Dissipative scattering of spinning black holes at fourth post-Minkowskian order

Gustav Uhre Jakobsen ©,,1,2 Gustav Mogull ©, ${ }^{1,2}$ Jan Plefka ©, ${ }^{1}$ and Benjamin Sauer © ${ }^{1}$
${ }^{1}$ Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
${ }^{2}$ Max Planck Institut für Gravitationsphysik (Albert Einstein Institut), Am Mühlenberg 1, 14476 Potsdam, Germany

Abstract

We compute the radiation reacted momentum impulse Δp_{i}^{μ}, spin kick ΔS_{i}^{μ}, and scattering angle θ between two scattered spinning massive bodies (black holes or neutron stars) using the $\mathcal{N}=1$ supersymmetric worldline quantum field theory formalism up to fourth post-Minkowskian (4PM) order. Our calculation confirms the state-of-the-art non-spinning results, and extends them to include spin-orbit effects. Advanced multi-loop Feynman integral technology including differential equations and the method of regions are applied and extended to deal with the retarded propagators arising in a causal description of the scattering dynamics. From these results we determine a complete set of radiative fluxes at sub-leading PM order: the 4PM radiated four-momentum and, via linear response, the 3PM radiated angular momentum, both again including spin-orbit effects.

Predicting the gravitational waveforms emitted during the encounter of two spinning black holes (BHs) or neutron stars (NSs) [1] at highest precision is a central challenge in todays gravitational physics. Reaching the necessary high precision, which stretches far beyond the present state-of-the-art in analytical and numerical gravitational wave physics, is mandatory [2] for the scientific reach of the third generation of detectors [3] that are scheduled to go online in the 2030s [4]. To achieve this, a combination of perturbative and numerical approaches - post-Newtonian [5], post-Minkowskian (PM) [6], selfforce [7], effective-one-body resummations [8] and numerical relativity [9] - are currently being used to solve the relativistic two-body problem. By importing techniques from perturbative quantum field theory (QFT), great progress has been made in PM wherein one assumes weak gravitational fields but arbitrarily fast-moving bodies.

By analogy to collider physics, the PM scenario considers the scattering of BHs or NSs [10]. On the one hand, this is well-motivated for mergers with highly eccentric orbits; on the other hand the scattering data may be used to inform models of the bound-state problem [11, 12]. As long as the objects' separation is large compared to their intrinsic sizes, the BHs or NSs have an effective description in terms of a massive point particle coupled to Einstein's theory of gravity [13]. Based on this effective worldline approach two-body scattering observables (deflections and Bremsstrahlung waveforms) have recently been computed at high orders in the PM expansion, including spin and tidal effects [1418]. In the non-spinning case, the present state-of-the-art for the impulse and scattering angle is 4PM $\left(G^{4}\right)$ order including radiation-reaction effects [19, 20]. Complementary QFT-based approaches, based on scattering amplitudes [21], have similarly achieved a 4PM precision for the impulse in the non-spinning case [22], plus next-toleading order results for the scattering waveform [23]. In the spinning case results exist for the impulse at 3 PM order up to quadratic spins [24] and at 2PM order for higher spins [25]. Other approaches to PM spin effects are [26].

In fact the spins of the compact objects (next to the masses) are prime observables in the observed binary black hole and neutron star mergers [27]. Fascinatingly, the most efficient way to capture the spins of BHs or NSs in the worldline approach is by upgrading to a superparticle worldline theory, an approach inspired by superstring theory [15]. The generalization to spin-spin interactions uses $\mathcal{N}=2$ supersymmetry. Use of this worldline quantum field theory (WQFT) approach has given rise to state-of-the-art scattering observables, including spinorbit and spin-spin effects at 3 PM order $[16,28]$ and most recently also spin-orbit at 4PM order for the conservative sector of BH or NS scattering [29].

In this Letter we report on the upgrade of these 4PM results to the full dissipative, radiation-reacted observables. To compute them, we use the Schwinger-Keldysh (in-in) initial value formulation of the WQFT that induces the use of retarded propagators and a causality flow in the diagrammatic expansion [17]. Using these results, we are then able to provide a complete set of radiative fluxes at sub-leading order in the PM expansion - G^{4} for the radiated four-momentum $P_{\text {rad }}^{\mu}$ and G^{3} for the radiated angular momentum $J_{\text {rad }}^{\mu}$. The latter is inferred from the 4PM scattering observables using linear response [30, 31]. Finally, we demonstrate the 4PM total scattering angle's natural decomposition into terms coming from different regions of integration. All of our results are included in an ancillary file attached to the arXiv submission of this Letter.

Scattering of spinning bodies. - The scenario we are interested in is one of two initially well-separated spinning massive bodies $i=1,2$ scattering off each other. In the far past, the gravitational field is weak and the bodies move on straight line trajectories $x_{i}^{\mu}(\tau)=b_{i}^{\mu}+v_{i}^{\mu} \tau$; they carry four-momenta $p_{i}^{\mu}=m_{i} v_{i}^{\mu}$ (with masses $m_{i}^{2}=p_{i}^{2}$ and boost factor $\gamma=v_{1} \cdot v_{2}$) and intrinsic angular momenta (spins) $S_{i}^{\mu \nu}$. The total initial angular momentum of the two-body system is then given by

$$
\begin{align*}
J^{\mu \nu} & =L^{\mu \nu}+S_{1}^{\mu \nu}+S_{2}^{\mu \nu} \\
L^{\mu \nu} & =2 b_{1}^{[\mu} p_{1}^{\nu]}+2 b_{2}^{[\mu} p_{2}^{\nu]} \tag{1}
\end{align*}
$$

However, these angular momentum tensors depend on the choice of center of each (extended) body and the coordinate origin. To resolve this, we find it convenient to introduce the spin vectors

$$
\begin{align*}
L^{\mu} & =\frac{1}{2} \epsilon^{\mu}{ }_{\nu \rho \sigma} L^{\nu \rho} \hat{P}^{\sigma}=-\frac{1}{E} \epsilon^{\mu}{ }_{\nu \rho \sigma} b^{\nu} p_{1}^{\rho} p_{2}^{\sigma}, \tag{2a}\\
S_{i}^{\mu} & =m_{i} a_{i}^{\mu}=\frac{1}{2} \epsilon^{\mu}{ }_{\nu \rho \sigma} S_{i}^{\nu \rho} v_{i}^{\sigma}, \tag{2b}
\end{align*}
$$

where the impact parameter $b^{\mu}=|b| \hat{b}^{\mu}$ is the part of $b_{2}^{\mu}-b_{1}^{\mu}$ orthogonal to both initial momenta p_{i}^{μ} and $P^{\mu}=$ $E \hat{P}^{\mu}=p_{1}^{\mu}+p_{2}^{\mu}$ is the total initial momentum. "Hatted" vectors are unit-normalized. In addition we introduce the total angular momentum vector in the center-of-mass (CoM) frame

$$
\begin{equation*}
J^{\mu}=\frac{1}{2} \epsilon^{\mu}{ }_{\nu \rho \sigma} J^{\nu \rho} \hat{P}^{\sigma}=L^{\mu}+2 \hat{P}_{\nu} \sum_{i} v_{i}^{[\nu} S_{i}^{\mu]} \tag{3}
\end{equation*}
$$

We also define the symmetric mass ratio $\nu=\mu / M=$ $m_{1} m_{2} / M^{2}$, the total mass $M=m_{1}+m_{2}$, the total energy $E=M \Gamma=M \sqrt{1+2 \nu(\gamma-1)}$ and $\delta=\left(m_{2}-m_{1}\right) / M$. The 4PM observables that we compute are the change in momentum (impulse) Δp_{i}^{μ}, and of spin (spin kick) ΔS_{i}^{μ}, including dissipative losses.

