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The underlying physics of QCD phase transition in the early Universe remains largely unknown
due to its strong-coupling nature during the quark-gluon plasma/hadron gas transition, yet a holo-
graphic model has been proposed to quantitatively fit the lattice QCD data while with its duration
of the first-order phase transition (FoPT) left undetermined. At specific baryon chemical potential,
the first-order QCD phase transition agrees with the observational constraint of baryon asymmetry.
It therefore provides a scenario for phase transition gravitational waves (GWs) within the Standard
Model of particle physics. If these background GWs could contribute dominantly to the recently
claimed common-spectrum red noise from pulsar timing array (PTA) observations, the duration of
this FoPT can be well constrained but disfavored by the constraints from curvature perturbations.
However, the associated primordial black holes are still allowed by current observations. Therefore,
either the QCD phase transition is not described by our holographic model or the other GW sources
must be presented to dominate over the GWs from this FoPT.

Introduction.— Recently, independent evidence for
detecting a gravitational-wave (GW) background around
the nano-Hz band has been reported by different obser-
vations using pulsar timing array (PTA) [1–4], among
which the Chinese PTA Data Release I (CPTA DR1) [1]
has found the highest statistical significance (4.6σ) for
the Hellings–Downs correlation curve [5], while the
North American Nanohertz Observatory for Gravita-
tional Waves 15-year data (NANOGrav 15yr) [2] has put
strong constraints on the excluded parameter spaces for
various cosmological sources [6] (see also [7]) when their
GWs significantly exceed the NANOGrav signal. Never-
theless, although the 10.3-year subset of European Pulsar
Timing Array second data release (EPTA DR2) [3] based
on modern observing systems renders a 15 times larger
Bayes factor of GW background detection compared to
that of the full 24.7-year EPTA data set, its inferred spec-
trum is in mild tension with the common signal measured
in the full data set. Similarly, the first half of the Parkes
Pulsar Timing Array third data release (PPTA DR3) [4]
yields an upper limit on the inferred common-spectrum
amplitude in tension with that from the complete data
set.

However, if the signal is indeed genuine, we are in
a position to search for other GW sources (for exam-
ple, cosmic inflation [8–14], scalar-induced GWs [15–26],
phase transitions [17, 27–42], domain walls [17, 38, 43–
51], cosmic strings [17, 38, 52–57], and ultralight dark
matter [58], to name just a few) in addition to the conven-
tional background from inspiraling supermassive black
hole binaries (SMBHBs), even though the SMBHB back-
ground itself might also call for better modeling from

unknown environmental effects [59–65].

The cosmological quantum chromodynamics (QCD)
phase transition holds significant implications as a poten-
tial source for a stochastic GW background if it is of the
first order. However, constraints imposed by measure-
ments of primordial element abundances and the cosmic
microwave background have led to a stringent limitation
on the baryon asymmetry ηB ≡ nB/s, where nB and s
denote the baryon number density and entropy density,
respectively [66]. The observed value [67], ηB ≈ 10−10,
has led to the prevailing belief that a cosmological first-
order QCD phase transition does not occur within the
Standard Model of particle physics. Hence, numerous
QCD model buildings beyond the Standard Model have
been proposed to introduce a first-order phase transition
(FoPT) (e.g., see specifically Refs. [68–76] and most re-
cent review [77]).

While both experimental data and lattice QCD pro-
vide insights mainly within the crossover region with
µB/T ≤ 3.5, we have leveraged holographic duality to
establish a connection between the non-perturbative dy-
namics of QCD and a higher-dimensional gravity sys-
tem. Our holographic model has not only demonstrated
a remarkable quantitative agreement with state-of-the-
art lattice QCD data for 2+1 flavors [78] (see also
Refs. [79, 80] and particularly [81]), but it also has re-
cently exhibited consistency with experimental data from
heavy ion collisions regarding baryon number fluctua-
tions along chemical freeze-out [82]. Notably, the critical
endpoint (CEP) in the QCD phase diagram is located
at (TCEP = 105 MeV, µCEP = 555 MeV), a region that
is anticipated to be accessible to upcoming experimen-
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FIG. 1. Summary of our holographic model predictions. The QCD phase diagram is shown in the T − µB plane with the red
point (CEP) separating the crossover (blue dashed) and first-order (black solid) regimes. The blue dashed line is determined
by the maximally increasing point of the baryon number susceptibility and the black solid one is by the free energy. The
bottom-left three insets present our holographic computations of pressure P , energy density ϵ, and entropy density s compared
to the latest lattice data (with error bars) within the available range 0 < µB/T < 3.5, while the upper-right inset presents our
model prediction on the baryon asymmetry with the red square singled out to match the observational value (dashed line).

tal measurements [78]. Intriguingly, our theory within
the confines of the Standard Model finds that around
µB = 1000 MeV, not only does the QCD phase tran-
sition become first order, but also the inferred value of
ηB aligns with cosmological observations. This presents
a compelling scenario where the early universe, as de-
scribed by the Standard Model, could have served as an
essential source of GWs.

