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A major science goal of gravitational-wave (GW) observations is to probe the nature of gravity
and constrain modifications to General Relativity. An established class of modified gravity theories
are scalar-tensor models, which introduce an extra scalar degree of freedom. This affects the inter-
nal structure of neutron stars (NSs), as well as their dynamics and GWs in binary systems, where
distinct novel features can arise from the appearance of scalar condensates in parts of the parameter
space. To improve the robustness of the analyses of such GW events requires advances in modeling
internal-structure-dependent phenomena in scalar-tensor theories. We develop an effective descrip-
tion of potentially scalarized NSs on large scales, where information about the interior is encoded
in characteristic Love numbers or equivalently tidal deformabilities. We demonstrate that three in-
dependent tidal deformabilities are needed to characterize the configurations: a scalar, tensor, and
a novel 'mixed’ parameter, and develop the general methodology to compute these quantities. We
also present case studies for different NS equations of state and scalar properties and provide the
mapping between the deformabilities in different frames often used for calculations. Our results have
direct applications for future GW tests of gravity and studies of potential degeneracies with other
uncertain physics such as the equation of state or presence of dark matter in NS binary systems.
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Binary systems of compact objects such as neutron
stars (NSs) or black holes are key sources of gravita-
tional waves (GWs). The GW signals depend in a very
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specific way on the parameters of the system, for ex-
ample the masses, spins, and eccentricity [1, 2]. Fur-
thermore, GWs also contain unique information on the
fundamental physics of strong-field gravity and the inte-
rior composition of compact objects [3-5]. Among the
GW signatures that are especially sensitive to the na-
ture and internal structure of the objects are tidal ef-
fects. The dominant adiabatic effects are parameterized
by a tidal deformability, or Love number, which char-
acterizes the body’s response to a tidal field [6]. This
is familiar from Newtonian gravity, where, for the same
applied tidal field, a body will deform differently depend-
ing on its composition or Equation of State (EoS), which
in turn impacts its exterior gravitational potential. A
relativistic generalization of these concepts [7-11] under-
pins gravitational-wave tests of the nature of compact
objects [12-17] and ways to search for dark matter signa-
tures [15, 18-27]. The most prominent role of tidal effects
is for GW probes of the EoS of nuclear matter at high
densities in NSs [4, 28-30], which at present and despite
recent progress from multimessenger observations [31-39]
remains among the major future science goals of nuclear
astrophysics [40-42].

The tidal deformability associated to a matter con-
figuration further depends on the theory of gravity [43—
45]. This has, for instance, been used jointly with mul-
timessenger data to set unprecedentedly stringent con-
straints on higher-curvature extensions of General Rel-
ativity [46]. Recent work has also demonstrated the
use of tidal deformability to constrain scalar-tensor the-
ories [47, 48], which introduce an extra scalar degree of
freedom. The presence of the scalar field gives rise to a
rich phenomenology, for instance, depending on the pa-
rameters of the theory and properties of the NS, scalar
condensates may form in and around NSs either in iso-
lation [49-54] or dynamically during an inspiral [55-57].
At large separation, the most striking effect in such inspi-
raling binaries is that they radiate dipolar scalar waves,
in addition to GWs, which accelerates the inspiral. How-
ever, the dipole emission may be degenerate with tidal
effects [58, 59]. Hence it is necessary to work out ac-
curate predictions for the strain that would be observed
in GW detectors for specific gravity theories, including
effects such as tides, although they might be expected
to be small effects compared to scalar dipole radiation.
However, tidal phenomena in scalarized systems include
not only gravitational tides but also scalar tidal phenom-
ena, where the scalar condensates respond to the gradi-
ents of the companion’s scalar field across the matter
distribution, which leads to further distinctive GW im-
prints [60, 61]. In this paper, we advance the description
of tidal effects during the inspiral of compact binaries
when the gravitational theory is modified by an addi-
tional scalar field. This complements calculations for
the binary dynamics and radiation to higher orders in
post-Newtonian theory [62—-68]. However, while the post-
Newtonian approximation is a weak-field expansion, tidal
effects crucially depend on the strong-gravity regimes in-

side and around the compact object, among other proper-
ties such as the uncertain EoS. In particular, we demon-
strate the importance of accounting for the details of the
coupling between scalar and tensor modes in the strong-
field regime.

Specifically, we re-examine the identification and nu-
merical calculation of the various tidal deformability pa-
rameters of from the perspective of an effective or skele-
tonized action description whereby the object is reduced
to a worldline augmented with multipole moments. Such
an effective description underpins computations of the
dynamics and GWs in the post-Newtonian approxima-
tion. The coefficients appearing in the effective action
must be carefully matched to the tidal response of a rela-
tivistic compact object, which we consider to linear order.
That is, the tidal coefficients are extracted from linear
perturbations of fully nonlinear solutions for the isolated
stationary compact object, depending on both the EoS
and strong-field modification of gravity. Here, we estab-
lish the methodology for facilitating this connection for
scalarized configurations, showing that it involves three
different deformabilities. We demonstrate how these are
extracted from the perturbative information for the case
of NSs in scalar-tensor theories. We also provide the
mapping of these quantities between two frames com-
monly used in the calculations: the Jordan frame, where
matter couplings to the metric are as in the standard
model but the equations of motion for perturbed com-
pact objects are highly complex, and the Einstein frame
obtained after a conformal transformation and more con-
venient for calculations.

This paper is organized as follows. We introduce
scalar-tensor theories in Sec. II, where we distinguish be-
tween Jordan and Einstein frames and provide the equa-
tions of motion. In Sec. III we provide the effective ac-
tion for compact objects in scalar-tensor theories at or-
bital scales. In particular, we introduce a novel tidal de-
formability parameter needed to characterize the object’s
multipole moments. This introduces subtleties for the
numerical extraction of multipolar and tidal moments.
In Sec. IV we address such subtleties and show how to
extract the information needed to compute the tidal de-
formabilities. In Sec. V we apply the framework to scalar-
ized neutron stars and obtain the tidal deformabilities
for configurations with different masses, radii, and scalar
charges. Section VI summarizes our methodology and
main findings and Section VII contains the conclusion.
Additional technical details are delegated to several ap-
pendices, with appendix A providing all the derivations
relevant for the effective action, appendices B and C giv-
ing re-derivations and reviews of relevant calculations in
our notation and conventions. Finally, Appendix D in-
cludes plots of the dimensionless Love number coefficients
and the adimensional tidal deformability parameter com-
monly used in data analysis for different multipolar or-
ders ¢ =1,2,3.

The notation and conventions we use are the following.
We denote spacetime quantities by Greek letters «, £,



, and spatial components by Latin indices ¢, j, .... We
use V,, to denote the covariant derivative and 0,, for the
partial derivative. Capital-letter super and subscripts,
with the exception of the labels T, S and ST, denote
a string of indices on a symmetric and trace-free (STF)
tensor (see e.g. [69] for more details). For instance, for a
unit three-vector n’, the STF tensor n©=2 = nind — 16%,
where §% is the Kronecker delta. We adopt the Einstein
summation convention on all types of indices, i.e., any
repeated indices are summed over. Throughout the paper
we use units where G = ¢ = 1 unless stated otherwise.

II. SCALAR-TENSOR THEORIES

In this section, we briefly review the basics of scalar-
tensor theories of gravity. The action is given by

&7 = /M d'zv/=g {KRFw)R - K;"ff) 60,6 — V (6)

+ Smatter [’(/}mvg/u/] 9 (21)

where ¢ is a scalar field, w(¢) its self-coupling and V' (¢)
a potential. The scalar field is coupled to the Ricci cur-
vature scalar R via a field-dependent function F'(¢) and
Kpg and K, are normalization constants!. Throughout
the paper we set V(¢) = 0. The matter action Smatter iS
a functional of the matter fields v, and metric g,,,. The
action (2.1) is formulated in the so-called Jordan frame.
Performing a (local) conformal transformation

transforms the action to the so-called Einstein frame (see
Appendix A for a detailed derivation). Here, we denote
the metric in the Jordan frame by g,, and that in the

Einstein frame by g%, In the Einstein frame, (2.1)
becomes
ST —/ d*z/=g* [KrR. — K" 0,00, ¢]
+Smatter [wrrqu( )gl“’] . (23)

Here K, is the normalization constant of a new scalar
field ¢, defined by

% _ VA

i (2.4)
1
804(;5 = ﬁaa@ 5 (25)
with
_3Kgp (F'\? | Ksw()

1 We keep the normalization generic here to encompass different
choices in the literature.
2 For convenience, we will place the asterisk wherever the indices
*uv — MV
are not placed, for example g**¥ = g

The action (2.3) is the action of a free scalar field ¢ that
is decoupled from the Ricci scalar. The field-dependent
matter action in the second line of (2.3) indicates that
this transformation has led to a coupling between the
scalar field ¢ and matter through the conformal factor
A(p), which is related to coupling function F(¢) in (2.1)

by
A(p) = exp </d¢2F}iI/Z> :

where a prime denotes a derivative with respect to the
argument, F' = dF/d¢. Analogously, we define?

2.7)

1A F
Ade 2FVA’

where all the quantities are understood as functions of
the Einstein-frame field ¢. The equation of motion for
the metric and the scalar field in the Einstein frame are
then given by

a(p) = — (2.8)

K

G =510 — 4 2.9
Ml/ 2K KR 1222 ( a‘)
1
Op = T, 2.9b

¢ = srol) (2.90)

where
* * 1 * *

G =R, — §gu,,R (2.10)
is the Einstein tensor in the Einstein frame, i.e. corre-
sponding to the Einstein-frame metric g,

T = 0,00 L O pdY 2.11
pyo T M‘P V@ guu <)0 *410 ( . )
is the scalar field energy-momentum tensor,
v 2 5Sma er
T = = ot (2.12)
-9 69;1,1/

is the matter energy-momentum tensor and T* =
gZVT*‘“’ its trace. For practical calculations of compact
object configurations and their perturbations it is eas-
iest to work the Einstein frame and only transform to
quantities in the Jordan frame at the end.

For black holes T**” = 0 and the scalar equation of
motion (2.9b) becomes sourceless. This leads to the same
solutions as in General Relativity (GR) that obey the
no-hair theorem [70, 71]. For NSs, however, the matter
configuration that entangles the metric and the scalar
field which circumvents the no-hair theorem introduces

3 Note the minus sign in front of 1/A. Depending on the different
conventions in the literature, this parameter may be defined with
a plus sign instead of a minus sign. For our purposes, the minus
sign is more convenient for the transformations between frames.



interesting phenomena, e.g. depending on the parame-
ters, a scalar condensate may appear. To describe NSs,
we assume the matter energy-momentum tensor to have
a perfect-fluid form. In the Einstein frame, we parame-
terize it as

T;U = (p* +p*) u:;ujj —|—p*gZV , (2.13)
with the four-velocity uf normalized as uzuf = —1.

From (2.12) with (2.1), (2.3), and (2.2), is related to its
Jordan frame version by

* 59/»“/ 2
ﬂwzﬂw@m:A(@ﬂw

(2.14)

This relation, together with the additional details re-
viewed in the Appendix (A5) and (A29), yields the fol-
lowing relation between pressures and densities

(2.15)

P =Alp)'p,
pr = (2.16)

Alp)'p .