Supersymmetric in-in WQFT formalism. - The effective $\mathcal{N}=1$ supersymmetric worldline theory of Kerr BHs or spinning NSs with masses m_{i}, trajectories $x_{i}^{\mu}(\tau)$ and anti-commuting vectors $\psi_{i}^{\mu}(\tau)$ carrying the spin degrees of freedom takes the compact form [15]

$$
\begin{equation*}
S=-\sum_{i=1}^{2} m_{i} \int \mathrm{~d} \tau\left[\frac{1}{2} g_{\mu \nu} \dot{x}_{i}^{\mu} \dot{x}_{i}^{\nu}+i \psi_{i, \mu} \frac{\mathrm{D} \psi_{i}^{\mu}}{\mathrm{d} \tau}\right]+S_{\mathrm{EH}} \tag{4}
\end{equation*}
$$

in proper time gauge $\dot{x}_{i}^{2}=1$ (we use a mostly minus metric) and with covariant derivative $\mathrm{D} \psi_{i}^{\mu} / \mathrm{d} \tau$. The bulk Einstein-Hilbert action $S_{\text {EH }}$ includes a de Donder gaugefixing term and we employ dimensional regularization with $D=4-2 \epsilon$. The fields are expanded around their initial-state asymptotic motion:

$$
\begin{equation*}
x_{i}^{\mu}(\tau)=b_{i}^{\mu}+v_{i}^{\mu} \tau+z_{i}^{\mu}(\tau), \quad \psi_{i}^{\mu}(\tau)=\Psi_{i}^{\mu}+\psi_{i}^{\prime \mu}(\tau) \tag{5}
\end{equation*}
$$

with perturbative deflections $z_{i}^{\mu}(\tau)$ and $\psi_{i}^{\mu}(\tau)$ and the initial Ψ_{i}^{a} related to the spin tensors as $S_{i}^{\mu \nu}=$ $-i m_{i} \Psi_{i}^{\mu} \Psi_{i}^{\nu}$. Similarly, working a post-Minkowskian (PM) expansion we expand the metric $g_{\mu \nu}=\eta_{\mu \nu}+$ $\sqrt{32 \pi G} h_{\mu \nu}$. Details on the supersymmetric worldline formalism may be found in Refs. [15, 29].

Our objective is now to find perturbative-in- G solutions to the equations of motion for the superfield deflections $Z_{i}^{\mu}(\tau)=\left\{z_{i}^{\mu}(\tau), \psi_{i}^{\prime \mu}(\tau)\right\}$. This can efficiently be accomplished using the WQFT formalism, which generates the perturbations in a diagrammatic fashion. The fields $Z_{i}^{\mu}(\tau)$ and $h_{\mu \nu}(x)$ are promoted to propagating de-
grees of freedom, with propagators

$$
\begin{align*}
& \cdots \xrightarrow[\omega, n]{\mu \rightarrow} \cdots=\frac{-i \eta^{\mu \nu}}{m_{i}\left(\omega+i 0^{+}\right)^{n}}\left\{\begin{array}{l}
n=2 \text { for } z_{i}^{\mu}, \\
n=1 \text { for } \psi_{i}^{\prime \mu},
\end{array}\right. \tag{6a}
\end{align*}
$$

Arrows on the propagators indicate causality flow: we use retarded propagators in order to fix boundary conditions at past infinity. From a QFT perspective, this is formally accomplished using the Schwinger-Keldysh in-in formalism [17, 32]. Lower-multiplicity worldline vertex rules have been exposed explicitly in [15] where a generic vertex couples n gravitons to m worldline fields and conserves the energy on the worldline, see [29]. The WQFT formalism exploits the fact that tree-level one-point functions $\left\langle Z_{i}^{\mu}(\tau)\right\rangle$ solve the classical equations of motion [33] - trivializing the classical limit.

WQFT integrand construction. - Automated construction of the 4PM integrands is done recursively using Berends-Giele type relations [29]. Inserting the Feynman rules into the generated trees is done with FORM [34]. We face 529 with spin graphs contributing to the 4 PM impulse and 253 contributing to the 4 PM spin kick. The 4PM observables fall into two classes defined by their mass dependence: test-body contributions with linear mass dependence, $m_{1} m_{2}^{4}$ or $m_{1}^{4} m_{2}$, and comparable-mass contributions, $m_{1}^{2} m_{2}^{3}$ or $m_{1}^{3} m_{2}^{2}$.

The integrand initially consists of a large sum of tensor integrals with integrations on both worldline energies and graviton momenta. Conservation of energy, however, results in unconstrained integration only on the space-like components of the momenta. At 4PM order this results in three-loop integrals, depending on the momentum transfer q (the Fourier transform of the impact parameter) and the parameter $\gamma=v_{1} \cdot v_{2}$. After scaling out $|q|$ we are faced with a collection of three-loop single parameter tensor integrals which we reduce to scalar integrals using Veltman-Passarino reduction [29].

Reduction to master integrals. - The complete tensor-reduced spin-orbit integrands for the impulse and spin kick consist of some 10^{5} integrals. In the comparable-mass sector the main family is given by

$$
\begin{equation*}
J_{n_{1}, n_{2}, \ldots, n_{12}}^{\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right)}:=\int_{\ell_{1}, \ell_{2}, \ell_{3}} \frac{\delta\left(\ell_{1} \cdot v_{1}\right) \delta\left(\ell_{2} \cdot v_{1}\right) \delta\left(\ell_{3} \cdot v_{2}\right)}{D_{1}^{n_{1}} D_{2}^{n_{2}} \cdots D_{12}^{n_{12}}} \tag{7a}
\end{equation*}
$$

with $(j=1,2,3, k=1,2)$

$$
\begin{align*}
& D_{k}=\ell_{k} \cdot v_{2}+\sigma_{k} i 0^{+}, D_{3}=\ell_{3} \cdot v_{1}+\sigma_{3} i 0^{+} \\
& D_{3+k}=\left(\ell_{k}-\ell_{3}\right)^{2}+\sigma_{3+k} \operatorname{sgn}\left(\ell_{k}^{0}-\ell_{3}^{0}\right) i 0^{+} \tag{7b}\\
& D_{6}=\left(\ell_{1}-\ell_{2}\right)^{2}, D_{6+j}=\ell_{j}^{2}, D_{9+j}=\left(\ell_{j}+q\right)^{2}
\end{align*}
$$

and $q \cdot v_{i}=0$. Additionally we need for a few integrals in this sector the second family $I^{[2]}$; the definition of this as well as the definition of the family for the test-body integrals $I^{[1]}$. They are given in the supplementary material

FIG. 1: Example of a 4PM master integral decomposing into the four regions in the static limit. There is no distinction between the velocities any longer, which is why the middle worldline propagator effectively moves up, taking the gravitons along or not. This results in active propagators (marked in red) in the (PP), (RR), (PR) regions as marked.

FIG. 2: The boundary integral topologies: The first seven graphs result in twelve boundary master integrals (MIs) and belong to the (PP) region. In the (RR) region the double mushroom graph gives two MIs and the last two single mushroom graphs result in six MIs in the (PR) region.
eq. (A1) [29]. We split each family up into even (b-type) or odd (v-type) in the number of worldline propagators. In applying integration-by-parts (IBP) methods [35-38] the presence of retarded propagators marks a difference, as the number of symmetries (shifts \& sign flips in loop momenta) is reduced compared to the Feynman propagator case, which leads to larger master bases accordingly.

