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A major science goal of gravitational-wave (GW) observations is to probe the nature of gravity and
constrain modifications to general relativity. An established class of modified gravity theories are scalar-
tensor models, which introduce an extra scalar degree of freedom. This affects the internal structure of
neutron stars (NSs), as well as their dynamics and GWs in binary systems, where distinct novel features can
arise from the appearance of scalar condensates in parts of the parameter space. To improve the robustness
of the analyses of such GWevents requires advances in modeling internal-structure-dependent phenomena
in scalar-tensor theories. We develop an effective description of potentially scalarized NSs on large scales,
where information about the interior is encoded in characteristic Love numbers or, equivalently, tidal
deformabilities. We demonstrate that three independent tidal deformabilities are needed to characterize the
configurations—a scalar, a tensor, and a novel “mixed” parameter—and develop the general methodology
to compute these quantities. We also present case studies for different NS equations of state and scalar
properties and provide the mapping between the deformabilities in different frames often used for
calculations. Our results have direct applications for future GW tests of gravity and studies of potential
degeneracies with other uncertain physics such as the equation of state or presence of dark matter in NS
binary systems.

DOI: 10.1103/PhysRevD.108.124073

I. INTRODUCTION

Binary systems of compact objects such as neutron stars
(NSs) or black holes are key sources of gravitational waves
(GWs). The GW signals depend in a very specific way on
the parameters of the system, for example, the masses,
spins, and eccentricity [1,2]. Furthermore, GWs also
contain unique information on the fundamental physics
of strong-field gravity and the interior composition of
compact objects [3–5]. Among the GW signatures that are
especially sensitive to the nature and internal structure of
the objects are tidal effects. The dominant adiabatic effects
are parametrized by a tidal deformability, or Love number,
which characterizes the body’s response to a tidal field [6].
This is familiar from Newtonian gravity, where, for the
same applied tidal field, a body will deform differently
depending on its composition or equation of state (EOS),

which in turn impacts its exterior gravitational potential. A
relativistic generalization of these concepts [7–11] under-
pins gravitational-wave tests of the nature of compact
objects [12–17] and ways to search for dark matter
signatures [15,18–28]. The most prominent role of tidal
effects is for GW probes of the EOS of nuclear matter at
high densities in NSs [4,29–31], which at present and
despite recent progress from multimessenger observations
[32–40] remains among the major future science goals of
nuclear astrophysics [41–43].
The tidal deformability associated with a matter con-

figuration further depends on the theory of gravity [44–46].
This has, for instance, been used jointly with multimes-
senger data to set unprecedentedly stringent constraints on
higher-curvature extensions of general relativity [47].
Recent work has also demonstrated the use of tidal
deformability to constrain scalar-tensor theories [48,49],
which introduce an extra scalar degree of freedom. The
presence of the scalar field gives rise to a rich phenom-
enology, for instance, depending on the parameters of the
theory and properties of the NS, scalar condensates may
form in and around NSs either in isolation [50–55] or
dynamically during an inspiral [56–58]. At large separa-
tion, the most striking effect in such inspiraling binaries is
that they radiate dipolar scalar waves, in addition to GWs,
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which accelerates the inspiral. However, the dipole emis-
sion may be degenerate with tidal effects [59,60]. Hence it
is necessary to work out accurate predictions for the strain
that would be observed in GW detectors for specific
gravity theories, including effects such as tides, although
they might be expected to be small effects compared to
scalar dipole radiation. However, tidal phenomena in
scalarized systems include not only gravitational tides
but also scalar tidal phenomena, where the scalar con-
densates respond to the gradients of the companion’s scalar
field across the matter distribution, which leads to further
distinctive GW imprints [61,62]. In this paper, we advance
the description of tidal effects during the inspiral of
compact binaries when the gravitational theory is modified
by an additional scalar field. This complements calcula-
tions for the binary dynamics and radiation to higher
orders in post-Newtonian theory [63–69]. However, while
the post-Newtonian approximation is a weak-field expan-
sion, tidal effects crucially depend on the strong-gravity
regimes inside and around the compact object, among
other properties such as the uncertain EOS. In particular,
we demonstrate the importance of accounting for the
details of the coupling between scalar and tensor modes
in the strong-field regime.
Specifically, we reexamine the identification and numeri-

cal calculation of the various tidal deformability parameters
from the perspective of an effective or skeletonized action
description whereby the object is reduced to a worldline
augmented with multipole moments. Such an effective
description underpins computations of the dynamics and
GWs in the post-Newtonian approximation. The coeffi-
cients appearing in the effective action must be carefully
matched to the tidal response of a relativistic compact
object, which we consider to linear order. That is, the tidal
coefficients are extracted from linear perturbations of fully
nonlinear solutions for the isolated stationary compact
object, depending on both the EOS and strong-field
modification of gravity. Here, we establish the methodology
for facilitating this connection for scalarized configurations,
showing that it involves three different deformabilities. We
demonstrate how these are extracted from the perturbative
information for the case of NSs in scalar-tensor theories. We
also provide the mapping of these quantities between two
frames commonly used in the calculations: the Jordan
frame, where matter couplings to the metric are as in the
standard model, but the equations of motion for perturbed
compact objects are highly complex, and the Einstein frame,
obtained after a conformal transformation and more con-
venient for calculations.
This paper is organized as follows. We introduce scalar-

tensor theories in Sec. II, where we distinguish between
Jordan and Einstein frames and provide the equations of
motion. In Sec. III we provide the effective action for
compact objects in scalar-tensor theories at orbital scales.
In particular, we introduce a novel tidal deformability

parameter needed to characterize the object’s multipole
moments. This introduces subtleties for the numerical
extraction of multipolar and tidal moments. In Sec. IV we
address such subtleties and show how to extract the
information needed to compute the tidal deformabilities.
In Sec. V we apply the framework to scalarized neutron stars
and obtain the tidal deformabilities for configurations with
different masses, radii, and scalar charges. Section VI
summarizes our methodology and main findings and
Sec. VII contains the conclusion. Additional technical details
are delegated to several Appendixes, with Appendix A
providing all the derivations relevant for the effective action
and Appendixes B and C giving rederivations and reviews of
relevant calculations in our notation and conventions.
Finally, Appendix E includes plots of the dimensionless
Love number coefficients and the adimensional tidal deform-
ability parameter commonly used in data analysis for
different multipolar orders l ¼ 1; 2; 3.
The notation and conventions we use are the following.

We denote spacetime quantities by greek letters α; β;… and
spatial components by latin indices i; j;…. We use ∇μ to
denote the covariant derivative and ∂μ for the partial
derivative. Capital letter super- and subscripts, with the
exception of the labels T, S, and ST, denote a string of
indices on a symmetric and trace-free (STF) tensor (see,
e.g., [70] for more details). For instance, for a unit three-
vector ni, the STF tensor nL¼2 ¼ ninj − 1

3
δij, where δij is

the Kronecker delta. We adopt the Einstein summation
convention on all types of indices, i.e., any repeated indices
are summed over. Throughout the paper, we use units
where G ¼ c ¼ 1 unless stated otherwise.

II. SCALAR-TENSOR THEORIES

In this section, we briefly review the basics of scalar-
tensor theories of gravity. The action is given by

SðJÞST ¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
KRFðϕÞR−Kϕ

ωðϕÞ
ϕ

∂
μϕ∂μϕ−VðϕÞ

�
þSmatter½ψm;gμν�; ð2:1Þ

where ϕ is a scalar field, ωðϕÞ is its self-coupling, and
VðϕÞ is a potential. The scalar field is coupled to the Ricci
curvature scalar R via a field-dependent function FðϕÞ and
KR and Kϕ are normalization constants.1 Throughout the
paper, we set VðϕÞ ¼ 0. The matter action Smatter is a
functional of the matter fields ψm and metric gμν. The
action (2.1) is formulated in the so-called Jordan frame.
Performing a (local) conformal transformation

gμν ¼ AðφÞ2g�μν ð2:2Þ

1We keep the normalization generic here to encompass differ-
ent choices in the literature.
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transforms the action to the so-called Einstein frame (see
Appendix A for a detailed derivation). Here, we denote the
metric in the Jordan frame by gμν and that in the Einstein
frame by g�μν.

2 In the Einstein frame, (2.1) becomes

SðEÞST ¼
Z
M

d4x
ffiffiffiffiffiffiffiffi
−g�

p
½KRR� − Kφg

μν
� ∂μφ∂νφ�

þ Smatter½ψm; A2ðφÞg�μν�: ð2:3Þ

Here Kφ is the normalization constant of a new scalar field
φ, defined by

dφ
dϕ

¼
ffiffiffiffi
Δ

p
; ð2:4Þ

∂αϕ ¼ 1ffiffiffiffi
Δ

p ∂αφ; ð2:5Þ

with

Δ≡ 3

2

KR

Kφ

�
F0

F

�
2

þ Kϕ

Kφ

ωðϕÞ
ϕF

: ð2:6Þ

The action (2.3) is the action of a free scalar field φ that is
decoupled from the Ricci scalar. The field-dependent matter
action in the second line of (2.3) indicates that this trans-
formation has led to a coupling between the scalar field φ
and matter through the conformal factor AðφÞ, which is
related to coupling function FðϕÞ in (2.1) by

AðφÞ ¼ exp

�
−
Z

dφ
F0

2F
ffiffiffiffi
Δ

p
�
; ð2:7Þ

where a prime denotes a derivative with respect to the
argument, F0 ¼ dF=dϕ. Analogously, we define3

αðφÞ ¼ −
1

A
dA
dφ

¼ F0

2F
ffiffiffiffi
Δ

p ; ð2:8Þ

where all the quantities are understood as functions of
the Einstein frame field φ. The equation of motion for the
metric and the scalar field in the Einstein frame are then
given by

G�
μν ¼

1

2KR
T�
μν þ

Kφ

KR
T�φ
μν ; ð2:9aÞ

□φ ¼ 1

2Kφ
αðφÞT�; ð2:9bÞ

where

G�
μν ¼ R�

μν −
1

2
g�μνR� ð2:10Þ

is the Einstein tensor in the Einstein frame, i.e., correspond-
ing to the Einstein frame metric g�μν,

T�φ
μν ¼ ∂μφ∂νφ −

1

2
g�μν∂�γφ∂

γ
�φ ð2:11Þ

is the scalar field energy-momentum tensor,

T�μν ¼ 2ffiffiffiffiffiffiffiffi
−g�

p δSmatter

δg�μν
ð2:12Þ

is the matter energy-momentum tensor, and T� ¼ g�μνT�μν

its trace. For practical calculations of compact object
configurations and their perturbations, it is easiest to work
in the Einstein frame and only transform to quantities in the
Jordan frame at the end.
For black holes T�μν ¼ 0 and the scalar equation of

motion (2.9b) becomes sourceless. This leads to the same
solutions as in general relativity (GR) that obey the no-hair
theorem [71,72]. For NSs, however, the matter configura-
tion that entangles the metric and the scalar field that
circumvents the no-hair theorem introduces interesting
phenomena, e.g., depending on the parameters, a scalar
condensate may appear. To describe NSs, we assume the
matter energy-momentum tensor to have a perfect-fluid
form. In the Einstein frame, we parametrize it as

T�
μν ¼ ðp� þ ρ�Þu�μu�ν þ p�g�μν; ð2:13Þ

with the four-velocity uμ� normalized as u�μu
μ
� ¼ −1. From

(2.12) with (2.1)–(2.3), we find that the energy-momentum
tensor in the Einstein frame is related to its Jordan frame
counterpart by

T�
μν ¼ Tμν

δgμν
δg�μν

¼ A2ðφÞTμν: ð2:14Þ

This relation, together with the additional details reviewed
in the Appendix (A5) and (A29), yields the following
relation between pressures and densities:

p� ¼ AðφÞ4p; ð2:15Þ

ρ� ¼ AðφÞ4ρ: ð2:16Þ

We assume that the equation of state of the cold NS matter
p ¼ pðρÞ is given in the original Jordan frame, where only
the gravitational sector is modified, while the description of

2For convenience, we will place the asterisk wherever the
indices are not placed, for example, g�μν ¼ gμν� .

3Note the minus sign in front of 1=A. Depending on the
different conventions in the literature, this parameter may be
defined with a plus sign instead of a minus sign. For our purposes,
the minus sign is more convenient for the transformations
between frames.
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subatomic matter according to the standard model of
particle physics remains unaltered. Thus, to obtain the
energy-momentum tensor in the Einstein frame, we use the
relations above, (2.15) and (2.16), to obtain

T�
μν ¼ AðφÞ4½ðpþ ρÞu�μu�ν þ pg�μν�: ð2:17Þ

In the Jordan frame, the energy-momentum tensor is
conserved. In the Einstein frame, transforming the covar-
iant derivative using (A7) (see also Appendix D of [73]),
the equation for energy-momentum conservation in the
Einstein frame reads

∇μ
�T�

μν ¼ −αT�
∂νφ: ð2:18Þ

The system of equations (2.9a) and (2.9b), together with
choices for the coupling and EOS, will be used in Sec. IV to
compute NS configurations and their response to pertur-
bations in scalar-tensor theories.

III. EFFECTIVE ACTION

We first analyze the above system of equations of motion
to identify the connection between information on a
perturbed NS and quantities impacting the orbital dynamics
in a binary system. We consider nonspinning binaries at
large separation, where there is a hierarchy of scales
between the size of the objects, the orbital separation,
and the wavelength of GWs. Here, in the case of scalarized
NS configurations, the size of the objects includes the
scalar condensate, which extends to much larger distances.
Nevertheless, during the early inspiral at large separation,
this setting is still amenable to an effective field theory
(EFT) description, where the model for the binary at scales
larger than the size of the bodies is obtained by integrating
out the internal degrees of freedom. At the most coarse-
grained order, each body reduces to a worldline, which is
then augmented by information on its interior contained in
effective (or Wilsonian) coefficients. This is often referred
to as the skeletonization of the body [74].
An example of such a connection in the context of

adiabatic tidal effects in general relativity is the following.
When considering linearized perturbations to a compact
object, the time-time component of the metric g00 can be
written in terms of an effective potential UN , whose
asymptotic behavior at spatial infinity in coordinates whose
origin is at the center of mass of the object reads

lim
r→∞

UN ¼− lim
r→∞

g00þ1

2
∼
M
r
þ
X∞
l¼2

ð2l−1Þ!!
l!

