon if and only if its components in a coordinate
chart that properly covers the horizon, for example the “Cartesian coordinates”, are regular.
That is, we have

A= A;dz’ (3.4)
and there exists a U(1) gauge transformation A, such that
lir% A+ dAN = A (Z)dX + Ay (2)dY + AL (Z)dx" (3.5)
5—

The components on the right-hand side can only depend on Z because the t-circle shrinks
to a point as s — 0. We find

hH(l) OsA = A% (Z) cos 2t + A (Z) sin 2t (3.6)
5—

A A
lim AT o 4 (7 sin 2t + 245 (F) cos 21 (3.7)
5—0 S
lim A, + 9,A = A% (Z) (3.8)
5—0

From (3.6) we see A can be approximated as a linear function of s as s — 0 (or p — 1),
then from (3.8) we know

lim A, exists (3.9)
p—1



In addition, by integrating (3.7) over ¢ we find

/O dtA]y—1 =0 (3.10)

This gauge fixing and regularity boundary conditions at the horizon, together with the
boundary value

Ailpm0 = A; (3.11)

as a turned-on source on the CFT side, determine a unique solution to the Maxwell equation
as we will see.

We utilize the translational symmetry in ¢, # direction and work with Fourier modes A;
with Matsubara frequency w = 2m, m € Z and spatial momentum p. For simplicity, we also
rotate the spatial momentum to the z! direction. The Maxwell equation

d«F =0 (3.12)

then decouples to the transverse channel for Ag, A3 and the longitudinal channel for A A
For the transverse component Ay (and the same for A3) we have

2 22 _4m2—|—p2(1—22) <
<8Z T 0, 20 =2 Ay =0 (3.13)

where we used the convenient coordinate z = p?. This is an ordinary differential equation
with four regular singularities z = 0,1, —1, co. By the substitution As(z) = (1 — 22)_%10(2),
we get a Heun equation in the normal form for w(z)

(822+111_g%)2+411(_(

I3

)2 N 1 — (Zi)? +p2+4m2—2 _p2+4m2+2
2 (z+1)2 82(z—1) 82(z+1)

— (N

z Z —

) )w(z) =0 (3.14)

with the Heun equation parameters

; ! 1 |m| m. 1
= — an = —. a1 = —.a+ = —1.Q = —-.u =
» 40 9’ 1 9’ t 9" o) 9’

p? +4m? + 2

5 (3.15)

We refer the readers to appendix A for a brief review of Fuchsian differential equations,
the Heun equation, its connection problem, and notational conventions. By the boundary
condition (3.9), A, is regular at z = 1, so it must be proportional to the solution of exponent
@ at z = 1. The constant of proportionality is determined by the boundary condition

A2| .—0 = As and the connection relation (A.12). We find

) 2 2
As(w=2m,p,z) = flz(%p)(l— 22)_5 w@ + p—i—47n<_ 2¢(1) _H_% Z w(e? +Ga>

4 0,0=+
Ll p 2 14200, F © 3.16
9 a0 ’a0=% p2 +4m2( + 20104 ’aozé,t:—l) W ( : )



For the longitudinal components A, Ay, we have

- 2 - 2mp -
2 V— . | Ai=0 3.17
Tt T nao ™ (3:17)
~ 2z ~ 4m? ~ 2mp ~
2
A - LA — A A, = 1
9z A1 1—z2(9 T 4a(1 - 22)2 1+4,2(1—,22)2 ¢ =90 (3.18)
2m ~ ~
= 0:Ay +pd.A; =0 (3.19)
Plugging (3.19) into 8, (z(1 — 2?)(3.17)), we obtain
1— 322 Pp2(1 — 22%) + 4m? .
2
<az+z(1_22)a L |oA=0 (3.20)

When m # 0, the solution to this third-order differential equation is determined by the
three boundary conditions

A1|.— regular
Ail.mo=A1, Aomo = 4, (3.21)

1

By the substitution 9,A; = 272 (1 — 22)_%w(z), (3.20) can be transformed to the normal
Heun equation