Differential equations. - The three-loop master integrals are solved with the method of canonical differential equations (DEs) [39]. Grouping each master integral family into a vector \vec{I} one has the $\mathrm{DE} \mathrm{d} \vec{I} / \mathrm{d} x=M(\epsilon, x) \vec{I}$, where $x=\gamma-\sqrt{\gamma^{2}-1}$. We determined a transformation matrix $T(\epsilon, x)$ that brings us to a canonical basis $\vec{I}=T(\epsilon, x) \overrightarrow{I^{\prime}}$ with an ϵ-factorized DE

$$
\begin{equation*}
\mathrm{d} \overrightarrow{I^{\prime}}=\epsilon A(x) \overrightarrow{I^{\prime}} \mathrm{d} x \tag{8}
\end{equation*}
$$

using the packages [40-43]. Importantly, elliptic functions of the first and second kind need to be included in the transformation matrix $T(\epsilon, x)$ for the J-b family in order to reach (8) [20, 40]. The resulting canonical matrices $A(x)$ contain poles in $\left\{x, 1+x, 1-x, 1+x^{2}\right\}-$ the 4PM symbol alphabet. Expanding $\overrightarrow{I^{\prime}}(\epsilon, x)$ in ϵ allows for an iterative integration of eq. (8) yielding logarithms and dilogarithms.

Boundary conditions. - The final step is to determine the integration constants of the ϵ-expanded master integrals \vec{J}. These are fixed by taking the static limit $(v \rightarrow 0$ i.e. $\gamma \rightarrow 1$). We use the method of regions [21, 44-46] to expand the integrand in v. We find potential (P) and radiative (R) graviton loop momenta scalings as

$$
\begin{equation*}
\ell_{i}^{\mathrm{P}}=\left(\ell_{i}^{0}, \ell_{i}\right) \sim(v, 1), \quad \ell_{i}^{\mathrm{R}}=\left(\ell_{i}^{0}, \ell_{i}\right) \sim(v, v) \tag{9}
\end{equation*}
$$

At 4PM order there are at most two radiative gravitons: (PP), (RR) and (PR). This may be interpreted graphically via the example of Fig. 1. The region (PP) is purely conservative, (PR) is purely dissipative, and the (RR) region carries both kinds of effects.

In the (PP) region all boundary integrals reduce to test-body integrals [29]; in the (RR) region they reduce to so-called double-mushroom integrals, the (PR) regions
reduce to single-mushroom integrals, see Fig. 1. All appearing mushroom integrals can be written as part of the J family (7). This allows us to IBP reduce also the boundary integrals, which results in 10 different integral topologies; see Fig. 2. Taking advantage of the fact that only certain linear combinations of the PP integrals are needed, we only need to calculate 17 boundary integrals explicitly to fix all integrals of all families in all regions.

Central to the evaluation of boundary integrals is the concept of active propagators, which are sensitive to the retarded $i 0^{+}$prescription. Graviton propagators $1 /\left[\left(\ell_{i}^{0}+i 0^{+}\right)^{2}-\ell_{i}^{2}\right]$ only become active when the loop momentum is radiative, i.e. $\ell_{i}=\ell_{i}^{\mathrm{R}}$, as otherwise the spatial component ℓ_{i} dominates as $v \rightarrow 0$. Worldline propagators, on the other hand, cannot go on-shell when directly coupled to a radiative graviton, for otherwise the corresponding graviton integral becomes scale-free. This property manifests itself in the IBP reduction of the boundary integrals, wherein non-active propagators do not appear in the corresponding master integrals and so, their $i 0^{+}$prescriptions become irrelevant.

Results. - We now present the dissipative contributions to the complete 4PM scattering observables:

$$
\begin{equation*}
\Delta X_{\mathrm{diss}}^{(4)}:=\Delta X^{(4)}-\Delta X_{\mathrm{cons}}^{(4)}=\Delta X_{\mathrm{rad}^{1}}^{(4)}+\Delta X_{\mathrm{rad}^{2}}^{(4)} \tag{10}
\end{equation*}
$$

Here $\Delta X^{(4)}$ is the full 4PM observable - impulse or spin kick - from which we subtract its conservative part $\Delta X_{\text {cons }}^{(4)}$ that was already presented in Ref. [29]. We further separate dissipative terms into those linear (rad^{1}) and quadratic $\left(\operatorname{rad}^{2}\right)$ in radiation, which gain contributions only from the (PR) and (RR) regions respectively. Dissipative observables computed within these two regions have a uniform (and opposite) behavior under the operation $v \rightarrow-v$, under which γ is unchanged but $\sqrt{\gamma^{2}-1}=\gamma v$ flips sign.

We present our observables in terms of the following functions, all of which are strictly even under $v \rightarrow-v$:

$$
F_{1, \ldots, 5}=\left\{1, \frac{\log [x]}{\sqrt{\gamma^{2}-1}}, \log \left[\frac{\gamma_{+}}{2}\right], \log ^{2}[x], \frac{\log [x] \log \left[\frac{\gamma_{+}}{2}\right]}{\sqrt{\gamma^{2}-1}}\right\}
$$

$$
\begin{align*}
F_{6, \ldots, 9}= & \left\{\log [\gamma], \log ^{2}\left[\frac{\gamma_{+}}{2}\right], \operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[-\frac{\gamma_{-}}{\gamma_{+}}\right]\right\} \\
F_{10, \ldots, 13}= & \left\{\frac{\log [x]}{\sqrt{\gamma^{2}-1}} \log [\gamma], \frac{\operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right]-4 \operatorname{Li}_{2}\left[\sqrt{\frac{\gamma_{-}}{\gamma_{+}}}\right]}{4 \sqrt{\gamma^{2}-1}}\right. \\
& \operatorname{Li}_{2}\left[-x^{2}\right]-4 \operatorname{Li}_{2}[-x]+\log [4] \log [x]-\frac{\pi^{2}}{4} \\
& \left.\frac{\operatorname{Li}_{2}[-x]-\operatorname{Li}_{2}\left[-\frac{1}{x}\right]-\log [4] \log [x]}{\sqrt{\gamma^{2}-1}}\right\} \tag{11}
\end{align*}
$$

where $\gamma_{ \pm}=\gamma \pm 1$ and $x=\gamma-\sqrt{\gamma^{2}-1}$. The first five functions are common to both rad^{1} and rad^{2}, while the second line is exclusive to rad^{2}; the functions $10-13$ are exclusive to rad^{1}. In terms of these functions, the dissipative impulse and spin kick take the form

$$
\begin{align*}
& \Delta p_{1, \text { diss }}^{(4) \mu}=\frac{m_{1}^{2} m_{2}^{2}}{|b|^{4}} \sum_{\alpha=1}^{13} \sum_{l=1}^{13} \rho_{l}^{\mu} F_{\alpha}\left(m_{2} d_{\alpha, l}(\gamma)+m_{1} \bar{d}_{\alpha, l}(\gamma)\right) \tag{12a}\\
& \Delta S_{1, \text { diss }}^{(4) \mu}=\frac{m_{1}^{2} m_{2}^{2}}{|b|^{3}} \sum_{\alpha=1}^{13} \sum_{l=1}^{6} \tilde{\rho}_{l}^{\mu} F_{\alpha}\left(m_{2} f_{\alpha, l}(\gamma)+m_{1} \bar{f}_{\alpha, l}(\gamma)\right) \tag{12b}
\end{align*}
$$

The basis vectors of these observables are given by:

$$
\begin{align*}
& \rho_{l}^{\mu}=\left\{\hat{b}^{\mu}, v_{j}^{\mu}, \frac{a_{i} \cdot \hat{L}}{|b|} \hat{b}^{\mu}, \frac{a_{i} \cdot \hat{L}}{|b|} v_{j}^{\mu}, \frac{a_{i} \cdot \hat{b}}{|b|} \hat{L}^{\mu}, \frac{a_{i} \cdot v_{\bar{\imath}}}{|b|} \hat{L}^{\mu}\right\}, \\
& \tilde{\rho}_{l}^{\mu}=\left\{\frac{a_{1} \cdot \hat{b}}{|b|} \hat{b}^{\mu}, \frac{a_{1} \cdot v_{2}}{|b|} \hat{b}^{\mu}, \frac{a_{1} \cdot \hat{b}}{|b|} v_{i}^{\mu}, \frac{a_{1} \cdot v_{2}}{|b|} v_{i}^{\mu}\right\}, \tag{13}
\end{align*}
$$

The functions d, f (provided in our ancillary file) are rational functions of γ up to integer powers of $\sqrt{\gamma^{2}-1}$. Crucially, our spin-free parts of eq. (12a) agree with Refs. [19, 22].