QLnL

rlþ1
: ð3:1Þ

Here, each term of the series corresponds to a correction
to a point particle, encoded in the multipole moment
QL, contracted with STF multilinears of unit vectors nL.
Similarly, in the relativistic skeletonization approach from

the EFT, we can describe a body as a worldline corre-
sponding to a point particle, plus corrections containing
information about size effects, spin-orbit couplings, etc.
Such considerations lead to an effective action of the form

SEFT ¼ Sg þ Spm þ Stidal þ…; ð3:2Þ

with Sg the underlying gravitational action and Spm the
action of a point mass. Focusing only on size effects,
analogous to (3.1) the EFT reads

SEFT ¼ Spm þ
X∞
l¼2

Z
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p λl
2l!

ELEL; ð3:3Þ

with σ a worldline evolution parameter, uμ ¼ dxμ=dσ the
four-velocity, EL an external tidal field, and λl the tidal
deformability, defined as the ratio between the induced
multipole moment and the tidal field,

QL ¼ −λlEL; ð3:4Þ

related to the Love number kl by

kl ¼ ð2l − 1Þ!!
2

λl
R2lþ1

; ð3:5Þ

with R the radius of the star. In this study we focus on static
size effects and, in particular, on electric-type perturba-
tions (also called even or polar) of the form of (3.3),
although the framework can also be applied to magnetic
(odd or axial) perturbations in the case of dynamic tides
[75]. We give the EFT in both Jordan and Einstein frames,
and the transformation between them. As in the full theory,
we take advantage of the conformal transformation in
order to match the EFT coefficients in the mathematically
simpler Einstein frame. By using the transformations
between frames, we then relate the Jordan and Einstein
frame EFT coefficients and obtain all our coefficients in
terms of Einstein frame quantities. Although we focus here
on scalar-tensor theories, the methodology and framework
can be applied to other contexts such as generalized scalar-
tensor theories [76].

A. Effective action in the Jordan frame

In the class of scalar-tensor theories considered here, the
effective action in the Jordan frame including the skel-
etonized size effects reads

SðJÞEFT ¼ SðJÞST þ Spm þ Stidal; ð3:6Þ

with the point-mass action [53]
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Spm ¼ −
Z

dσzmðϕÞ; ð3:7Þ

where σ is a worldline evolution parameter and z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p
is the redshift factor. Note that the point-particle

action (3.7) contains a field-dependent mass term. This is
because the binding energy in the Jordan frame depends on
the scalar field and, since the mass is related to the energy, it
is likewise a function of the field [77].
An effective action describing tidal effects in scalar-

tensor theories has been considered previously for the case
of dipolar tides [53,61]. This demonstrated that, in general,
two kinds of tidal fields arise in the system, namely the
scalar (S) and tensor (T) fields defined by

ES
L ¼ PΠ

LE
S
Π ¼ −FP

r→0
PΠ

L∇Πϕ; ð3:8aÞ

ET
L ¼ PΠ

LE
T
Π ¼ FP

r→0
PΠ

L∇Π−2ET
μν; ð3:8bÞ

where

ET
μν ¼

1

z2
Cμανβuαuβ;

with Cμανβ as the Weyl tensor. Here, FP denotes the finite
part of the field evaluated at the worldline r ¼ 0, i.e., the
external, regular field obeying □ϕext ¼ 0. The projection
operator

PΠ
L ¼ Pα1α2…απ

β1β2…βl
¼
YL
l¼1

YΠ
π¼1

Pαπ
βl

¼
YL
l¼1

YΠ
π¼1

ðδαπβl þ uαπuβlÞ;

ð3:9Þ

with PΞ
Πu

Π ¼ 0 projects to the physical degrees of freedom
encapsulated in the STF spatial pieces of the covariant
tensors in the rest frame of the worldline; see, e.g., [78] for
more details. Here, capital greek letters denote strings of
four-dimensional covariant indices, while capital latin
letters from the middle of the alphabet denote their
three-dimensional STF counterparts in the rest frame.
Recall that, here, the letters S, T, and ST are labels rather
than STF indices. Thus, we expect the effective action to
involve corresponding scalar and tensor tidal deformabil-
ities, λSl and λTl characterizing a scalar- or tensor-induced
multipole moment, respectively. However, since the equa-
tions of motion (2.9) are coupled, a scalar tidal field may
also induce a tensor response and vice versa. Thus, we
expect the action to require additional parameters to
distinguish between a scalar response to ES

L or to ET
L

and similarly for the tensor case. Specifically, we find that

these considerations lead to the following form of the tidal
action up to quadratic order in the tidal fields:

Stidal¼
X
l

Z
dσzgLP

�
λTl
2l!

ET
LE

T
Pþ

λSl
2l!

ES
LE

S
Pþ

λSTl
l!

ET
LE

S
P

�
;

ð3:10Þ

where

gLP ¼
Yl
n¼1

glnpn : ð3:11Þ

The last term in the tidal action (3.10) has not been
considered before. It contains a new type of tidal deform-
ability, the scalar-tensor tidal deformability λSTl , and char-
acterizes a scalar/tensor multipole moment induced by a
tensor/scalar tidal field. To better understand the properties
of the scalar-tensor deformability and connect with the
microphysics of tidally perturbed scalarized NS configu-
rations, we work in the Einstein frame, where the scalar
field and the metric are only coupled through matter and the
equations of motion are simpler to solve.

B. Effective action in the Einstein frame

The effective action in the Einstein frame is formally
analogous to that in the Jordan frame (3.6), except that it is
a functional of the Einstein frame scalar field φ and
conformal metric g�μν instead of their Jordan frame counter-
parts ϕ and gμν. Specifically, the effective action is given by

SðEÞEFT ¼ SðEÞST þ SðEÞpm þ SðEÞtidal; ð3:12Þ

with the tidal action

SðEÞtidal ¼
X
l

Z
dσ�z�gLP�

�
λ�Tl
2l!

E�T
L E�T

P þ λ�Sl
2l!

E�S
L E�S

P

þ λ�STl

l!
E�T
L E�S

P

�
; ð3:13Þ

and all quantities such as the tidal fields defined similar to as
in (3.8) with the above-mentioned replacements ðϕ; gμνÞ →
ðφ; g�μνÞ and the connection and curvature quantities
associated with the conformal metric. Although the action
(3.13) is expressed in terms of spatial STF tensors, one can
obtain the covariant version having a similar structure using
the inverse projection operator (3.9).

1. Role of the scalar-tensor deformability

To study the effect of λ�STl we compute the equations of
motion derived from the EFT action (3.12) in vacuum and
far away from the body, where spacetime is nearly
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Minkowski. To derive the equations of motion for the scalar
field, we use the definitions (3.8) and compute the variation

δ

δφ
ðE�S

L EL
�SÞ ¼ FP

r→0

δ

δφ
ð∂Lφ∂LφδðxÞÞ

¼ 2ð−1ÞlFP
r→0

∂Lð∂LφδðxÞÞ
¼ 2ð−1ÞlFP

r→0
½□φδðxÞ þ ∂

Lφ∂LδðxÞ�
¼ 2ð−1Þlþ1EL

�S∂LδðxÞ; ð3:14Þ

where in the second equality we integrated by parts and
in the last equality used that FP

r→0
□φ ¼ FP

r→0
□φext ¼ 0 by

definition. Performing similar calculations for the other
pieces leads to equations of motion in the asymptotic limit
given by

□φ¼m0�ðφ∞Þ
2Kφ

δðxÞ

þ
X∞
l¼1

ð−1Þlþ1

l!2Kφ
½λ�Sl EL

�S∂Lþ λ�STl EL
�T∂L�δðxÞ; ð3:15aÞ

□U�
N ¼ m�ðφ∞Þ

4KR
δðxÞ

þ
X∞
l¼2

ð−1Þlþ1

l!4KR
½λ�Tl EL

�T∂L þ λ�STl EL
�S∂L�δðxÞ;

ð3:15bÞ

where φ∞ is the value of the scalar field at infinity. For the
metric functions, we focus on the 00 component as it
conveniently contains the tidal information. This is because
g�00 is asymptotically related to the potential U�

N similar to
(3.1) in the Einstein frame. In the flat-space limit relevant

here, E�T
L ¼ −∂LU�

N [79,80]. The dominant terms in the
solutions to the equations of motion (3.15) at infinity read

φ ∼
m0�ðφ∞Þ
8πKφr

þ
X∞
l¼1

ð2l − 1Þ!!
l!8πKφ

ð−λ�Sl EL
�S − λ�STl EL

�TÞnL
rlþ1

þ φtidal; ð3:16aÞ

U�
N ∼

m�ðφ∞Þ
16πKRr

þ
X∞
l¼1

ð2l − 1Þ!!
l!16πKR

ð−λ�Tl EL
�T − λ�STl EL

�SÞnL
rlþ1

þU�
N tidal ð3:16bÞ

with

φtidal ¼ −
X∞
l¼1

1

l!8πKφ
EL
�SnLr

l; ð3:17Þ

U�
N tidal ¼ −

X∞
l¼1

1

l!16πKR
EL
�TnLr

l ð3:18Þ

as the homogeneous solutions, corresponding to the exter-
nal tidal fields EL

�S and EL
�T , respectively. Comparing the

solutions with the definition of the multipole moments from
the asymptotic limit (3.1), we identify the induced lth-
order multipole moment from the coefficient associated
with the r−l−1 falloff, which leads to

Q�S
L ¼ −λ�Sl E�S

L − λ�STl E�T
L ; ð3:19aÞ

Q�T
L ¼ −λ�Tl E�T

L − λ�STl E�S
L : ð3:19bÞ

These relations formalize the effect of the scalar-tensor tidal
deformability. Specifically, as seen in (3.19a) and (3.19b),
and illustrated in Fig. 1, λ�STl characterizes the scalar/tensor-
induced multipole moment in the presence of an external

FIG. 1. The scalar and tensor multipole moments consist of two contributions. The first contribution comes from the response to an
external tidal field produced by the same kind of field, scalar or tensor. The second contribution accounts for a multipole moment
induced by the other field, resulting from the coupling between matter and scalar field.
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tensor/scalar field. Using (3.19), we can compute the tidal
deformabilities as

λ�Tl ¼ −
Q�T

L

E�T
L

����
E�S
L ¼0

; ð3:20aÞ

λ�Sl ¼ −
Q�S

L

E�S
L

����
E�T
L ¼0

; ð3:20bÞ

λ�STl ¼ −
Q�T

L

E�S
L

����
E�T
L ¼0

¼ −
Q�S

L

E�T
L

����
E�S
L ¼0

: ð3:20cÞ

This will be useful for identifying the information con-
tained in these parameters from perturbation theory
in Sec. IV.

2. Parity symmetry and λSTl
For generic couplings AðφÞ the EFT presented in (3.13)

is the most generic one. However, depending on the choice
of AðφÞ, additional symmetries may emerge in the action.
An example is parity symmetry, which refers here to the
transformation

φ → −φ ð3:21Þ

and arises for couplings that yield scalarized configura-
tions. However, the term

λ�STl

l!
E�S
L EL

�T ð3:22Þ

in the action is not parity symmetric, since from (3.8)

EL
�T → EL

�T; EL
�S → −EL

�S: ð3:23Þ

To preserve the overall parity symmetry of the action
assumed here requires the scalar-tensor tidal deformability
λ�STl to develop a dependence on the scalar field. This is
because the only term that respects the parity symmetry at
quadratic order in the tidal fields in the EFT is

λ̃�STl

l!
wðφ∞; QÞE�S

L EL
�T; ð3:24Þ

where λ̃ST is the “bare,” i.e., φ∞- and Q-independent
deformability parameter, and wðφ∞; QÞ captures its
dependence on the asymptotic scalar characteristics
ðφ∞; QÞ in a polynomial containing only odd powers of
the scalar charge Q ¼ m0�ðφ∞Þ and the background scalar
field at infinity φ∞. It has the form

wðφ∞; QÞ ¼
X∞
p¼0

cpφ
2pþ1
∞ þ

X∞
n¼0

cnQ2nþ1; ð3:25Þ

where cp;n are constants. This implies that, for parity
symmetric theories, λ�STl will scale with the polynomial
wðφ∞; QÞ,

λ�STl ¼ wðφ∞; QÞλ̃�STl : ð3:26Þ

Note that in GR φ∞ ¼ 0 ¼ Q and hence λ�STl ¼ 0. In
Sec. V we will explicitly compute wðφ∞; QÞ and λ̃�STl for a
class of scalar-tensor theories.

C. Relating tidal deformabilities between frames

Making use of the conformal transformation (2.2), we can
relate the EFT coefficients between frames at the level of the
action. This enables connecting between the tidal deform-
ability computed from perturbation theory and the EFT in
the Einstein frame and then relating the Einstein frame tidal
deformability to its Jordan frame counterpart. The details of
the calculations can be found in Appendix A 3 and yield

λTl ¼ λ�Tl ; ð3:27aÞ

λSl ¼
�
A2
∞F0

∞

2α∞

�
2

λ�Sl ; ð3:27bÞ

λSTl ¼ A2
∞F0

∞

2α∞
λ�STl ; ð3:27cÞ

where the subscript “∞” denotes evaluation at infinity. This
result is in agreement with the special case with A∞ ¼ 1
considered in [81], where the vanishing of the scalar field at
infinity implied that the tensor tidal deformabilities in both
frames are the same.
The transformation of the dimensionless Love numbers

kl defined in (3.5) is obtained by combining (3.27) with the
transformation of the radius. The latter follows from using
that, for a spherically symmetric spacetime,

gθθ ¼ r2 ¼ A2g�θθ ¼ A2r2�; ð3:28Þ

which implies that the radius in the two frames is related
by [81]

R ¼ AðφRÞR�; ð3:29Þ

with φR ≡ φðRÞ. We can also obtain the transformation for
the dimensionless tidal deformability,

Λl ¼ λl
M2lþ1

¼ 2

ð2l − 1Þ!! klC
2lþ1; ð3:30Þ

where

C ¼ M=R ð3:31Þ
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is the compactness of the star, with M its Arnowitt-Deser-
Misner (ADM) mass [82]. In order to transform Λl we can
use (3.29) for the radius and (C8) for the ADM mass,
together with (3.27).