1 2 1 m\2 1 m\2 2 2 2 2
Loz 1_(m2 1_(m 4m? — 6 4m? + 6
gy ai a6 G (57 padm 6 prAmTE6) ) 30
22 (z—1)2 (z+1)2 82(z—1) 8z(z+1)
with
2 4 4m? +6
t:—l,aozo,a1:@,at:?i,amzl,u:—p_‘_?_‘_ (3.23)

By (3.19) the solution must be proportional to wsrl) for A; to be regular at z = 1. The

constant of proportionality can be further determined by using the connection relation (A.12)
and evaluating (3.17) at z = 0. We find

~ 2mp A — p?A
AT 0.4, Wl_w@(z)

1 1., ,m oo o (0)
+ (2¢(1) — 5 902::;/}(2 +6- —|—0a> + 28aOF)w+ ] (3.24)

Then we integrate to obtain A; with the constant of integration given by the boundary value A,

o
At:At—I—W[—(zlogz%—...)
+ 2wy 412 3 w<1+0m+ )+182F (z+...) (3.25)
2,2 Y\ 5 Toa)+ 50, F (... :




We get A; by plugging A; back to (3.19)

= A1+ )+ 2m(p“ztt4_ 2mAy)
(w J+1-s Y 1/)( —|—9—|—Ja>+ 1o F )(z—i—...) (3.26)
0(7 +

When m = 0, we get A; = A; from (3.19). We still solve for 23y/1— 220, A, from (3.20),
which is a linear combination of wﬁf) =v1—2(1+...)and w® = =+v1—2z(log(l—2)+...).
Then we plug it into (3.17) and evaluate at z = 1. We have Ay(m = 0)|,=; = 0 from the
boundary condition (3.10), and we find 231 — 220,A, must be proportional to wsrl), the
same as the previous case when m # 0. So, we can carry over the results for m # 0 and
set m = 0 in the expression.

To obtain the holographic correlators, we recover the dependence on pg or the inverse
temperature 8 = mwpg, and read off AZ@) from the bulk gauge field A; (in our case the
coefficient of z!)

- 9 2 2 9
Po
- ey
A(z)( 2m7p> _ wpAi(w,p) —p At(w,p)@(w _ 2m7p>
4 Po
- A .24
0

4

2
Cl<w:m )
P0

<2w( )—1—1—7 > 1/)<0+0a>+;830F

GG:I:

|m| ) 1 p2p2+am2+2
t=—1,a0=7%,a1="5",at="24,a00 =% u=— L—p—

- (1 + 0,0, F
+p3p2+4m2( + 0tOa, )>

Cg<w:2p7: ) <2¢ +1—f Z w( —|—9+<m>

1 2
1)

We compute two-point correlators by the formula for renormalized one-point correlators (2.8).
Rotating the spatial momentum to a general direction, we find

3.28
|m| p2p2+4m2+6 ( )
t:—l,aoz(],al—— at—iz am—l,u:—f

~ ~ p2
(Ju(w.p)Fo(~w, ~p)) = 5 Calw. )
(Je(w,p) (w0, —p)) = — 5 Cale, D)y

7 = ? 4+ w? w?
(alw, ) Fo(—w, —p)) = 21 (w, ) <5ab _ p;ﬁ’b) + 5Ol )P (3.29)

2



4 Stress tensor

Gauge fixing and regularity boundary conditions at the horizon for Einstein’s gravity follow
the same line as the Maxwell theory. We can make the solid cylinder coordinates p, ¢, ¥ the
Fefferman-Graham coordinates of the perturbed bulk metric in the region 0 < p < 1 by a
diffeomorphism. Then, the boundary value problem is formulated in this gauge with the
boundary condition that the metric has a regular limit as p — 1 after a diffeomorphism. For
a first-order perturbation of the bulk metric, we have

6ds* = dgjjdx'dx’ (4.1)

And to the first order, the diffeomorphism is characterized by a vector V', then the regularity
boundary condition at the horizon is the variation of the bulk metric