We assume that the equation of state of the cold NS
matter p = p(p) is given in the original Jordan frame,
where only the gravitational sector is modified while the
description of subatomic matter according to the stan-
dard model of particle physics remains unaltered. Thus,
to obtain the energy-momentum tensor in the Einstein
frame, we use the relations above, (2.15) and (2.16) to
obtain
Ty, = Alp)* [(p+ p) uju, + gy - (2.17)
In the Jordan frame the energy-momentum tensor is con-
served. In the Einstein frame, transforming the covariant
derivative using (A7) (see also Appendix D of [72]) the
equation for energy-momentum conservation in the Ein-
stein frame reads
VUTY = —aT*0,p .

pv

(2.18)

The system of equations (2.9a) and (2.9b), together with
choices for the coupling and EoS, will be used in Sec. IV
to compute NS configurations and their response to per-
turbations in scalar-tensor theories.

III. EFFECTIVE ACTION

We first analyze the above system of equations of mo-
tion to identify the connection between information on a
perturbed NS and quantities impacting the orbital dy-
namics in a binary system. We consider nonspinning
binaries at large separation, where there is a hierarchy
of scales between the size of the objects, the orbital sep-
aration, and the wavelength of GWs. Here, in the case
of scalarized NS configurations, the size of the objects
includes the scalar condensate, which extends to much
larger distances. Nevertheless, during the early inspiral

at large separation, this setting is still amenable to an ef-
fective field theory (EFT) description, where the model
for the binary at scales larger than the size of the bod-
ies is obtained by integrating out the internal degrees of
freedom. At the most coarse-grained order, each body re-
duces to a wordline, which is then augmented by informa-
tion on its interior contained in effective (or Wilsonian)
coefficients. This is often referred to as the skeletoniza-
tion of the body [73].

An example of such a connection in the context of
adiabatic tidal effects in General Relativity is the fol-
lowing. When considering linearized perturbations to a
compact object the time-time component of the metric
goo can be written in terms of an effective potential Uy,
whose asymptotic behavior at spatial infinity in coordi-
nates whose origin is at the center of mass of the object
reads

T—00

. . +1 M X (20-1D)NQrnt
lim Uy = — lim gooiw—Jrz%QL

r—oo 2 r rit+l

=2
(3.1)

Here, each term of the series corresponds to a correction
to a point particle, encoded in the multipole moment
@, contracted with STF multilinears of unit vectors
n¥. Similarly, in the relativistic skeletonization approach
from the EFT, we can describe a body as a worldline cor-
responding to a point particle, plus corrections contain-
ing information about size effects, spin-orbit couplings,
etc. Such considerations lead to an effective action of the
form

SerT = S¢ + Spm + Stidat + - -+, (3.2)
with S, the underlying gravitational action and Sy, the
action of a point mass. Focusing only on size effects,
analogous to (3.1) the EFT reads

= A
SEFT = Spm + Z / do/ —UHUHT;ELEL R (33)
=2 ’

with o a worldline evolution parameter, u* = dz*/do
the 4-velocity, Ej, an external tidal field and A, the tidal
deformability, defined as the ratio between the induced
multipole moment and the tidal field,

QL =—-MNFEL , (3.4)
related to the Love number k, by
(20— N

In this study we focus on static size effects and, in partic-
ular, on electric-type perturbations (also called even or
polar) of the form of (3.3), although the framework can
also be applied to magnetic (odd or axial) perturbations
in the case of dynamic tides [74]. We give the EFT in
both Jordan and Einstein frames, and the transformation



between them. As in the full theory, we take advantage of
the conformal transformation in order to match the EFT
coefficients in the mathematically simpler Einstein frame.
By using the transformations between frames, we then
relate the Jordan and Einstein frame EFT coefficients
and obtain all our coefficients in terms of Einstein frame
quantities. Although we focus here on scalar-tensor the-
ories, the methodology and framework can be applied to
other contexts such as generalised scalar-tensor theories
[75].

A. Effective action in the Jordan frame

In the class of scalar-tensor theories considered here,
the effective action in the Jordan frame including the
skeletonized size effects reads

(J)

Serr = S(s? + Spm + Stidal , (3.6)
with the point-mass action [52]
Spm = f/da z m(9) , (3.7)

where ¢ is a worldline evolution parameter and z =
/—u,uP is the redshift factor. Note that the point-
particle action (3.7) contains a field-dependent mass
term. This is because the binding energy in the Jordan
frame depends on the scalar field and, since the mass
is related to the energy, it is likewise a function of the
field [76].

An effective action describing tidal effects in scalar-
tensor theories has been considered previously for the
case of dipolar tides [52, 60]. This demonstrated that
in general, two kinds of tidal fields arise in the system,
namely the scalar (S) and tensor (T) fields defined by

Ef =-Vi¢, (3.8a)
E] =V 2E] 1, (3.8b)

where
El L, = Z%OLlaLzﬁuauﬁ ; (3.8¢)

with Cpaus the Weyl tensor and only the symmetric and
trace-free (STF) parts of each tensor contribute to (3.8).
Recall that here S, T and ST are labels rather than STF
indices. Thus, we expect the effective action to involve
corresponding scalar and tensor tidal deformabilities, )\f
and A} characterizing a scalar- or tensor-induced multi-
pole moment, respectively. However, since the equations
of motion (2.9) are coupled, a scalar tidal field may also
induce a tensor response and vice versa. Thus, we expect
the action to require additional parameters to distinguish
between a scalar response to Ef or to EY, and similarly
for the tensor case. Specifically, we find that these con-
siderations lead to the following form of the tidal action

up to quadratic order in the tidal fields

Stidal ZZ/dJ z gt
¢

(A%—‘ETET ﬁ

20!

ST
/\f

n EE+EE) (3.9)

20 LR ]

where
(3.10)

The last term in the tidal action (3.9) has not been con-
sidered before. It contains a new type of tidal deformabil-
ity, the scalar-tensor tidal deformability )\fT, and char-
acterises a scalar/tensor multipole moment induced by
a tensor/scalar tidal field. To better understand the
properties of the scalar-tensor deformability and connect
with the microphysics of tidally perturbed scalarized NS
configurations we work in the Einstein frame, where the
scalar field and the metric are only coupled through mat-
ter and the equations of motion are simpler to solve.

B. Effective action in the Einstein frame

The effective action in the Einstein frame is analogous
to that in the Jordan frame (3.6), except that it is a func-
tional of the Einstein frame scalar field ¢ and conformal
metric g, instead of their Jordan frame counterparts ¢
and g,,. Specifically, the effective action is given by

E E E
S](EF)T = Sé’T) + Sg;xll) + St(id)al ) (3.11)
with the tidal action
S5 =Y [0 = g2
¢
/\ZT *T T A?S *S %S )‘ZST *T %S
(2@! B Ep 5 B Bp + =g B Ep
(3.12)

and all quantities such as the tidal fields defined simi-
larly as in (3.8) with the above-mentioned replacements
(¢, 9u) — (¢, 9*%u) and the connection and curvature
quantities associated to the conformal metric.

1. Role of the scalar-tensor deformability

To study the effect of )\ZST we compute the equations
of motion derived from the EFT action (3.11) in vacuum
and far away from the body, where spacetime is nearly
Minkowski. In this limit, we have

_m;(@oo)
Op = 2K, ()



_ +1
~——— NP ELoL + NPTEL0L) 6(2)

(3.13a)

/\ZTE 70 + NPT EL L] ()
(3.13b)

where ., is the value of the scalar field at infinity. For
the metric functions, we focus on the 00 component as
it conveniently contains the tidal information. This is
because gg, is asymptotically related to the potential
Uy, similarly as (3.1) in the Einstein frame. In the flat-
space limit relevant here, EfT = —9,Uj% [77, 78]. The
dominant terms in the solutions to the equations of mo-
tion (3.13) at infinity read

) $ 0= (7 Tl

87TK r —~ 087K, e+l
+ Pridal (3.14)
g Telgn) | S5 QL N By~ N

N U l6rKpr | & (167KR P
+ UNtidal (3.15)

with
1 L, .t

Ptidal = — Z WE*STLLT' ) (3.16)
U;/vtidal = Z Z|167TK TnLTZ 5 (317)

the homogeneous solutions, corresponding to the external
tidal fields E*LS and EL;. respectively. Comparing the so-
lutions with the definition of the multipole moments from
the asymptotic limit (3.1), we identify the induced ¢-th
order multipole moment from the coefficient associated

with the r—¢1 falloff, which leads to
= NSES - \NTET (3.18a)
= NTET - NPSTERS (3.18b)

These relations formalize the effect of the scalar-tensor
tidal deformability. Specifically, as seen in (3.18a) and
(3.18b), and illustrated in Fig. 1, \;ST characterizes the
scalar /tensor induced multipole moment in the presence
of an external tensor/scalar field. Using (3.18), we can
compute the tidal deformabilities as

*T
T = ELT , (3.19a)
E}S=0
*S
S =~ Efs , (3.19b)
L 1E;T=0

*T *S

«ST _ _ WL _ _ =L
A7t = o =T T . (3.19¢)
L 1E;T=0 L 1E;S=0

This will be useful for identifying the information con-
tained in these parameters from perturbation theory in
Sec. IV.

Parity symmetry and \3T

For generic couplings A(p) the EFT presented here is
the most generic one. However, depending on the value
of A(y), additional symmetries may emerge in the ac-
tion. For example, parity symmetry, referring here to
the transformation

= —p, (3.20)
arises for couplings that yield scalarized configurations.
However, the term

*ST
)\f
/) L *T"

(3.21)

in the action is not parity symmetric, since from (3.8)

EL. — EL Ely —» —EL (3.22)
To preserve the overall parity symmetry of the action as-
sumed here requires the scalar-tensor tidal deformability
)\;ST to develop a dependence on the scalar field. This is
because the only term that respects the parity symmetry

at quadratic order in the tidal fields in the EFT is

)\*ST

o w(pee, QB Bl

i (3.23)

where w(¢oo, @) is a polynomial containing odd powers
of the scalar charge @ = m(po) and the background
scalar field at infinity,

o0
w(poo; Q) = Zcpso%“ + )@

(3.24)

where ¢, , are constants, and S\ZST is a scalar field and
charge-independent parameter. This implies that, for
parity symmetric theories, A\;*7 will scale with the poly-
nomial w(ps, @),

)\*ST (§0007 Q))\*ST .

Note that in GR we have ¢, = 0 = @ and therefore
N5 = 0.

(3.25)

C. Relating tidal deformabilities between frames

Making use of the conformal transformation (2.2), we
can relate the EFT coefficients between frames at the



Scalar

Scalar-tensor

~

Tensor

_ﬂSES

.....
P ~~

_ATET

.........

FIG. 1. The scalar and tensor multipole moments consist of two contributions. The first contribution comes from the response
to an external tidal field produced by the same kind of field, scalar or tensor. The second contribution accounts for a multipole
moment induced by the other field, resulting from the coupling between matter and scalar field.

level of the action. This enables connecting between the
tidal deformability computed from perturbation theory
and the EFT in the Einstein frame, and then relating
the Einstein frame tidal deformability to its Jordan frame
counterpart. The details of the calculations can be found
in Appendix A 3 and yield

A=\ (3.26a)
AZ P\
A = (;‘;) DY (3.26b)
oo
A2 F!
AT = oo 00 \#ST (3.26¢)

205 e

where the subscript “co” denotes evaluation at infinity.
This result is in agreement with the special case with
Ao = 1 considered in [79], where the vanishing of the
scalar field at infinity implied that the tensor tidal de-
formabilities in both frames are the same.