We note that unlike the conservative terms [29], the dissipative ones do not contain elliptic E/K functions or tails $\log \left[\frac{\gamma_{-}}{2}\right]$ in their functional bases (11). Indeed the presence of tails in the conservative terms requires a cancellation of $1 / \epsilon$ poles between the regions (PP) and (RR). As the dissipative (PR) and (RR) regions are distinguished by their behaviour under $v \rightarrow-v$ such a cancellation cannot occur here. The rad ${ }^{1}$ parts of the dissipative observables do, however, contain the new functions $F_{10, \ldots, 13}$ that are absent in the conservative case. As in the conservative case, we have checked that the observables satisfy the conservation laws p_{i}^{2}, S_{i}^{2} and $p_{i} \cdot S_{i}=0$.

Fluxes and Linear Response. - Given the complete set of scattering observables Δp_{1}^{μ} and ΔS_{1}^{μ}, we can now determine the radiated linear and angular momenta, $P_{\text {rad }}^{\mu}$ and $J_{\text {rad }}^{\mu}$, over the course of the scattering - the fluxes. We obtain both at sub-leading order in the PM expansion: $P_{\text {rad }}^{\mu}$ at $\mathcal{O}\left(G^{4}\right)$ and $J_{\text {rad }}^{\mu}$ at $\mathcal{O}\left(G^{3}\right)$. Using momentum conservation the former is given trivially by

$$
\begin{equation*}
P_{\mathrm{rad}}^{(4) \mu}=-\Delta p_{1, \text { diss }}^{(4) \mu}-\Delta p_{2, \mathrm{diss}}^{(4) \mu} \tag{14}
\end{equation*}
$$

with the impulse $\Delta p_{2}^{(4) \mu}$ obtained from $\Delta p_{1}^{(4) \mu}$ by simple relabelling. Naturally, the conservative part of the impulse $\Delta p_{1, \text { cons }}^{(4) \mu}=-\Delta p_{2, \text { cons }}^{(4) \mu}$ cancels, and so $P_{\text {rad }}^{\mu}$ gains contributions from only the dissipative parts of the impulse - rad^{1} and rad^{2}. The 4PM radiated energy $E_{\text {rad }}^{(4)}=\hat{P} \cdot P_{\text {rad }}^{(4)}$ agrees with the PN-expanded result [12].

To obtain $J_{\text {rad }}^{\mu}$ at $\mathcal{O}\left(G^{3}\right)$ we use linear response [30, 31], building on the work of two of the present authors [28]. Up to and including terms linear in radiation (rad^{1}) the dissipative parts of the scattering observables are given by the difference between the full observables evaluated with the in-in and out-out prescriptions, i.e. with retarded and advanced propagators:

$$
\begin{align*}
\Delta p_{i, \mathrm{rad}^{1}}^{\mu}= & \frac{1}{2}\left(\Delta p_{i}^{\mu}\left(J_{-}^{\mu}, p_{i-}^{\mu}, S_{i-}^{\mu}\right)-\Delta p_{i}^{\mu}\left(J_{+}^{\mu},-p_{i+}^{\mu}, S_{i+}^{\mu}\right)\right) \\
& -\mathcal{O}\left(\operatorname{rad}^{2}\right), \tag{15a}\\
\Delta S_{i, \mathrm{rad}^{1}}^{\mu}= & \frac{1}{2}\left(\Delta S_{i}^{\mu}\left(J_{-}^{\mu}, p_{i-}^{\mu}, S_{i-}^{\mu}\right)+\Delta S_{i}^{\mu}\left(J_{+}^{\mu},-p_{i+}^{\mu}, S_{i+}^{\mu}\right)\right) \\
& -\mathcal{O}\left(\operatorname{rad}^{2}\right) . \tag{15b}
\end{align*}
$$

At the present 4PM order, $-\mathcal{O}\left(\operatorname{rad}^{2}\right)$ instructs us not to include the rad^{2} observables $\Delta X_{\mathrm{rad}^{2}}$ on the right-hand side. While the in-in observables are given in terms of the usual background variables evaluated at past infinity, the out-out observables are instead given in terms of background variables $J_{+}^{\mu}, p_{i+}^{\mu}$ and S_{i+}^{μ} evaluated at future infinity, in the context of a scattering scenario where radiation is absorbed rather than emitted. They may be re-expressed in terms of the usual background observables using: $\left(X^{\mu} \in\left\{J^{\mu}, p_{i}^{\mu}, S_{i}^{\mu}\right\}\right)$

$$
\begin{equation*}
X_{-}^{\mu}=X^{\mu}, \quad X_{+}^{\mu}=X^{\mu}+\Delta X_{\mathrm{cons}}^{\mu}-\Delta X_{\mathrm{rad}^{1}}^{\mu} \tag{16}
\end{equation*}
$$

We have flipped the sign on the radiative components in order to reverse the direction of incoming radiation. For later convenience, all dependence on the impact parameter b^{μ} has been expressed in terms of the total angular momentum vector in the center-of-mass frame J^{μ} (3).

Given our now-complete knowledge of the conservative and dissipative 4PM scattering observables, plus all scattering observables at lower-PM orders, the upshot is a pair of consistency requirements that may be used to infer $J_{\text {rad }}^{(3) \mu}=-\Delta J^{(3) \mu}$. Both (15a) and (15b) yield the same physical constraints. The relationships are perturbatively expandeded in G to yield information at each PM order. In practice, we make an ansatz for $\Delta J^{(3) \mu}$ on a four-dimensional basis of $\left\{b^{\mu}, L^{\mu}, v_{1}^{\mu}, v_{2}^{\mu}\right\}$, and the linear response relations yield the b^{μ} and L^{μ} components. The two remaining v_{i}^{μ} components are fixed by demanding that $\left(p_{i}+\Delta p_{i}\right) \cdot(L+\Delta L)=0$ up to 4PM order.

Our result for the 3 PM radiated angular momentum takes the schematic form (up to linear order in spin)

$$
\begin{array}{r}
J_{\mathrm{rad}}^{(3) \mu}=\frac{1}{E}\left[-E_{\mathrm{rad}}^{(3)} J^{\mu}+\frac{\pi m_{1}^{2} m_{2}^{2}}{|b|^{2}} \sum_{i=1}^{2} \sum_{\alpha=1}^{3} \sum_{l=1}^{12} \rho_{l}^{\prime \mu} F_{\alpha} m_{i} g_{i, \alpha, l}\right. \\
\quad-\frac{4 m_{1}^{2} m_{2}^{2} b^{\mu}}{\left(\gamma^{2}-1\right)|b|^{4}}\left(\left(4 \gamma\left(2 \gamma^{2}-1\right) m_{1}+\left(4 \gamma^{2}-1\right) m_{2}\right) a_{1} \cdot v_{2}\right.
\end{array}
$$

$$
\begin{equation*}
\left.\left.-\left(4 \gamma\left(2 \gamma^{2}-1\right) m_{2}+\left(4 \gamma^{2}-1\right) m_{1}\right) a_{2} \cdot v_{1}\right) I(v)\right] \tag{17}
\end{equation*}
$$

where $E_{\text {rad }}^{(3)}=\hat{P} \cdot P_{\text {rad }}^{(3)}$ is the 3PM radiated energy, and g is another set of rational functions of γ up to integer powers of $\sqrt{\gamma^{2}-1}$. Note that we include recoil effects in all dissipative losses, so that the final value of $J^{\mu}(3)$ is defined in the final CoM frame which starting at 3PM is different from the initial CoM frame. The function $I(v)=-\frac{8}{3}+\frac{1}{v^{2}}+\frac{3 v^{2}-1}{v^{3}} \operatorname{arccosh} \gamma$ is familiar from the 2 PM radiated angular momentum; our result is expanded on the basis

$$
\begin{equation*}
\rho_{l}^{\prime \mu}=\left\{\hat{L}^{\mu}, \hat{b}^{\mu}, v_{i}^{\mu}, \frac{a_{i} \cdot \hat{L}}{|b|} \hat{L}^{\mu}, \frac{a_{i} \cdot \hat{b}}{|b|} \hat{b}^{\mu}, \frac{a_{i} \cdot v_{\bar{z}}}{|b|} v_{j}^{\mu}\right\} . \tag{18}
\end{equation*}
$$