IV. COMPUTING LOVE NUMBERS

Having established the relevant deformability coeffi-
cients in the EFT, the next step is to connect them with the
information from detailed calculations of the perturbed
configuration. The baseline for computing the Love
numbers is to first compute the background equilibrium
configuration. This is given by the modified Tolman-
Oppenheimer-Volkoff (TOV) equations for both the space-
time gð0Þμν and the equation of motion for the background
scalar field φ0ðrÞ. This configuration also yields the
corresponding mass-radius relations for a chosen equation
of state. Subsequently, we consider linearized perturba-
tions to the spacetime and scalar fields,

g�μν ¼ g�μνð0Þ þ ϵ
X
l;m

h�lmμν ðrÞYm
l ðθ;ϕÞ; ð4:1Þ

φ ¼ φ0ðrÞ þ ϵ
X
l;m

δφlmðrÞYm
l ðθ;ϕÞ; ð4:2Þ

where ϵ is a counting parameter for the perturbations and
Ym
l ðθ;ϕÞ are the spherical harmonics. Similarly, the fluid

pressure, density, and four-velocity for the perturbed
configuration are

p ¼ p0 þ ϵ
X
l;m

δplmðrÞYm
l ðθ;ϕÞ; ð4:3Þ

ρ ¼ ρ0 þ ϵ
X
l;m

dρ0
dp0

δplmðrÞYm
l ðθ;ϕÞ; ð4:4Þ

uμ� ¼ uμ0� þ ϵδuμ�: ð4:5Þ

Substituting these Ansätze into the equations of motion (2.9)
and keeping only terms up to linear order in ϵ leads to the
system of differential equations that ultimately determine
the Love numbers. Solving these in the interior of the star as
well as in the exterior, where no NS matter is present,
and using the definitions of the multipole moments (3.1)
and (3.20) determines the Love numbers. To make this
methodology concrete, we start by reviewing the compu-
tation of the background configuration in Sec. IVA.
We then calculate the perturbed equations of motion in
Sec. IV B and describe a framework to extract the multipole
and tidal moments. In Sec. V we compute the mass-radius
curves for specific choices of the couplings that trigger
scalarized stars and use our framework to compute the Love
numbers. Finally, we also provide the results transformed to
the Jordan frame. For the numerical calculations, we choose
the normalization constants to be K−1

ϕ ¼ K−1
R ¼ 16πG and

K−−1
φ ¼ 8πG with G ¼ c ¼ 1.4 The derivations presented

here can also be found in [48,49], though with different
conventions for the normalizations.5

A. Background configuration

1. Modified TOV equations

We start by writing the background, unperturbed metric
describing a static, spherically symmetric configuration as

ds20 ¼ g�μνð0Þdxμdxν ¼ −eνdt2 þ eγdr2 þ r2dΩ2; ð4:6Þ

with dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. For better readability we
drop the asterisks in this section, but note that the only
quantities in the Jordan frame, i.e., with no asterisks, are the
pressure and density. Substituting (4.6) into (2.9) leads to

G0
tt ¼ 8πeγρ0Aðφ0Þ4 þ φ0

0
2 − γ0

r
− eγ

r2
þ 1

r2
¼ 0; ð4:7Þ

G0
rr

eγ−ν
¼ 8πeγp0Aðφ0Þ4 þ φ0

0
2 −

ν0

r
þ eγ

r2
−

1

r2
¼ 0; ð4:8Þ

φ00
0 þ

4 − rðγ0 − ν0Þ
2r

φ0
0 − 4πAðφ0Þ4eγαðφ0Þð3p0 − ρ0Þ ¼ 0:

ð4:9Þ

Assuming a spherically symmetric configuration implies

γ ¼ − log

�
1 −

2mðrÞ
r

�
; ð4:10Þ

which upon using (4.7) yields

m0 ¼ 4πr2ρ0Aðφ0Þ4 þ
r2

2

�
1 −

2m
r

�
φ0
0
2: ð4:11Þ

Substituting into (4.8) we obtain

ν0 ¼ r3ð8πp0Aðφ0Þ4 þ φ0
0
2Þ þ 2mð1 − r2φ0

0
2Þ

rðr − 2mÞ : ð4:12Þ

Next, using the conservation of the energy-momentum
tensor (2.18) and the normalization of the four-velocity
uμuμ ¼ −1 leads to

4Here, we have kept G for reference, since as explained in
Appendix C some of the scalar effects can be interpreted as an
effective scalar field-dependent gravitational coupling G̃ðφ∞Þ.

5Note that Ref. [49] reported differences in results with
Ref. [48] and considers scalar and tensor tidal deformabilities
computed in a different way (see Sec. VI for a comparison).
However, the modified TOV equations coincide.
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uμ0 ¼ ðe−ν=2; 0; 0; 0Þ; ð4:13Þ

p0
0 ¼

p0 þ ρ0
2

½2αðφ0Þφ0
0 − ν0�: ð4:14Þ

The modified TOV equations (4.11), (4.12), and (4.14),
together with an equation of state relating p0 and ρ0, fully
describe the background configuration, given a chosen
conformal factor. As a check, one can set φ0 ¼ 0,
Aðφ0Þ ¼ 1, and αðφ0Þ ¼ 0 and see that, indeed, one
recovers the general-relativistic TOV equations.

2. Boundary conditions near the origin

The solutions to (4.11), (4.12), and (4.14) in the interior
of the star can, in general, only be obtained numerically.
They must satisfy the following boundary conditions near
the center of the star at rmin → 0:

ρ0ðrminÞ ¼ ρc; mðrminÞ ¼
4

3
πr3minρc; ð4:15aÞ

φ0ðrminÞ ¼ φ0c: ð4:15bÞ

In most applications, it is desirable to control the asymp-
totic value of the scalar field at infinity φ0∞ rather than φ0c.
This can be implemented by using a shooting method for
obtaining the appropriate φ0c corresponding to a given φ0∞.

3. Scalar field outside the star

This task can be simplified by using an exact solution for
the field in the exterior that exists in Just coordinates6 (see
Appendix B for details), which determines the field at the
surface to be

φ0ðRÞ ¼ φ0∞ þ q
νS
2
; ð4:16Þ

with

νS ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
1þ 2

Rν0S

!
; ð4:17Þ

and q as a parameter related to the scalar charge given by

q ¼ 2φ0
0ðRÞ
ν0S

; ð4:18Þ

ν0S ¼
2mS

RðR − 2mSÞ
þ Rφ0

0ðRÞ2; ð4:19Þ

and mS as the mass at the surface of the star. Specifically,
the quantity

q ¼ −Q=M ð4:20Þ

characterizes the scalar charge Q per unit mass M of the
configuration. The scalar charge is defined as the coef-
ficient of the 1=r falloff of the solution in an asymptotic
expansion near spatial infinity, similarly to the ADM mass
M in the gravitational potential, with

lim
r→∞

φ0ðrÞ ¼ φ0∞ þQ
r
þO

�
1

r2

�
: ð4:21Þ

Hence, q is a measure of the strength of the scalar field
compared to the gravitational field. Using the exact exterior
solution for the scalar field from (4.16) has the advantage
that the numerical integration only has to be performed up
to the star’s surface, rather than infinity.

B. Scalar and tensor perturbations

We now focus on the tensor and scalar perturbations,
introduced in (4.1) and (4.2), and drop the labels l; m in the
radial functions (4.1)–(4.4). In the class of scalar-tensor
theories we consider, we can write the static, even parity
(also known as polar or electric) metric perturbations in the
Regge-Wheeler gauge [83],

hαβ ¼ Diag½−eνH0ðrÞ; eγH2ðrÞ; r2KðrÞ; r2sin2ðθÞKðrÞ�;
ð4:22Þ

where H0, H2, and K are functions characterizing the
metric perturbation. Using this gauge and perturbing the
Einstein field equations (2.9a) and the scalar field equation
of motion (2.9b), together with the fluid quantities at first
order in ϵ, we obtain7

K0 þH0
0 þ ν0H0 þ 4φ0

0δφ ¼ 0; ð4:23Þ

H0 ¼ −H2; ð4:24Þ

H00
0 þ f1H0

0 þ f0H0 ¼ fsδφ; ð4:25Þ

δφ00 þ g1δφ0 þ g0δφ ¼ gsH0: ð4:26Þ

The terms in the metric perturbation equation of motion are

f1 ¼
4πr3Aðφ0Þ4ðp0 − ρ0Þ þ 2ðr −mÞ

rðr − 2mÞ ; ð4:27Þ

6Note that this only applies for a vanishing scalar-field
potential VðϕÞ in (2.1). For nonvanishing potentials, the shooting
method should be extended to infinity.

7Note that there is an apparent minus sign difference in the
source term with [48], however, this is consistent with the
different conventions, where in [48] H0 is defined such that
H0 ¼ H2, whereas we have H0 ¼ −H2.
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f0¼
1

r2ðr−2mÞ2f4πr
3p0Aðφ0Þ4½rð∂ρ0=∂p0þ9Þ

−2mð∂ρ0=∂p0þ13Þ�þ4πr3ρ0Aðφ0Þ4
× ð∂ρ0=∂p0þ5Þðr−2mÞ−4r2ðr−2mÞφ02

0

× ð4πr3p0Aðφ0Þ4þmÞ−64π2r6p2
0Aðφ0Þ8

−lðlþ1Þrðr−2mÞ−r4ðr−2mÞ2φ04
0 −4m2g; ð4:28Þ

fs ¼
1

rðr − 2mÞ f4r
2½2πAðφ0Þ4ðαðφ0Þ

× ðð∂ρ0=∂p0 − 9Þp0 þ ð∂ρ0=∂p0 − 1Þρ0Þ þ 4rp0φ
0
0Þ

þ ðr − 2mÞφ03
0 � þ 8mφ0

0g; ð4:29Þ

and the terms in the scalar perturbation equation of
motion are

g1 ¼ f1; ð4:30Þ

g0 ¼
1

r − 2m
f4πrAðφ0Þ4½αðφ0Þ2ðð∂ρ0=∂p0 þ 9Þp0

þ ð∂ρ0=∂p0 − 7Þρ0Þ þ ðρ0 − 3p0Þα0ðφ0Þ�g

−
lðlþ 1Þ
rðr − 2mÞ − 4φ02

0 ; ð4:31Þ

gs ¼
fs
4
: ð4:32Þ

In GR the source terms vanish, fs ¼ gs ¼ 0, and therefore
the perturbations decouple. In scalar-tensor theories, how-
ever, the perturbations are coupled as a result of the
coupling between matter and the scalar field. This means
that a tensor perturbation H0 will induce a scalar perturba-
tion δφ and vice versa. This is also in agreement with the
scalar-tensor term in the effective action λST , which
quantifies the induced Love number on top of the pure
tensor and scalar perturbations.

1. Dipolar perturbations

When specializing to tensor dipolar perturbations l ¼ 1,
there are two equivalent ways to proceed. The first way is
to fix l ¼ 1 in Einstein’s equations, as in [84]. This
changes the combinations of components needed in order
to decouple the different functions H0, H2, and K and
results in a first-order differential equation for H0. The
second way is by fixing l ¼ 1 at the level of the
perturbation equation of motion (4.25), which yields a
second-order differential equation. However, for the par-
ticular case l ¼ 1, we can integrate the second-order
differential equation and obtain the same first-order differ-
ential equation as with the first way,

H0
0 þ d0H0 ¼ s1δφ0 þ s0δφ; ð4:33Þ

with

d0 ¼
2ðr −mÞ þ 8πAðφ0Þ4p0r3

rðr − 2mÞ þ rφ02
0

−
8πAðφ0Þ4r3ð3p0 þ ρ0Þ

2mþ 8πAðφ0Þ4p0r3 þ r2ðr − 2mÞφ02
0

; ð4:34Þ

s1 ¼ −
4rðr − 2mÞφ0

0

2mþ 8πAðφ0Þ4p0r3 þ r2ðr − 2mÞφ02
0

; ð4:35Þ

s0 ¼−
1

2mþ 8πAðφ0Þ4p0r3þ r2ðr− 2mÞφ02
0

×f8ðr−mÞφ0
0þ 4r2ðr− 2mÞφ03

0

þ 16πAðφ0Þ4r2½αðφ0Þðρ0− 3p0Þþ 2p0rφ0
0�g: ð4:36Þ

In the exterior of the star, where p0 ¼ 0 ¼ ρ0, the tensor
and scalar perturbations decouple when defining a new
function ζðrÞ by

ζ ¼ dext0 H0 − sext0 δφ: ð4:37Þ

With this, (4.33) becomes

ζ0 þ ζ

�
dext0 −

d00
ext

dext0

�
¼ 0: ð4:38Þ

The asymptotic solution to (4.38) for large r has the form

ζ ¼ ζð−3Þ=r3 þO
�
1

r4

�
; ð4:39Þ

with ζð−3Þ a constant of integration. This yields for the
metric function,

H0 ¼
ζð−3Þ

2r2
þ 2qδφþO

�
1

r3

�
: ð4:40Þ

Substituting (4.40) into (4.26) gives, asymptotically,

δφ ¼ δφð1Þrþ δφð−2Þ

r2
þO

�
1

r3

�
; ð4:41Þ

with δφðlÞ the coefficients associated with the rl depend-
ence. Hence,

H0 ¼
Hð−2Þ

0

r2
þ 2qδφð1ÞrþO

�
1

r3

�
; ð4:42Þ

where we have redefined Hð−2Þ
0 ¼ ζð−3Þ=2þ 2qδφð−2Þ.

This manifestly shows how a scalar tidal field E�
1
S ∝

δφð1Þ can induce a tensor tidal field E�
1
T ¼ 2qE�

1
S. In GR,

the scalar charge vanishes q ¼ 0, and we recover the result
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in [84]. The constant in front of the r−2 falloff, proportional
to the mass dipole moment Q�

1
T , can be set to zero by a

gauge transformation. Specifically, the change in a per-
turbed scalar field Ψ ¼ Ψ0 þ ϵδΨ, due to an infinitesimal
translation x̃μ ¼ xμ þ ϵξμ, is given by the Lie derivative £ξ
along the vector field ξμ,

fδΨ ¼ δΨþ £ξΨ0 ¼ δΨþ ξμ∂μΨ0; ð4:43Þ

where, for the static case [84],

ξμ ¼ δrμξr ¼ a
eγ

r
fY1

mδ
r
μ; ð4:44Þ

with a as an arbitrary constant,

f ¼ r exp

�
−
Z

∞

r

1 − eγ

r
dr

�
; ð4:45Þ

and γ as the background metric function (4.6). Therefore,
the metric and scalar perturbations H0 and δφ will trans-
form as

H̃0 ¼ H0 þ a
ν0

r
f; ð4:46Þ

δ̃φ ¼ δφþ a
φ0
0

r
f; ð4:47Þ

which asymptotically reads

lim
r→∞

H̃0 ¼ 2qδφð1Þrþ � � � þHð−2Þ
0

r2
þ a

2M
r2

þO
�
1

r3

�
;

ð4:48Þ

lim
r→∞

δ̃φ¼ δφð1Þrþ� � �þ δφð−2Þ

r2
þa

qM
r2

þO
�
1

r3

�
: ð4:49Þ

In order to match to the EFT, which is formulated around
the center-of-mass worldline, we choose a gauge where
the mass dipole vanishes. This corresponds to setting

a ¼ −Hð−2Þ
0 =2M. In this gauge, the tensor and scalar

dipole moments now read

H̃0
ð−2Þ ¼ 0; ð4:50Þ

δ̃φð−2Þ ¼ δφð−2Þ −
q
2
Hð−2Þ

0 : ð4:51Þ

Hence, the mass dipole moment in scalar-tensor theories
can still be made to vanish, which however shifts the scalar
dipole moment.