Ly (ds?) 4 6ds* (4.2)

has a regular limit as p — 1 (or s — 0), that is, its components in the “Cartesian coor-
dinates” (3.3) are regular. We find

;i_rg% 20,V® = cos? 2t0g’% x + 2 cos 2t sin 26 g%y + sin 2t0 gty (4.3)
O,V + sinh? 258 Vit
lir% ! ‘32°:h 25 2 — _ cos2tsin 2t0g% x + (cos® 2t — sin® 2t)0g%y + cos 2t sin 2t6 g3y
5—
(4.4)
lin(1) 0, V?® + cosh 260,V = cos 2tdg%, + sin 2td gy, (4.5)
5—
o Ogy + Sinh2s (34 4cosh4s)VE + sinh4s0; V) . ' §
;g% cosh” 25 1s2 = sin? 2t0g% x — 2 cos 2t sin 2t0g’%y
+ cos? 2t0 g}y (4.6)
. sinh? 2s . a . . .
;g% 08ta + maav + cosh 260,V = —2ssin 2t0gx, + 25 cos 2tdgy, (4.7)
liH[l) 0gap + cosh 25(9, VP + 9 V?) + 2sinh 25V, = 0. (4.8)
5—

Egs. (4.3) and (4.5) show that V* and V' can be approximated by linear function in s as
s — 0 (or p — 1). Plugging into (4.8), we see

lim dg,;, exists (4.9)
p—1

By (4.4) we know

Vi = O(l) (4.10)

S

as 6 — 0. Then by integrating (4.7) over ¢ we find

/0 dt0g1alpey = 0 (4.11)



Similar to the case of U(1) gauge field, we work in Fourier modes and rotate the spatial
momentum to the z! direction. And for simplicity, we use the variable h;; = p?dg;; which on
the conformal boundary equals the variation of the CFT background metric

hij|,—0 = 6745 (4.12)
The linearized Einstein equation
Lox A A A
Q(V Vg + VV,095, — V'Vabgw — Vi V,,g3) + 409 =0 (4.13)

decouples to the scalar channel of fl23 and hag — f133, the shear channel of fth, his and fltg, f113,
and the sound channel of l~1tt, ﬁll, flgz + fl33, fltl- In the scalar channel, we have

. 1+22 - p?(1 — 2%) + w? -
97hoy — ———5-0,ha3 — hy; =0 4.14
BT =) dz(1— 222 % (4.14)
and in the shear channel, we have
- 1. -~ p2 - 2mp -
9’hyy — —0,hygp — ———h ——-h1» =0 4.15
chie = Z0:he = TR t2+4z(1_22) 12 (4.15)
~ 1+ 22 ~ 4m? ~ 2mp -
9?hyg — ———-9,hyy — h hip =0 4.16
T =) T 1= 22 P * Az(1—22)2 7 (4.16)
2m ~ ~
1_ z2 azhtg + pazhlg =0 (417)

The computation in these two channels is very similar to that of the transverse channel and
longitudinal channel of the U(1) gauge field in the previous section, so we will be brief.

For the scalar channel, by the substitution haz(z) = z%(l — 22)_%10(2) we obtain Heun
equation in the normal form

z

1_q2 1 _ (m\2 1 /m:2 2 2 A2 2

N S Sk & VA Sk & ) B e e it i i VS S OR T
22 (z—1)2 (z+1)2 8z(z —1) 8z(z+1)

with

|m| m. 0 p? +4m? — 2

— .+ = —17.Q _= L E—
92 s Ut 92 y oo ) ]

With the boundary conditions and the connection relation (A.13) we find

t= *1,0,0 = 1,(11 = (419)

o3 = 0793 (1+...)+W<4¢(1)+5— > 1/}(—;4—0?—1—0/@)
o=+,0'=+
+ 02 F — ij’imQ (4(12 —2a*m? + im4 + 4(0,F)*+ (—8a* 4 2m*) 0y F — 40, F 010, F
+ (=2 + 4a® —m2)8t8a0F>>z2(1 .. (4.20)
For the shear channel, plugging (4.17) into 0,(4.15), we obtain
e T ) (U e}



