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Dissipative scattering of spinning black holes at fourth post-Minkowskian order

Gustav Uhre Jakobsen ,1, 2 Gustav Mogull ,1, 2 Jan Plefka ,1 and Benjamin Sauer 1

1Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin,
Zum Großen Windkanal 2, 12489 Berlin, Germany

2Max Planck Institut für Gravitationsphysik (Albert Einstein Institut), Am Mühlenberg 1, 14476 Potsdam, Germany

We compute the radiation reacted momentum impulse ∆p
µ

i , spin kick ∆S
µ

i , and scattering angle
θ between two scattered spinning massive bodies (black holes or neutron stars) using the N = 1
supersymmetric worldline quantum field theory formalism up to fourth post-Minkowskian (4PM)
order. Our calculation confirms the state-of-the-art non-spinning results, and extends them to
include spin-orbit effects. Advanced multi-loop Feynman integral technology including differential
equations and the method of regions are applied and extended to deal with the retarded propagators
arising in a causal description of the scattering dynamics. From these results we determine a
complete set of radiative fluxes at sub-leading PM order: the 4PM radiated four-momentum and,
via linear response, the 3PM radiated angular momentum, both again including spin-orbit effects.

Predicting the gravitational waveforms emitted dur-
ing the encounter of two spinning black holes (BHs) or
neutron stars (NSs) [1] at highest precision is a central
challenge in todays gravitational physics. Reaching the
necessary high precision, which stretches far beyond the
present state-of-the-art in analytical and numerical grav-
itational wave physics, is mandatory [2] for the scientific
reach of the third generation of detectors [3] that are
scheduled to go online in the 2030s [4]. To achieve this,
a combination of perturbative and numerical approaches
— post-Newtonian [5], post-Minkowskian (PM) [6], self-
force [7], effective-one-body resummations [8] and numer-
ical relativity [9] — are currently being used to solve
the relativistic two-body problem. By importing tech-
niques from perturbative quantum field theory (QFT),
great progress has been made in PM wherein one assumes
weak gravitational fields but arbitrarily fast-moving bod-
ies.
By analogy to collider physics, the PM scenario con-

siders the scattering of BHs or NSs [10]. On the one
hand, this is well-motivated for mergers with highly ec-
centric orbits; on the other hand the scattering data may
be used to inform models of the bound-state problem
[11, 12]. As long as the objects’ separation is large com-
pared to their intrinsic sizes, the BHs or NSs have an
effective description in terms of a massive point parti-
cle coupled to Einstein’s theory of gravity [13]. Based
on this effective worldline approach two-body scatter-
ing observables (deflections and Bremsstrahlung wave-
forms) have recently been computed at high orders in
the PM expansion, including spin and tidal effects [14–
18]. In the non-spinning case, the present state-of-the-art
for the impulse and scattering angle is 4PM (G4) order
including radiation-reaction effects [19, 20]. Complemen-
tary QFT-based approaches, based on scattering ampli-
tudes [21], have similarly achieved a 4PM precision for
the impulse in the non-spinning case [22], plus next-to-
leading order results for the scattering waveform [23]. In
the spinning case results exist for the impulse at 3PM
order up to quadratic spins [24] and at 2PM order for
higher spins [25]. Other approaches to PM spin effects
are [26].

In fact the spins of the compact objects (next to the
masses) are prime observables in the observed binary
black hole and neutron star mergers [27]. Fascinatingly,
the most efficient way to capture the spins of BHs or NSs
in the worldline approach is by upgrading to a super-
particle worldline theory, an approach inspired by super-
string theory [15]. The generalization to spin-spin inter-
actions uses N = 2 supersymmetry. Use of this worldline
quantum field theory (WQFT) approach has given rise
to state-of-the-art scattering observables, including spin-
orbit and spin-spin effects at 3PM order [16, 28] and most
recently also spin-orbit at 4PM order for the conservative
sector of BH or NS scattering [29].

In this Letter we report on the upgrade of these 4PM
results to the full dissipative, radiation-reacted observ-
ables. To compute them, we use the Schwinger-Keldysh
(in-in) initial value formulation of the WQFT that in-
duces the use of retarded propagators and a causality
flow in the diagrammatic expansion [17]. Using these
results, we are then able to provide a complete set of ra-
diative fluxes at sub-leading order in the PM expansion
— G4 for the radiated four-momentum Pµ

rad and G3 for
the radiated angular momentum Jµ

rad. The latter is in-
ferred from the 4PM scattering observables using linear
response [30, 31]. Finally, we demonstrate the 4PM to-
tal scattering angle’s natural decomposition into terms
coming from different regions of integration. All of our
results are included in an ancillary file attached to the
arXiv submission of this Letter.