2. Extracting the multipole and tidal moments

To numerically extract the multipole and tidal moments,
we construct series solutions around spatial infinity that
enable imposing the appropriate boundary conditions, see
also [48]. For the background quantities, we obtain the
series expansions

φ0ðrÞ ¼ φ0∞ −
qM
r

−
qM2

r2
þO

�
1

r3

�
; ð4:52aÞ

mðrÞ ¼ M −
M2q2

2r
−
M3q2

2r2
þO

�
1

r3

�
; ð4:52bÞ

with M as the ADM mass and q defined in (4.20) being
minus the scalar charge per unit mass8 (see Appendix B for
details). For the perturbed quantities δφ and H0, the
expansions near spatial infinity are of the form

δφðrÞ ¼ δφðlÞrl
�
1−

lM
r

�
þ � � � þ δφð−l−1Þ

rlþ1
þO

�
1

rlþ2

�
;

ð4:53aÞ

H0ðrÞ ¼ HðlÞ
0 rl

�
1 −

lM
r

�
þ � � � þHð−l−1Þ

0

rlþ1
þO

�
1

rlþ2

�
;

ð4:53bÞ

where the omissions… denote q-dependent terms, some of

which also contain a combination of δφðlÞ; δφð−l−1Þ; HðlÞ
0 ,

and Hð−l−1Þ
0 . As explained above in Sec. IV B 1, for the

dipolar case l ¼ 1, the tensor perturbation equation of

motion is of first order and we haveHðl¼1Þ
0 ¼ 2qδφð1Þ, thus

one less degree of freedom than for higher multipoles. Note
that in GR, q ¼ 0 and we recover the same asymptotic
expansion as (4.53b), which results from an exact solution
in terms of a combination of Legendre polynomials.
Comparing with the EFT result (3.16), with H0 ¼ 2U�

N ,
we can identify the multipole and tidal moments as

8For generic normalizations and G ≠ 1 we have

φ0ðrÞ ¼ φ0∞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G2KR

Kφ

s
qM
r

;

where q ¼ −
ffiffiffiffiffiffiffiffiffiffi
Kφ

2G2KR

q
Q=M. Recall that an adimensional scalar

field is defined as φadim ¼
ffiffiffiffiffiffiffi
Kφ

2KR

q
φ, such that

φadim ¼ φadim
0∞ − qadim

GM
r

;

and qadim ¼ −Q=M.
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Q�S
L nL ↔ δφð−l−1Þ l!8πKφ

ð2l − 1Þ!! ; ð4:54Þ

Q�T
L nL ↔ Hð−l−1Þ

0

l!8πKR

ð2l − 1Þ!! ; ð4:55Þ

E�S
L nL ↔ −δφðlÞl!8πKφ; ð4:56Þ

E�T
L nL ↔ −H0

ðlÞl!8πKR; ð4:57Þ

such that, with our chosen normalizations and using (3.20),
the tidal deformabilities read

λ�Tl ¼ 1

ð2l − 1Þ!!
Hð−l−1Þ

0

HðlÞ
0

����
δφðlÞ¼0

; ð4:58Þ

λ�Sl ¼ 1

ð2l − 1Þ!!
δφð−l−1Þ

δφðlÞ

����
HðlÞ

0
¼0

; ð4:59Þ

λ�STl ¼ 1

ð2l − 1Þ!!
Hð−l−1Þ

0

2δφðlÞ

����
HðlÞ

0
¼0

¼ 1

ð2l − 1Þ!!
2δφð−l−1Þ

HðlÞ
0

����
δφðlÞ¼0

: ð4:60Þ

To obtain explicit results, it is convenient to integrate the
coupled system of differential equations (4.25) and (4.26),
from the singular points, i.e., the origin and infinity, and
subsequently match them at the surface of the star.
Extracting from this the multipole and tidal moments
requires carefully disentangling the different moments
corresponding to the different fields. This can be accom-
plished by constructing a generic solution as a linear
combination of independent particular solutions. Particular
solutions are computed by imposing certain boundary
conditions, labeled 1 and 2 for the interior and A–D for
the exterior of the star, and are listed in Table I. Solutions A
and C correspond to a nonzero scalar and tensor multipole

moments, respectively, i.e., δφð−l−1Þ ¼ 1 and Hð−l−1Þ
0 ¼ 1,

and the rest of the coefficients are set to zero, whereas
solutions B and D correspond to nonzero tidal moments,

δφðlÞ ¼ 1 and HðlÞ
0 ¼ 1, and the rest of the coefficients are

set to zero. This leads to six particular solutions with six
associated constants of integration. Demanding continuity at
the surface of the star fixes four of the constants. One of the
remaining two constants can be fixed by choosing a
normalization. Hence, one free constant remains that
can be used to demand a zero scalar or tensor tidal field,

δφðlÞ ¼ 0 or HðlÞ
0 ¼ 0. This disentangles the different

contributions to the induced multipole moments and enables
extracting the tidal deformabilities using (4.58)–(4.60).

3. Marginally stable solution

The scalar equation of motion for linearized perturbation
(4.31) contains a term proportional to α0ðφÞ. In cases where
α0ðφÞ is constant and the background scalar field vanishes
φ0 ¼ 0, the static scalar perturbations are solutions to

δφ00 þ 2½r −mþ 2πr3ðp0 − ρ0Þ�
rðr − 2mÞ δφ0

−
�
lðlþ 1Þ
rðr − 2mÞ −

4πrα0ð0Þðρ0 − 3p0Þ
r − 2m

�
δφ ¼ 0: ð4:61Þ

For this case, most of the properties of the configuration are
identical to those in GR, for instance, the equilibrium
solutions and the fact that scalar and tensor perturbations
decouple. However, an important difference is the presence
of the coupling term involving α0ð0Þ and the matter
variables in (4.61), which is absent in GR. Consequently,
for α0ð0Þ ≠ 0 the scalar tidal deformability may have a
significantly different value than in GR. This is the case of a
marginally stable solution. When perturbed, the system does
not return to the GR state, but it is not unstable either, since
the scalar charge does not grow unboundedly. Instead, due
to nonlinearities, the system settles into a stable scalarized
state. Specifically, the tidal deformabilities in this margin-
ally stable case are given by the GR expressions

ΛT
l jGR¼

e−ilπð3þe2ilπÞΓð−l− 1
2
ÞΓðlþ3ÞΓðl−1Þ

22lþ3ð2l−1Þ!!Γðlþ 1
2
Þ

×
zTlP

2
lð1=C−1Þþðl−1ÞCP2

lþ1ð1=C−1Þ
zTlQ

2
lð1=C−1Þþðl−1ÞCQ2

lþ1ð1=C−1Þ ;

ð4:62Þ

TABLE I. Boundary conditions for the interior and exterior solutions.

Interior r ¼ rmin Exterior r ¼ r∞ and (4.53)

Solution 1 2 A B C D

δφ rlmin 0 δφð−l−1Þ ¼ 1 δφðlÞ ¼ 1 Hð−l−1Þ
0 ¼ 1 HðlÞ

0 ¼ 1

Rest ¼ 0 Rest ¼ 0 Rest ¼ 0 Rest ¼ 0
H0 0 rlmin δφð−l−1Þ ¼ 1 δφðlÞ ¼ 1 Hð−l−1Þ

0 ¼ 1 HðlÞ
0 ¼ 1

Rest ¼ 0 Rest ¼ 0 Rest ¼ 0 Rest ¼ 0
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ΛS
ljGR ¼ πΓðlþ 1Þ2

22lþ1ð2l − 1Þ!!Γðlþ 1
2
ÞΓðlþ 3

2
Þ

×
zSlP

0
lð1=C − 1Þ þ ðl − 1ÞCP0

lþ1ð1=C − 1Þ
zSlQ

0
lð1=C − 1Þ þ ðl − 1ÞCQ0

lþ1ð1=C − 1Þ ;

ð4:63Þ

with

yT jGR ¼ H0
0ðRÞ

H0ðRÞ
R; ySjGR ¼ δφ0ðRÞ

δφðRÞ R; ð4:64Þ

the (adimensional) logarithmic derivative, zT=Sl ¼ ðlþ 1Þ×
ðC − 1Þ þ ð2C − 1ÞyT=S, and Pm

l ðxÞ and Qm
l ðxÞ as the

associated Legendre polynomials.
The condition α0ð0Þ ≠ 0 implies that only special cases

of the coupling, such as exponential couplings, lead to the
additional term in (4.61). The physical interpretation of this
term is that, even though the equilibrium configuration is
GR-like with a vanishing background scalar field, the scalar
perturbation inherits the coupling between matter and the
scalar field and differs from GR. This can be seen by
considering the equation of motion for linearized pertur-
bations of the scalar field (2.9b),

□δφ ¼ 1

2Kφ
α0ðφ0ÞT�δφ

¼ 4πα0ðφ0ÞAðφ0Þ4ð3p0 − ρ0Þδφ; ð4:65Þ

which for φ0 ¼ 0 and Að0Þ ¼ 1 yields the α0ð0Þ-dependent
term in (4.61). Therefore, this case represents a situation in
which test particles follow geodesics independent of the
scalar field, hence satisfying the weak equivalence principle
as in GR. This class of solutions are the marginally stable
ones with zero charge, q ¼ 0, in the regime where
spontaneous scalarization can occur (i.e., scalarized sol-
utions are the stable ones). These solutions, albeit margin-
ally stable, will have a scalar Love number that could be
induced by a scalarized companion during the inspiral.
Thus, they are relevant in the context of dynamical
scalarization, in particular for the transition between non-
scalarized and scalarized objects (see, e.g., Ref. [57] for a
discussion in the context of the worldline EFT). Since in
this paper we focus on isolated objects, we will leave this
study for further work.

V. NUMERICAL RESULTS FOR EXEMPLARY
CASE STUDIES

A. Setup

To compute NS configurations, we consider piecewise
polytropic approximations to tabulated equations of state
[85]. In particular, we choose WFF1, SLy,and H4 since

they cover a significant range of NS masses and radii and
they have also been considered in the literature [9,48,81],
which allows us to check and compare results.
For the scalar coupling function, we choose here the

concrete case of

AðφÞ ¼ e
1
2
βφ0ðrÞ2 ; ð5:1Þ

known as the Damour–Esposito-Farése (DEF) model [51].
This choice yields scalarized configurations, depending on
the cosmological value φ0∞, which is related to β, ωðϕÞ,
and FðϕÞ through (2.8) or explicitly

φ0∞ ¼ −
1

β

ffiffiffiffiffiffiffiffiffi
Kφ

2KR

s
F0
∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3F02
∞ þ 2ω∞F∞=ϕ∞

p : ð5:2Þ

For the numerical studies, we choose the values
φ0∞ ¼ ð10−6; 10−3Þ. The latter is a common choice in
the literature as it lies within the experimental bounds from
binary-pulsar observations [53] and yields scalarized NSs
throughout the entire mass range. The smaller value of φ0∞
leads to a more sharp transition into scalarized states, which
is useful for comparing against the GR configurations.
Scalarized configurations exist only for β ≤ −3.5 [51,56].
Furthermore, pulsar timing observations have discarded the
parameter regimes β ≤ −4.5 [86–89]. However, we will
study the cases β ¼ −4.5 and β ¼ −6 as in the literature to
gain qualitative insights into parameter dependencies. We
impose the boundary conditions near the center of the star
(4.15) for rmin ¼ 10−10 in the geometric units we are using.
For the asymptotic expansions of the solutions near spatial
infinity, we consider 22 orders in the series (4.52).
To extract quantities at infinity, we choose r∞ ¼ 7R for

l ¼ 1; 2 and r∞ ¼ 4R for l ¼ 3, with R as the surface of
the star. They correspond to values within the range in
which there is an overlap of the series expansions at
infinity, (4.53a) and (4.53b), and the numerical solutions;
see Fig. 2 for an example configuration with a percent
difference of at most 1.6 × 10−2% for the tidal moments
and 1.5 × 10−5% for the multipole moments. To further
check the robustness of these choices, we also computed
results when dropping five orders in the series solution,
which yielded no noticeable changes in the Love numbers.
Varying r∞ between 2 and 10R led to subpercent level
changes in the tidal deformabilities (e.g., at most 0.6% for
the SLy EOS for both choices of β and different kinds of
Love numbers), see Fig. 3. We also note that higher
multipolar orders require extracting quantities at an r∞
that is closer to the star’s surface in order to capture the
increasingly smaller contributions.
We note that all quantities shown in the plots below

correspond to their respective frame. However, we omitted
asterisks and subindices for clarity.
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B. Mass-radius and charge-mass curves

Figure 4 shows the mass-radius curves computed with
the above methodology and setup in the Einstein and
Jordan frames. The Einstein frame mass M is the ADM
mass (B21) and R is the radius of the star, defined as the
distance from the origin at the center of the star at which
p0 ¼ 0. For the Jordan frame mass and radius we make use
of (C9) and (3.29). Each point in the mass-radius curve
corresponds to a configuration with different central den-
sity, increasing from the right to the left of the plot. We
denote with a cross and a circle the maximum mass
configuration for β ¼ 0;−4.5, and β ¼ −6, respectively.
In agreement with [48,51], we see that certain configu-

rations (dot-dashed lines in Fig. 4) deviate away from the
GR values (solid lines) due to scalarization, as corroborated
by the behavior of the scalar charge shown in Fig. 5. This
indicates that configurations exhibit a sudden growth in the
scalar field beyond a certain compactness, leading to a
larger radius and higher mass than their GR counterparts.
This is because the non-negligible amount of scalar field
increases both the mass and pressure of the fluid, yielding
more massive and bigger stars.