The transformation of the dimensionless Love numbers
k¢ defined in (3.5) is obtained by combining (3.26) with
the transformation of the radius. The latter follows from
using that, for a spherically symmetric spacetime,

gog =1 = A’ghy = A’r, | (3.27)
which implies that the radius in the two frames is related
by [79]

R = A(pr)R. , (3.28)

with ¢ = @(R). We can also obtain the transformation
for the dimensionless tidal deformability,

M 2 2041
T MR T (20— 1)!!]”0 ’

Ag (3.29)

where

C=M/R (3.30)

is the compactness of the star, with M its ADM mass.
In order to transform A, we can use (3.28) for the radius
and (C8) for the ADM mass, together with (3.26).

IV. COMPUTING LOVE NUMBERS

Having established the relevant deformability coefli-
cients in the EFT, the next step is to connect them
with the information from detailed calculations of the
perturbed configuration. The baseline for computing
the Love numbers is to first compute the background
equilibrium configuration. This is given by the modi-
fied Tolman-Oppenheimer-Volkoff (TOV) equations for

both the spacetime g,(g,), and the equation of motion

for the background scalar field ¢¢. This configuration
also yields the corresponding mass-radius relations for a
chosen equation of state. Subsequently, we consider lin-
earized perturbations to the spacetime and scalar fields,

G = 950 € DR () Y0, 0) (4.1)
‘m
p=ote Yy o™ (r) Y0, 0), (4.2)

Zm

where € is a counting parameter for the perturbations
and Y,;™ (6, ¢) are the spherical harmonics. Similarly, the
fluid pressure, density and four-velocity for the perturbed
configuration are

p=pote Y op™(r) Y"(0,9),

lm

(4.3)



d
p=pote Wf)zc?pem(?") Y™ (0, 9), (4.4)
Lm
ulh = up, + € dul. (4.5)

Substituting these ansaetze into the equations of mo-
tion (2.9) and keeping only terms up to linear order in
€ leads to the system of differential equations that ul-
timately determine the Love numbers. Solving these in
the interior of the star as well as in the exterior, where
no NS matter is present, and using the definitions of the
multipole moments (3.1) and (3.19) determines the Love
numbers. To make this methodology concrete, we start
by reviewing the computation of the background config-
uration in Sec. IV A. We then calculate the perturbed
equations of motion in Sec. IV B and describe a frame-
work to extract the multipole and tidal moments. In
Sec. V we compute the mass-radius curves for specific
choices of the couplings that trigger scalarized stars, and
use our framework to compute the Love numbers. Fi-
nally, we also provide the results transformed to the Jor-
dan frame. For the numerical calculations we choose the
normalisation constants to be K;l = Kgl = 167G and
K;l = 87G with G = ¢ = 1 4. The derivations pre-
sented here can also be found in [47] and [48], though
with different conventions for the normalizations °.

A. Background configuration
1. Modified TOV equations

We start by writing the background, unperturbed met-
ric describing a static, spherically symmetric configura-
tion as
* Odekda? = —e’dt® + Vdr® + r2dQ% | (4.6)

ds§ = gy,
with dQ? = d#? + sin®(0)dp>. For better readability we
drop the asterisks in this section, but note that the only
quantities in the Jordan frame, i.e. with no asterisks, are
the pressure and density. Substituting (4.6) into (2.9)
leads to

~ooer 1

G =8 poAlpo)' +¢" — — — 5+ 5 =0,
(4.7)
G _ 8me poA(o)! + ¢’ — v + c 1y
erv 0 r o r2 r2 ’
(4.8)

4 Here, we have kept G for reference, since as explained in Ap-
pendix C some of the scalar effects can be interpreted as an
effective scalar field-dependent gravitational coupling G(poo).

5 Note that Reference [48] reported differences in results with Ref-
erence [47], and considers scalar and tensor tidal deformabilities
computed in a different way (see Sec. VI for a comparison). How-
ever, the modified TOV equations coincide.

1=r(y =)
5 ©0

— 47 A(po)*e” (o) (3po — po) =0 .

©o+
(4.9)

Assuming a spherically symmetric configuration implies

2
v =—log (1 - m(’")> , (4.10)
r
which upon using (4.7) yields
2 2
m’ = 4rr?poA(po)* + % <1 - m> oh? . (411)
r

Substituting into (4.8) we obtain

r3 <87Tp0A(§00)4 + 9062) + 2m (1 — r2g062)

r(r—2m)

(4.12)

Next, using the conservation of the energy-momentum
tensor (2.18) and the normalization of the four-velocity
uyutt = —1 leads to

ut = (e_”/Q,O,O,O) , (4.13)
Po + po
p{) = 9 [204(#70)@6 - V’] . (4.14)

The modified TOV equations (4.11), (4.12) and (4.14),
together with an equation of state relating pg and po,
fully describe the background configuration, given a cho-
sen conformal factor. As a check, one can set ¢y = 0,
A(po) =1 and a(pp) = 0 and see that indeed one recov-
ers the general-relativistic TOV equations.

2.  Boundary conditions near the origin

The solutions to (4.11), (4.12) and (4.14) in the interior
of the star can in general only be obtained numerically.
They must satisfy the following boundary conditions near

the center of the star at rpy, — 0

4
3 (4.15a)
(4.15b)

pO(rmin) = Pec m(rmin) = 71—T?ninpc ’

@O(Tmin) = Poc -

In most applications, it is desirably to control the asymp-
totic value of the scalar field at infinity ¢goo rather than
poc.  This can be implemented by using a shooting
method for obtaining the appropriate g, corresponding
to a given pgeo.

3. Scalar field outside the star

This task can be simplified by using an exact solution
for the field in the exterior that exists in Just coordi-



nates® (see Appendix B for details), which determines
the field at the surface to be

1%
0(R) = pose + 0 (4.16)
with
2 V14 ¢?
Vg = ————=arctanh 7+2q , (4.17)
1+ q2 1+ R
and g a parameter related to the scalar charge given by
200 (R
g = 2208 (4.18)
v
s
Qms
b= ———2 + Ruy(R)* 4.19
Vg R(R—2m5)+ SDO( ) ’ ( )

and mg the mass at the surface of the star. Specifically,
the quantity

q=-Q/M

characterizes the scalar charge () per unit mass M of the
configuration. The scalar charge is defined as the coeffi-
cient of the 1/r falloff of the solution in an asymptotic ex-
pansion near spatial infinity, similarly to the ADM mass
M in the gravitational potential, with

(4.20)

1
lim ©o(r) = pooo + €0 (2) :
T T

00

(4.21)

Hence, ¢ is a measure of the strength of the scalar field
compared to the gravitational field. Using the exact ex-
terior solution for the scalar field from (4.16) has the
advantage that the numerical integration only has to be
performed up to the star’s surface, rather than infinity.

B. Scalar and tensor perturbations

We now focus on the tensor and scalar perturbations,
introduced in (4.1) and (4.2), and drop the labels ¢, m
in the radial functions (4.1)-(4.4). In the class of scalar-
tensor theories we consider, we can write the static, even
parity (also known as polar or electric) metric perturba-
tions in the Regge-Wheeler gauge [80],

hap = Diag [—e”Hy(r), e Hy(r), r* K(r),r* sin®(0) K (r)]
(4.22)

where Hy, Hs and K are functions characterizing the
metric perturbation. Using this gauge and perturbing
the Einstein Field Equations (2.9a) and the scalar field

6 Note that this only applies for a vanishing scalar-field potential
V(¢) in (2.1). For non-vanishing potentials the shooting method
should be extended to infinity.

equation of motion (2.9b), together with the fluid quan-
tities at first order in € we obtain”

K'+ Hi+ v Hy + 49300 =0, (4.23)
Hy = —H, , (4.24)
H{ + fiH) + foHo = fsb¢ , (4.25)
60" + 9106’ + godp = gsHy . (4.26)

The terms in the metric perturbation equation of motion
are

! _Arr3 A(po)(po — po) + 2(r —m)
1 — )
r(r — 2m)
1

m{4WT3P0A(Wo)4[T(3Po/5po +9)

—2m(9po/dpo + 13)] + 47r° po A(pg)* x
(Opo/dpo +5)(r — 2m) — 4r®(r — 2m)pg x
(47rr3p0A(g00)4 +m) — 6472r5p2 A(po)®

— L0+ D)r(r —2m) — rt(r — 2m)2pf — 4m?} |
(4.28)

(4.27)

fo=

[s :m{erQ 27 A(00)* (o) x

((8po/dpo — 9)po + (8po/dpo — 1)po) + 4rpoe)
+ (r — 2m) o] + 8myp} (4.29)

and the terms in the scalar perturbation equation of mo-
tion are

(4.30)

—— {4 A(wo) [al0)* ((9po/ o + 9o
+ (9po/Apo — T)po) + (po — 3po)a’ (¢o)]}

g1 =f1,

9o =

— m — 4oy, (4.31)
_fs
9s =" - (4.32)

In GR the source terms vanish, fs = gs = 0, and there-
fore the perturbations decouple. In scalar-tensor theo-
ries, however, the perturbations are coupled as a result
of the coupling between matter and the scalar field. This
means that a tensor perturbation Hy will induce a scalar
perturbation dp, and vice versa. This is also in agree-
ment with the scalar-tensor term in the effective action,
Ast, which quantifies the induced Love number on top
of the pure tensor and scalar perturbations.

7 Note that there is an apparent minus sign difference in the source
term with [47], however, this is consistent with the different con-
ventions where in [47] Hy is defined such that Hy = Ho whereas
we have Hy = —Ho.