By the substitution d,h;; = (1 — 22)_%10(2), the equation is transformed to Heun equation

of normal form

1 1y2 1 my2 1 m )2 2 2 2 2
1_ (1 1 _(m 2 —(Z 4 —10 4 10
92 4 4 (2)+4 (3 L1 (22)+m+p _amTpT w(z) =0
22 (z —1)2 (z+1)2 82(2—1) 82(2+1)
(4.22)
with
1 m m 3 2+ 4m? 410
t:—l,aozi,al 2|,at— 22,aoo:§,u:—p 3 (4.23)
With boundary conditions and the connection relation (A.13) we find
- 2mpdryy, — p20y
0.hyy = mp V124 p ’Ytz(l _ 22)—% {w(:o)
2 2
+4m 1 1 1 1
+ p74 < 29(1) = 1+5¢(I+ar+a) + S¢(l+a —a) + S9(a+a) + 59 (a1 —-a)
e ro 1+ 20,040 F) | 4.24
g0l g (L 20800 ) (424

and furthermore

2 2
~ =~ p° +4m —~ —~
hyp = 6yp(1+...) + T(QWM%Q — p267,)

X (—211)(1)—1—1—;w(l—l—a1+a)+;w(1+a1—a)
+ i@t a) £ e —a) -t P 2 (14 28t8aOF))(z2 +o)
2 2 %" T 2 am?
hiy = 07,(1+...) + 2?2—;;1%2(27”195%2 — 4m?67,5)
« (21/)(1)1+;w(1+a1+a)+;w(1+a1a)

1 1 1 2
+ iw(al + a) —+ iw(al — a) — iagoF — m(l + 28758@0F)) (22 + .. ) (425)

The coefficient of z? in the solution of perturbed bulk metric corresponds to the variation

of ggj‘) and hence the variation of the one-point correlator by (2.4). Then we can read off
the two-point correlators

<~<w_2m >~(_w_)>_ 1 p? +w? 26<w_2m )
t2 — 00 N t2 , — P - 27TG 32 P g — 0 y D
<~ ( 2 > ( )> 1 p? 4+ w? c( 2m )
w = — —W = —— W= —
t2 00 P 12 y —P 217G 32 PLag 00 y P
. 2 . 1 p*+w? 2m
— — — S— = — 4.2

< 12 (w 00 7p> 12( w, p)> 27TG 39 C (w 0 7p> ( 6)

,10,



with

5 1 1 m 1
Z_Z E' I R Z92 F—
le(1)+2 2902i¢< 2 T75 +0a> + 3%

16
(pgp? + 4m?)?

aQ
w
€
|
[N}
33
%
N———
[l

1
X (4a2 —2a®m? + Zm‘1 + 4(0,F)* + (—8a* + 2m?) O F — 40, F8;0,, F

|m| m p2p2+am2—2
t:—l,aozl,m:T,atziz,awzo,u:—f

+ (=2 + 4a® — mQ)ataaoFﬂ

_2m ) - 1 m L2
C4<w = ,p) = <2¢(1) +1 Qeaziw@ 5 —i—aa) + 28aOF

2
* pgp? + 4m?

1 |m] m e 3 p2p2+4m2+10
t=—lLao=3,01="5 ,at="5 1,00 =5, U=———5g ——

(1+ 28t8a0F)>
S (4.27)

The unsolved part for the stress tensor is the sound channel. We have

02 25’(1_‘_52;)@?1& A 4 By + )
— +i22€13__:;2)(21 — Z2)fltt - 42(41771_:2)(1311 + hoy + hy3) + %flﬂ =0 (4.28)
I 222) 0. — g0 — (oo i)
_42(14711222)2511 - 4;22;?)2?1“ - 42(1]{;22)(1?122 + hss) + Qz(fm_pzzpﬁﬂ =0 (4.29)
92 (has + hgs) — 2(12_22)3z(f122 + hg3) — Z(ll_zz)azfltt - éazflll
_4mz;(rlpi(i 2;222) (hos + hs3) — (1_222)2fltt =0 (4.30)
8%hyy — %azﬁﬂ - Z12(21”1_7;2)(1?122 +hy) =0 (4.31)