Scattering of spinning bodies. — The scenario we are
interested in is one of two initially well-separated spin-
ning massive bodies i = 1, 2 scattering off each other. In
the far past, the gravitational field is weak and the bodies
move on straight line trajectories xµi (τ) = bµi + vµi τ ; they
carry four-momenta pµi = miv

µ
i (with masses m2

i = p2i
and boost factor γ = v1 · v2) and intrinsic angular mo-
menta (spins) Sµν

i . The total initial angular momentum
of the two-body system is then given by

Jµν = Lµν + Sµν
1 + Sµν

2 ,

Lµν = 2b
[µ
1 p

ν]
1 + 2b

[µ
2 p

ν]
2 .

(1)
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However, these angular momentum tensors depend on
the choice of center of each (extended) body and the co-
ordinate origin. To resolve this, we find it convenient to
introduce the spin vectors

Lµ = 1
2ǫ

µ
νρσL

νρP̂ σ = − 1
E ǫ

µ
νρσb

νpρ1p
σ
2 , (2a)

Sµ
i = mia

µ
i = 1

2ǫ
µ
νρσS

νρ
i vσi , (2b)

where the impact parameter bµ = |b|b̂µ is the part of
bµ2 − bµ1 orthogonal to both initial momenta pµi and Pµ =

EP̂µ = pµ1 + pµ2 is the total initial momentum. “Hatted”
vectors are unit-normalized. In addition we introduce
the total angular momentum vector in the center-of-mass
(CoM) frame

Jµ =1
2ǫ

µ
νρσJ

νρP̂ σ = Lµ + 2P̂ν

∑

i

v
[ν
i S

µ]
i . (3)

We also define the symmetric mass ratio ν = µ/M =
m1m2/M

2, the total massM = m1+m2, the total energy

E = MΓ = M
√

1 + 2ν(γ − 1) and δ = (m2 − m1)/M .
The 4PM observables that we compute are the change in
momentum (impulse) ∆pµi , and of spin (spin kick) ∆Sµ

i ,
including dissipative losses.

Supersymmetric in-in WQFT formalism. — The ef-
fective N = 1 supersymmetric worldline theory of Kerr
BHs or spinning NSs with masses mi, trajectories x

µ
i (τ)

and anti-commuting vectors ψµ
i (τ) carrying the spin de-

grees of freedom takes the compact form [15]

S = −
2

∑

i=1

mi

∫

dτ

[

1
2gµν ẋ

µ
i ẋ

ν
i +iψi,µ

Dψµ
i

dτ

]

+ SEH (4)

in proper time gauge ẋ2i = 1 (we use a mostly minus
metric) and with covariant derivative Dψµ

i /dτ . The bulk
Einstein-Hilbert action SEH includes a de Donder gauge-
fixing term and we employ dimensional regularization
with D = 4 − 2ǫ. The fields are expanded around their
initial-state asymptotic motion:

xµi (τ) = bµi +v
µ
i τ+z

µ
i (τ) , ψµ

i (τ) = Ψµ
i +ψ

′µ
i (τ) , (5)

with perturbative deflections zµi (τ) and ψ′µ
i (τ) and

the initial Ψa
i related to the spin tensors as Sµν

i =
−imiΨ

µ
i Ψ

ν
i . Similarly, working a post-Minkowskian

(PM) expansion we expand the metric gµν = ηµν +√
32πGhµν . Details on the supersymmetric worldline for-

malism may be found in Refs. [15, 29].