The non-spinning part of this result agrees with Ref. [47]; for spins aligned with the orbital angular momentum vector L^{μ} we agree with Refs. [12, 48, 49] in the slow-velocity limit. The full result (17) agrees with Heissenberg [50], based on a very different approach using the eikonal operator, who is publishing simultaneously.

Scattering Angle. - We consider now the total scattering angle of the relative momentum \boldsymbol{p} defined in the (CoM) frame of P^{μ} by $p_{1}^{\mu}=\left(E_{1}, \boldsymbol{p}\right)$ and $p_{2}^{\mu}=\left(E_{2},-\boldsymbol{p}\right)$. Taking into account recoil effects its kick to this order is given as $\Delta \boldsymbol{p}=\Delta \boldsymbol{p}_{1}+E_{1} \boldsymbol{P}_{\mathrm{rad}} / E$ and the total scattering angle (with generic spins) is given by (with $|\boldsymbol{p}|=\mu \gamma v / \Gamma$):

$$
\begin{equation*}
\cos \theta=\frac{\boldsymbol{p} \cdot(\boldsymbol{p}+\Delta \boldsymbol{p})}{|\boldsymbol{p}||\boldsymbol{p}+\Delta \boldsymbol{p}|} \tag{19}
\end{equation*}
$$

We expand the angle in G and up to linear order in spins:

$$
\begin{equation*}
\frac{\theta}{\Gamma}=\sum_{n}\left(\frac{G M}{|b|}\right)^{n}\left[\theta^{(n, 0)}+s_{+} \theta^{(n,+)}+\delta s_{-} \theta^{(n,-)}\right] \tag{20}
\end{equation*}
$$

with $s_{ \pm}=-\left(a_{ \pm}\right) \cdot \hat{L}$. At 4PM order the angle then takes the schematic form:

$$
\begin{equation*}
\theta^{(4, \sigma)}=\theta_{\mathrm{cons}, \nu^{0}}^{(4, \sigma)}+\nu \theta_{\mathrm{cons}, \nu}^{(4, \sigma)}+\frac{\nu}{\Gamma^{2}}\left(\theta_{\mathrm{diss}, \nu}^{(4, \sigma)}+\nu \theta_{\mathrm{diss}, \nu^{2}}^{(4, \sigma)}\right), \tag{21}
\end{equation*}
$$

with σ being 0 or \pm. The coefficients $\theta_{\text {cons/diss }, \nu^{\text {n }}}^{(4, \sigma)}$ depend only on γ and the dissipative ones can be expanded in terms of $F_{1, \ldots, 9}(\gamma)$ with polynomial coefficients up to integer powers of $\sqrt{\gamma^{2}-1}$. In the spinless case our angle agrees with [19] and the conservative spinning terms with Ref. [29].

The first dissipative term $\theta_{\text {diss }, \nu}^{(4, \sigma)}$ gets contributions only from the (PR) region, while the second $\theta_{\text {diss }, \nu^{2}}^{(4, \sigma)}$ from both the (PR) and (RR) regions. The spinless (spinning) contributions from (PR) are strictly odd (even) under the $v \rightarrow-v$ symmetry, while the opposite is true for the dissipative (RR) contributions. Using this symmetry the linear-in- ν terms $\theta_{\text {cons }, \nu}^{(4, \sigma)}$ and $\theta_{\text {diss }, \nu}^{(4, \sigma)}$ are uniquely defined from the full scattering angle.

From Eq. (15a) one may derive a linear response relation for the scattering angle:

$$
\begin{equation*}
\theta_{\mathrm{rad}^{1}}=-\frac{1}{2}\left(\frac{\partial \theta}{\partial|J|}|J|_{\mathrm{rad}}+\frac{\partial \theta}{\partial E} E_{\mathrm{rad}}\right)+\mathcal{O}\left(G^{5}\right) \tag{22}
\end{equation*}
$$

where the 1PM and 2PM angles and the 2 PM and 3 PM kicks of $|J|$ and the 3 PM kick of E contribute to the right-hand-side and the left-hand-side has contributions at 3 PM and 4 PM . We have checked that this relation is satisfied using $J_{\text {rad }}^{(3) \mu}$ from Eq. (17).

Finally, we note that in the equal-mass case $(\delta=0)$ the dependence of $\theta, J_{\text {rad }}^{\mu}$ and $P_{\text {rad }}^{\mu}$ on the spins is only through their sums, $a_{1}+a_{2}-$ a property recently numerically observed [51] as well (yet known to break at higher spin orders already at lower PM [16, 28]).

Outlook. - Having now provided a complete set of scattering observables at 4PM order including spin-orbit effects, the obvious next step is upgrading these to include spin-spin effects. To this end, a clear roadmap has been outlined in Refs. [14, 16] using the $\mathcal{N}=2$ supersymmetric WQFT formalism. Alongside this the push to 5 PM order in the non-spinning case will also be vital, initial progress having already been made in the simpler case of electrodynamics [52].

Besides the drive towards results at higher perturbative orders in PM and spin, also important will be resumming into the strong-field regime and mapping to bound orbits - with the ultimate intention of informing future waveform models. As spin-orbit effects have already been incorporated into a resummation of the aligned-spin scattering angle up to 3PM order [51], it will be interesting to see what impact these new 4PM contributions have. While the presence of tails continues to pose challenges for mapping 4PM results to bound orbits, due to the presence of nonlocal-in-time effects in the conservative dynamics, the absence of tails in the dissipative parts of our results - and in particular the fluxes - leaves open the possibility of direct mappings to bound orbits.

Acknowledgments. - We thank Alessandra Buonanno, Christoph Dlapa, Kays Haddad, Johannes Henn, Gregor Kälin, Jung-Wook Kim, Zhengwen Liu, Donal O'Connell, Raj Patil, Rafael Porto, Chia-Hsien Shen, Jan Steinhoff and Paolo di Vecchia for discussions and Peter Uwer for help with high-performance computing. We are also especially grateful to Carlo Heissenberg, who is publishing concurrently [50], for a cross-check with his independent calculation of the 3PM radiated angular momentum. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer 417533893/GRK2575 "Rethinking Quantum Field Theory".