C. Love numbers

The tidal deformabilities computed with the method
described above are shown in Fig. 6 for dipolar l ¼ 1
perturbations, Fig. 7 for quadrupolar l ¼ 2 perturbations,
and Fig. 8 for octupolar l ¼ 3 perturbations. We plot the
tidal deformabilities for different values of β, a fixed φ0∞ ¼
10−3 and the three considered EOS: WFF1, SLy, and H4 in
both the Einstein and Jordan frames.
As explained in Sec. IV, the tensor dipolar perturbations

can be made to vanish by a gauge transformation and,
consequently, there are no dipolar tensor nor mixed scalar-
tensor tidal deformabilities as these are pure gauge quan-
tities. The dipolar scalar tidal deformability is shown in
Fig. 6. The shape of these curves as functions of mass
changes significantly depending on the value of β, however,
the order of magnitude remains similar. We also observe
structures in the curves which, based on further analysis,
we attribute to consequences of the charge-dependent shift
in the scalar dipole moment when choosing the center-of-
mass gauge, cf. (4.51). Additionally, for small masses in the
Einstein frame (left panel of Fig. 6), we observe an overlap
between curves corresponding to a “stiffer” equation of
state (with generally larger λ for a given mass) and a large
value of the scalar coupling jβj and the results for a “softer”
equation of state and smaller value of jβj. This exemplifies
how degeneracies can appear between the equation of state
and spacetime and therefore highlights the importance of
accurately modeling both.
Figure 7(a) shows the quadrupolar tensor tidal deform-

ability curves. Similar to the mass-radius curves, deviations
from the GR case appear for scalarized configurations.

FIG. 3. Quadrupolar tensor tidal deformability λT2 in the
Einstein frame as a function of r∞. The orange point is the
chosen one for the integration. For illustrative purposes, we
choose a configuration with WFF1 EOS, M ¼ 1.16M⊙,
R ¼ 10.16 km, β ¼ −4.5, and φ∞ ¼ 10−3; other choices yield
similar results.

FIG. 2. Agreement between series expansions near infinity
and numerical solutions for the quadrupolar tidal field and
induced quadrupole moment. The top panel shows the overlap
between the numerical (solid lines) and series solutions (dashed
lines) for the tidal (blue and red) and multipole moment (orange
and purple). The middle and bottom panels show the percent
absolute relative difference for the quadrupolar tidal field
(blue) and the induced quadrupole moment (orange) respec-
tively. This example corresponds to a configuration with the
WFF1 EOS, M ¼ 1.16M⊙, R ¼ 10.16 km, β ¼ −4.5, and
φ∞ ¼ 10−3; results for other configurations are similar.
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These deviations are similar to those computed in [48,49]
and are smaller for smaller jβj. It is interesting to note that
the regions of masses in which the tidal deformabilities are
above or below their GR counterparts do not coincide with
those of the mass-radius curves. The behavior of the scalar
tidal deformability shown in Fig. 7(b) shows a much greater
sensitivity to changes in β (dashed versus dot-dashed
curves). These differences for the choices of β considered
here are 1 order of magnitude, demonstrating the sensitive
dependence of the scalar tidal deformability on the theory
parameters. As there are no (scalar) charged compact
objects in GR and thus no mechanism to produce a scalar
tidal field, we lack any GR benchmarks in this case, though
we note that within the scalar-tensor theories there exist the
GR-like, marginally stable equilibrium configurations dis-
cussed in Sec. IV C. In taking the limit φ0∞ → 0 these

would correspond to connecting curves underneath the
bumps exhibited by the curves shown in Fig. 7(b), similar
to the GR curves in the tensor tidal deformability in
Fig. 7(a).
Finally, we show the novel scalar-tensor tidal deform-

ability in Fig. 7(c). As we can see, they are negative
throughout most of the parameter space. Similar to the
scalar tidal deformability, they are also more sensitive to β
than the pure tensor tidal deformability. Furthermore, it
follows a similar behavior as the scalar charge, i.e., it is
nonzero for the scalarized states and zero for the unsca-
larized states. As shown in Appendix D, both scalar and
scalar-tensor tidal deformabilities have different orders of
magnitude in the Jordan frame and scale differently with
φ0∞. This is a consequence of the relation between the
Einstein and Jordan frame scalar fields.
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FIG. 4. Mass-radius curves in the Einstein (left) and Jordan frames (right) for three equations of state (WFF1, SLy, and H4). The solid
lines represent the GR configurations β ¼ 0 and the dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and
β ¼ −6, respectively. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots
correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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FIG. 5. Charge-mass curves in the Einstein frame for three equations of state (WFF1, SLy, and H4) and a scalar field at infinity
φ0∞ ¼ ð10−3; 10−6Þ. The dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The
cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6.
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FIG. 6. Dipolar scalar tidal deformabilities λS1 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4). The
dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. For β ¼ −6 we have omitted
the data beyond the maximum mass configuration for better readability. The cross represents the maximum mass configuration for
β ¼ 0;−4.5 and the circle for β ¼ −6. All plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 7. Quadrupolar tidal deformabilities λ2 in theEinstein frame for three equations of state (WFF1, SLy, andH4). Panel (a) illustrates the
tensor deformability, (b) the scalar one, and (c) the mixed scalar-tensor one. The solid lines represent the GR configurations β ¼ 0 and the
dashed and dot-dashed lines are the scalarized configurationswith β ¼ −4.5 and β ¼ −6, respectively. The plot corresponds to a scalar field
at infinityφ0∞ ¼ 10−3. The cross represents themaximummass configuration forβ ¼ 0;−4.5 and the circle forβ ¼ −6. The corresponding
results in the Jordan frame shown inAppendixD are qualitatively similar, the tensor Love numbers are the same in both frames [see (3.27)],
while the scalar and scalar-tensor ones are about 2 orders of magnitude smaller in the Jordan frame.
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The octupolar tidal deformabilities, shown in Fig. 8,
exhibit qualitatively very similar trends over the parameter
space considered as the quadrupolar ones. A difference is
that the adimensional Love numbers k3 shown in
Appendix E are 1 order of magnitude smaller than the
quadrupolar counterparts. As seen in Fig. 25, the scalar-
tensor adimensional tidal deformabilityΛST

3 is also negative
for most of the configurations but can become noticeably
positive for higher-mass systems with large negative β and
soft equations of state.

1. Investigating the parity invariance of λSTl
We next return to the parity considerations of the scalar-

tensor deformabilities discussed in Sec. III B 2 and compute
the function wðφ∞; QÞ for this case study. We compute the
ratio between scalar-tensor tidal deformabilities for three

values of the asymptotic scalar field, φ∞ ¼ 10−3, 2 × 10−3,
and10−6 and fit the datawith an informedguess. In particular,

wðφ∞; qÞ ¼
X∞
p¼0

cpφ
2pþ1
∞ þ

X∞
n¼0

cnq2nþ1

≈ cφ
X∞
p¼0

φ2pþ1
∞ þ cq

X∞
n¼0

q2nþ1

≈ cφ
φ∞

1 − φ2
∞
þ cq

q
1 − q2

≈ cφφ∞ þ cqq; ð5:3Þ

wherewe use the charge per unit mass q instead of the charge
Q to make the expression nondimensional. In the second
equality, we have assumed that the coefficients are the same
for all terms in the sum, then summed the series and used that

FIG. 8. Octupolar tidal deformabilities in the Einstein frame for three equations of state (WFF1, SLy, and H4). Panel (a) illustrates the
tensor deformability, (b) the scalar one, and (c) the mixed scalar-tensor one. The solid lines represent the GR configurations β ¼ 0 and
the dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the
maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. The plot corresponds to a scalar field at infinity φ0∞ ¼ 10−3.
The corresponding results in the Jordan frame shown in Appendix D are qualitatively similar, the tensor Love numbers are the same in
both frames [see (3.27)], while the scalar and scalar-tensor ones are about 2 orders of magnitude smaller in the Jordan frame.
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φ2
∞ ≪ 1 and q2 ≪ 1. In the regime of vanishing scalar

charge, we find that the deformabilities are directly propor-
tional to the field. Thus, we set

cφ ¼ 1: ð5:4Þ

The best fit for the remaining coefficient cq in (5.3) is

cq ¼ −0.0957; ð5:5Þ

with a fractional difference of at most 1.6% and 2.6% for
φ∞ ¼ ð2 × 10−3; 10−6Þ, respectively. In Fig. 9 we show the
ratio of scalar-tensor tidal deformabilities computed for
φ∞¼10−6 and φ∞¼10−3, respectively, and the correspond-
ing ratio between the fitted polynomials wðφ∞; qÞ. With this
result we can compute the scalar-field-independent scalar-
tensor tidal deformability λ̃STl . InFig. 10wepresent the results

for the quadrupolar case. Even though this tidal deformability
is not relevant for gravitational-wave observables, it is
interesting to see how the field dependence suppresses the
order of magnitude compared to Fig. 7(c).

VI. SUMMARY AND DISCUSSION

A. Effective action

The tidal deformability parameters λl, or Love numbers,
are usefulGWobservables that contain information about the
fundamental physics of matter and spacetime. These quan-
tities are computed fromdetailed calculations of the response
of a relativistic compact object configuration to a perturbing
tidal field and must be related to coefficients characterizing
the resulting signatures in GWs at the orbital and radiation
scales much larger than the size of the bodies. We establish
this connection using an effective field theory description,
where the bodies are described as worldline skeletons, i.e., a
central worldline augmented with multipole moments. We
demonstrated that, in modified theories of gravity containing
an additional scalar degree of freedom such as scalar-tensor
theories, the number of tidal deformabilities needed to fully
characterize the multipolar structure of the bodies is
enhanced and in fact requires three kinds of Love numbers:
a tensor (T), scalar (S), and mixed scalar-tensor (ST)
parameter. The effective action describing adiabatic tidal
effects in the binary dynamics is thus given by

Stidal¼
X
l

Z
dσzgLP

�
λTl
2l!

ET
LE

T
Pþ

λSl
2l!

ES
LE

S
Pþ

λSTl
l!

ET
LE

S
P

�
;

ð6:1Þ
with σ and z defined in (3.7). The latter is a novel term that
characterizes the scalar/tensor multipole moment QL
induced by a tensor/scalar tidal field EL as a consequence
of the coupling between tensor and scalar perturbations of
the body,

QS
L ¼ −λSlES

L − λSTl ET
L; ð6:2Þ

QT
L ¼ −λTlET

L − λSTl ES
L: ð6:3Þ

B. Frame transformations

We focus on scalar-tensor theories, which are originally
formulated in the Jordan frame, see (2.1). However,
calculations are simpler in a conformally related Einstein
frame. To transform results back to the Jordan frame, we
derived the mapping of tidal deformabilities between these
frames based on the action and obtained

λTl ¼ λ�Tl ; ð6:4Þ

λSl ¼
�
A2
∞F0

∞

2α∞

�
2

λ�Sl ; ð6:5Þ

FIG. 10. Quadrupolar, scalar-field-independent scalar-tensor
tidal deformabilities λ̃ST2 in the Einstein frame for three equations
of state (WFF1, SLy, and H4). The dashed and dot-dashed lines
are the scalarized configurations with β ¼ −4.5 and β ¼ −6,
respectively. The cross represents the maximum mass configu-
ration for β ¼ 0;−4.5 and the circle for β ¼ −6.

FIG. 9. Ratio of scalar-tensor tidal deformabilities computed
for φ∞ ¼ 10−6 and φ∞ ¼ 10−3. The solid line is the numerical
result and the dashed line is the ratio using the linear fit to the
polynomial wðφ∞; qÞ.
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λSTl ¼ A2
∞F0

∞

2α∞
λ�STl ; ð6:6Þ

where the asterisks denote quantities in the Einstein frame
and with F, A, and α defined in (2.1), (2.2), and (2.8),
respectively.

C. Numerical extraction of tidal deformabilities

To numerically extract each tidal deformability param-
eter from the coupled system of equations, we developed a
generic framework to disentangle multipolar and tidal
fields. In particular, we demonstrated the use of different
boundary conditions in the interior and exterior of the NS to
construct the most generic solution as a linear combination
of particular solutions. The different solutions are summa-
rized in Table I. Then, we proceeded by
(1) matching the interior and exterior solutions and their

derivatives at the star’s surface and
(2) fixing an arbitrary normalization.

This determines the solution up to a free constant that can
be chosen to set either the tensor E�T

L or scalar E�S
L tidal

fields to zero. With this, the tidal deformabilities can be
computed from

λ�Tl ¼ −
Q�T

L

E�T
L

����
E�S
L ¼0

; ð6:7aÞ

λ�Sl ¼ −
Q�S

L

E�S
L

����
E�T
L ¼0

; ð6:7bÞ

λ�STl ¼ −
Q�T

L

E�S
L

����
E�T
L ¼0

¼ −
Q�S

L

E�T
L

����
E�S
L ¼0

: ð6:7cÞ

D. Numerical results: Scalarized neutron stars

For case studies, we calculated dipolar, quadrupolar, and
octupolar perturbations of NSs for a family of coupling
functions that can yield scalarized configurations. In par-
ticular, depending on the theory parameters and EOS,
noticeable deviations from GR may emerge in the tensor
tidal deformability, as seen in Figs. 7(a) and 8(a). The scalar
tidal deformability, shown in Figs. 6, 7(b), and 8(b) for the
dipolar, quadrupolar, and octupolar case, respectively, can
have similar orders of magnitude as the tensor tidal
deformability in the Einstein frame, although in the
Jordan frame it scales with the square of the inverse of
the cosmological value of the scalar field, as shown in
Appendix D. Regarding the scalar-tensor tidal deformabil-
ity, shown in Figs. 7(c) and 8(c), it has negative values and
similar order of magnitude as the scalar tidal deformability,
also scaling with the inverse of the cosmological value of
the scalar field in the Jordan frame.