Our objective is now to find perturbative-in-G solu-
tions to the equations of motion for the superfield deflec-
tions Zµ

i (τ) = {zµi (τ), ψ′µ
i (τ)}. This can efficiently be

accomplished using the WQFT formalism, which gener-
ates the perturbations in a diagrammatic fashion. The
fields Zµ

i (τ) and hµν(x) are promoted to propagating de-

grees of freedom, with propagators

ω, n
→µ ν =

−iηµν
mi(ω + i0+)n

{

n = 2 for zµi ,

n = 1 for ψ′µ
i ,

(6a)

k

→µν ρσ
=
i(ηµ(ρησ)ν − 1

D−2ηµνηρσ)

k2 + sgn(k0)i0+
. (6b)

Arrows on the propagators indicate causality flow: we
use retarded propagators in order to fix boundary con-
ditions at past infinity. From a QFT perspective, this is
formally accomplished using the Schwinger-Keldysh in-in
formalism [17, 32]. Lower-multiplicity worldline vertex
rules have been exposed explicitly in [15] where a generic
vertex couples n gravitons to m worldline fields and con-
serves the energy on the worldline, see [29]. The WQFT
formalism exploits the fact that tree-level one-point func-
tions 〈Zµ

i (τ)〉 solve the classical equations of motion [33]
— trivializing the classical limit.
WQFT integrand construction. — Automated con-

struction of the 4PM integrands is done recursively using
Berends-Giele type relations [29]. Inserting the Feynman
rules into the generated trees is done with FORM [34]. We
face 529 with spin graphs contributing to the 4PM im-
pulse and 253 contributing to the 4PM spin kick. The
4PM observables fall into two classes defined by their
mass dependence: test-body contributions with linear
mass dependence, m1m

4
2 orm

4
1m2, and comparable-mass

contributions, m2
1m

3
2 or m3

1m
2
2.

The integrand initially consists of a large sum of ten-
sor integrals with integrations on both worldline energies
and graviton momenta. Conservation of energy, how-
ever, results in unconstrained integration only on the
space-like components of the momenta. At 4PM order
this results in three-loop integrals, depending on the mo-
mentum transfer q (the Fourier transform of the impact
parameter) and the parameter γ = v1 · v2. After scaling
out |q| we are faced with a collection of three-loop sin-
gle parameter tensor integrals which we reduce to scalar
integrals using Veltman-Passarino reduction [29].
Reduction to master integrals. — The complete

tensor-reduced spin-orbit integrands for the impulse
and spin kick consist of some 105 integrals. In the
comparable-mass sector the main family is given by

J (σ1,σ2,σ3,σ4,σ5)
n1,n2,...,n12

:=

∫

ℓ1,ℓ2,ℓ3

δ(ℓ1 ·v1)δ(ℓ2 ·v1)δ(ℓ3 ·v2)
Dn1

1 Dn2

2 · · ·Dn12

12

(7a)

with (j = 1, 2, 3, k = 1, 2)

Dk = ℓk · v2 + σki0
+ , D3 = ℓ3 · v1 + σ3i0

+ ,

D3+k = (ℓk − ℓ3)
2 + σ3+k sgn (ℓ

0
k − ℓ03) i0

+ , (7b)

D6 = (ℓ1 − ℓ2)
2 , D6+j = ℓ2j , D9+j = (ℓj + q)2 ,

and q ·vi = 0. Additionally we need for a few integrals in
this sector the second family I [2]; the definition of this as
well as the definition of the family for the test-body inte-
grals I [1]. They are given in the supplementary material
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FIG. 1: Example of a 4PM master integral decomposing into the four regions in the static limit. There is no distinction
between the velocities any longer, which is why the middle worldline propagator effectively moves up, taking the gravitons

along or not. This results in active propagators (marked in red) in the (PP), (RR), (PR) regions as marked.

FIG. 2: The boundary integral topologies: The first seven graphs result in twelve boundary master integrals (MIs) and
belong to the (PP) region. In the (RR) region the double mushroom graph gives two MIs and the last two single mushroom

graphs result in six MIs in the (PR) region.

eq. (A1) [29]. We split each family up into even (b-type)
or odd (v-type) in the number of worldline propagators.
In applying integration-by-parts (IBP) methods [35–38]
the presence of retarded propagators marks a difference,
as the number of symmetries (shifts & sign flips in loop
momenta) is reduced compared to the Feynman propaga-
tor case, which leads to larger master bases accordingly.
Differential equations. — The three-loop master in-

tegrals are solved with the method of canonical differen-
tial equations (DEs) [39]. Grouping each master integral

family into a vector ~I one has the DE d~I/dx =M(ǫ, x) ~I,

where x = γ −
√

γ2 − 1. We determined a transforma-
tion matrix T (ǫ, x) that brings us to a canonical basis
~I = T (ǫ, x)~I ′ with an ǫ-factorized DE