~ ~ ~ 1 ~ z ~ ~ ~
8§(h11 + hoy + h33) + maﬁhtt — maz(hll + hoy + hgg)

z

- 92 -
. - - 2mz ~ ~ ~ =~ 2z =

2m0,(hi1 + hao + has) + maz(hll + hoy + h33z) — pd.hy — 1 622 hy =0 (4.33)
- - D - 2m - pz _

p0.(hae + hs3) + mazhtt — mazhﬂ + mhtt =0 (4.34)

We don’t know how to analytically solve the boundary value problem here. For future
reference, we can reduce the sound channel to a five-dimensional first-order equation of
variables hy, hyy, %, hy1,d.hy; (a similar equation can be found in [25]), and by the

— 11 —



substitution

@tt 0 —3(1-22)222(1-2%) 0 0

} h11~ —22 1-— Z2 %Z 0 0

h22~;h33 1,2 0 —1z 0 0|H (4.35)
he 0 0 0 1-220

9.hy 0 0 0 0 =z

we can transform the equation into a Fuchsian system of normal form?

My My M_1>
0,H = (— 4.36
z ( z + z—1 z+1 ( )
with
2 12m?4p?
-2 -3 0 3% “omp
0 0 0 0 0
2
Mo=10 —-m*+% -1 mp 0
0 0 0 0 0
0 0 =20 2
1
0 01 -5 0 -
0 2 0 (:%2) —1m
_ — —m
My = % JQFm 2 ® 2m ﬁ
o o o0 -1 -3
U . 0
1
0 01 i o -z
Moy = | & &= o B0 P (4.37)
o 0o o0 -1 -3
N 0 0

5 Summary and discussion

In our study, we calculated holographic Euclidean thermal correlators of the U(1) current
and stress tensor for four-dimensional CFTs using the AdSs planar black hole, following
the approach of GKPW. By utilizing the connection relation of local solutions of the Heun
equation, we obtained exact correlators for the U(1) current and stress tensor in the scalar
and shear channels.

2The connection relation of local solutions of Fuchsian systems has been studied in the Mathematics
literature (for example, see [29] for very brief introduction), and knowledge of the connection relation in our
system will enable us to solve the boundary problem. The main progress we can find in the literature is
techniques of “addition” and “middle convolution” [30] that can transform a Fuchsian system to a simpler one,
and most importantly, if we know the connection relation for one system we know it for the other. We are
however not able to simplify our Fuchsian system by these transformations.
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Extensive research has focused on thermal two-point correlators (thermal spectral func-
tions). Notably, [25] demonstrated the presence of gauge invariants in each channel that
diagonalize coupled differential equations. These invariants and their derivatives render
the on-shell action quadratic. Thermal two-point correlators have been computed using
this formalism numerically or analytically by approximations [31, 32]. For example in the
longitudinal channel the gauge invariant is E;, = pA; — wA; and we have

20?2 w? + p?(1 — 2?)
azEL -
(1—22)(w? +p*(1 = 2%)) 4z(1 - 2%)?

This is a Fuchsian differential equation with six singularities. The two singularities z =

02E; — EL =0 (5.1)

+,/1+ z—; are apparent singularities since they don’t appear in the equation of the fields.
One can verify that these apparent singularities cannot be transformed away by a substitution
Er(z) = P(2)f(z) where P(z) is a meromorphic function that does not introduce new
singularities. In essence, these apparent singularities remain inherent to the equation. We
don’t know how to relate this equation to the Heun equation and obtain the exact holographic
correlators. From the technical standpoint, we want to work with equations of fields, and in the
Euclidean signature, the boundary conditions of fields with gauge/diffeomorphism symmetry
are clearly specified. This is the technical reason for our approach of holographic computation,
in addition to giving an illustrative example of Euclidean boundary value problems.