Dipolar perturbations

When specializing to tensor dipolar perturbations ¢ =
1 there are two equivalent ways to proceed. The first way
is to fix £ = 1 in Einstein’s equations, as in [81]. This
changes the combinations of components needed in order
to decouple the different functions Hy, Ho and K, and
results in a first-order differential equation for Hy. The
second way is by fixing £ = 1 at the level of the pertur-
bation equation of motion (4.25), which yields a second-
order differential equation. However, for the particular
case { = 1, we can integrate the second-order differen-
tial equation and obtain the same first-order differential
equation as with the first way,

H(/) + doHy = 81(5(,0/ + 80(5(,0 R (433)

with
2(r —m) + 8mA(po) *por?
r(r — 2m)
_ 8mA(0)*r*(3po + po)
2m + 8w A(po)*por3 + r2(r — 2m)<p62 ’
o = 4r(r — 2m) e}
2m + 8w A(pg)tpor3 + r2(r — 2m)<p62 ’
1

Com + 87 A(po)*pors + r2(r — 2m)<p62

do = + ro@+

(4.34)

(4.35)

So —

X {8(r —m)py + 47‘2(r — 2m)<p63

+167A(¢0)*12 [a(0) (po — 3p0) + 2porot] |
(4.36)
In the exterior of the star, where py = 0 = pg, the tensor

and scalar perturbations decouple when defining a new
function ¢(r) by

¢ =d§" Hy— 55" 8¢ . (4.37)
With this, (4.33) becomes
d/ ext
(+¢|dit ——2—]=0. (4.38)
dO

The asymptotic solution to (4.38) for large r has the form

=¢34 0 <T14> , (4.39)

with ¢(=3) a constant of integration. This yields for the
metric function

4(73)
Hy =
0 22

+2¢0p + O ( ! > . (4.40)

r3

Substituting (4.40) into (4.26) gives, asymptotically,

(-2)
b = 6pWMr + &pT + 0O (g) : (4.41)
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with 8¢ the coefficients associated to the ¢ depen-
dence. Hence,

a2 1
Hy = 722 +2¢6pWMr + O (73) : (4.42)

where we have redefined H{™? = ¢(=3/2 + 2¢5p(=2.
This manifestly shows how a scalar tidal field E}® o
6o can induce a tensor tidal field BT = 2¢E:°. In
GR, the scalar charge vanishes ¢ = 0, and we recover the
result in [81]. The constant in front of the r~2 falloff,
proportional to the mass dipole moment Q’{T, can be
set to zero by a gauge transformation. Specifically, the
change in a perturbed scalar field ¥ = ¥y + € §¥ due to
an infinitesimal translation Z# = z* 4 e £, is given by
the Lie derivative £¢ along the vector field &+,

0 = 0 + £V, = 0 + €10,V , (4.43)
where, for the static case [81],
eV
& =0, = a— Y6, (4.44)
with a an arbitrary constant,
Ff=rexp [ /oo 1 ;ew dr] , (4.45)

and v the background metric function (4.6). Therefore,
the metric and scalar perturbations, Hy and dyp, will
transform as
~ l//
H() = Ho + a;f y (446)

~ /
dp = (5<p+a%f , (4.47)

which asymptotically reads

. HY oM 1
lim Hy =2¢5pWMr4 -+ =2 _4+ao"— +0(= ),
r—o0 r2 r r3

lim dp = doWr 4. 4 T——

=00

(4.49)

In order to match to the EFT, which is formulated
around the center-of-mass worldline, we choose a gauge
where the mass dipole vanishes. This corresponds to set-
ting a = —HéfQ)/QM. In this gauge the tensor and scalar
dipole moments now read

~ (=2 _
5g0( - 5g0(72) — gHé 2
Hence, the mass dipole moment in scalar-tensor theories
can still be made to vanish, which however shifts the
scalar dipole moment.
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Interior 7 = rmin

Exterior r = ro

Solution 1 2 A

B C D

590 Tfﬂin 0

(4.53a) & 6o~V = 0|(4.53a) & 60© = 0|(4.53a) & H{ Y =0/(4.53a) & HY =0

Y4
H[) 0 Tmin

(4.53b) & S~ = 0|(4.53b) & S =0[(4.53b) & HS P =0[(4.53b) & HY =0

TABLE I. Boundary conditions for the interior and exterior solutions.

C. Extracting the multipole and tidal moments

To numerically extract the multipole and tidal mo-
ments we construct series solutions around spatial infin-
ity that enable imposing the appropriate boundary con-
ditions, see also [47]. For the background quantities we
obtain the series expansions

gM  qM? 1
QDO(T') =®P0c0 — T — 2 + O <7"5> 5 (4523,)
M2q2 M3q2 1
=M — - ol=), (452
m(r) 2r 22 T (7"3) ( )

with M the ADM mass and ¢ defined in (4.20) being
minus the scalar charge per unit mass ® (see Appendix
B for details). For the perturbed quantities, dp and Hy,
the expansions near spatial infinity are of the form

(M Sp(=t=1)
>+... LA,

do(r) :&p“)re (1 — v

r

1
Lo (r¢+2) , (4.532)
‘M gD
HO(T) :Héé)ré (1 _ T) L %
1
Lo (MH) , (4.53b)

where the omissions denote ¢-dependent terms,
some of which also contain a combination of
590(4),580(7471),1{(()5) and H(()_é_l). As  explained
above in Sec. IV B, for the dipolar case £ = 1 the tensor
perturbation equation of motion is of first order and we
have H((f:l) = 2¢6o™), thus one less degree of freedom
than for higher multipoles. Note that in GR, ¢ = 0 and

8 For generic normalizations and G # 1 we have

2G2K g gM
0 (r) = Poco — —,
K, r

where ¢ = — %Q/M. Recall that an adimensional scalar
field is defined as @2di™ =,/ %g@, such that
adim adim adim GM

¥ = Poco — 4 ’
r

and ¢*3™ = —Q/M.

we recover the same asymptotic expansion as (4.53b)
which results from an exact solution in terms of a
combination of Legendre polynomials. Comparing with
the EFT result (3.14), with Hy = 2U}%, we can identify
the multipole and tidal moments as

8K,
*S, L (—£-1) ®
Q1°n” < dyp Q= (4.54)
«T L (—€-1) 6!87TKR
EiSnt & —5000871K, | (4.56)
BTt —H D087 K | (4.57)

such that, with our chosen normalizations and us-
ing (3.19) the tidal deformabilities read
1 H(fffl)
T = 0 (4.58)
YT I )
(2¢ — 1) Hé ) 50—
1 6§0(_€_1)
\S = (4.59)
— 1\ ¢ ’
-1 6o |0,
—r—1
)\;ST _ 1 H(g :
(20— )11 2500 O
1 20p(—¢=1)
TR i (4.60)
- Hy S =0

To obtain explicit results, it is convenient to integrate
the coupled system of differential equations, (4.25) and
(4.26), from the singular points, i.e. the origin and infin-
ity, and subsequently match them at the surface of the
star. Extracting from this the multipole and tidal mo-
ments requires carefully disentangling the different mo-
ments corresponding to the different fields. This can
be accomplished by constructing a generic solution as
a linear combination of independent particular solutions.
We compute particular solutions are computed by im-
posing certain boundary conditions, labeled 1 and 2 for
the interior, and A-D for the exterior of the star, and
are listed in Table I. Solutions A and C correspond to
a zero scalar and tensor multipole moments respectively,
ie. 0p(—Y =0 and Hé_z_l) = 0, whereas solutions
B and D correspond to zero tidal moments, §o) = 0
and Héz) = 0. This leads to six particular solutions with
six associated constants of integration. Demanding con-
tinuity at the surface of the star fixes four of the con-
stants. One of the remaining two constants can be fixed



by choosing a normalization. Hence, one free constant
remains that can be used to demand a zero scalar or
tensor tidal field, 6o) = 0 or Hée) = 0. This disentan-
gles the different contributions to the induced multipole
moments and enables extracting the tidal deformabilities
using (4.58)-(4.60).

1. Marginally stable solution

The scalar equation of motion for linearized pertur-
bation (4.31) contains a term proportional to o/(¢). In
cases where o/((p) is constant and the background scalar
field vanishes ¢y = 0 the static scalar perturbations are
solutions to

N+2 [r —m + 273 (po — po)]

!
op r(r —2m) o¢
B 6(6 + 1) _ 47T7’CY/(0)(p0 - 3]70) So=0
r(r —2m) r—2m v .
(4.61)

For this case most of the properties of the configuration
are identical to those in GR, for instance, the equilib-
rium solutions and the fact that scalar and tensor per-
turbations decouple. However, an important difference
is the presence of the coupling term involving o/(0) and
the matter variables in (4.61), which is absent in GR.
Consequently, for a/(0) # 0 the scalar tidal deformabil-
ity may have a significantly different value than in GR.
Specifically, the tidal deformabilities in this marginally
stable case are given by the GR expressions

AT e @B 2D~ — HT(E+3)T (L —1)
¢ lor= 22043 (20 — 1)IT(¢ + 1)
A P(1/C —1) + (€ — 1)CPE,(1/C — 1)
7 Q7(1/C =1) + (L -1)0Q7,,(1/C —1)
(4.62)
AS one AN T y
IR —1)IT (0 + D0+ 3)
27 PQ(1/C = 1)+ (= 1)CPP,(1/C —1)
ZQV1/C -1+ (L -1)CQy,,(1/C—1)
(4.63)
with
y" ler= f[zggR . ¥° lar= (;S;((g))R ;o (4.64)

the (adimensional) logarithmic derivative, ZZ/ 5 = £+
D(C — 1) + (20 — 1)y"/5 and P/*(x) and Q}*(z) the
associated Legendre polynomials.

The condition o’ (0) # 0 implies that only special cases
of the coupling such as exponential couplings lead to the
additional term in (4.61). The physical interpretation
of this term is that, even though the equilibrium con-
figuration is GR-like with a vanishing background scalar
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field, the scalar perturbation inherits the coupling be-
tween matter and the scalar field and differs from GR.
This can be seen by considering the equation of motion
for linearized perturbations of the scalar field (2.9b),

1
060 = ——a' (o) T*
S 2Kwa (¢0)T"0¢

= 4o/ (90) A(0)*(3po — po)de (4.65)

which for ¢y = 0 and A(0) = 1 yields the o/ (0)-dependent
term in (4.61). Therefore, this case represents a situ-
ation in which test particles follow geodesics indepen-
dently of the scalar field, hence satisfying the weak equiv-
alence principle as in GR. This class of solutions are the
marginally stable ones with zero-charge, ¢ = 0, in the
regime where spontaneous scalarization can occur (i.e.,
scalarized solutions are the stable ones). These solutions,
albeit marginally stable, will have a scalar Love number
that could be induced by a scalarized companion during
the inspiral. Thus, they are relevant in the context of
dynamical scalarization, in particular for the transition
between non-scalarized and scalarized objects (see, e.g.,
Ref. [56] for a discussion in the context of the worldline
EFT). Since in this paper we focus on isolated objects,
we will leave this study for further work.

V. NUMERICAL RESULTS FOR EXEMPLARY
CASE STUDIES

Setup

To compute NS configurations we consider piecewise
polytropic approximations to tabulated EoSs [82]. In
particular, we choose WFF'1, SLy and H4 since they cover
a significant range of NS masses and radii and they have
also been considered in the literature [9, 47, 79], which
allow us to check and compare results.

For the scalar coupling function, we choose here the
concrete case of

A(p) = e3Po()’, (5.1)
This choice yields scalarized configurations, depending on
the cosmological value ¢gs, which is related to 8, w(¢)
and F(¢) through (2.8) or explicitly

1 [K, F/,
BN 2KR \/3F2 4 2wo Foo [ $oo

Poco = (5.2)

For the numerical studies, we choose the values oo =
(107%,1073). The latter is a common choice in the lit-
erature at it lies within the experimental bounds from
binary-pulsar observations [52] and yields scalarized NSs
throughout the entire mass range. The smaller value
of Yoo leads to a more sharp transition into scalarized
states, which is useful for comparing against the GR
configurations. Scalarized configurations exist only for
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FIG. 2. Mass-Radius curves in the Einstein (left panel) and Jordan frames (right panel) for three equations of state (WFF1,
SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines are the scalarized
configurations with 8 = —4.5 and 8 = —6, respectively. Both plots correspond to a scalar field at infinity @woe = 1073, The
cross and circle represent the maximum mass configuration for 8 = 0, —4.5 and 8 = —6, respectively.
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FIG. 3. Charge-Mass curves in the Einstein frame for three equations of state (WFF1, SLy and H4) and a scalar field at
infinity pose = (1073,107°). The dashed and dot-dashed lines are the scalarized configurations with 8 = —4.5 and 8 = —6,

respectively.