d~I ′ = ǫA(x) ~I ′ dx (8)

using the packages [40–43]. Importantly, elliptic func-
tions of the first and second kind need to be included in
the transformation matrix T (ǫ, x) for the J-b family in
order to reach (8) [20, 40]. The resulting canonical ma-
trices A(x) contain poles in {x, 1 + x, 1 − x, 1 + x2} —

the 4PM symbol alphabet. Expanding ~I ′(ǫ, x) in ǫ allows
for an iterative integration of eq. (8) yielding logarithms
and dilogarithms.
Boundary conditions. — The final step is to determine

the integration constants of the ǫ-expanded master inte-

grals ~J . These are fixed by taking the static limit (v → 0
i.e. γ → 1). We use the method of regions [21, 44–46]
to expand the integrand in v. We find potential (P) and
radiative (R) graviton loop momenta scalings as

ℓPi = (ℓ0i , ℓi) ∼ (v, 1) , ℓRi = (ℓ0i , ℓi) ∼ (v, v) . (9)

At 4PM order there are at most two radiative gravitons:
(PP), (RR) and (PR). This may be interpreted graphi-
cally via the example of Fig. 1. The region (PP) is purely
conservative, (PR) is purely dissipative, and the (RR) re-
gion carries both kinds of effects.
In the (PP) region all boundary integrals reduce to

test-body integrals [29]; in the (RR) region they reduce
to so-called double-mushroom integrals, the (PR) regions

reduce to single-mushroom integrals, see Fig. 1. All ap-
pearing mushroom integrals can be written as part of
the J family (7). This allows us to IBP reduce also the
boundary integrals, which results in 10 different integral
topologies; see Fig. 2. Taking advantage of the fact that
only certain linear combinations of the PP integrals are
needed, we only need to calculate 17 boundary integrals
explicitly to fix all integrals of all families in all regions.

Central to the evaluation of boundary integrals is
the concept of active propagators, which are sensitive
to the retarded i0+ prescription. Graviton propagators
1/[(ℓ0i + i0+)2 − ℓ2i ] only become active when the loop
momentum is radiative, i.e. ℓi = ℓRi , as otherwise the
spatial component ℓi dominates as v → 0. Worldline
propagators, on the other hand, cannot go on-shell when
directly coupled to a radiative graviton, for otherwise
the corresponding graviton integral becomes scale-free.
This property manifests itself in the IBP reduction of
the boundary integrals, wherein non-active propagators
do not appear in the corresponding master integrals —
and so, their i0+ prescriptions become irrelevant.

Results. — We now present the dissipative contribu-
tions to the complete 4PM scattering observables:

∆X
(4)
diss := ∆X(4) −∆X(4)

cons = ∆X
(4)
rad1 +∆X

(4)
rad2 . (10)

Here ∆X(4) is the full 4PM observable — impulse or
spin kick — from which we subtract its conservative part

∆X
(4)
cons that was already presented in Ref. [29]. We fur-

ther separate dissipative terms into those linear (rad1)
and quadratic (rad2) in radiation, which gain contribu-
tions only from the (PR) and (RR) regions respectively.
Dissipative observables computed within these two re-
gions have a uniform (and opposite) behavior under the
operation v → −v, under which γ is unchanged but
√

γ2 − 1 = γv flips sign.

We present our observables in terms of the following
functions, all of which are strictly even under v → −v:

F1,...,5=

{

1,
log[x]

√

γ2 − 1
, log

[γ+
2

]

, log2[x],
log[x] log

[ γ+

2

]

√

γ2 − 1

}

,
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F6,...,9 =

{

log[γ], log2
[γ+
2

]

,Li2

[

γ−
γ+

]

,Li2

[

−γ−
γ+

]}

,

F10,...,13 =

{

log[x]
√

γ2 − 1
log[γ],

Li2

[

γ
−

γ+

]

− 4Li2

[
√

γ
−

γ+

]

4
√

γ2 − 1
,

Li2[−x2]− 4Li2[−x] + log[4] log[x]− π2

4
,

Li2[−x]− Li2
[

− 1
x

]

− log[4] log[x]
√

γ2 − 1

}

, (11)

where γ± = γ ± 1 and x = γ −
√

γ2 − 1. The first
five functions are common to both rad1 and rad2, while
the second line is exclusive to rad2; the functions 10–13
are exclusive to rad1. In terms of these functions, the
dissipative impulse and spin kick take the form

∆p
(4)µ
1,diss =

m2
1m

2
2

|b|4
13
∑

α=1

13
∑

l=1

ρµl Fα

(

m2dα,l(γ) +m1d̄α,l(γ)

)

,

(12a)

∆S
(4)µ
1,diss =

m2
1m

2
2

|b|3
13
∑

α=1

6
∑

l=1

ρ̃µl Fα

(

m2fα,l(γ) +m1f̄α,l(γ)

)

.