Thermal two-point correlators find diverse applications. They encode the information
in operator product expansion (OPE) of holographic CFTs. For instance, [33-35] computed
holographic correlators in the OPE limit via near-boundary analysis, extracting OPE coeffi-
cients for multi-stress tensors. For integer operator dimension with operator mixing, exact
two-point correlators are necessary for complete OPE coefficient extraction. Moreover, if we
can analytically continue to the Lorentzian signature, we will get better understanding of the
linear response to perturbations in thermal equilibrium, and compute transport coefficients
such as shear viscosity, thermal conductivity, and electric conductivity [36, 37], and higher
order transport coefficients (see [38, 39] for formula of second order coefficients in terms of
two-point correlators and holographic computation). In addition, we can probe the chaotic
dynamics by studying the pole-skipping of the correlators [40-42]. In addition, we consider
spherical thermal correlators (scalar case solved in [17]) and stress tensor correlators from
a higher derivative gravity theory as interesting generalizations of our work.
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A Fuchsian ODE, the Heun equation and connection problem

In this appendix, we briefly review Fuchsian differential equations, the Heun equation, and
its connection relation we used in the computation in the main text.
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An ordinary differential equation (ODE) is called Fuchsian if the coefficients are rational
functions and all singularities are regular. Eigenvectors of local monodromy constitute a
natural basis of local solutions around singularities. When eigenvalues of the local monodromy
are all distinct, eigenvectors span the space of local solutions, and they take the form of a series

w,(fo) (z — 20)P* Z ci(z — 20)" (A1)
=0

where zj is the singularity, & labels the local solution and the prefactor (z — zp)P* captures
the local monodromy. The characteristic exponents pp are computed as the roots of the
indicial equation. We usually adopt the normalization that cg = 1. When we have repeated
eigenvalues of the local monodromy, that is some characteristic exponents differ by integers,
we may need generalized eigenvectors to span the space of local solutions, and they are
expressed as series with logarithms. For a second order ODE, we label the two characteristic
exponents as p, p—, with Repy > Rep_. There is always a series solution without logarithm

wgfo) with the exponent py.? If two exponents differ by an integer, the other solution w(_zo)

(20)

to form a basis may contain logarithm. There is also no canonical choice of w ™’ since we

can add any constant multiple of w(f‘)) to w(_ZO) . For computational convenience, we choose
the convention that the coefficient of the power (z — z9)P+ is zero in w&zo).
The Heun equation is the second-order Fuchsian ODE with four regular singularities. By

Mobius transformation and substitutions, we can bring it to the normal form

1 2 1 2 1 2 1 2_ .2 2., 2
7—a 7—a 7—a 5—af —ay —ajtag +u
Pyl ATl A 2 T Re Ty R uw(z) = 0
22 (z—1)2 (2 —1)? 2(z—1) 2(z —t)
(A.2)
The four singularities with exponents at these points are
0 1j:
z= =—+a
y P 92 0
=1 —1j:
z_no_z ai
=t —1j:
Z—aP—Q Gt
1
z:oo,p:—ij:aoo (A.3)

We adopt the convention that Reag > 0 etc., so the exponents with plus sign will be the
exponent with greater real part p*. The connection relation of the local solutions in the
generic case (that is, characteristic exponents do not differ by an integer) was studied in [16]
by relating the Heun equation to the Belavin-Polyakov-Zamolodchikov (BPZ) equation [43]
satisfied by conformal blocks with degenerate insertion® in the Liouville field theory in the
semiclassical limit. By the Alday-Gaiotto-Tachikawa (AGT) correspondence, the Liouville
correlators can be exactly computed by localization in supersymmetric gauge theories [46-50].