B < —3.5 [50, 55]. Furthermore, pulsar timing observa-
tions have discarded the parameter regimes f < —4.5
[83-86]. However, we will study the cases 8 = —4.5
and f = —6 as in the literature to gain qualitative
insights into parameter dependencies. We impose the
boundary conditions near the center of the star (4.15)
for rin = 10710 in the geometric units we are using. For
the asymptotic expansions of the solutions near spatial
infinity we consider twenty-two orders in the series (4.52).

To extract quantities at infinity, we choose roo = TR
for £ = 1,2 and ro, = 4R for £ = 3, with R the surface
of the star. They correspond to values within the range
in which there is an overlap of the series expansions at
infinity, (4.53a) and (4.53b) and the numerical solutions,

see Fig. 4 for an example configuration with a percent
difference of at most 1.6 x 1072% for the tidal moments
and 1.5 x 107°% for the multipole moments. To further
check the robustness of these choices we also computed
results when dropping five orders in the series solution,
which yielded no noticeable changes in the Love numbers.
Varying 7., between 2 — 10R led to sub-percent level
changes in the tidal deformabilities (e.g. at most 0.6%
for the SLy EoS for both choices of g and different kinds
of Love numbers), see Fig. 5. We also note that higher
multipolar orders require extracting quantities at an r,
that is closer to the star’s surface in order to capture the
increasingly smaller contributions.

We note that all quantities shown in the plots below
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FIG. 4. Overlap between series expansion at infinity (dashed
lines) and numerical solutions (solid lines) for the tidal (blue
and red) and multipole (orange and purple) moments. For
illustrative purposes we choose a quadrupolar configuration
with WFF1 EoS, M = 1.16My, R = 10.16km, 5 = —4.5 and
Yoo = 1073; results for other configurations are similar.
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FIG. 5. Quadrupolar tensor tidal deformability A2 in the Ein-
stein frame as a function of 7. The orange point is the chosen
one for the integration. For illustrative purposes we choose a
configuration with WFF1 EoS, M = 1.16Mg, R = 10.16km,
B = —4.5 and poo = 1073; other choices yield similar results.

correspond to the their respective frame. However, we
omitted asterisks and sub-indices for clarity.

A. Mass-Radius and Charge-Mass curves

Figure 2 shows the mass-radius curves computed with
the above methodology and setup in the Einstein and
Jordan frames. The Einstein frame mass M is the ADM
mass (B21) and R the radius of the star, defined as the
distance from the origin at the center of the star at which
po = 0. For the Jordan frame mass and radius we make
use of (C9) and (3.28). Each point in the mass-radius
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curve corresponds to a configuration with different cen-
tral density, increasing from the right to the left of the
plot. We denote with a cross and a circle the maximum
mass configuration for § = 0, —4.5 and 5 = —6, respec-
tively. To the left of the cross and circle the solutions are
unstable and the star collapses into a black hole.

In agreement with [47] and [50], we see that certain
configurations (dot-dashed lines in Fig. 2) deviate away
from the GR values (solid lines) due to scalarization, as
corroborated by the behavior of the scalar charge shown
in Fig. 3. This indicates that configurations exhibit a
sudden growth in the scalar field beyond a certain com-
pactness, leading to a larger radius and higher mass than
their GR counterparts. This is because the non-negligible
amount of scalar field increases both the mass and pres-
sure of the fluid, yielding more massive and bigger stars.

B. Love numbers

The tidal deformabilities computed with the method
described above are shown in Fig. 6 for dipolar ¢ = 1
perturbations, Figs. 7, 8 and 9 for quadrupolar ¢ = 2
perturbations and Figs. 10, 11 and 12 for octupolar ¢ =
3 perturbations. We plot the tidal deformabilities for
different values of 3, a fixed oo = 1072 and the three
considered EoS: WFF1, SLy and H4 in both the Einstein
and Jordan frames.

As explained in Sec. IV, the tensor dipolar pertur-
bations can be made to vanish by a gauge transforma-
tion and consequently, there are no dipolar tensor nor
mixed scalar-tensor tidal deformabilities as these are pure
gauge quantities. The dipolar scalar tidal deformability
is shown in Fig. 6. The shape of these curves as func-
tions of mass changes significantly depending on the value
of 3, however, the order of magnitude remains similar.
We also observe some structures in the curves which, af-
ter further analysis, we attribute to consequences of the
charge-dependent shift in the scalar dipole moment when
choosing the center-of-mass gauge, c.f. (4.51).

Figure 7 shows the quadrupolar tensor tidal deforma-
bility curves. Similar to the mass-radius curves, devia-
tions from the GR case appear for scalarized configura-
tions. These deviations are similar as those computed in
[47] and [48] and are smaller for smaller |3|. The behav-
ior of the scalar tidal deformability shown in Fig. 8 shows
a much greater sensitivity to changes in § (dashed versus
dot-dashed curves). These differences for the choices of 8
considered here are one order of magnitude, demonstrat-
ing the sensitive dependence of the scalar tidal deforma-
bility on the theory parameters. As there are no (scalar)
charged compact objects in GR and thus no mechanism
to produce a scalar tidal field we lack any GR benchmarks
in this case, though we note that within the scalar-tensor
theories there exist the GR-like, marginally stable equi-
librium configurations discussed in Sec. IV C. In the tak-
ing the limit oo — 0 these would correspond to con-
necting curves underneath the bumps exhibited by the
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FIG. 6. Dipolar scalar tidal deformabilities \; in the Einstein and Jordan frames for three equations of state (WFF1,
SLy and H4). The dashed and dot-dashed lines are the scalarized configurations with § = —4.5 and 8 = —6, respectively. For
B = —6 we have omitted the data beyond the maximum mass configuration for better readability. All plots correspond to a

scalar field at infinity woco = 1073,

curves shown in Fig. 8, similarly to the GR curves in the
tensor tidal deformability in Fig. 7.

Finally, we show the novel scalar-tensor tidal deforma-
bility in Fig. 9. As we can see, they are negative through-
out most of the parameter space. Similarly to the scalar
tidal deformability, they are also more sensitive to 8 than
the pure tensor tidal deformability. Furthermore, it fol-
lows a similar behavior as the scalar charge, i.e. it is
non-zero for the scalarized states and zero for the un-
scalarized states. Both scalar and scalar-tensor tidal de-
formabilities have different orders of magnitude in the
Jordan frame, and scale differently with ¢po.. This is
a consequence of the relation between the Einstein and
Jordan-frame scalar fields.

The octupolar tidal deformabilities, shown in Figs. 10,
11 and 12 exhibit qualitatively very similar trends over
the parameter space considered as the quadrupolar ones.
A difference is that the adimensional Love numbers k3
shown in Appendix D are one order of magnitude smaller

than the quadrupolar counterparts. As seen in Fig. 12,
the scalar-tensor adimensional tidal deformability A57
is also negative for most of the configurations but can
become noticeably positive for higher mass systems with
large negative 8 and soft EoSs.

VI. SUMMARY AND DISCUSSION

Effective action

The tidal deformability parameters A;, or Love num-
bers, are useful GW observables that contain information
about the fundamental physics of matter and spacetime.
These quantities are computed from detailed calculations
of the response of a relativistic compact object configu-
ration to a perturbing tidal field and must be to related
to coefficients characterizing the resulting signatures in
GWs at the orbital and radiation scales much larger than
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FIG. 7. Quadrupolar tensor tidal deformability A} in the Einstein frame for three equations of state (WFF1, SLy and H4).
The solid lines represent the GR configurations = 0 and the dashed and dot-dashed lines are the scalarized configurations
with 8 = —4.5 and = —6, respectively. The plot corresponds to a scalar field at infinity @ooo = 1073. We omit the Jordan
frame version since A} ginstein = M jordan (€€ (3.26a)). Note that the mass in the plot is the Einstein frame mass, which differs
from the Jordan frame mass. This introduces only minor changes in the shape of the curves.

the size of the bodies. We establish this connection using
an effective field theory description, where the bodies are
described as worldline skeletons, i.e. a central worldline
augmented with multipole moments. We demonstrated
that in modified theories of gravity containing an addi-
tional scalar degree of freedom such as scalar-tensor the-
ories, the number of tidal deformabilities needed to fully
characterize the multipolar structure of the bodies is en-
hanced and in fact requires three kinds of Love numbers:
a tensor (T), scalar (S), and mixed scalar-tensor (ST) pa-
rameter. The effective action describing adiabatic tidal
effects in the binary dynamics is thus given by

Stidal :Z/dﬂ z g x
¢

A
20!

AL ot o

)\ST
EfED + ZE{EE) , (6.1)
with o and z defined in (3.7). The latter is a novel term
that characterizes the scalar/tensor multipole moment
Qr, induced by a tensor/scalar tidal field Ey, as a conse-
quence of the coupling between tensor and scalar pertur-
bations of the body,

Qf = \TE[ - 5{7E}

Frame transformations

We focus on scalar-tensor theories, which are originally
formulated in the Jordan frame, see (2.1). However, cal-
culations are simpler in a conformally related Einstein
frame. To transform results back to the Jordan frame,

we derived the mapping of tidal deformabilities between
these frames based on the action and obtained

A =NT (6.4)
AZF' N\
A = (20[> VRN (6.5)
AL FL
AT = TMST ; (6.6)

where the asterisks denote quantities in the Einstein
frame and with F'; A and « defined in (2.1), (2.2) and
(2.8), respectively.

Numerical extraction of tidal deformabilities

To numerically extract each tidal deformability param-
eter from the coupled system of equations, we developed
a generic framework to disentangle multipolar and tidal
fields. In particular, we demonstrated the use of differ-
ent boundary conditions in the interior and exterior of
the NS to construct the most generic solution as a linear
combination of particular solutions. The different solu-
tions are summarized in Table I. Then, we proceeded by

1. matching the interior and exterior solutions and
their derivatives at the star’s surface,

2. fixing an arbitrary normalization.
This determines the solution up to a free constant that

can be chosen to set either the tensor E;T or scalar E}S
tidal fields to zero. With this, the tidal deformabilities
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can be computed from

*T
N =~ EfT , (6.7a)
L 1EzS=0
S = — P 6.7b
2 E*S ) ( . )
L 1E;T=0
*T *S
AT = — gfs =— EfT . (6.7¢)
L 1EfT=0 L 1EzS=0

Numerical results: scalarized neutron stars

For case studies, we calculated dipolar, quadrupolar
and octupolar perturbations of NSs for a family of cou-
pling functions that can yield scalarized configurations.
In particular, depending on the theory parameters and
EoS, noticeable deviations from GR may emerge in the
tensor tidal deformability, as seen in Figs. 7 and 10. The

scalar tidal deformability, shown in Figs. 6, 8 and 11
for the dipolar, quadrupolar and octupolar case, respec-
tively, can have similar orders of magnitude as the tensor
tidal deformability in the Einstein frame, although in the
Jordan frame it scales with the square of the inverse of
the cosmological value of the scalar field. Regarding the
scalar-tensor tidal deformability, shown in Figs. 9 and 12,
it has negative values and similar order of magnitude as
the scalar tidal deformability, also scaling with the in-
verse of the cosmological value of the scalar field in the
Jordan frame.