(12b)

The basis vectors of these observables are given by:

ρµl =

{

b̂µ, vµj ,
ai · L̂
|b| b̂µ,

ai · L̂
|b| vµj ,

ai · b̂
|b| L̂µ,

ai · vı̄
|b| L̂µ

}

,

ρ̃µl =

{

a1 · b̂
|b| b̂µ,

a1 · v2
|b| b̂µ,

a1 · b̂
|b| vµi ,

a1 · v2
|b| vµi

}

, (13)

The functions d, f (provided in our ancillary file) are ra-

tional functions of γ up to integer powers of
√

γ2 − 1.
Crucially, our spin-free parts of eq. (12a) agree with
Refs. [19, 22].
We note that unlike the conservative terms [29], the

dissipative ones do not contain elliptic E/K functions
or tails log[γ−

2 ] in their functional bases (11). Indeed
the presence of tails in the conservative terms requires a
cancellation of 1/ǫ poles between the regions (PP) and
(RR). As the dissipative (PR) and (RR) regions are dis-
tinguished by their behaviour under v → −v such a can-
cellation cannot occur here. The rad1 parts of the dissi-
pative observables do, however, contain the new functions
F10,...,13 that are absent in the conservative case. As in
the conservative case, we have checked that the observ-
ables satisfy the conservation laws p2i , S

2
i and pi ·Si = 0.

Fluxes and Linear Response. — Given the complete
set of scattering observables ∆pµ1 and ∆Sµ

1 , we can now
determine the radiated linear and angular momenta, Pµ

rad
and Jµ

rad, over the course of the scattering — the fluxes.
We obtain both at sub-leading order in the PM expan-
sion: Pµ

rad at O(G4) and Jµ
rad at O(G3). Using momen-

tum conservation the former is given trivially by

P
(4)µ
rad = −∆p

(4)µ
1,diss −∆p

(4)µ
2,diss , (14)

with the impulse ∆p
(4)µ
2 obtained from ∆p

(4)µ
1 by sim-

ple relabelling. Naturally, the conservative part of the

impulse ∆p
(4)µ
1,cons = −∆p

(4)µ
2,cons cancels, and so Pµ

rad gains
contributions from only the dissipative parts of the im-
pulse — rad1 and rad2. The 4PM radiated energy

E
(4)
rad = P̂ ·P (4)

rad agrees with the PN-expanded result [12].
To obtain Jµ

rad atO(G3) we use linear response [30, 31],
building on the work of two of the present authors [28].
Up to and including terms linear in radiation (rad1) the
dissipative parts of the scattering observables are given
by the difference between the full observables evaluated
with the in-in and out-out prescriptions, i.e. with re-
tarded and advanced propagators:

∆pµ
i,rad1 = 1

2

(

∆pµi (J
µ
−, p

µ
i−, S

µ
i−)−∆pµi (J

µ
+,−pµi+, Sµ

i+)
)

−O(rad2), (15a)

∆Sµ
i,rad1 = 1

2

(

∆Sµ
i (J

µ
−, p

µ
i−, S

µ
i−) + ∆Sµ

i (J
µ
+,−pµi+, Sµ

i+)
)

−O(rad2). (15b)

At the present 4PM order, −O(rad2) instructs us not to
include the rad2 observables ∆Xrad2 on the right-hand
side. While the in-in observables are given in terms of
the usual background variables evaluated at past infin-
ity, the out-out observables are instead given in terms
of background variables Jµ

+, p
µ
i+ and Sµ

i+ evaluated at fu-
ture infinity, in the context of a scattering scenario where
radiation is absorbed rather than emitted. They may be
re-expressed in terms of the usual background observ-
ables using: (Xµ ∈ {Jµ, pµi , S

µ
i })