30ne can show that the recursion relation of the coefficients of the series with exponent p, is always
non-degenerate.
“One can also refer to the relevant studies offered by [44, 45].
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Without losing generality, let z = 0 and z = 1 be two adjacent singularities, the connection
relation between local solutions around these two points is

at 401.1

0, _0
wél)(z) =D My (@17660;@)6(28(11 7 020)F e “O’t)wés))(z) (A.4)
o' ==+

where

['(—26"ag)T(1 + 26ay)
(% +0a; — 0 ag + a)F(% +0a; —0'ap — a)

MGG/ (al,ag;a) = T (A5)

and F' is the Nekrasov-Shatashvili function, defined as power series in % with combinatorially
defined rational functions of other parameters as the coefficients, see appendix B for details.
The exchange momentum a is to be implicitly determined from the relation

1
u:717a2+a?+a%+t8tF (A.6)

In our computation, the masslessness of the bulk fields leads to a degenerate local monodromy
of the Heun equation at z = 0 (the conformal boundary), that is, two exponents differ by an
integer (ag becomes a half-integer). This degenerate scenario can be derived as a limit of
the generic case, as a specific solution to the Heun equation continuously depends on the
parameters. The emergence of logarithm and the discontinuity of the local monodromy basis
reflect a qualitative change of the local monodromy, rather than a specific solution. The
solution wsrl) remains well-defined and continuously depends on parameters including ag,
even when a; approaches half-integers.” We proceed to take the limit ag — %, N € N while

keeping other parameters, such as t, a1, s, oo, a, fixed.% For ag = 0 we have

y o1 T(1 + 2a1)T(1 + 2a0)

w = lim — T T
ao—0 2ayg F(§+a1+a0+a)F(§+a1+ao—a)

e(3001+3000)F 3 =a0(1 )

B I'(1+ 2a1)T(1 — 2ap)
F(%—i—al—ao%—a)l“(%—i—al—ag—a)

(300 =300) F 3a0 (1 1 | ) (A7)

The quantity in the square bracket must vanish when ag = 0 for the limit to exist. It indeed
vanish because Jg, F'|q,—=0 = 0 with F' being an even function of ag. Then the limit becomes

1)

5Meanwhile w'’ is not continuous when a; approaches half-integers. When both ag and a; are half-integers,

the complete connection relation is computed by solving two linear equations obtained from the limits of wﬁro)
and w(j).

S Another curve in the parameter space can also be chosen to approach the limit, such as fixing u, an explicit
parameter in the Heun equation, instead of a. However, as the connection coefficients explicitly depend on a,

fixing a yields a relatively simple expression for the limit.
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the derivative with respect to ag, and we get

O I'(1+2ay)
oI +a+al(i+a—a)

<2w(1)—¢<1+a1+a) —1/1(1+a1—a> +;E930F—logz+...>

2 2
_ I'(1+ 2aq) oi0ay F
F'(i+a1+a)l(3+a—a)
1 1 1
-+ (200 - (5 +ar+a) o3 ra—a) + 38l (ag)
where 1 denotes the digamma function. For ay = 3 we find
2
w(j) ~ lim F(l + 2@1)F(2a0) e(%8a1+%8a0)F
a—i |T(+a1+ao+a)T (3 +a1+ap—a)
¢ 2. .24 2 2
lfao 1 —§+t(a0+a1+at_aoo)+(]-_t)u
X 22 ( + (1= 2a0)t zZ4 ...
N D(1 -+ 21)T(~2a0) (3001 -3000) P a0y 4 )
I'(i+a1—ao+a)T(3+a1—ao—a)
I'(1+ 2a1) (L00y +104y) F 19, F

— e\271T2%0/" + TY(1 + 2aq)e291" z

'l4+a +a)(1+a; —a) ( )

1 (2
x  lim 1 : ao)l Sl
ap—1 1 —2ag F(§ + a1 —i—ao—i-a)F(g + a1+ ap —G)
L Tattag+ai+af —as)+(1-tu 4,
t
I'(2 — 2ap) ¢~ 30a0F ,—3+a0 o (A.9)

B 2a0F(% +a; —ag+ a)F(% +a1 —ap—a)

The quantity in the square bracket must vanish when ag = % for the limit to exist, that
is, we must have