Comparison with previous literature

Tidal deformabilities in scalar-tensor gravity have pre-
viously been computed in Refs. [47] and [48]. Qualita-
tively, our conclusions for the features of the scalar and
tensor Love numbers are similar but a few details differ.
These differences arise for the following reasons.
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In both [47] and [48], the mapping between quantities
in the two frames is obtained by computing the transfor-
mation properties of the multipole moments and tidal
fields as dictated by the transformation of the metric
functions in relativistic perturbation theory. The differ-
ences to the mappings used here are that (i) as explained
in Sec. III, we include here the mixed scalar-tensor tidal
deformability, which adds an additional contribution to
the multipole moments, and (ii) we compute the trans-
formations at the level of the effective action, where the
tidal parameters appear as coupling coefficients, which
are in turn directly related to GW observables.

Another source of discrepancies between the results
of [47, 48] and those presented in Sec. V are calcula-
tional details. Specifically, Pani and Berti [47] define the
quadrupolar scalar tidal deformability as

)\SPanifBerti ;S
2

=——=, 6.8
£ (635)

with Q;S the scalar quadrupole moment and E(’)‘S the co-

efficient associated with the power 70 in the asymptotic
solution of the scalar field perturbation (see Sec. IV C).
This is because they specialize to a tensor tidal field, set-
ting the quadrupolar scalar tidal field E3” to zero (which
corresponds to 60*=2) = 0 in (4.53a)).

The differences with the results of Brown [48] are a con-
sequence of the fact that [48] sets to zero the source term
responsible for the mixed, scalar-tensor tidal deformabil-
ity. In particular, the functions fs and g5 in (4.25) and
(4.26) are omitted therein. Comparing our results, which
include these functions, against the results of [48] shows
that omitting these terms leads to smaller values for the
scalar and tensor tidal deformabilities, with differences
of up to 18% for 8 = —4.5 and up to 35% for 8 = —6 for
the scalar Love numbers and smaller differences for the
tensor ones; see Appendix E for a more detailed compar-
ison.
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FIG. 10. Octupolar tensor tidal deformability A} in the Einstein frame for three equations of state (WFF1, SLy and H4).
The solid lines represent the GR configurations § = 0 and the dashed and dot-dashed lines are the scalarized configurations
with 8 = —4.5 and 8 = —6, respectively. The plot corresponds to a scalar field at infinity pooo = 1073, We omit the Jordan
frame version since A} ginciein = M jordan (€€ (3.26a)). Note that the mass in the plot is the Einstein frame mass, which differs
from the Jordan frame mass. This introduces only minor changes in the shape of the curves.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we studied the tidal deformability in
scalar-tensor theories using an effective field theory ap-
proach connected with calculations based on relativis-
tic perturbation theory. In addition to the tensor and
scalar tidal deformabilities considered in the literature,
our analysis revealed the need for a third kind of tidal
deformability characterizing the tensor/scalar multipole
moment induced by a scalar/tensor tidal field. This addi-
tional parameter introduces subtleties in the calculations
due to couplings between tensor and scalar sectors. We
developed a framework to decouple the different contri-
butions and extract the three tidal deformabilities from
detailed calculations of the perturbed neutron star and
scalar field configurations. We performed these calcu-
lations in the Einstein frame, where the scalar field is
minimally coupled to gravity, and derived the transfor-
mation properties of the tidal deformabilities to obtain
results in the Jordan frame, where the theory is originally
formulated.

As an application of the method, we considered case
studies in scalar-tensor theories with a choice of cou-
pling function that can give rise to scalarized neutron
stars. We demonstrated the feasibility of numerically ex-
tracting the various tidal deformability parameters for
examples with different equations of state, scalar cou-
pling strengths and asymptotic values of the scalar field.
For the examples considered, the tensor deformabilities
become larger than the GR values for high-mass neutron
stars and the scalar Love numbers are of the same order
of magnitude as the tensor ones in the Einstein frame.
Interestingly, the mixed scalar-tensor deformabilities are
negative and also of the same order of magnitude as the

others in the Einstein frame.

Calculating the consequences of these tidal properties
for GW signals is the subject of ongoing work [87]. The
general methodology developed here can also be applied
for scalarized compact objects in other theories of grav-
ity and can be extended to include the full dynamical
tidal response [88, 89]. This would allow studies from
an EFT perspective of dynamical scalar tidal effects, like
the monopolar dynamical scalarization [55] that happens
close to the critical point of scalarization. In this con-
text, considering an expansion of the EFT around the
marginally stable solutions (Sec. IV C 1) would be inter-
esting, since it is expected to be of comparable accu-
racy as an expansion around the stable branch close to
the critical point but does not introduce discontinuities
into the model. Our work provides important inputs for
future tests of GR with GWs and multimessenger ob-
servations and for understanding and assessing possible
degeneracies with changes to the NS EoS or the presence
of dark matter.
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Appendix A: Frame transformations: Jordan to
Einstein

1. Action

In this section, following [90] and [91], we will re-derive
the steps necessary to go from the Jordan to the Einstein
frame via a conformal transformation. We start with the
scalar-tensor action in the Jordan frame,

Ser= [ dioy=g | Kar@)R - K22 0%60,0]

(A1)

where ¢ is a scalar field with self-coupling w(¢), coupled
to the Ricci scalar R via a scalar-field-dependent function
F(¢) and Kr and K4 are the normalisation constants of
R and ¢, respectively. We start by defining our (local)
conformal transformation

g:u = Q(m)Qg’w . (A2)
From here on we will write Q(z) = § for simplicity. Us-

ing the ansatz gl = Cg*¥ and the invariance of the
Kronecker delta 6%}, = ¢}, yields C' = 02

g = i %

29 (A3)

Using that det(eM) = ¢ det(M) for a n x n matrix M,
it follows that

g =%, (A4)
V=g ="~y (A5)
in n = 4 dimensions. The Christoffel symbol
Do = 50" Ougor + Orgo — o)+ (A0
changes as
DEN =T = (5 o + 00— aoafl) (A7)

where

f=logQ, C=00f =901 .

(A8)

fa =0af,

The Ricci scalar will therefore change according to

R=0?(R.+60.f — 69" f.f.) , (A9)

where R, is the Ricci scalar of the metric g;y and

1
Of = O (V01
is the Laplace-Beltrami operator associated to the metric
gy~ We will now split the Lagrangian in (A1) into two
pieces,

(A10)

Lr=+/—gKrF ()R, (A11)
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w
Lo=v=ir, Dorso,e. (awy)
We will start with the first piece. Inverting (A3) and
using (A5) and (A9) yields

L= /~g"F(@)Q *Kp[R. +60.f — 694" fyfo)] -
(A13)

If we want to obtain a minimally coupled Lagrangian we
must choose

(A14)
such that we recover the Einstein-Hilbert term®. The
second term, (A10), is a boundary term and therefore
will not contribute to the Lagrangian. Now, given that
we made the choice (A14), we have

0.0 10,F 1F

fa:aaf: %) —5 F _§F8a¢a

(A15)

where F' = dF/d¢, and therefore the third term in (A13)
reads

1 /F\?
694 fuf, = 691~ <> 0,90, ¢

Y4\ F
3 (F'\?
=5 (F) gk’ 0,00, ¢ . (A16)
We now focus on the second term,
w v
Ly = \/—quaEf) 9" 0,90, ¢
_ w y
= (e R A @000 (A1)
L1 W y
=/—g'F 1K¢ij)>gf 0,900 . (A18)
Adding the two pieces together we obtain
Lsr =v/—g* {KRR*
3Kg (F'\? W) |
(A19)
Introducing a new field by
9 _ R, (A20)

do

9 Notice that, although cumbersome, if we wish to have a different
coefficient for the Ricci-scalar term in the Einstein frame, the
right hand side should read Kg, /Kg, with Kr, the new nor-
malisation of the Ricci scalar in the minimally coupled action.
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00 = —=0a¢p , A21
¢ N (A21)
with
_3Kg (F'\*  K,w(®)

TGRS = S

yields the Einstein-frame Lagrangian
Lsr = /—g* {KrRy — K g 0,00, 0} . (A23)

We can now define a new coupling A(¢) by A = QL
The reason for this particular choice is that, if one adds
a matter action, the matter Lagrangian in the Einstein
frame will contain a metric A(¢)?g%,, and therefore can
be seen as a coupling of the scalar field to matter. Hence,
with this new parameter we have

Guv = A2g;,/ . (A24)
We can relate A to the new field using (A14),
—1 —1/2 1
A=Q " =F = exp —ilogF
_ / ir- (A25)
P °F )
and (A20)
4 p A (A26)
dF ’
to obtain
F/
Alp)=exp | — [ dp——= ) . A27
w=ow (- [dorr <) )
Analogously, we define
1dA F’
d _ (A28)

a(¢>:—2@—m7

where all the quantities are understood as a function of
the new field ¢.

In order to transform the skeletonized/EFT action, it
is useful to transform the following quantities

1 1
d0'2 = 7d52 = 7@d53 = @d@'f 3 (A29a>
dzt dxt
H= e =0 =0u A29b
“ do do* B (A29b)
v 1 * 14 1 *
Uy = U = 792 g'qu U, = ﬁu“ , (A29C>
uput = uzufj . (A29d)

2. Covariant derivatives

The covariant derivatives acting on the scalar and ten-
sor fields will yield higher-order contributions in the EFT.

23

In this section we will show that this is the case by an-
alyzing the transformation of the covariant derivatives.
Then, as an explicit example, will fix the multipolar or-
der for the scalar and tensor cases and show the explicit
terms yielding higher-order contributions. Additionally
we show a recurrence formula to transform any num-
ber of covariant derivatives between Jordan and Einstein
frames. An important point to notice is that the quanti-
ties appearing in the EFT are symmetric and trace free
(STF). In this section we do not project the covariant
derivatives onto their SF'T part, but that does not change
the rationale of the calculations.