Xµ
− = Xµ , Xµ

+ = Xµ +∆Xµ
cons −∆Xµ

rad1 . (16)

We have flipped the sign on the radiative components in
order to reverse the direction of incoming radiation. For
later convenience, all dependence on the impact param-
eter bµ has been expressed in terms of the total angular
momentum vector in the center-of-mass frame Jµ (3).
Given our now-complete knowledge of the conserva-

tive and dissipative 4PM scattering observables, plus all
scattering observables at lower-PM orders, the upshot is
a pair of consistency requirements that may be used to

infer J
(3)µ
rad = −∆J (3)µ. Both (15a) and (15b) yield the

same physical constraints. The relationships are pertur-
batively expandeded in G to yield information at each
PM order. In practice, we make an ansatz for ∆J (3)µ on
a four-dimensional basis of {bµ, Lµ, vµ1 , v

µ
2 }, and the lin-

ear response relations yield the bµ and Lµ components.
The two remaining vµi components are fixed by demand-
ing that (pi +∆pi) · (L+∆L) = 0 up to 4PM order.
Our result for the 3PM radiated angular momentum

takes the schematic form (up to linear order in spin)

J
(3)µ
rad =

1

E

[

−E(3)
radJ

µ+
πm2

1m
2
2

|b|2
2

∑

i=1

3
∑

α=1

12
∑

l=1

ρ′µl Fαmigi,α,l

− 4m2
1m

2
2b

µ

(γ2 − 1)|b|4
(

(4γ(2γ2 − 1)m1 + (4γ2 − 1)m2)a1 · v2
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− (4γ(2γ2 − 1)m2 + (4γ2 − 1)m1)a2 · v1
)

I(v)

]

, (17)

where E
(3)
rad = P̂ · P (3)

rad is the 3PM radiated energy, and
g is another set of rational functions of γ up to integer

powers of
√

γ2 − 1. Note that we include recoil effects
in all dissipative losses, so that the final value of Jµ (3)
is defined in the final CoM frame which starting at 3PM
is different from the initial CoM frame. The function
I(v) = − 8

3+
1
v2 +

3v2
−1

v3 arccoshγ is familiar from the 2PM
radiated angular momentum; our result is expanded on
the basis

ρ′µl =

{

L̂µ, b̂µ, vµi ,
ai · L̂
|b| L̂µ,

ai · b̂
|b| b̂

µ,
ai · vı̄
|b| vµj

}

. (18)

The non-spinning part of this result agrees with Ref. [47];
for spins aligned with the orbital angular momentum vec-
tor Lµ we agree with Refs. [12, 48, 49] in the slow-velocity
limit. The full result (17) agrees with Heissenberg [50],
based on a very different approach using the eikonal op-
erator, who is publishing simultaneously.
Scattering Angle. — We consider now the total scat-

tering angle of the relative momentum p defined in the
(CoM) frame of Pµ by pµ1 = (E1,p) and p

µ
2 = (E2,−p).

Taking into account recoil effects its kick to this order is
given as ∆p = ∆p1 +E1Prad/E and the total scattering
angle (with generic spins) is given by (with |p| = µγv/Γ):

cos θ =
p · (p+∆p)

|p||p+∆p| . (19)

We expand the angle in G and up to linear order in spins:

θ

Γ
=

∑

n

(

GM

|b|

)n
[

θ(n,0) + s+θ
(n,+) + δs−θ

(n,−)
]

, (20)

with s± = −(a±) · L̂. At 4PM order the angle then takes
the schematic form:

θ(4,σ) = θ
(4,σ)
cons,ν0+νθ

(4,σ)
cons,ν+

ν

Γ2

(

θ
(4,σ)
diss,ν+νθ

(4,σ)
diss,ν2

)

, (21)

with σ being 0 or ±. The coefficients θ
(4,σ)
cons/diss,νn depend

only on γ and the dissipative ones can be expanded in
terms of F1,...,9(γ) with polynomial coefficients up to in-

teger powers of
√

γ2 − 1. In the spinless case our angle
agrees with [19] and the conservative spinning terms with
Ref. [29].