JugF "3 HHag +ad +af —a%) + (1=t
t

1
ap=75

_ eaaop—% +tad +tad + (1 —t)a® — a2, — (1 — t)to F

2 -
t

SIS

ap=

=a} —a? (A.10)

By the expansion of F

F=

1 __ 9.2
22&
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one can verify (A.10) holds to the order of expansion. Again, the limit becomes the derivative

with respect to ag and we find

o' = I'(1 4 2a,) (300, +30u0) F
t O T(+a+a)l(1+a —a)
F(l + 2&1)
I'(a1 + a)I'(a1 — a)

(30 =30m0)F [ ~20(1) ~ 1+ (1 +a + )

2
t4t(1 — )00y F

1 1 1 1
+ §¢(1 +a1 —a)+ -Y(a +a)+ 51/)(@;[ —a)— 5(920]7 + log 2

_2(—%+t(a%+a%—|—a%—ago)+(1—t)u) T
_ ['(1+ 2ay) (3901 +50a) ', (0)
I'l4+a+a)'(1+a; —a)
F(1—|—2a1) (13 _1y )F 1 1
2901 73%0 ) _99p(1) —14 Zp(1 ~(1 -
Tt o =9 ¥(1) =1+ 5v(1+a +a) + S¥(1+ a1 —a)
1 1 1 t+t(1 —)0¢0g F (0)
+ sv(a+a) + sy(a—a) — 05 F - ;
pUlenta) + gulan=a) = o0 = T v —a2) 1 (0w |
__ TO+2a)  (3on—ou)¥ ! w®

- T(a1 +a)T(a; —a) —L4t@@+at+al —aZ)+(1—tu
4 (—2w<1>—1+;w<1+a1+a>+;¢<1+a1—a>+;w<a1+a>+;wal—a)

t+t(1—1)0104 F ) (0)
A.12
) e S R e Y A A

Lo
_§aaoF_

. . . . 1_ .
In general, the coefficient cy in the series solution z27% $°%°  ¢,2* and the connection

coefficient for wf) on the right hand side of (A.4) simultaneously take ag = % as a pole,

so the limit ag — % always becomes a differentiation with respect to ag. For example,

for ag = 1 we have
I'(1+2 1
w_(i_l) = T ( + al)l e(%8a1—§8a0)F — — ’[U,(P)
(-3 +a1+a)T(—5+a—a) (2 — 2a0)c2]ag=1

+<2w(1)+;—;¢<—;+a1+a>—;¢<—;+a1—a>—;w(3+a1+a>
1
2

2 — 2ap)cy) |a0:1>w$)] (A.13)

We use Mathematica to compute the connection relation in the degenerate case for higher

values of N.
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B The Nekrasov-Shatashvili function

The Nekrasov-Shatashvili function is defined as

1 1 —2¢ 1 ($+ar) (+a1) 1 Y] .
F(at aa1;> = ]ime]og((l—t> z};(t) 2(@,Y)

Ao ap t e—0
H (@, Y, a1 + 0ag)zn(@,Y , ar + Gaoo)> (B.1)
0=+

where @ = (a, —a) and Y = (Y1,Y2) is a vector with two Young tableau as the components.
|Y| = |Y1| + |Y2] is the sum of the sizes of the two tableau. zj and z, are defined as

a@f = I 11 (oo (i-3)+<(5-3))

1=1,2(i,j)€Yr

L 1
=@V)= 11 1l 1l == G+

I,J=1,2 (i,j)€Yr (Z J )
1

ar —aj+ (LYI((i,7j,)) + 1) - GAYJ((Z./aj/))

where L stands for the leg length and A stands for the arm length of the site in the tableau.

(B.2)

Our definition of the Nekrasov-Shatashvili function is essentially the definition in [17],
with a; and a1 are swapped and ¢ replaced by % in the argument. That’s because we consider
the connection relation between local solutions around z = 0 and z = 1, while in [17] the
pair z = 0 and z = t was considered.
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Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
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