We start with the transformation of the covariant
derivative. Using

1F 1F 1
fu= 5 F0u0 = 5 yg0ue = 00up = B, (A30)

we can express (A7) in terms of the scalar dipolar tidal
field as

T, =T\ —a (255AE§) - g;ﬁ,\ES“> . (A31)
where indices between parenthesis are symmetrised.
Therefore, when transforming a covariant derivative we
will have, schematically,

V=V ta(s E®—gEs) . (A32)
As the tidal action involves terms quadratic in covariant
derivatives we use

(VE)? = (V*E)* + o’cppE°Es” + acgp,(V*E)EEs
(A33)

with cgg and cgpy coeflicients containing Dirac deltas
and metrics, and E a generic, i.e. scalar or tensor, tidal
field. Given that each tidal field Ep scales as powers
of 1/r, the terms proportional to «a will always be of
higher order than the first term at large separations, and
are therefore suppressed in the EFT. In the following
subsections we will see how this is the case explicitly for
both the scalar and tensor tidal fields.

a. Scalar field

We start with the scalar field. Since for ¢ = 1 the
covariant derivative reduces to a partial derivative we
will start with the case £ = 2,

v/u/¢ = v,uau(b = a,uazzﬁb - Fzyay(ls . (A34)

Using (A7) and (A21), the second term reads

r7,0,0 = ;z 17, = (2000 = 9787) ] 0 -
(A35)



Additionally, using (A30) we obtain

1

[ 0y6 = == [T = a (200,0,)0 — 91,92"0n) | 020

VA
(A36)

On the other hand, the partial derivative will transform
as follows

1 1
6;LV¢ - ﬁa‘uu@ + 8#908,, (ﬁ)
1

A/
= ﬁ |:6HVS0 — W&;Aﬁay(p] s (A37)

where we have used that
1 d 1 A
ol — ) = — =) =——=0,0.
» (ﬂ) e (ﬂ) ans/2ya ¥
(A38)

Putting all together, the £ = 2 covariant derivative acting
on the scalar field will transform as

_ 1 * y xR
Vul/¢ - \/K VMVLIO + « (26(May)gp g;,ujg* (9,.4,0) 8"/(10
!/
_ W@,ﬁp&,ap} . (A39)

However, given that the second and third terms are pro-
portional to Es® = (dy)?, they will yield higher order
terms in the action. This is because the tidal action will
read, schematically

1 * * v
(V) =5 [(V'9)? + comy (V7o) BSES

+ oy ESES E4ES]
1

AV +0(Es%)

(A40)
with cgps and cg, gy coefficients containing factors of «
and A. Therefore, given that we only have to consider
the first term, for generic multipolar order we will have

1
Vip=—=Vio+..., A41
L¢ \/Z LY ( )
where 7...” denotes high-order terms in the EFT that

are therefore omitted in the Einstein frame.

b. Tensor field

For the tensor (gravitational) tidal field, we will start
with the case £ = 2,

1
E;u/ = *C/uxvﬁuauﬁ )

. (A42)
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with 2 = \/=u,u” and Cpav3 the Weyl tensor. Using
that the (3,1) Weyl tensor is invariant under conformal
transformations,

1 * * 1 *
C#QVB = gﬁ’YC,uow’Y = @gﬁ'ycuav’y = @ navp (A43)
we obtain
1
By = =5—5CrosQusul = E7,, . (A44)

022 #

Therefore, the £ = 2 tidal tensor is invariant under con-
formal transformations. We now consider the case ¢ = 3,
E =V E, . (A45)

Similarly to the scalar case, the covariant derivative reads

Vo Eu = 0,E,, —T°,,Es, — T, E,, (A46)
Using (A7) and (A44) we obtain
VB, =V:E,
+3a [ETaBE% — GlapB)e9s BS }
+ a[E;BEf +gzﬁEf;€g£5Egg} . (A47)

In analogy with the scalar case above, all terms except
the first one will yield higher-order contributions in the
action that are suppressed in the EFT,

EL=Ei+..., (A48)

”

where, as above, ”...” denotes high-order terms sup-

pressed in the EFT.

c. Recurrence relation for generic £

In general, for any multipolar order L, we can find
a recurrence relation for computing the L-th covariant
derivative,

VLEO(ﬁ ZVZEL—la,B + fo
(¢-1)

ngkaﬁEuL—l)gggﬁan@

X |:E(L—1a,88p,)50 -

+a(l-2) [EL,MB(C),LQO

(4-1)
2

+ (A49)

9inp Pr—1)ue S 0ntp|
where V, F_1,3 = Eog and E_145 = 0. This expression
is valid for any symmetric tensor E,3 and can be used
for the scalar tidal field as well, given that Eflaﬁ = E%.
Note that the first term does not contain an asterisk.
This would be the case for £ = 0,1 since E,, = E},,. For
the other cases one has to substitute the expression for
the (¢ — 1)-th tidal field. This will yield derivatives of
the second term, which will eventually be expressed as a



combination of the ¢-th tidal field in the Einstein frame
and its derivatives. With this generic expression we can
also reason, similarly to all the cases above, that

Ep=E; +... (A50)
where ”...” denote terms that give higher order contri-
butions to the EFT. This recurrence relation can be used
in order to speed up the computation of any number of
covariant derivatives using e.g. Mathematica.

3. Tidal deformabilities

We start with the tidal action in the Jordan frame
given in (3.9). In the full theory describing an isolated
body, we use coordinates such that the background space-
time is asymptotically flat. Therefore, we will adapt
these coordinates in the EFT for consistency. As ex-
plained in Appendix C, demanding an asymptotically flat
spacetime in the Jordan frame requires a re-scaling of the
coordinates such that

di" = A(pso)dzt | (A51)

which implies
Vi = Alpso)' Vi . (A52)

For the rest of this appendix we will adopt these coordi-
nates and drop the tilde. Transforming the line element,
four-velocities and tidal fields using (A29), (A41) and
(A48) we obtain

Suan =3 [ do = gE7(4/4)1
L

A parper o M paspus , N porpes
(A53)

where
Ass = A(p0), (A54)

and we use a similar notation for any other function of ¢
evaluated at infinity. From (3.10) with (2.2) we have

Vi £
gLP _ H glnpn _ A72€ H ginpn — A*QngP ) (A55)

n=1 n=1

Comparing with the tidal action in the Einstein frame
in (3.12) we read off that the coefficients of the bilinears
in the tidal fields are related by

A= AT (A56)
2g = AXTTANS (A57)
AT = A ANST (A58)
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with A = A/A,, and

/ 2

Ky w(9)
~ .

R oF (A59)

We can also rewrite these expressions in terms of a. Us-
ing (2.8) and assuming o # 0,

F/ 2 A2F/ 2
A= = A
<2Fa) ( 20 ) ’ (460)
and therefore

A= AT (A61)

A20-1 g2 .
A= T/\fzs ; (AG2)

A20-1 p2

)\?T = TXEST ) (A63)

where F’ can be expressed in terms of A(p) for a spe-
cific F(¢). Note that coefficients in front of A} have to
be evaluated at infinity. This is because the tidal and
multipole moments, or equivalently the tidal deformabil-
ity, are extracted at infinity (3.14). This leads to the
relations

M= N7 (A64a)
A2 F' 0\
£\ = (;Oa) AS (A64b)
A2 F!
AT = %A}‘ST : (A64c)

a. Faxplicit example

To give an explicit example of the application of the
transformations (A64) we consider the coupling function
F(¢) = ¢™. In this case we have

n

n—1 —1
F/:n¢n71 =nF = :nA72 noo

(A65)

and substituting into (A64) leads to the result for gen-
eral choices of n. For the case n = 1, corresponding
to Jordan-Brans-Dicke gravity, and additionally choosing
Alpso) = e3#%%  and hence a(Poo) = —Ppoo, relevant
for spontaneous scalarization, we obtain

M=xT (A66)
282
S _ € > xS
Al —m/\e ; (A67)
Bea
)\ST - _ € *ST A
== g (AGS)

Appendix B: Just coordinate system

In this section we review the Just coordinate system
and provide some explicit derivations missing in the lit-
erature. This coordinate system was introduced by Kurt



Just [92] and later used by Damour and Esposito-Farese
[49, 51, 52]. The Just coordinate system is useful be-
cause it provides a closed-form solution for the back-
ground scalar field. This solution is given in terms of two
constants, which correspond to physical quantities such
as the mass or the charge. We will derive the vacuum
TOV equations and explicitly perform the matching to
the surface of the star, which will allow us to compute the
value of the scalar field at infinity and its scalar charge.

1. Metric functions and scalar field

The metric in the Just coordinate system reads
ds? = —e"dt® + e Vdp® + e*VdO? . (B1)
In vacuum, the Einstein Field equations read

e e

Gtt:,u"—,u/l/—e_“—u”—i- I +§062:0;
(B2a)
V/Q _ 12
Gpp=e "+ 4 £+ 8062 =0, (B2b)
Goo = 21" + //2 +/7 4 4@62 =0. (B2c)

We can now take combinations of the different compo-
nents in order to solve for the metric functions. In par-
ticular,

7—Gtt—Gpp:V”+/J/l//:0,

2
G
% —2Gp, = 2"+ " =0,

From (B3b) we obtain

(B3a)

(B3b)

4= log [—% +(co+ p)ﬂ = log [,02 <1 - ZH , (B4)

where in the last step we choose the integration constant
c1 = 4c5? and redefine co = —a/2. Plugging this solution
into (B3a) and solving for v yields

y:k1+k210g(1—a> :blog<1—a> . (B5)
a P a p

where we have redefined k; = b and set k; = 0 by de-
manding asymptotic flatness.

Now that we solved for the metric functions we can
solve the background scalar field. Its vacuum equation
of motion in the Just coordinate system reads

o + 1oy = e (ppet) = 0. (B6)
Substituting (B4) and integrating yields

b d
@o:b1+210g(1—a>:soooo+1og(1—a) ;
a p a p

(B7)
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where we have redefined by = d and b; = @ is the value
of the scalar field background at infinity. Finally, we can
substitute all the solutions into (B2c¢) and find that the
constants obey

a? = b* 4+ 4d* . (BS)

2. Relating the constants to physical quantities

In order to relate the constants to some known physical
quantities we can start by relating the Just coordinate
system to the standard Schwarzschild coordinates,

ds? = —e’dt* + 'dr? + r?dQ? . (B9)

By comparing the metric functions we obtain the follow-
ing relations

(B10a)

,
-2
(055 o (3).
p 2p p p
TerO(pl/z,l) :

P

it follows that b = 2M, with M the point-particle or
ADM mass. Similarly, comparing the scalar field at in-
finity

— . M 1
SOO(T)*SDOOO r +O<,r,2> )

d 1
=40 (1)

p p?
implies d = ¢M = ¢b/2, where ¢ = —Q/M is (minus)
the scalar charge @ per unit mass. Using (B8) we obtain

a = by/1+ ¢2. To summarize, the relation between the
constants and the physical quantities are

b=2M, (Blla)
d _q

a1 Bllb
I_q (B11D)
%: 112 (Bllc)

3. Obtaining the constants by matching at the
surface.

We can use the relation between the constants and the
physical quantities, together with the relations between



the coordinate systems, in order to extract the scalar
charge per unit mass, the value of the scalar field at in-
finity and the ADM mass from the metric components
evaluated at the surface of the star.