E. Comparison with previous literature

Tidal deformabilities in scalar-tensor gravity have pre-
viously been computed in Refs. [48,49]. Qualitatively, our
conclusions for the features of the scalar and tensor Love
numbers are similar, but a few details differ. These
differences arise for the following reasons.
In both [48,49], the mapping between quantities in the

two frames is obtained by computing the transformation
properties of the multipole moments and tidal fields as
dictated by the transformation of the metric functions in
relativistic perturbation theory. The differences to the
mappings used here are that (i) as explained in Sec. III,
we include here the mixed scalar-tensor tidal deformability,
which adds an additional contribution to the multipole
moments, and (ii) we compute the transformations at the
level of the effective action, where the tidal parameters
appear as coupling coefficients, which are in turn directly
related to GW observables.
Another source of discrepancies between the results

of [48,49] and those presented in Sec. V are calculational
details. Specifically, Pani and Berti [48] define the quad-
rupolar scalar tidal deformability as

λS
Pani−Berti

2 ¼ −
Q�

2
S

E�
0
S ; ð6:8Þ

with Q�
2
S the scalar quadrupole moment and E�

0
S the

coefficient associated with the power r0 in the asymptotic
solution of the scalar field perturbation (see Sec. IV C).
This is because they specialize to a tensor tidal field, setting
the quadrupolar scalar tidal field E�

2
S to zero [which

corresponds to δφðl¼2Þ ¼ 0 in (4.53a)].
The differences with the results of Brown [49] are a

consequence of the fact that [49] sets to zero the source term
responsible for the mixed scalar-tensor tidal deformability.
In particular, the functions fs and gs in (4.25) and (4.26) are
omitted therein. Comparing our results, which include these
functions, against the results of [49] shows that omitting
these terms leads to smaller values for the scalar and tensor
tidal deformabilities, with differences of up to 18% for
β ¼ −4.5 and up to 35% for β ¼ −6 for the scalar Love
numbers and smaller differences for the tensor ones; see
Appendix F for a more detailed comparison.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we studied the tidal deformability in scalar-
tensor theories using an effective field theory approach
connected with calculations based on relativistic perturba-
tion theory. In addition to the tensor and scalar tidal
deformabilities considered in the literature, our analysis
revealed the need for a third kind of tidal deformability
characterizing the tensor/scalar multipole moment induced
by a scalar/tensor tidal field. This additional parameter
introduces subtleties in the calculations due to couplings
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between tensor and scalar sectors. We developed a frame-
work to decouple the different contributions and extract the
three tidal deformabilities from detailed calculations of
the perturbed neutron star and scalar field configurations.
The mixed scalar-tensor Love numbers have definite parity
properties, which can be used to scale out the dependencies
on asymptotic scalar characteristics. We performed most of
the calculations in the Einstein frame, where the scalar field
is minimally coupled to gravity, and derived the trans-
formation properties of the tidal deformabilities to obtain
results in the Jordan frame, where the theory is originally
formulated.
As an application of the method, we considered case

studies in scalar-tensor theories with a choice of coupling
function that can give rise to scalarized neutron stars. We
demonstrated the feasibility of numerically extracting the
various tidal deformability parameters for examples with
different equations of state, scalar coupling strengths,
and asymptotic values of the scalar field. For the
examples considered, the tensor deformabilities become
larger than the GR values for high-mass neutron stars and
the scalar Love numbers are of the same order of
magnitude as the tensor ones in the Einstein frame.
Interestingly, the mixed scalar-tensor deformabilities are
negative and also of the same order of magnitude as the
others in the Einstein frame.
Calculating the consequences of these tidal properties for

GW signals is the subject of ongoing work [90]. The general
methodology developed here can also be applied for
scalarized compact objects in other theories of gravity
and can be extended to include the full dynamical tidal
response [91,92]. This would allow studies from an EFT
perspective of dynamical scalar tidal effects, like the
monopolar dynamical scalarization [56] that happens close
to the critical point of scalarization. In this context, con-
sidering an expansion of the EFT around the marginally
stable solutions (Sec. IV C 1) would be interesting, since it
is expected to be of comparable accuracy as an expansion
around the stable branch close to the critical point, but does
not introduce discontinuities into the model. Our work
provides important inputs for future tests of GR with GWs
and multimessenger observations and for understanding and
assessing possible degeneracies with changes to the NS
EOS or the presence of dark matter.
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APPENDIX A: FRAME TRANSFORMATIONS:
JORDAN TO EINSTEIN

1. Action

In this section, following [93,94], we will rederive the
steps necessary to go from the Jordan to the Einstein frame
via a conformal transformation. We start with the scalar-
tensor action in the Jordan frame,

SST ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
KRFðϕÞR − Kϕ

ωðϕÞ
ϕ

∂
μϕ∂μϕ

�
; ðA1Þ

where ϕ is a scalar field with self-coupling ωðϕÞ, coupled
to the Ricci scalar R via a scalar-field-dependent function
FðϕÞ, and KR and Kϕ are the normalization constants of R
and ϕ, respectively. We start by defining our (local)
conformal transformation,

g�μν ¼ ΩðxÞ2gμν: ðA2Þ

From here on we will write ΩðxÞ ¼ Ω for simplicity. Using
the Ansatz gμν� ¼ Cgμν and the invariance of the Kronecker
delta δ�νμ ¼ δνμ yields C ¼ Ω−2,

gμν� ¼ 1

Ω2
gμν: ðA3Þ

Using that detðcMÞ ¼ cn detðMÞ for an n × n matrix M,
it follows that

g� ¼ Ω8g; ðA4Þffiffiffiffiffiffiffiffi
−g�

p
¼ Ω4 ffiffiffiffiffiffi

−g
p

; ðA5Þ

in n ¼ 4 dimensions. The Christoffel symbol

Γμ
νλ ¼

1

2
gμρð∂νgρλ þ ∂λgρν − ∂ρgνλÞ ðA6Þ

changes as

Γμ
νλ ¼ Γ�μ

νλ − ðδμλfν þ δμνfλ − g�νλf
μ
�Þ; ðA7Þ

where

f ≡ logΩ; fα ≡ ∂αf; fα� ≡ ∂
α�f ¼ gαβ� ∂βf: ðA8Þ

The Ricci scalar will therefore change according to

R ¼ Ω2ðR� þ 6□�f − 6gμν� fμfνÞ; ðA9Þ

where R� is the Ricci scalar of the metric g�μν and

□�f ¼ 1ffiffiffiffiffiffiffiffi
−g�

p ∂μð
ffiffiffiffiffiffiffiffi
−g�

p
gμν� ∂νfÞ ðA10Þ
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is the Laplace-Beltrami operator associated with the metric
g�μν. We will now split the Lagrangian in (A1) into two
pieces,

LR ¼ ffiffiffiffiffiffi
−g

p
KRFðϕÞR; ðA11Þ

Lϕ ¼ ffiffiffiffiffiffi
−g

p
Kϕ

ωðϕÞ
ϕ

∂
μϕ∂μϕ: ðA12Þ

We will start with the first piece. Inverting (A3) and using
(A5) and (A9) yields

LR ¼
ffiffiffiffiffiffiffiffi
−g�

p
FðϕÞΩ−2KR½R� þ 6□�f − 6gμν� fμfν�: ðA13Þ

If we want to obtain a minimally coupled Lagrangian, we
must choose

FðϕÞΩ−2 ¼ 1; ðA14Þ

such that we recover the Einstein-Hilbert term.9 The second
term, (A10), is a boundary term and therefore will not
contribute to the Lagrangian. Now, given that we made the
choice (A14), we have

fα ¼ ∂αf ¼ ∂αΩ
Ω

¼ 1

2

∂αF
F

¼ 1

2

F0

F
∂αϕ; ðA15Þ

where F0 ≡ dF=dϕ, and therefore the third term in (A13)
reads

6gμν� fμfν ¼ 6gμν�
1

4

�
F0

F

�
2

∂μϕ∂νϕ

¼ 3

2

�
F0

F

�
2

gμν� ∂μϕ∂νϕ: ðA16Þ

We now focus on the second term,

Lϕ ¼ ffiffiffiffiffiffi
−g

p
Kϕ

ωðϕÞ
ϕ

gμν∂μϕ∂νϕ

¼ ð
ffiffiffiffiffiffiffiffi
−g�

p
Ω−4ÞKϕ

ωðϕÞ
ϕ

ðΩ2gμν� Þ∂μϕ∂νϕ ðA17Þ

¼
ffiffiffiffiffiffiffiffi
−g�

p
F−1Kϕ

ωðϕÞ
ϕ

gμν� ∂μϕ∂νϕ: ðA18Þ

Adding the two pieces together we obtain

LST ¼
ffiffiffiffiffiffiffiffi
−g�

p �
KRR� −

�
3KR

2

�
F0

F

�
2

þ Kϕ
ωðϕÞ
ϕF

�
gμν� ∂μϕ∂νϕ

	
: ðA19Þ

Introducing a new field by

dφ
dϕ

¼
ffiffiffiffi
Δ

p
; ðA20Þ

∂αϕ ¼ 1ffiffiffiffi
Δ

p ∂αφ; ðA21Þ

with

Δ≡ 3

2

KR

Kφ

�
F0

F

�
2

þ Kϕ

Kφ

ωðϕÞ
ϕF

; ðA22Þ

yields the Einstein frame Lagrangian

LST ¼
ffiffiffiffiffiffiffiffi
−g�

p
fKRR� − Kφg

μν
� ∂μφ∂νφg: ðA23Þ

We can now define a new coupling AðφÞ by A ¼ Ω−1. The
reason for this particular choice is that, if one adds a matter
action, the matter Lagrangian in the Einstein frame will
contain a metric AðφÞ2g�μν, and therefore can be seen as a
coupling of the scalar field to matter. Hence, with this new
parameter we have

gμν ¼ A2g�μν: ðA24Þ

We can relate A to the new field using (A14),

A ¼ Ω−1 ¼ F−1=2 ¼ exp

�
−
1

2
logF

�
¼ exp

�
−
Z

dF
1

2F

�
; ðA25Þ

and (A20)

dφ
dF

F0 ¼
ffiffiffiffi
Δ

p
; ðA26Þ

to obtain

AðφÞ ¼ exp

�
−
Z

dφ
F0

2F
ffiffiffiffi
Δ

p
�
: ðA27Þ

Analogously, we define

αðφÞ ¼ −
1

A
dA
dφ

¼ F0

2F
ffiffiffiffi
Δ

p ; ðA28Þ

9Notice that, although cumbersome, if we wish to have a
different coefficient for the Ricci-scalar term in the Einstein
frame, the right-hand side should read KR�=KR, with KR� as the
new normalization of the Ricci scalar in the minimally coupled
action.
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where all the quantities are understood as a function of the
new field φ.
In order to transform the skeletonized/EFT action, it is

useful to transform the following quantities:

dσ2 ¼ −ds2 ¼ −
1

Ω2
ds2� ¼

1

Ω2
dσ2�; ðA29aÞ

uμ ¼ dxμ

dσ
¼ Ω

dxμ

dσ�
¼ Ωuμ�; ðA29bÞ

uμ ¼ gμνuν ¼
1

Ω2
g�μνΩuν� ¼

1

Ω
u�μ; ðA29cÞ

uμuμ ¼ u�μu
μ
�: ðA29dÞ

2. Covariant derivatives

The covariant derivatives acting on the scalar and tensor
fields will yield higher-order contributions in the EFT. In this
section, we will show that this is the case by analyzing the
transformation of the covariant derivatives. Then, as an
explicit example, we will fix the multipolar order for the
scalar and tensor cases and show the explicit terms yielding
higher-order contributions. Additionally, we show a recur-
rence formula to transform any number of covariant deriv-
atives between Jordan and Einstein frames. An important
point to notice is that the quantities appearing in the EFT are
symmetric and trace-free. In this section, we do not project
the covariant derivatives onto their STF part, but that does
not change the rationale of the calculations.
We start with the transformation of the covariant deriva-

tive. Using

fμ ¼
1

2

F0

F
∂μϕ ¼ 1

2

F0

F
1ffiffiffiffi
Δ

p ∂μφ ¼ α∂μφ ¼ αES
μ; ðA30Þ

we can express (A7) in terms of the scalar dipolar tidal
field as

Γμ
νλ ¼ Γ�μ

νλ − αð2δμðλES
νÞ − g�νλES

μÞ; ðA31Þ

where indices between parentheses are symmetrized.
Therefore, when transforming a covariant derivative we
will have, schematically,

∇ → ∇� � αðδES − gESÞ: ðA32Þ

As the tidal action involves terms quadratic in covariant
derivatives, we use

ð∇EÞ2 → ð∇�EÞ2 þ α2cEEE2ES
2 � αcEES

ð∇�EÞEES;

ðA33Þ

with cEE and cEES
coefficients containing Dirac deltas and

metrics, and where E is a generic, i.e., scalar or tensor, tidal
field. Given that each tidal field EL scales as powers of 1=r,
the terms proportional to α will always be of higher order
than the first term at large separations and are therefore
suppressed in the EFT. In the following subsections, we
will see how this is the case explicitly for both the scalar
and tensor tidal fields.

a. Scalar field

We start with the scalar field. Since for l ¼ 1 the
covariant derivative reduces to a partial derivative, we will
start with the case l ¼ 2,

∇μνϕ ¼ ∇μ∂νϕ ¼ ∂μ∂νϕ − Γγ
μν∂γϕ: ðA34Þ

Using (A7) and (A21), the second term reads

Γγ
μν∂γϕ ¼ 1ffiffiffiffi

Δ
p ½Γ�γ

μν − ð2δγðμfνÞ − g�μνf
γ
�Þ�∂γφ: ðA35Þ

Additionally, using (A30) we obtain

Γγ
μν∂γϕ¼ 1ffiffiffiffi

Δ
p ½Γ�γ

μν−αð2δγðμ∂νÞφ− g�μνg
γκ
� ∂κφÞ�∂γφ: ðA36Þ

On the other hand, the partial derivative will transform as
follows:

∂μνϕ ¼ 1ffiffiffiffi
Δ

p ∂μνφþ ∂μφ∂ν

�
1ffiffiffiffi
Δ

p
�

¼ 1ffiffiffiffi
Δ

p
�
∂μνφ −

Δ0

2Δ3=2 ∂μφ∂νφ

�
; ðA37Þ

where we have used that

∂μ

�
1ffiffiffiffi
Δ

p
�

¼ ∂μϕ
d
dϕ

�
1ffiffiffiffi
Δ

p
�

¼ −
Δ0

2Δ3=2
ffiffiffiffi
Δ

p ∂μφ: ðA38Þ

Putting all together, the l ¼ 2 covariant derivative acting
on the scalar field will transform as

∇μνϕ ¼ 1ffiffiffiffi
Δ

p
�
∇�

μνφþ αð2δγðμ∂νÞφ − g�μνg
γκ
� ∂κφÞ∂γφ

−
Δ0

2Δ3=2 ∂μφ∂νφ

�
: ðA39Þ

However, given that the second and third terms are propor-
tional to ES

2 ¼ ð∂φÞ2, they will yield higher-order terms in
the action. This is because the tidal action will read,
schematically,
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ð∇ϕÞ2 ¼ 1

Δ
½ð∇�φÞ2 þ cEES

ð∇�φÞμνES
μES

ν

þ cESES
ES
μES

νE
μ
SE

ν
S�

¼ 1

Δ
ð∇�φÞ2 þOðES

3Þ; ðA40Þ

with cEES
and cESES

as coefficients containing factors of α
and Δ. Therefore, given that we only have to consider the
first term, for generic multipolar order we will have