In this paper, we will use the NANOGrav 15yr data [2]
to constrain the parameter space of the FoPT predicted
by our holographic QCD model assuming that it pro-
duces the dominant contribution to the NANOGrav sig-
nals. In particular, the Bayes parameter inferences al-
low us to put a strong constraint on the duration of this
FoPT, which is already disfavored by the constraints from
curvature perturbations even though the produced pri-
mordial black holes (PBHs) are still allowed by current
observations. This could either disfavor our scenario at
the benchmark point with µB = 1000 MeV as a viable
description for a first-order QCD phase transition, or the
QCD phase transition by itself does not contribute domi-
nantly to the NANOGrav signals, and other GW sources
must be present.

Holographic model.— The holographic model used
to describe QCD with 2+1 flavors is represented by the

following action [78]

SM =
1

2κ2
N

∫
d5x

√
−g[R−1

2
(∇ϕ)2−Z(ϕ)

4
FµνF

µν−V (ϕ)] ,

(1)
where Aµ is the gauge field incorporating finite baryon
density and ϕ accounts for the breaking of conformal in-
variance in the dual system. Alongside the effective New-
ton constant κ2

N , V (ϕ) and Z(ϕ) are two independent
couplings within our bottom-up model. The solution de-
scribing the hairy black hole configuration is given by

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2dx2

3 ,

ϕ = ϕ(r), At = At(r) .

(2)

In this context, dx2
3 = dx2 + dy2 + dz2, and r denotes

the radial coordinate in the holographic setup. The AdS
boundary is located as r → ∞. Thermodynamic quan-
tities such as temperature T , entropy density s, energy
density ϵ, and pressure P can be straightforwardly de-
rived using the standard holographic dictionary.

To encapsulate non-perturbative effects and flavor dy-
namics, we have employed global fitting techniques to
calibrate the model parameters with state-of-the-art lat-
tice data for (2+1)-flavors at zero net-baryon density.
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FIG. 2. Energy-density fraction spectra with three different sets of values for the four independent model parameters. Violin
data points stand for the NANOGrav 15yr observations [2].

The explicit forms of V (ϕ) and Z(ϕ) are given by:

V (ϕ) = −12 cosh[c1ϕ] + (6c21 −
3

2
)ϕ2 + c2ϕ

6 ,

Z(ϕ) =
1

1 + c3
sech[c4ϕ

3] +
c3

1 + c3
e−c5ϕ ,

(3)

with c1 = 0.7100, c2 = 0.0037, c3 = 1.935, c4 =
0.085, c5 = 30. Moreover, κ2

N = 2π(1.68) and the source
of ϕ reads ϕs = rϕ|r→∞ = 1085 MeV that essentially
breaks the conformal symmetry and plays the role of the
energy scale. Further details and explanations can be
found in Ref. [78].

This comprehensive framework aligns theoretical pre-
dictions with the underlying physics of the QCD phase
transition and yields insights into its thermodynamic
properties as shown in the phase diagram of Fig. 1, where
the bottom-left three insets present direction compar-
isons between our holographic computations on the pres-
sure, energy density, and entropy density with respec-
tive to the latest lattice results [83] only available for
µB/T ≤ 3.5, while the upper-right inset presents our
model prediction on the baryon asymmetry with the red
square coincided with the observational value. In par-
ticular, our model predicts the phase transition between
the color-neutral hadronic phase at low T and small µB

and the quark-gluon plasma at high T and large µB . The
transition is a smooth crossover at small µB and changes
into a first-order one for higher µB . The critical point be-
tween them is at (TCEP = 105 MeV, µCEP = 555 MeV)
which is denoted as the red point of Fig. 1. We are partic-
ularly interested in the first-order QCD phase transition
at µB = 1000 MeV (the red square of Fig. 1), which
agrees with the observational constraint of a tiny baryon

asymmetry, and thus provides a scenario for phase tran-
sition GWs within the Standard Model. For the FoPT
at µB = 1000 MeV, the critical temperature T∗ = 49.53
MeV and the phase transition strength between the false
(+) and true (−) vacuum reads

α =
θ+ − θ−
3w+

∣∣∣
T=Tn

=
ϵ+(Tn)− ϵ−(Tn)

3w+(Tn)
= 0.33 , (4)

with θ = ϵ − 3P the trace anomaly and w = ϵ + P the
enthalpy. The effective number of relativistic degrees of
freedom gdof = 45s+/(2π

2T 3
∗ ) = 185.