SUPPLEMENTARY MATERIAL

Appendix A: Additional integral families

The $I^{[1]}$ and $I^{[2]}$ integral families augmenting the J family (7) take the form

$$
\begin{equation*}
I_{n_{1}, n_{2}, \ldots, n_{12}}^{[i]\left(\sigma_{1}, \ldots, \sigma_{6}\right)}=\int_{\ell_{1}, \ell_{2}, \ell_{3}} \frac{\delta\left(\ell_{1} \cdot v_{i}\right) \delta\left(\ell_{2} \cdot v_{1}\right) \delta\left(\ell_{3} \cdot v_{1}\right)}{D_{1}^{n_{1}} D_{2}^{n_{2}} \ldots D_{12}^{n_{12}}} \tag{A1a}
\end{equation*}
$$

with the propagators $(j=1,2,3$ and $k=1,2)$:

$$
D_{1}=\ell_{1} \cdot v_{\bar{\imath}}+\sigma_{1} i 0^{+}, \quad D_{1+k}=\ell_{1+k} \cdot v_{2}+\sigma_{1+k} i 0^{+}
$$

$$
\begin{align*}
& D_{4}=\left(\ell_{1}+\ell_{2}+\ell_{3}+q\right)^{2}+\sigma_{4} \operatorname{sgn}\left(\ell_{1}^{0}+\ell_{2}^{0}+\ell_{3}^{0}\right) i 0^{+}, \\
& D_{5}=\left(\ell_{1}+\ell_{2}+q\right)^{2}+\sigma_{5} \operatorname{sgn}\left(\ell_{1}^{0}+\ell_{2}^{0}\right) i 0^{+}, \tag{A1b}\\
& D_{6}=\left(\ell_{1}+\ell_{3}\right)^{2}+\sigma_{6} \operatorname{sgn}\left(\ell_{1}^{0}+\ell_{3}^{0}\right) i 0^{+}, \\
& D_{7}=\left(\ell_{2}+\ell_{3}\right)^{2}, D_{7+j}=\ell_{j}^{2}, D_{10+k}=\left(\ell_{k}+q\right)^{2},
\end{align*}
$$

In the $I^{[1]}$ integral family, corresponding to the testbody integrals, all graviton propagators may be considered passive, and so $\sigma_{4}-\sigma_{6}$ may be safely ignored. In the comparable-mass $I^{[2]}$ family propagators D_{5} and D_{6} do not appear in any denominators that occur, and so σ_{5} and σ_{6} are unimportant.
[1] Ligo Scientific, Virgo collaboration, B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger,
Phys. Rev. Lett. 116 (2016) 061102 [1602.03837].
Ligo Scientific, Virgo collaboration, B. P. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,
Phys. Rev. Lett. 119 (2017) 161101 [1710.05832].
LIGO Scientific, VIRGO, KAGRA collaboration,
R. Abbott et al., GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run, 2111.03606.
[2] M. Pürrer and C.-J. Haster, Gravitational waveform accuracy requirements for future ground-based detectors, Phys. Rev. Res. 2 (2020) 023151 [1912.10055].
[3] LISA collaboration, P. Amaro-Seoane et al., Laser Interferometer Space Antenna, 1702.00786. M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002.
S. W. Ballmer et al., Snowmass2021 Cosmic Frontier White Paper: Future Gravitational-Wave Detector Facilities, in Snowmass 2021, 3, 2022, 2203.08228.
[4] M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03 (2020) 050 [1912.02622]. E. Barausse et al., Prospects for Fundamental Physics with LISA, Gen. Rel. Grav. 52 (2020) 81 [2001.09793].
[5] L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel. 17 (2014) 2 [1310.1528]. R. A. Porto, The effective field theorist's approach to gravitational dynamics, Phys. Rept. 633 (2016) 1 [1601.04914].
M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, Rept. Prog. Phys. 83 (2020) 075901 [1807.01699].
[6] D. A. Kosower, R. Monteiro and D. O'Connell, The SAGEX review on scattering amplitudes Chapter 14: Classical gravity from scattering amplitudes, J. Phys. A 55 (2022) 443015 [2203.13025].
N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Plante and P. Vanhove, The SAGEX review on scattering amplitudes Chapter 13: Post-Minkowskian expansion from scattering amplitudes,
J. Phys. A 55 (2022) 443014 [2203.13024].
A. Buonanno, M. Khalil, D. O'Connell, R. Roiban, M. P. Solon and M. Zeng, Snowmass White Paper: Gravitational Waves and Scattering Amplitudes, in Snowmass 2021, 4, 2022, 2204.05194.
P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The gravitational eikonal: from particle, string and brane collisions to black-hole encounters, 2306.16488.
G. U. Jakobsen, Gravitational Scattering of Compact Bodies from Worldline Quantum Field Theory, 2308.04388.
[7] Y. Mino, M. Sasaki and T. Tanaka, Gravitational radiation reaction to a particle motion, Phys. Rev. D 55 (1997) 3457 [gr-qc/9606018]. E. Poisson, A. Pound and I. Vega, The Motion of point particles in curved spacetime,
Living Rev. Rel. 14 (2011) 7 [1102.0529].
L. Barack and A. Pound, Self-force and radiation reaction in general relativity,
Rept. Prog. Phys. 82 (2019) 016904 [1805.10385].
S. E. Gralla and K. Lobo, Self-force effects in post-Minkowskian scattering,
Class. Quant. Grav. 39 (2022) 095001 [2110.08681].
[8] A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59 (1999) 084006 [gr-qc/9811091]. A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62 (2000) 064015 [gr-qc/0001013].
[9] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95 (2005) 121101 [gr-qc/0507014].
M. Boyle et al., The SXS Collaboration catalog of binary black hole simulations,
Class. Quant. Grav. 36 (2019) 195006 [1904.04831].
T. Damour, F. Guercilena, I. Hinder, S. Hopper,
A. Nagar and L. Rezzolla, Strong-Field Scattering of Two Black Holes: Numerics Versus Analytics, Phys. Rev. D 89 (2014) 081503 [1402.7307].
[10] S. J. Kovacs and K. S. Thorne, The Generation of Gravitational Waves. 4. Bremsstrahlung, Astrophys. J. 224 (1978) 62.
K. Westpfahl and M. Goller, Gravitational Scattering of Two Relativistic Particles in Postlinear Approximation,

Lett. Nuovo Cim. 26 (1979) 573.
L. Bel, T. Damour, N. Deruelle, J. Ibanez and J. Martin, Poincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativity, Gen. Rel. Grav. 13 (1981) 963.
T. Damour, High-energy gravitational scattering and the general relativistic two-body problem,
Phys. Rev. D 97 (2018) 044038 [1710.10599].
S. Hopper, A. Nagar and P. Rettegno, Strong-field scattering of two spinning black holes: Numerics versus analytics, Phys. Rev. D 107 (2023) 124034 [2204.10299].
[11] C. Cheung, I. Z. Rothstein and M. P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion,
Phys. Rev. Lett. 121 (2018) 251101 [1808.02489].
G. Kälin and R. A. Porto, From Boundary Data to Bound States, JHEP 01 (2020) 072 [1910.03008].
G. Kälin and R. A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP 02 (2020) 120 [1911.09130].
M. V. S. Saketh, J. Vines, J. Steinhoff and A. Buonanno, Conservative and radiative dynamics in classical relativistic scattering and bound systems, Phys. Rev. Res. 4 (2022) 013127 [2109.05994].
R. Gonzo and C. Shi, Boundary to bound dictionary for generic Kerr orbits, 2304.06066.
[12] G. Cho, G. Kälin and R. A. Porto, From boundary data to bound states. Part III. Radiative effects,
JHEP 04 (2022) 154 [2112.03976].
[13] W. D. Goldberger and I. Z. Rothstein, An Effective field theory of gravity for extended objects,
Phys. Rev. D 73 (2006) 104029 [hep-th/0409156].
[14] G. Kälin and R. A. Porto, Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics, JHEP 11 (2020) 106 [2006.01184].
G. Kälin, Z. Liu and R. A. Porto, Conservative Dynamics of Binary Systems to Third Post-Minkowskian Order from the Effective Field Theory Approach, Phys. Rev. Lett. 125 (2020) 261103 [2007.04977].
G. Kälin, Z. Liu and R. A. Porto, Conservative Tidal Effects in Compact Binary Systems to Next-to-Leading Post-Minkowskian Order,
Phys. Rev. D 102 (2020) 124025 [2008.06047].
C. Dlapa, G. Kälin, Z. Liu and R. A. Porto, Dynamics of binary systems to fourth Post-Minkowskian order from the effective field theory approach,
Phys. Lett. B 831 (2022) 137203 [2106.08276].
C. Dlapa, G. Kälin, Z. Liu and R. A. Porto, Conservative Dynamics of Binary Systems at Fourth Post-Minkowskian Order in the Large-Eccentricity Expansion, Phys. Rev. Lett. 128 (2022) 161104
[2112.11296].
Z. Liu, R. A. Porto and Z. Yang, Spin Effects in the