∇Lϕ ¼ 1ffiffiffiffi
Δ

p ∇�
Lφþ…; ðA41Þ

where “…” denotes high-order terms in the EFT that are
therefore omitted in the Einstein frame.

b. Tensor field

For the tensor (gravitational) tidal field, we will start with
the case l ¼ 2,

Eμν ¼
1

z2
Cμανβuαuβ; ðA42Þ

with z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p
and Cμανβ as the Weyl tensor. Using

that the (3,1) Weyl tensor is invariant under conformal
transformations,

Cμανβ ¼ gβγCμαν
γ ¼ 1

Ω2
g�βγC

�
μαν

γ ¼ 1

Ω2
C�
μανβ; ðA43Þ

we obtain

Eμν ¼
1

Ω2z2�
C�
μανβΩ2uα�u

β
� ¼ E�

μν: ðA44Þ

Therefore, the l ¼ 2 tidal tensor is invariant under con-
formal transformations. We now consider the case l ¼ 3,

Eγμν ¼ ∇γEμν: ðA45Þ

Similar to the scalar case, the covariant derivative reads

∇γEμν ¼ ∂γEμν − Γδ
γμEδν − Γω

γνEωμ: ðA46Þ

Using (A7) and (A44) we obtain

∇γEμν ¼ ∇�
γE�

μν þ 3α½E�
ðαβE

S
γÞ − g�ðαβE

�
γÞξg

ξδ� ES
δ �

þ α½E�
αβE

S
γ þ g�αβE

�
γξg

ξδ� ES
δ �: ðA47Þ

In analogy with the scalar case above, all terms except the
first one will yield higher-order contributions in the action
that are suppressed in the EFT,

EL ¼ E�
L þ…; ðA48Þ

where, as above, the ellipsis denotes high-order terms
suppressed in the EFT.

c. Recurrence relation for generic l

In general, for any multipolar order L, we can find a
recurrence relation for computing the Lth covariant
derivative,

∇LEαβ ¼ ∇�
μEL−1αβ þ lα

×

�
EðL−1αβ∂μÞφ −

ðl − 1Þ
2

g�ðαβEμL−1Þξg
ξκ� ∂κφ

�
þ αðl − 2Þ

�
EL−1αβ∂μφ

þ ðl − 1Þ
2

g�ðαβEL−1Þμξg
ξκ� ∂κφ

�
; ðA49Þ

where ∇μE−1αβ ¼ Eαβ and E−1αβ ¼ 0. This expression is
valid for any symmetric tensor Eαβ and can be used for the
scalar tidal field as well, given that ES

−1αβ ¼ ES
α. Note that

the first term does not contain an asterisk. This would be
the case for l ¼ 0; 1 since Eμν ¼ E�

μν. For the other cases,
one has to substitute the expression for the (l − 1)th tidal
field. This will yield derivatives of the second term, which
will eventually be expressed as a combination of the lth
tidal field in the Einstein frame and its derivatives. With
this generic expression we can also reason, similar to all
the cases above, that

EL ¼ E�
L þ… ðA50Þ

where the ellipsis denote terms that give higher-order
contributions to the EFT. This recurrence relation can be
used in order to speed up the computation of any number
of covariant derivatives using, e.g., Mathematica.

3. Tidal deformabilities

We start with the tidal action in the Jordan frame given
in (3.10). In the full theory describing an isolated body, we
use coordinates such that the background spacetime is
asymptotically flat. Therefore, we will adapt these coor-
dinates in the EFT for consistency. As explained in
Appendix C, demanding an asymptotically flat spacetime
in the Jordan frame requires a rescaling of the coordinates
such that

dx̃μ ¼ Aðφ∞Þdxμ; ðA51Þ

which implies

∇L → Aðφ∞Þl∇̃L: ðA52Þ

For the rest of this appendix, we will adopt these coor-
dinates and drop the tilde. Transforming the line element,
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four-velocities, and tidal fields using (A29), (A41),
and (A48), we obtain

Stidal ¼
X
l

Z
dσ�z�gLP� ðA=A∞Þ1−2l

×
�
λTl
2l!

E�T
L E�T

P þ λSl
2l!Δ

E�S
L E�S

P þ λSTl
l!

ffiffiffiffi
Δ

p E�T
L E�S

P

�
;

ðA53Þ

where

A∞ ≡ Aðφ∞Þ; ðA54Þ

and we use a similar notation for any other function of φ
evaluated at infinity. From (3.11) with (2.2) we have

gLP ¼
Yl
n¼1

glnpn ¼ A−2l
Yl
n¼1

glnpn� ¼ A−2lgLP� : ðA55Þ

Comparing with the tidal action in the Einstein frame
in (3.13) we read off that the coefficients of the bilinears in
the tidal fields are related by

λTl ¼ Ā2l−1λ�Tl ; ðA56Þ

λSl ¼ Ā2l−1Δλ�Sl ; ðA57Þ

λSTl ¼ Ā2l−1
ffiffiffiffi
Δ

p
λ�STl ; ðA58Þ

with Ā ¼ A=A∞ and

Δ≡ 3

2

KR

Kφ

�
F0

F

�
2

þ Kϕ

Kφ

ωðϕÞ
ϕF

: ðA59Þ

We can also rewrite these expressions in terms of α. Using
(2.8) and assuming α ≠ 0,

Δ ¼
�

F0

2Fα

�
2

¼
�
A2F0

2α

�
2

; ðA60Þ

and therefore

λTl ¼ Ā2l−1λ�Tl ; ðA61Þ

λSl ¼ Ā2l−1A4F02

4α2
λ�Sl ; ðA62Þ

λSTl ¼ Ā2l−1A2F0

2α
λ�STl ; ðA63Þ

where F0 can be expressed in terms of AðφÞ for a specific
FðϕÞ. Note that coefficients in front of λ�l have to be
evaluated at infinity. This is because the tidal and multipole

moments or, equivalently, the tidal deformability are
extracted at infinity (3.16). This leads to the relations

λTl ¼ λ�Tl ; ðA64aÞ

λSl ¼
�
A2
∞F0

∞

2α∞

�
2

λ�Sl ; ðA64bÞ

λSTl ¼ A2
∞F0

∞

2α∞
λ�STl : ðA64cÞ

a. Explicit example

To give an explicit example of the application of the
transformations (A64), we consider the coupling function
FðϕÞ ¼ ϕn. In this case we have

F0 ¼ nϕn−1 ¼ nF
n−1
n ¼ nA−2n−1n ; ðA65Þ

and substituting into (A64) leads to the result for
general choices of n. For the case n ¼ 1, corresponding to
Jordan-Brans-Dicke gravity, and additionally choosing
Aðφ∞Þ ¼ e

1
2
βφ2

∞ , and hence αðφ∞Þ ¼ −βφ∞, relevant for
spontaneous scalarization, we obtain

λTl ¼ λ�Tl ; ðA66Þ

λSl ¼ e2βφ
2
∞

4β2φ2
∞
λ�Sl ; ðA67Þ

λSTl ¼ −
eβφ

2
∞

2βφ∞
λ�STl : ðA68Þ

APPENDIX B: JUST COORDINATE SYSTEM

In this appendix, we review the Just coordinate system
and provide some explicit derivations missing in the
literature. This coordinate system was introduced by
Kurt Just [95] and later used by Damour and Esposito-
Farèse [50,52,53]. The Just coordinate system is useful
because it provides a closed-form solution for the back-
ground scalar field. This solution is given in terms of two
constants, which correspond to physical quantities such as
the mass or the charge. We will derive the vacuum TOV
equations and explicitly perform the matching to the
surface of the star, which will allow us to compute the
value of the scalar field at infinity and its scalar charge.

1. Metric functions and scalar field

The metric in the Just coordinate system reads

ds2 ¼ −eνdt2 þ e−νdρ2 þ eμ−νdΩ2: ðB1Þ
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In vacuum, the Einstein field equations read

Gtt ¼ μ00 − μ0ν0 − e−μ − ν00 þ ν02 þ 3μ02

4
þ φ0

0
2 ¼ 0 ðB2aÞ

Gρρ ¼ e−μ þ ν02 − μ02

4
þ φ0

0
2 ¼ 0; ðB2bÞ

Gθθ ¼ 2μ00 þ μ02 þ ν02 þ 4φ0
0
2 ¼ 0: ðB2cÞ

We can now take combinations of the different components
in order to solve for the metric functions. In particular,

Gθθ

2
−Gtt − Gρρ ¼ ν00 þ μ0ν0 ¼ 0; ðB3aÞ

Gθθ

2
− 2Gρρ ¼ −2e−μ þ μ02 þ μ00 ¼ 0: ðB3bÞ

From (B3b) we obtain

μ ¼ log

�
−
c1
4
þ ðc2 þ ρÞ2

�
¼ log

�
ρ2
�
1 −

a
ρ

��
; ðB4Þ

where in the last step we choose the integration constant
c1 ¼ 4c22 and redefine c2 ¼ −a=2. Plugging this solution
into (B3) and solving for ν yields

ν ¼ k1 þ
k2
a
log

�
1 −

a
ρ

�
¼ b

a
log

�
1 −

a
ρ

�
; ðB5Þ

where we have redefined k2 ¼ b and set k1 ¼ 0 by
demanding asymptotic flatness.
Now that we have solved for the metric functions, we can

solve the background scalar field. Its vacuum equation of
motion in the Just coordinate system reads

φ00
0 þ μ0φ0

0 ¼ e−μðφ0
0e

μÞ0 ¼ 0: ðB6Þ

Substituting (B4) and integrating yields

φ0 ¼ b1þ
b2
a
log

�
1−

a
ρ

�
¼ φ0∞þd

a
log

�
1−

a
ρ

�
; ðB7Þ

where we have redefined b2 ¼ d, and b1 ¼ φ0∞ is the value
of the scalar field background at infinity. Finally, we can
substitute all the solutions into (B2c) and find that the
constants obey

a2 ¼ b2 þ 4d2: ðB8Þ

2. Relating the constants to physical quantities

In order to relate the constants to some known physical
quantities, we can start by relating the Just coordinate
system to the standard Schwarzschild coordinates,

ds2 ¼ −eνdt2 þ eγdr2 þ r2dΩ2: ðB9Þ

By comparing the metric functions, we obtain the following
relations:

r2 ¼ eμ−ν ¼ ρ2
�
1 −

a
ρ

�
1−b=a

; ðB10aÞ

eγ ¼ e−ν
�
dρ
dr

�
2

¼
�
1 −

a
ρ

��
1 −

aþ b
2ρ

�
−2
: ðB10bÞ

Given that, at infinity,

eγ ¼ 1þ 2M
r

þO
�
1

r2

�
;�

1 −
a
ρ

��
1 −

aþ b
2ρ

�
−2

¼ 1þ b
ρ
þO

�
1

ρ2

�
;

r ¼ ρþO
�
ρ1=2;

1

ρ

�
;

it follows that b ¼ 2M, with M the point-particle or ADM
mass. Similarly, comparing the scalar field at infinity

φ0ðrÞ ¼ φ0∞ −
qM
r

þO
�
1

r2

�
;

φ0ðρÞ ¼ φ0∞ −
d
ρ
þO

�
1

ρ2

�
;

implies d ¼ qM ¼ qb=2, where q ¼ −Q=M is (minus) the
scalar charge Q per unit mass. Using (B8) we obtain
a ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
. To summarize, the relations between the

constants and the physical quantities are

b ¼ 2M; ðB11aÞ

d
b
¼ q

2
; ðB11bÞ

a
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

q
: ðB11cÞ

3. Obtaining the constants by matching at the surface

We can use the relation between the constants and the
physical quantities, together with the relations between the
coordinate systems, in order to extract the scalar charge
per unit mass, the value of the scalar field at infinity, and
the ADM mass from the metric components evaluated at
the surface of the star.
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We start with the charge. Using (B5) we can write (B7) as

φðρÞ ¼ φ0∞ þ d
b
νðρÞ:

Taking a derivative and using (B11b) yields

q ¼ 2φ0
0ðρÞ

ν0ðρÞ ¼ 2φ0
0ðrÞ

ν0ðrÞ ; ðB12Þ

where we have changed coordinates in the last step. In order
to compute the ADMmass in terms of surface quantities, we
first have to relate the metric function ν and the surface
radius in the two coordinate systems. In order to obtain the
relation between the radial coordinate at the surface, we can
take a derivative of ν with respect to the radial coordinate r.
For that, it may be useful to rewrite ν using (B10a),

νðρÞ ¼ 2b
a − b

log

�
r
ρ

�
:

Taking an r derivative and evaluating at the surface r ¼ R
yields

ν0S ¼
2b

Rð2ρS − a − bÞ ;

with ν0 ≡ dν=dr and the subscript S denotes the quantity
evaluated at the surface. Hence, the relation between radial
coordinates at the surface reads

ρS ¼
aþ b
2

þ b
Rν0S

: ðB13Þ

We can now use this equation in order to compute the
relation between ν evaluated at the surface in the two
coordinate systems,

νS ¼ νðρSÞ ¼
b
a
log

�
1 −

a
ρS

�
¼ −

b
a
log

�
1þ x
1 − x

�
¼ −

2b
a
arctanhðxÞ ¼ −

2b
a
arctanh

�
a=b

1þ 2
Rν0S

�
; ðB14Þ

where in the second equality we have rewritten the argument

in the logarithm in terms of x ¼ aRν0S
bð2þRν0SÞ and used a

trigonometric identity in the third equality. Next, we use
Eq. (B10b) with [see (4.10)]

eγðrÞ ¼
�
1 −

2mðrÞ
r

�
−1

evaluated at the surface in order to derive

a2 ¼ b
Q2R2ν0S

2
½bQ2ðRν0S − 2Þ2 − 4eνS=2R2ν0S�;

where, following [53], we define Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mS=R

p
, with

mS as the mass at the surface of the star. Substituting the
expression for a above into (B10) evaluated at the surface

R ¼ e−νS=2ρS

�
1 −

a
ρS

�
1=2

;

together with (B13), yields

b ¼ 2M ¼ eνS=2Q2R2ν0S; ðB15Þ

and hence,

d ¼ q
b
2
¼ 1

2
eνS=2Q2R2φ0

0ðRÞ; ðB16Þ

a ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

q
¼ eνS=2Q2R2ν0S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4φ0

0ðRÞ2
ν0S

2

s
: ðB17Þ

To the best of our knowledge the relations between d and
a and the star’s quantities at the surface have not yet
appeared in the literature. We can use these results to relate
the value of the scalar field at infinity with its value at the
surface,