Gravitational waves.— As our holographic model
predicts a FoPT around the temperature T∗ = 49.53 MeV
with a strength factor α = 0.33 and the effective number
of degrees of freedom gdof = 185, the parameter space
for the produced GWs shrinks down to four parameters,
namely, the effective duration β−1 of phase transition
appeared in the combination β/H∗ with H∗ being the
Hubble parameter at T∗, the terminal wall speed vw of
bubble expansion, the efficiency factor κϕ of converting
the released vacuum energy into the wall motion, and
the efficiency factor κsw of converting the released vac-
uum energy into the fluid motions. The GW spectrum
from bubble wall collisions is analytically captured by the
envelope approximation with the fitting formula [84–86],

h2Ωenv = 1.67× 10−5

(
100

gdof

) 1
3
(
H∗

β

)2 (
κϕα

1 + α

)2

× 0.48v3w
1 + 5.3v2w + 5v4w

Senv(f) , (5)
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where the spectral shape is of a three-section form,

Senv(f) =
1

cl

(
f

fenv

)−3

+ (1− cl − ch)
(

f
fenv

)−1

+ ch

(
f

fenv

)
(6)

with cl = 0.064 and ch = 0.48, and the peak frequency is
given by

fenv = 1.65× 10−5 Hz
(gdof
100

) 1
6

(
T∗

100GeV

)
× 0.35(β/H∗)

1 + 0.069vw + 0.69v4w
. (7)

The GW spectrum from fluid motions is dominated by
sound waves [87–93] fitted by numerical simulations [87–
89] as

h2Ωsw = 2.65× 10−6

(
100

gdof

) 1
3
(
H∗

β

)(
κswα

1 + α

)2

× 77/2vw(f/fsw)
3

(4 + 3(f/fsw)2)7/2
Υ (8)

with the peak frequency given by

fsw = 1.9× 10−5 Hz
(gdof
100

) 1
6

(
T∗

100GeV

)(
1

vw

)(
β

H∗

)
,

(9)

where the spectral shape at low frequencies can be ana-
lytically modeled [93] as forced collisions of sound shells
during bubble percolations, while the spectral shape at
high frequencies can be analytically modeled [90, 91] as
free collisions of sound shells long after bubble perco-
lations. Here, the suppression factor Υ ≡ 1 − (1 +
2τswH∗)

−1/2 [92] accounts for the finite lifetime of sound
waves from the onset timescale of turbulences, τswH∗ ≈
(8π)1/3vw/(β/H∗)/Ūf with the root-mean-squared fluid
speed Ū2

f = 3κswα/[4(1 + α)].

PTA constraints.— Our holographic model has al-
ready fixed three parameters (T∗, α, gdof) but is left with
four parameters (β/H∗, vw, κϕ, κsw), which are all inde-
pendent parameters in practice as argued shortly below.
For a bag equation of state (EoS), the efficiency fac-
tor κsw of fluid motions can be determined as a func-
tion [94] of the strength factor α and wall speed vw, but
it eventually becomes model-dependent when going be-
yond the bag EoS [95–99]. For our holographic model,
the sound speeds in the false and true vacua can be cal-
culated as c2+ = 0.15 and c2− = 0.14, respectively, which
deviate significantly from the bag EoS with the sound
speed c2s = 1/3. Hence, we will treat κsw as an in-
dependent parameter. The determination for the wall
speed vw is even more model-dependent [100–104] (see,
however, the recent attempts of model-independent ap-
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FIG. 3. Posteriors of the four independent model parameters
inferred from the NANOGrav 15-year data release [2].

proaches [105, 106] from local equilibrium and strong cou-
pling [107, 108], respectively), and hence the wall speed
vw is also treated as an independent parameter. As for
the efficiency factor κϕ of wall collisions, it always ad-
mits an extra dependence on the leading-order friction
term [109–111] whenever the GWs are dominated by wall
collisions or fluid motions [111, 112]. Therefore, κϕ is also
model-dependent and treated as an independent param-
eter as well. Last, β/H∗ is an independent parameter of
FoPT on its own (see, however, Ref. [113] from a holo-
graphic computation).