The first dissipative term θ
(4,σ)
diss,ν gets contributions only

from the (PR) region, while the second θ
(4,σ)
diss,ν2 from both

the (PR) and (RR) regions. The spinless (spinning) con-
tributions from (PR) are strictly odd (even) under the
v → −v symmetry, while the opposite is true for the
dissipative (RR) contributions. Using this symmetry the

linear-in-ν terms θ
(4,σ)
cons,ν and θ

(4,σ)
diss,ν are uniquely defined

from the full scattering angle.

From Eq. (15a) one may derive a linear response rela-
tion for the scattering angle:

θrad1 = −1

2

(

∂θ

∂|J | |J |rad +
∂θ

∂E
Erad

)

+O(G5) . (22)

where the 1PM and 2PM angles and the 2PM and 3PM
kicks of |J | and the 3PM kick of E contribute to the
right-hand-side and the left-hand-side has contributions
at 3PM and 4PM. We have checked that this relation is
satisfied using J

(3)µ
rad from Eq. (17).

Finally, we note that in the equal-mass case (δ = 0)
the dependence of θ, Jµ

rad and Pµ
rad on the spins is only

through their sums, a1+a2 – a property recently numer-
ically observed [51] as well (yet known to break at higher
spin orders already at lower PM [16, 28]).
Outlook. — Having now provided a complete set of

scattering observables at 4PM order including spin-orbit
effects, the obvious next step is upgrading these to in-
clude spin-spin effects. To this end, a clear roadmap has
been outlined in Refs. [14, 16] using the N = 2 super-
symmetric WQFT formalism. Alongside this the push
to 5PM order in the non-spinning case will also be vital,
initial progress having already been made in the simpler
case of electrodynamics [52].
Besides the drive towards results at higher perturba-

tive orders in PM and spin, also important will be resum-
ming into the strong-field regime and mapping to bound
orbits — with the ultimate intention of informing future
waveformmodels. As spin-orbit effects have already been
incorporated into a resummation of the aligned-spin scat-
tering angle up to 3PM order [51], it will be interesting
to see what impact these new 4PM contributions have.
While the presence of tails continues to pose challenges
for mapping 4PM results to bound orbits, due to the
presence of nonlocal-in-time effects in the conservative
dynamics, the absence of tails in the dissipative parts of
our results — and in particular the fluxes — leaves open
the possibility of direct mappings to bound orbits.
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SUPPLEMENTARY MATERIAL

Appendix A: Additional integral families

The I [1] and I [2] integral families augmenting the J-
family (7) take the form

I [i](σ1,...,σ6)
n1,n2,...,n12

=

∫

ℓ1,ℓ2,ℓ3

δ(ℓ1 · vi)δ(ℓ2 · v1)δ(ℓ3 · v1)
Dn1

1 Dn2

2 ...Dn12

12

, (A1a)

with the propagators (j = 1, 2, 3 and k = 1, 2):

D1 = ℓ1 · vı̄ + σ1i0
+ , D1+k = ℓ1+k · v2 + σ1+ki0

+ ,

D4 = (ℓ1 + ℓ2 + ℓ3 + q)2 + σ4 sgn(ℓ
0
1 + ℓ02 + ℓ03) i0

+ ,

D5 = (ℓ1 + ℓ2 + q)2 + σ5 sgn(ℓ
0
1 + ℓ02) i0

+ , (A1b)

D6= (ℓ1 + ℓ3)
2 + σ6 sgn(ℓ

0
1 + ℓ03) i0

+ ,

D7= (ℓ2 + ℓ3)
2 , D7+j = ℓ2j , D10+k= (ℓk + q)2 ,

In the I [1] integral family, corresponding to the test-
body integrals, all graviton propagators may be consid-
ered passive, and so σ4–σ6 may be safely ignored. In the
comparable-mass I [2] family propagators D5 and D6 do
not appear in any denominators that occur, and so σ5
and σ6 are unimportant.
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L. Planté and P. Vanhove, General Relativity from
Scattering Amplitudes,
Phys. Rev. Lett. 121 (2018) 171601 [1806.04920].
Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P.
Solon and M. Zeng, Scattering Amplitudes and the
Conservative Hamiltonian for Binary Systems at Third
Post-Minkowskian Order,
Phys. Rev. Lett. 122 (2019) 201603 [1901.04424].
Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P.
Solon and M. Zeng, Black Hole Binary Dynamics from
the Double Copy and Effective Theory,
JHEP 10 (2019) 206 [1908.01493].
N. E. J. Bjerrum-Bohr, L. Planté and P. Vanhove,
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