Effective Field Theory Approach to Post-Minkowskian Conservative Dynamics, JHEP 06 (2021) 012
[2102.10059].
S. Mougiakakos, M. M. Riva and F. Vernizzi, Gravitational Bremsstrahlung in the post-Minkowskian effective field theory, Phys. Rev. D 104 (2021) 024041
[2102.08339].
M. M. Riva and F. Vernizzi, Radiated momentum in the post-Minkowskian worldline approach via reverse unitarity, JHEP 11 (2021) 228 [2110.10140]. S. Mougiakakos, M. M. Riva and F. Vernizzi, Gravitational Bremsstrahlung with Tidal Effects in the Post-Minkowskian Expansion,
Phys. Rev. Lett. 129 (2022) 121101 [2204.06556].
M. M. Riva, F. Vernizzi and L. K. Wong, Gravitational bremsstrahlung from spinning binaries in the post-Minkowskian expansion,
Phys. Rev. D 106 (2022) 044013 [2205.15295].
G. Mogull, J. Plefka and J. Steinhoff, Classical black
hole scattering from a worldline quantum field theory, JHEP 02 (2021) 048 [2010.02865].
G. U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory,
Phys. Rev. Lett. 126 (2021) 201103 [2101.12688].
G. U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Gravitational Bremsstrahlung and Hidden
Supersymmetry of Spinning Bodies,
Phys. Rev. Lett. 128 (2022) 011101 [2106.10256].
[15] G. U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, SUSY in the sky with gravitons, JHEP 01 (2022) 027 [2109.04465].
[16] G. U. Jakobsen and G. Mogull, Conservative and Radiative Dynamics of Spinning Bodies at Third Post-Minkowskian Order Using Worldline Quantum Field Theory, Phys. Rev. Lett. 128 (2022) 141102 [2201.07778].
[17] G. U. Jakobsen, G. Mogull, J. Plefka and B. Sauer, All things retarded: radiation-reaction in worldline quantum field theory, JHEP 10 (2022) 128 [2207.00569].
[18] C. Shi and J. Plefka, Classical double copy of worldline quantum field theory, Phys. Rev. D 105 (2022) 026007 [2109.10345].
F. Bastianelli, F. Comberiati and L. de la Cruz, Light bending from eikonal in worldline quantum field theory, JHEP 02 (2022) 209 [2112.05013].
F. Comberiati and C. Shi, Classical Double Copy of Spinning Worldline Quantum Field Theory, JHEP 04 (2023) 008 [2212.13855].
T. Wang, Binary dynamics from worldline QFT for scalar QED, Phys. Rev. D 107 (2023) 085011 [2205.15753].
[19] C. Dlapa, G. Kälin, Z. Liu, J. Neef and R. A. Porto, Radiation Reaction and Gravitational Waves at Fourth Post-Minkowskian Order,
Phys. Rev. Lett. 130 (2023) 101401 [2210.05541].
[20] C. Dlapa, G. Kälin, Z. Liu and R. A. Porto, Bootstrapping the relativistic two-body problem, 2304.01275.
[21] D. Neill and I. Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877 (2013) 177 [1304.7263].
A. Luna, I. Nicholson, D. O'Connell and C. D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP 03 (2018) 044 [1711.03901]. D. A. Kosower, B. Maybee and D. O'Connell, Amplitudes, Observables, and Classical Scattering, JHEP 02 (2019) 137 [1811.10950].
A. Cristofoli, R. Gonzo, D. A. Kosower and D. O'Connell, Waveforms from amplitudes,

Phys. Rev. D 106 (2022) 056007 [2107.10193].
N. E. J. Bjerrum-Bohr, J. F. Donoghue and P. Vanhove, On-shell Techniques and Universal Results in Quantum Gravity, JHEP 02 (2014) 111 [1309.0804].
N. E. J. Bjerrum-Bohr, P. H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes,
Phys. Rev. Lett. 121 (2018) 171601 [1806.04920].
Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon and M. Zeng, Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,
Phys. Rev. Lett. 122 (2019) 201603 [1901.04424].
Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon and M. Zeng, Black Hole Binary Dynamics from the Double Copy and Effective Theory,
JHEP 10 (2019) 206 [1908.01493].
N. E. J. Bjerrum-Bohr, L. Planté and P. Vanhove, Post-Minkowskian radial action from soft limits and velocity cuts, JHEP 03 (2022) 071 [2111.02976]. C. Cheung and M. P. Solon, Classical gravitational scattering at $\mathcal{O}\left(G^{3}\right)$ from Feynman diagrams, JHEP 06 (2020) 144 [2003.08351].
N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Planté and P. Vanhove, The amplitude for classical gravitational scattering at third Post-Minkowskian order, JHEP 08 (2021) 172 [2105.05218].
P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, Universality of ultra-relativistic gravitational scattering,
Phys. Lett. B 811 (2020) 135924 [2008.12743].
P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, The eikonal approach to gravitational scattering and radiation at $\mathcal{O}\left(G^{3}\right)$, JHEP 07 (2021) 169 [2104.03256].
P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, Radiation Reaction from Soft Theorems, Phys. Lett. B 818 (2021) 136379 [2101.05772].
P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, Classical gravitational observables from the Eikonal operator, Phys. Lett. B 843 (2023) 138049 [2210.12118].
C. Heissenberg, Angular Momentum Loss due to Tidal Effects in the Post-Minkowskian Expansion, Phys. Rev. Lett. 131 (2023) 011603 [2210.15689].
T. Damour, Radiative contribution to classical gravitational scattering at the third order in G, Phys. Rev. D 102 (2020) 124008 [2010.01641].
E. Herrmann, J. Parra-Martinez, M. S. Ruf and M. Zeng, Radiative classical gravitational observables at $\mathcal{O}\left(G^{3}\right)$ from scattering amplitudes, JHEP 10 (2021) 148 [2104.03957].
P. H. Damgaard, K. Haddad and A. Helset, Heavy Black Hole Effective Theory, JHEP 11 (2019) 070 [1908.10308].
P. H. Damgaard, L. Plante and P. Vanhove, On an exponential representation of the gravitational S-matrix, JHEP 11 (2021) 213 [2107.12891].
P. H. Damgaard, E. R. Hansen, L. Planté and
P. Vanhove, The Relation Between KMOC and