φ0∞ ¼ φ0ðRÞ −
φ0
0ðRÞ
ν0S

νS: ðB18Þ

To sum up, the charge per unit mass, the scalar field at
infinity, and the ADM mass are related to the surface
quantities in the Schwarzschild coordinates by

q ¼ 2φ0
0ðRÞ
ν0S

; ðB19Þ

φ0∞ ¼ φ0ðRÞ −
φ0
0ðRÞ
ν0S

νS; ðB20Þ

M ¼ 1

2
eνS=2Q2R2ν0S; ðB21Þ

with

νS ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
1þ 2

Rν0S

!
: ðB22Þ

APPENDIX C: RELATING PHYSICAL
QUANTITIES BETWEEN FRAMES

In this appendix, we rederive the transformations of the
ADMmass and charge between Jordan and Einstein frames
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presented in [48,50]. From [96–100], and assuming the
common normalization Kϕ ¼ KR, the ϕ-dependent gravi-
tational constant measured in experiments G̃ðϕ∞Þ, such as
those by Cavendish, is related to the gravitational constant
G appearing in the normalization coefficients by

G̃ðϕ∞Þ ¼
1

Fðϕ∞Þ

 
4F0ðϕ∞Þ2 þ 2

Fðϕ∞Þ
ϕ∞

ω∞

3F0ðϕ∞Þ2 þ 2
Fðϕ∞Þ
ϕ∞

ω∞

!
G; ðC1Þ

where the subscript ∞ means evaluation at infinity.
Using (A25) and (2.8) we can rewrite it as

G̃ðφ∞Þ ¼ Aðφ∞Þ2
�
1þ 2KR

Kφ
α2∞

�
G; ðC2Þ

hence generalizing the different normalizations in the
literature. With the normalizations and coupling chosen
in Sec. IV we have

G̃ðφ∞Þ ¼ eβφ
2
∞ð1þ β2φ2

∞ÞG: ðC3Þ

1. ADM mass

In order to relate the ADM mass between frames we can
compare the r − r component of the metrics at infinity.
However, from (A24), we see that, at infinity,

ds2 ¼ A2ðφ∞Þη�μνdxμdxν; ðC4Þ

given that we demand asymptotic flatness in the Einstein
frame (see Sec. IV). Therefore, in order to obtain a
Minkowski spacetime at infinity in the Jordan frame we
must rescale our Jordan frame coordinates by a constant

dx̃μ ¼ Aðφ∞Þdxμ; ðC5Þ

such that r̃ ¼ Aðφ∞Þr. With these rescaled coordinates we
can write the Jordan metric at infinity in terms of the
Einstein metric at infinity as

grr ¼ AðφÞ2g�rr ¼
AðφÞ2
Aðφ∞Þ2

1

1 − 2Aðφ∞ÞGmðr̃Þ
r̃

¼ 1þ 2Aðφ∞ÞGðM −Qα∞Þ
r̃

þO
�
1

r̃2

�
; ðC6Þ

withM as the ADM mass (B21) and Q as the scalar charge
in the Einstein frame. Comparing with the Jordan frame
metric at infinity

grr ¼ 1þ 2G̃MJ

r̃
þO

�
1

r̃2

�
; ðC7Þ

with MJ as the ADM mass in the Jordan frame, yields

MJ ¼
M −Qα∞

Aðφ∞Þð1þ 2KR
Kφ

α2∞Þ
¼ Mð1þ qα∞Þ

Aðφ∞Þð1þ 2KR
Kφ

α2∞Þ
; ðC8Þ

with q ¼ −Q=M (minus) the charge per unit mass. Again,
using the normalizations and coupling function of the main
text we obtain

MJ ¼ Me−
1
2
βφ2

∞
1 − qβφ∞

1þ β2φ2
∞
; ðC9Þ

in agreement with [50]. Ignoring the terms quadratic in φ∞,
we recover the result of [48],

MJ ¼ e−
1
2
βφ2

∞ðM þ βφ∞QÞ: ðC10Þ

2. Scalar charge

In order to transform the scalar charge, we can use (A21)
and (A28) in order to write

∂μϕ ¼ 1ffiffiffiffi
Δ

p ∂μφ ¼ F0

2Fα
∂μφ:

Using that, at infinity,

ϕ ¼ ϕ∞ þ G̃QJ

r̃
þO

�
1

r̃2

�
; ðC11aÞ

φ0 ¼ φ0∞ þ GQ
r

þO
�
1

r2

�
; ðC11bÞ

we have, at zeroth order in 1=r,

GQ
r2

¼ F0
∞

2F∞α∞

G̃QJ

r̃2
dr̃
dr

; ðC12Þ

and therefore

QJ ¼
2α∞
Aðφ∞Þ

G

G̃
Q ¼ 2α∞

Aðφ∞Þ3ð1þ 2KR
Kφ

α2∞Þ
Q: ðC13Þ

With our normalizations we have

QJ ¼ −
2βφ∞

1þ β2φ2
∞
e−

3
2
βφ2

∞Q: ðC14Þ

Note that here we define the coefficient in front of 1=r
in (C11) with the explicit factors of G and G̃. However, in
the literature this might vary, but then one has to take into
account the proper dimensionality of α∞, which with our
normalizations is dimensionless. If we ignore the factors of
G, then we recover the same expression as in [48],

G̃QJ ¼ −2βφ∞e−
1
2
βφ2

∞GQ: ðC15Þ
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APPENDIX D: ADDITIONAL PLOTS OF λl

1. Quadrupolar l= 2

Figure 11 shows the results for the scalar quadrupolar tidal deformabilities for different equations of state (different
colors), coupling coefficients (different dashings), and in both the Einstein (left panels) and Jordan frame (right panels). The
panels in the bottom row are zoomed in on the features for small-λ regime relevant for the smaller coupling. Figure 12 shows
analogous results but for the mixed scalar-tensor deformability.

FIG. 11. Quadrupolar scalar tidal deformabilities λS2 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and
H4). The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with
β ¼ −4.5 and β ¼ −6, respectively, and the plots in the bottom row are enlarged with respect to their counterparts in the top row. The
cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. All plots correspond to a scalar field at
infinity φ0∞ ¼ 10−3.
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FIG. 12. Quadrupolar scalar-tensor tidal deformabilities λST2 in the Einstein and Jordan frames for three equations of state (WFF1, SLy,
and H4). The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with
β ¼ −4.5 and β ¼ −6, respectively, and the plots in the bottom row are enlarged with respect to their counterparts in the top row. The
cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. All plots correspond to a scalar field at
infinity φ0∞ ¼ 10−3.
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2. Octupolar l= 3

Figure 13 shows the results for the scalar octupolar tidal deformabilities for different equations of state (different colors),
coupling coefficients (different dashings), and in both the Einstein (left panels) and Jordan frame (right panels). The panels
in the bottom row are zoomed in on the features for small-λ regime relevant for the smaller coupling. Figure 14 shows
analogous results but for the mixed scalar-tensor deformability.

FIG. 13. Octupolar scalar tidal deformabilities λS3 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4).
The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and
β ¼ −6, respectively, and the plots in the bottom row are enlarged with respect to their counterparts in the top row. The cross represents
the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. All plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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FIG. 14. Octupolar scalar-tensor tidal deformabilities λST3 in the Einstein and Jordan frames for three equations of state (WFF1, SLy,
and H4). The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with
β ¼ −4.5 and β ¼ −6, respectively, and the plots in the bottom row are enlarged with respect to their counterparts in the top row. The
cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. All plots correspond to a scalar field at
infinity φ0∞ ¼ 10−3.
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APPENDIX E: PLOTS OF THE DIMENSIONLESS QUANTITIES Λl and kl

1. Dipolar l= 1

Figure 15 shows the results for the dimensionless scalar dipolar tidal deformability quantitiesΛS
1 defined in Eq. (3.30) for

different equations of state (different colors), coupling coefficients (upper and lower panels), and in both the Einstein (left
panels) and Jordan frame (right panels). Figure 16 shows analogous results for the dimensionless Love number defined
in Eq. (3.5).

FIG. 15. Dipolar scalar adimensional tidal deformabilities ΛS
1 in the Einstein and Jordan frames for three equations of state (WFF1,

SLy, and H4). The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with
β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6.
For β ¼ −6 we have omitted the data beyond the maximum mass configuration for better readability. All plots correspond to a scalar
field at infinity φ0∞ ¼ 10−3.

CRECI, HINDERER, and STEINHOFF PHYS. REV. D 108, 124073 (2023)

124073-32



FIG. 16. Dipolar scalar Love number kS1 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4). The
Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and
β ¼ −6, respectively. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. For
β ¼ −6 we have omitted the data beyond the maximum mass configuration for better readability. All plots correspond to a scalar field at
infinity φ0∞ ¼ 10−3.
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2. Quadrupolar l= 2

Figure 17 shows the results for the dimensionless tensor quadrupolar tidal deformability quantities ΛT
2 defined in

Eq. (3.30) for different equations of state (different colors), coupling coefficients (different dashings), and in both the
Einstein (left panel) and Jordan frame (right panel). Figure 18 shows analogous results for the scalar deformability, while
Fig. 19 illustrates those for the mixed scalar-tensory quantity. The corresponding results for the dimensionless Love
numbers k2 defined in Eq. (3.5) are shown in Fig. 20 for the tensor, Fig. 21 for the scalar, and Fig. 22 for the mixed
quantities.

FIG. 17. Quadrupolar tensor adimensional tidal deformabilities ΛT
2 in the Einstein and Jordan frames for three equations of state

(WFF1, SLy, and H4). The Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the
dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the
maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 18. Quadrupolar scalar adimensional tidal deformabilities ΛS
2 in the Einstein and Jordan frames for three equations of state

(WFF1, SLy, and H4). The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized
configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the
circle for β ¼ −6. Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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FIG. 19. Quadrupolar scalar-tensor adimensional tidal deformabilities ΛST
2 in the Einstein and Jordan frames for three equations of

state (WFF1, SLy, and H4). The Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0
and the dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively, and the plots in the
bottom row are enlarged with respect to their counterparts in the top row. The cross represents the maximum mass configuration for
β ¼ 0;−4.5 and the circle for β ¼ −6. All plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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FIG. 20. Quadrupolar tensor Love numbers kT2 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4). The
Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the dashed and dot-dashed
lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass configuration
for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 21. Quadrupolar scalar Love numbers kS2 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4). The
Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the dashed and dot-dashed
lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively, and the plots in the bottom row are enlarged with respect
to their counterparts in the top row. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. All
plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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3. Octupolar l= 3

Figure 23 shows the results for the dimensionless tensor octupolar tidal deformability quantities ΛT
3 defined in Eq. (3.30)

for different equations of state (different colors), coupling coefficients (different dashings), and in both the Einstein (left
panel) and Jordan frame (right panel). Figure 24 shows analogous results for the scalar deformability, while Fig. 25
illustrates those for the mixed scalar-tensory quantity. The corresponding results for the dimensionless Love numbers k3
defined in Eq. (3.5) are shown in Fig. 26 for the tensor, Fig. 27 for the scalar, and Fig. 28 for the mixed quantities.

FIG. 23. Octupolar tensor adimensional tidal deformabilities ΛT
3 in the Einstein and Jordan frames for three equations of state (WFF1,

SLy, and H4). The Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the dashed
and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass
configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 22. Quadrupolar scalar-tensor Love numbers kST2 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and
H4). The Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the dashed and dot-
dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass
configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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FIG. 25. Octupolar scalar-tensor adimensional tidal deformabilities ΛST
3 in the Einstein and Jordan frames for three equations of state

(WFF1, SLy, and H4). The Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the
dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively, and the plots in the bottom row
are enlarged with respect to their counterparts in the top row. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and
the circle for β ¼ −6. All plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 24. Octupolar scalar adimensional tidal deformabilities ΛS
3 in the Einstein and Jordan frames for three equations of state (WFF1,

SLy, and H4). The Jordan frame plots use the Jordan frame mass. The dashed and dot-dashed lines are the scalarized configurations with
β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6.
Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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FIG. 26. Octupolar tensor Love numbers kT3 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4). The
solid lines represent the GR configurations β ¼ 0 and the dashed and dot-dashed lines are the scalarized configurations with β ¼ −4.5
and β ¼ −6, respectively. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots
correspond to a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 27. Octupolar scalar Love numbers kS3 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and H4). The
Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the dashed and dot-dashed
lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively, and the plots in the bottom row are enlarged with respect
to their counterparts in the top row. The cross represents the maximum mass configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. All
plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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APPENDIX F: COMPARISON WITH
BROWN 2022

In Fig. 29 we show the absolute relative difference
(ARD),

ARDðS=TÞ ¼
���� λ�2ðS=TÞ − λBrown2

ðS=TÞ

λ�2
ðS=TÞ

����; ðF1Þ

with λBrown2
ðS=TÞ the quadrupolar tidal deformability

from [49] computed setting the source terms in (4.25)
and (4.26) to zero, fs ¼ 0 ¼ gs. In particular, the ARD for
the tensor tidal deformability is at most 4% for β ¼ −4.5
and 26% for β ¼ −6. For the scalar tidal deformability, the
ARD is at most 18% for β ¼ −4.5 and 35% for β ¼ −6.
This implies that neglecting the source terms can introduce
noticeable inaccuracies into the scalar and tensor tidal
deformabilities in some regions of the parameter space.

FIG. 29. Absolute relative difference between the tensor (left) and scalar (right) quadrupolar tidal deformabilities computed with and
without setting the source term in the perturbation equations of motion to zero. The mass is the ADM mass in the Einstein frame. We
consider three equations of state (WFF1, SLy, and H4) and the dashed and dot-dashed lines are the scalarized configurations with
β ¼ −4.5 and β ¼ −6, respectively. We set a scalar field at infinity φ0∞ ¼ 10−3.

FIG. 28. Octupolar scalar-tensor Love numbers kST3 in the Einstein and Jordan frames for three equations of state (WFF1, SLy, and
H4). The Jordan frame plots use the Jordan frame mass. The solid lines represent the GR configurations β ¼ 0 and the dashed and dot-
dashed lines are the scalarized configurations with β ¼ −4.5 and β ¼ −6, respectively. The cross represents the maximum mass
configuration for β ¼ 0;−4.5 and the circle for β ¼ −6. Both plots correspond to a scalar field at infinity φ0∞ ¼ 10−3.
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and binary pulsar experiments, Phys. Rev. D 54, 1474
(1996).

[53] T. Damour and G. Esposito-Farèse, Gravitational wave
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