We start with the charge. Using (B5) we can write
(B7) as

d
() = @ose + 3 v(p) -
Taking a derivative and using (B11b) yields

~ 2¢0(p)  2¢pp(r)
=) - V6 (B12)

V(1)
where we have changed coordinates in the last step. In or-
der to compute the ADM mass in terms of surface quan-
tities we first have to relate the metric function v and the
surface radius in the two coordinate systems. In order to
obtain the relation between the radial coordinate at the
surface we can take a derivative of v w.r.t the radial co-
ordinate r. For that, it may be useful to rewrite v using

(B10a),
v(p) = a2_bb10g (;) :

Taking a r-derivative and evaluating at the surface r = R
yields

, 2b

Vg= ——— |

% R(2ps —a—b)
with v/ = dv/dr and the subscript S denotes the quantity
evaluated at the surface. Hence, the relation between
radial coordinates at the surface reads

a+b b

+ =

2 Rug

g = (B13)

We can now use this equation in order to compute the

relation between v evaluated at the surface in the two
coordinate systems

b a b 14z
yg:y(ps):alog(l—ps> :_abg(l—x)

= fzbarctanh(z) = fzbarctanh (a/b) ,

a a 1+ R?/s
(B14)
where in the second equality we have rewritten the argu-
ment in the logarithm in terms of z = b(%;i,s) and used

a trigonometric identity in the third equality. Next, we
use equation (B10b) with (see (4.10))

) (1 _ 2”1(7’)) B

evaluated at the surface in order to derive
9 b

-z T\ Y vs/2p2,,/
a Q2R2ug2 [ng(Rus 2)* —4e¥s/“Rvg|
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where, following [52], we define Q3 = /1 — 2mg/R, with
mg the mass at the surface of the star. Substituting
the expression for a above into (B10a) evaluated at the

surface
1/2
R=¢7"/2pg (1— a) )
pPs

together with (B13), yields

b=2M = e"s/2Qy R (B15)
and hence,
b 1 vs/2 2 7
d= a5 = 3¢ 5/2QaR*¢((R) , (B16)
— b 1 2 l/s/2 R2 / 1 4906(R)2 B17
a=by1+qg*>=ce Q2R*vg +T~ ( )

To the best of our knowledge the relations between d
and a and the star’s quantities at the surface have not
yet appeared in the literature. We can use these results
to relate the value of the scalar field at infinity with its
value at the surface,

©o(R)

!
Vg

$o00 = Po(R) — Vg . (B18)

To sum up, the charge per unit mass, the scalar field
at infinity and the ADM mass are related to the surface
quantities in the Schwarzschild coordinates by

206(R
g= 2008 (B19)
14
5
/
R
e = co(B) - 2 ()
Vs
1
M = —e"s/2Qy RV (B21)
with
2 V1 2
vg = —————arctanh 7—1-2(] . (B22)
1+ ¢2 1+ R

Appendix C: Relating physical quantities between
frames

In this section we re-derive the transformations of the
ADM mass and charge between Jordan and Einstein
frames presented in [47, 49]. From [93-97], and assuming
the common normalisation K4 = Kg, the ¢-dependent
gravitational constant measured in experiments G(¢so),
such as those by Cavendish, is related to the gravitational
constant G appearing in the normalisation coefficients by

: 1 [ 4F (foo)? + 25 =)0
G(ge) = > G, (C1
)= Flow) <3F’(¢oo)2+2F§jfjwoo ()



where the subscript co means evaluation at infinity. Us-
ing (A25) and (2.8) we can rewrite it as

2Kn
aOO
K@

Glom) = Alpn)? (14 5002 ) 6 (c2)
hence generalising the different normalisations in the lit-
erature. With the normalisations and coupling chosen in
Sec. IV we have

Clpoo) = 7% (14 5%0%) G . (C3)

1. ADM mass

In order to relate the ADM mass between frames we
can compare the r — r component of the metrics at in-
finity. However, from (A24), we see that, at infinity

ds? = Az(gpoo)nzudx“dm” , (C4)

given that we demand asymptotic flatness in the Einstein
frame (see Section IV). Therefore, in order to obtain a
Minkowski spacetime at infinity in the Jordan frame we
must rescale our Jordan frame coordinates by a constant

dit = A(poo)da" (C5)

such that 7 = A(p)r. With these rescaled coordinates
we can write the Jordan metric at infinity in terms of the
Einstein metric at infinity as

Ap)? 1
_ 2 %
9re = APV 9 = 0, 3 ] ZAemGm

2A4(e=)0 (M - Qa) +<; (1> . (C6)

with M the ADM mass (B21) and @ the scalar charge
in the Einstein frame. Comparing with the Jordan frame
metric at infinity

2G M. 1
grr =1+ N"+O(~2), (C7)
7 7
with M; the ADM mass in the Jordan frame, yields
M — Qase M (1 + gaso)
MJ = = 5
Alpoo) (14 2202,)  Alpoo) (1+ ZERa2, )
(C8)
with ¢ = —Q/M (minus) the charge per unit mass.

Again, using the normalisations and coupling function
of the main text we obtain

_15p2. 1 —qPy
M; = Me 25WWW7 (C9)

in agreement with [49]. Ignoring the terms quadratic in
Yoo We Tecover the result of [47],

My = e™39%% (M + Bpw) - (C10)
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2. Scalar charge

In order to transform the scalar charge we can use
(A21) and (A28) in order to write

1 F’
au(b = ﬁ@ug@ = ﬂ@u(p .

Using that, at infinity,

G 1
b=+ 222+ 0 (2) : (Clla)
7 7
G 1
$0 =Poco T+ 762 +0 <2> , (C11b)
T T
we have, at zero-th order in 1/r,
GQ F.. GQ,drF
T fToo o 192
r? 2F ooioe T2 dr’ (C12)
and therefore
20éoo G 2O[oo
@r = Ay )EQ B 3 TR
With our normalisations we have
_ 2B¢s0 — 2 B2
Q-G (o)

Note that here we define the coefficient in front of 1/r
in (C11) with the explicit factors of G' and G. However,
in the literature this might vary, but then one has to
take into account the proper dimensionality of a.,, which
with our normalisations is dimensionless. If we ignore the

factors of GG, then we recover the same expression as in
[47],

GQ; = —2Bpae 2%GQ . (C15)
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Appendix D: Plots of the dimensionless quantities A, and k/
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FIG. 13. Dipolar scalar adimensional tidal deformabilities A7 in the Einstein and Jordan frames for three equations of
state (WFF1, SLy and H4). The dashed and dot-dashed lines are the scalarized configurations with 8 = —4.5 and 8 = —6,
respectively. For = —6 we have omitted the data beyond the maximum mass configuration for better readability. The bottom
plots are zoomed with respected to their top counterparts. All plots correspond to a scalar field at infinity @ = 1073,
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FIG. 14. Dipolar scalar Love number ki in the Einstein and Jordan frames for three equations of state (WFF1, SLy and
H4). The dashed and dot-dashed lines are the scalarized configurations with 8 = —4.5 and 8 = —6, respectively. For f = —6
we have omitted the data beyond the maximum mass configuration for better readability. The bottom plots are zoomed with
respected to their top counterparts. All plots correspond to a scalar field at infinity @oeo = 1075,
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FIG. 15. Quadrupolar tensor adimensional tidal deformabilities A in the Einstein and Jordan frames for three equations
of state (WFF1, SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines
are the scalarized configurations with 8 = —4.5 and § = —6, respectively. Both plots correspond to a scalar field at infinity
Pooo = 1073,
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FIG. 16. Quadrupolar scalar adimensional tidal deformabilities A5 in the Einstein and Jordan frames for three equations
of state (WFF1, SLy and H4). The dashed and dot-dashed lines are the scalarized configurations with 8 = —4.5 and 8 = —6,
respectively. Both plots correspond to a scalar field at infinity poeo = 1073,
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FIG. 17. Quadrupolar scalar-tensor adimensional tidal deformabilities A5T in the Einstein and Jordan frames for three
equations of state (WFF1, SLy and H4). The solid lines represent the GR configurations 5 = 0 and the dashed and dot-dashed
lines are the scalarized configurations with § = —4.5 and § = —6, respectively. The bottom plots are zoomed with respected

to their top counterparts. All plots correspond to a scalar field at infinity @oeo = 1073,
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FIG. 18. Quadrupolar tensor Love numbers ki in the Einstein and Jordan frames for three equations of state (WFF1,
SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines are the scalarized
configurations with 8 = —4.5 and 8 = —6, respectively. Both plots correspond to a scalar field at infinity ¢oeo = 1075.
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FIG. 19. Quadrupolar scalar Love numbers k5 in the Einstein and Jordan frames for three equations of state (WFF1,
SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines are the scalarized
configurations with 8 = —4.5 and 8 = —6, respectively. The bottom plots are zoomed with respected to their top counterparts.
All plots correspond to a scalar field at infinity o = 1073,
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FIG. 20. Quadrupolar scalar-tensor Love numbers k57 in the Einstein and Jordan frames for three equations of state
(WFF1, SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines are the
scalarized configurations with 3 = —4.5 and § = —6, respectively. Both plots correspond to a scalar field at infinity @ = 1072,



3. Octupolar ¢/ =3

Einstein frame (p‘,<,=10‘3

Jordan frame (p‘,c,=10'3

34

6000 6000
5000 ] 5000
4000 ] 4000
. 3000 1, 3000
< <
2000 ] 2000
1000 : 1000
0 0
0.5 1.0 15 2.0 25 05
M/M,,

2.5

FIG. 21. Octupolar tensor adimensional tidal deformabilities Al in the Einstein and Jordan frames for three equations
of state (WFF1, SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines
are the scalarized configurations with 8 = —4.5 and 8 = —6, respectively. Both plots correspond to a scalar field at infinity
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FIG. 22. Octupolar scalar adimensional tidal deformabilities A5 in the Einstein and Jordan frames for three equations
of state (WFF1, SLy and H4). The dashed and dot-dashed lines are the scalarized configurations with 8 = —4.5 and 8 = —6,
respectively. Both plots correspond to a scalar field at infinity @ooo = 1073,
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FIG. 23. Octupolar scalar-tensor adimensional tidal deformabilities A5T in the Einstein and Jordan frames for three
equations of state (WFF1, SLy and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed
lines are the scalarized configurations with 8 = —4.5 and § = —6, respectively. The bottom plots are zoomed with respected

to their top counterparts. All plots correspond to a scalar field at infinity @oeo = 1075.
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FIG. 24. Octupolar tensor Love numbers ki in the Einstein and Jordan frames for three equations of state (WFF1, SLy
and H4). The solid lines represent the GR configurations 8 = 0 and the dashed and dot-dashed lines are the scalarized
configurations with 8 = —4.5 and 8 = —6, respectively. Both plots correspond to a scalar field at infinity oo = 1075.
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FIG. 26. Octupolar scalar-tensor Love numbers k57 in the Einstein and Jordan frames for three equations of state (WFF1,
SLy and H4). The solid lines represent the GR configurations 5 = 0 and the dashed and dot-dashed lines are the scalarized
configurations with 8 = —4.5 and 8 = —6, respectively. Both plots correspond to a scalar field at infinity @oeo = 1075.
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Appendix E: Comparison with Brown 2022

In Figure 27 we show the absolute relative difference (ARD),

ARDU/T) — | 22

)\* (S/T) _ A2Brown(S/T)

(E1)

with Aprown(3/7)

I ’

the quadrupolar tidal deformability from [48] computed setting the source terms in (4.25) and (4.26)

to zero, fs = 0 = g,. In particular, the ARD for the tensor tidal deformability is at most 4% for 8 = —4.5 and 26% for
B = —6. For the scalar tidal deformability the ARD is at most 18% for 8 = —4.5 and 35% for 8 = —6. This implies
that neglecting the source terms can introduce noticeable inaccuracies into the scalar and tensor tidal deformabilities

in some regions of the parameter space.
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FIG. 27. Absolute relative difference between the tensor (left) and scalar (right) quadrupolar tidal deformabilities computed
with and without setting the source term in the perturbation equations of motion to zero. The mass is the ADM mass in the
Einstein frame. We consider three equations of state (WFF1, SLy and H4) and the dashed and dot-dashed lines are the
scalarized configurations with 8 = —4.5 and 8 = —6, respectively. We set a scalar field at infinity pooo = 1072,
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