Worldline Formalisms for Classical Gravity,
2306.11454.
R. Aoude, K. Haddad and A. Helset, On-shell heavy
particle effective theories, JHEP 05 (2020) 051
[2001.09164].
M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, From amplitudes to gravitational radiation with cubic interactions and tidal effects, Phys. Rev. D 103 (2021) 045015 [2012.06548]. A. Brandhuber, G. Chen, G. Travaglini and C. Wen, Classical gravitational scattering from a gauge-invariant double copy, JHEP 10 (2021) 118 [2108.04216].
[22] P. H. Damgaard, E. R. Hansen, L. Planté and P. Vanhove, Classical Observables from the Exponential Representation of the Gravitational S-Matrix, 2307.04746.
[23] A. Brandhuber, G. R. Brown, G. Chen, S. De Angelis, J. Gowdy and G. Travaglini, One-loop gravitational bremsstrahlung and waveforms from a heavy-mass effective field theory, JHEP 06 (2023) 048 [2303.06111]. A. Herderschee, R. Roiban and F. Teng, The sub-leading scattering waveform from amplitudes, JHEP 06 (2023) 004 [2303.06112].
A. Georgoudis, C. Heissenberg and I. Vazquez-Holm, Inelastic exponentiation and classical gravitational scattering at one loop, JHEP 06 (2023) 126 [2303.07006].
A. Elkhidir, D. O'Connell, M. Sergola and I. A. Vazquez-Holm, Radiation and Reaction at One Loop, 2303.06211.
S. Caron-Huot, M. Giroux, H. S. Hannesdottir and S. Mizera, What can be measured asymptotically?, 2308.02125.
[24] F. Febres Cordero, M. Kraus, G. Lin, M. S. Ruf and M. Zeng, Conservative Binary Dynamics with a Spinning Black Hole at O(G3) from Scattering Amplitudes, Phys. Rev. Lett. 130 (2023) 021601 [2205.07357].
[25] Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban and F. Teng, Binary Dynamics through the Fifth Power of Spin at O(G2), Phys. Rev. Lett. 130 (2023) 201402 [2203.06202].
R. Aoude, K. Haddad and A. Helset, Classical Gravitational Spinning-Spinless Scattering at $O(G 2 S \infty)$, Phys. Rev. Lett. 129 (2022) 141102 [2205.02809].
R. Aoude, K. Haddad and A. Helset, Classical gravitational scattering at $\mathcal{O}\left(G^{2} S_{1}^{\infty} S_{2}^{\infty}\right)$, 2304.13740.
[26] J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings,
Class. Quant. Grav. 35 (2018) 084002 [1709.06016].
D. Bini and T. Damour, Gravitational spin-orbit coupling in binary systems, post-Minkowskian approximation and effective one-body theory, Phys. Rev. D 96 (2017) 104038 [1709.00590]. D. Bini and T. Damour, Gravitational spin-orbit coupling in binary systems at the second post-Minkowskian approximation,
Phys. Rev. D 98 (2018) 044036 [1805.10809].
A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, JHEP 04 (2019) 033 [1706.02314].
J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev. D 99 (2019) 064054 [1812.00956].
A. Guevara, A. Ochirov and J. Vines, Scattering of Spinning Black Holes from Exponentiated Soft Factors,

JHEP 09 (2019) 056 [1812.06895].
M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, The simplest massive S-matrix: from minimal coupling to
Black Holes, JHEP 04 (2019) 156 [1812.08752].
A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions from minimal-coupling amplitudes,
Phys. Rev. D 100 (2019) 104024 [1906. 10071].
M.-Z. Chung, Y.-T. Huang and J.-W. Kim, Classical potential for general spinning bodies,
JHEP 09 (2020) 074 [1908.08463].
A. Guevara, B. Maybee, A. Ochirov, D. O'connell and J. Vines, A worldsheet for Kerr, JHEP 03 (2021) 201 [2012.11570].
[27] A. Ramos-Buades, S. Husa, G. Pratten, H. Estellés, C. García-Quirós, M. Mateu-Lucena et al., First survey of spinning eccentric black hole mergers: Numerical relativity simulations, hybrid waveforms, and parameter estimation, Phys. Rev. D 101 (2020) 083015 [1909.11011].
D. Chiaramello and A. Nagar, Faithful analytical effective-one-body waveform model for spin-aligned, moderately eccentric, coalescing black hole binaries, Phys. Rev. D 101 (2020) 101501 [2001.11736]. A. Nagar, A. Bonino and P. Rettegno, Effective one-body multipolar waveform model for spin-aligned, quasicircular, eccentric, hyperbolic black hole binaries, Phys. Rev. D 103 (2021) 104021 [2101.08624].
X. Liu, Z. Cao and Z.-H. Zhu, A higher-multipole gravitational waveform model for an eccentric binary black holes based on the
effective-one-body-numerical-relativity formalism, Class. Quant. Grav. 39 (2022) 035009 [2102.08614].
M. Khalil, A. Buonanno, J. Steinhoff and J. Vines, Radiation-reaction force and multipolar waveforms for eccentric, spin-aligned binaries in the effective-one-body formalism, Phys. Rev. D 104 (2021) 024046 [2104.11705].
T. Hinderer and S. Babak, Foundations of an effective-one-body model for coalescing binaries on eccentric orbits, Phys. Rev. D 96 (2017) 104048 [1707.08426].
T. Islam, V. Varma, J. Lodman, S. E. Field, G. Khanna, M. A. Scheel et al., Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case, Phys. Rev. D 103 (2021) 064022 [2101.11798].
[28] G. U. Jakobsen and G. Mogull, Linear response, Hamiltonian, and radiative spinning two-body dynamics, Phys. Rev. D 107 (2023) 044033 [2210.06451].
[29] G. U. Jakobsen, G. Mogull, J. Plefka, B. Sauer and Y. Xu, Conservative scattering of spinning black holes at fourth post-Minkowskian order, 2306.01714.
[30] D. Bini and T. Damour, Gravitational radiation reaction along general orbits in the effective one-body formalism, Phys. Rev. D86 (2012) 124012 [1210.2834].
[31] D. Bini, T. Damour and A. Geralico, Radiative contributions to gravitational scattering, Phys. Rev. D 104 (2021) 084031 [2107.08896].
[32] G. Kälin, J. Neef and R. A. Porto, Radiation-reaction in the Effective Field Theory approach to Post-Minkowskian dynamics, JHEP 01 (2023) 140 [2207.00580].
[33] D. G. Boulware and L. S. Brown, Tree Graphs and Classical Fields, Phys. Rev. 172 (1968) 1628.
[34] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, 1707. 06453.
[35] R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [1310.1145].
[36] A. V. Smirnov and F. S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [1901.07808].
[37] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira-A Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [1705.05610].
[38] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021) 108024 [2008.06494].
[39] J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [1304.1806].
[40] C. Dlapa, J. M. Henn and F. J. Wagner, An algorithmic approach to finding canonical differential equations for elliptic Feynman integrals, 2211.16357.
[41] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295 [1705.06252].
[42] M. Prausa, epsilon: A tool to find a canonical basis of master integrals, Comput. Phys. Commun. 219 (2017) 361 [1701.00725].
[43] R. N. Lee, Libra: A package for transformation of differential systems for multiloop integrals, Comput. Phys. Commun. 267 (2021) 108058 [2012.00279].
[44] V. A. Smirnov, Analytic tools for Feynman integrals, vol. 250. 2012, 10.1007/978-3-642-34886-0.
[45] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon et al., Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at $O\left(G_{4}\right)$, Phys. Rev. Lett. 128 (2022) 161103 [2112.10750].
[46] T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, vol. 896. Springer, 2015, 10.1007/978-3-319-14848-9, [1410.1892].
[47] A. V. Manohar, A. K. Ridgway and C.-H. Shen, Radiated Angular Momentum and Dissipative Effects in Classical Scattering, Phys. Rev. Lett. 129 (2022) 121601 [2203.04283].
[48] D. Bini, A. Geralico and P. Rettegno, Spin-orbit contribution to radiative losses for spinning binaries with aligned spins, 2307.12670.
[49] G. Cho, B. Pardo and R. A. Porto, Gravitational radiation from inspiralling compact objects: Spin-spin effects completed at the next-to-leading post-Newtonian order, Phys. Rev. D 104 (2021) 024037 [2103.14612].
[50] C. Heissenberg, Angular Momentum Loss Due to Spin-Orbit Effects in the Post-Minkowskian Expansion,
[51] P. Rettegno, G. Pratten, L. Thomas, P. Schmidt and T. Damour, Strong-field scattering of two spinning black holes: Numerical Relativity versus post-Minkowskian gravity, 2307.06999.
[52] Z. Bern, E. Herrmann, R. Roiban, M. S. Ruf, A. V. Smirnov, V. A. Smirnov et al., Conservative binary dynamics at order $O\left(\alpha^{5}\right)$ in electrodynamics, 2305.08981 .