Following the approach of Ref. [6], we perform Bayes
parameter inferences and obtain the parameter region al-
lowed by the NANOGrav 15-year data [2]. We set flat pri-
ors for all the four independent model parameters in their
allowing ranges within log10(β/H∗) ∈ [0, 3], vw ∈ [0, 1],
κϕ ∈ [0, 1], and κsw ∈ [0, 1], respectively. Here, the up-
per bound for β/H∗ is conservatively chosen with a large
number. In Fig. 2, we depict the GW energy-density
fraction spectra, given three different sets of values for
these independent parameters. Performing Bayes anal-
ysis, we obtain the posteriors of these parameters that
are shown in Fig. 3. Correspondingly, the median values
and uncertainties of these parameters are inferred to be
log10(β/H∗) = 0.40+0.15

−0.23, vw = 0.76+0.22
−0.15, κϕ = 0.12+0.26

−0.12,

and κsw = 0.62+0.28
−0.20 at 68% confidence level. Further-

more, we plot the blue solid curve in Fig. 2 from the
peak value of one-dimensional posterior for each param-
eter after marginalized over all the other parameters as
shown in Fig. 3. The curve seems to be capable of fitting
nicely with the NANOGrav 15yr data.
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dotted and dashed curves are obtained from the correspond-
ing 1σ lower and upper bounds of vw, respectively.

Other constraints.— As a general property of any
FoPT, the vacuum decay process is not simultaneous all
over the space, and hence there is always a non-vanishing
chance to find Hubble-scale regions where the vacuum
decay progress falls behind their ambient regions [114].
Since the false vacuum energy can never be diluted away
while the radiations would with the Hubble expansion of
our Universe, the total energy density in these delayed-
decay regions would gradually accumulate their density
contrasts to enhance the curvature perturbations [115] or
even form PBHs [116] when exceeding the PBH thresh-
old. See also Refs. [117, 118] for recent improved treat-
ments on Refs. [119, 120]. Therefore, there are always
accompanying constraints other than GWs from PBHs
and curvature perturbations. Following the same proce-
dure of Ref. [116] (see also Ref. [79]), we can calculate
the associated PBH formations as shown in Fig. 4, where
the PBH mass (red) and abundance (blue) are obtained
for given β/H∗ and vw with their 1σ uncertainties ex-
panded between the dotted (lower bound) and dashed
(upper bound) lines. All the other parameters are fixed
by our holographic model. In particular, the sound speed
c2+ = 0.15 in the false vacuum analytically fixes the PBH

threshold δc = [3(1+w)/(5+3w)] sin2[π
√
w/(1+3w)] =

0.35 [121]. It is easy to see that the produced PBH mass
is roughly between∼ 11−18M⊙ and the PBH abundance
fPBH ≲ 10−10 is so tiny that the current observational
constraint [122] in this mass range can still be evaded.

However, this is not the case for the constraints
from curvature perturbations based on the recent sce-
nario [115], where the low-scale phase transition with this
large α = 0.3 and small β/H∗ ∼ 1.5− 3.5 would already
be disfavoured by the constraints from the ultracompact
minihalo abundance [123, 124]. Note that a small β/H∗
is also argued to be disfavored from holographic side but
at the probe limit [125]. Therefore, at least our holo-

graphic model at the benchmark point with µB = 1000
MeV seems not to be favored by the current observations,
while other chemical potential would require a little infla-
tion [68, 69] during the QCD phase transition to achieve
the observed baryon asymmetry, which will be reserved
for future study.

Conclusions and discussions.— The cosmological
QCD phase transition is still a myth to both communities
from particle physics and nuclear physics, and whether
it is of the first order can be tested by stochastic GW
backgrounds possibly detectable from PTA observations.
Recent observations of a low-frequency GW background
from NANOGrav, EPTA, PPTA, and CPTA provide a
promising opportunity to test various first-order QCD
phase transition models, in particular, our holographic
model aligned quantitatively with lattice QCD data,
which is strongly constrained by the NANOGrav 15yr
data, especially for its phase-transition duration parame-
ter. All these constraints along with the parameters fixed
already by the holographic model can be transformed
into constraints on the associated PBH formations by the
delayed decay mechanism. Although the produced PBH
abundance is still observationally allowed, the induced
curvature perturbations are too large to meet current
constraints from the ultracompact minihalo abundance.

Several possibilities can be inferred from above results:
(i) the strongest claim we can make is that perhaps the
QCD phase transition is actually a smooth crossover
without the associated GW background at all; (ii) the
QCD phase transition is indeed of first order but is not
described by our holographic model; (iii) the QCD phase
transition is indeed of first order and it is also described
by our model but at a different chemical potential with
extra assistance from a little inflation during the phase
transition; (iv) the weakest claim is simply that the QCD
phase transition is indeed described by our holographic
model at µB = 1000 MeV but other GW sources domi-
nate over the GW background from this FoPT.
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