
J
H
E
P
0
2
(
2
0
2
4
)
1
8
8

Published for SISSA by Springer

Received: September 8, 2023
Revised: January 19, 2024

Accepted: February 12, 2024
Published: February 23, 2024

Renormalizing Love: tidal effects at the third
post-Newtonian order

Manoj K. Mandal ,a,b,c Pierpaolo Mastrolia ,a,b Hector O. Silva ,d Raj Patil d,e

and Jan Steinhoff d

aDipartimento di Fisica e Astronomia, Università degli Studi di Padova,
Via Marzolo 8, I-35131 Padova, Italy

bINFN, Sezione di Padova,
Via Marzolo 8, I-35131 Padova, Italy

cMani L. Bhaumik Institute for Theoretical Physics, University of California at Los Angeles,
Los Angeles, CA 90095, U.S.A.

dMax Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, Potsdam D-14476, Germany

eInstitut für Physik und IRIS Adlershof, Humboldt-Universit ät zu Berlin,
Zum Großen Windkanal 2, D-12489 Berlin, Germany

E-mail: manojkumar.mandal@pd.infn.it, pierpaolo.mastrolia@unipd.it,
hector.silva@aei.mpg.de, raj.patil@aei.mpg.de, jan.steinhoff@aei.mpg.de

Abstract: We present the conservative effective two-body Hamiltonian at the third order in
the post-Newtonian expansion with gravitoelectric quadrupolar dynamical tidal-interactions.
Our derivation of the effective two-body Lagrangian is based on the diagrammatic effective
field theory approach and it involves Feynman integrals up to three loops, which are evaluated
within the dimensional regularization scheme. The elimination of the divergent terms occurring
in the effective Lagrangian requires the addition of counterterms to ensure finite observables,
thereby introducing a renormalization group flow to the post-adiabatic Love number. As a
limiting case of the renormalized dynamical effective Hamiltonian, we also derive the effective
Hamiltonian for adiabatic tides, and, in this regime, calculate the binding energy for a circular
orbit, and the scattering angle in a hyperbolic scattering.

Keywords: Black Holes, Effective Field Theories, Renormalization and Regularization

ArXiv ePrint: 2308.01865

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2024)188

https://orcid.org/0000-0003-0850-7685
https://orcid.org/0000-0001-9711-7798
https://orcid.org/0000-0002-0066-9471
https://orcid.org/0000-0002-7055-0345
https://orcid.org/0000-0002-1614-0214
mailto:manojkumar.mandal@pd.infn.it
mailto:pierpaolo.mastrolia@unipd.it
mailto:hector.silva@aei.mpg.de
mailto:raj.patil@aei.mpg.de
mailto:jan.steinhoff@aei.mpg.de
https://doi.org/10.48550/arXiv.2308.01865
https://doi.org/10.1007/JHEP02(2024)188


J
H
E
P
0
2
(
2
0
2
4
)
1
8
8

Contents

1 Introduction 1

2 An EFT description of tides 5

3 Computational algorithm 6
3.1 The effective Lagrangian 6
3.2 Removal of higher order time derivatives 8
3.3 Removal of spurious divergences 9

4 Renormalization 10
4.1 Analysis of divergent terms 10
4.2 Beta-function for post-adiabatic Love number 11
4.3 Radiation from a single neutron star 13

5 Dynamical tides 14

6 Adiabatic tides 17
6.1 Effective Hamiltonian 17
6.2 Binding energy 18
6.3 Scattering angle 19

7 Conclusions 20

1 Introduction

A new era in astronomy and cosmology has begun with the recent gravitational wave (GW)
detections by the LIGO-Virgo-KAGRA collaboration [1]. The worldwide network of ground-
based [2–7], as well as space-based GW detectors [8] continues to grow, and will grant access
to an ever broader frequency band with higher sensitivity.

Among the most significant sources of GWs are the neutron star (NS) binaries [9–11],
which provide insights into the physics of dense nuclear matter within these stars. In a
binary system, a NS develops a quadrupole moment due to the tidal interaction with its
companion [12]. The imprint of such tidal interactions was observed in the GW signal
GW170817 [9] and led to constraints on the underlying NS equation of state (EOS) [13–16].
These tidal interactions also give rise to oscillation modes of NS [17–21], in particular, the
f-mode dynamical tides [22], which have been argued to be important in inferring the NS
EOS [23] in upcoming observing runs of present GW detectors. Neglecting the dynamical
tidal effects can introduce significant biases in the estimation of the tidal deformability,
consequently impacting the accuracy of the EOS inferences. Moreover, the inclusion of
dynamical tidal effects has been shown to improve the agreement between some GW models
and numerical relativity simulations [24–27] (see also refs. [28–31]), and are necessary to fulfill
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the scientific objectives of the next generation ground-based GW observatories [7, 32, 33]. In
this article, we aim to model the effects of such dynamic oscillations of NS on the dynamics
of the binary system.

We begin by considering the relativistic Lagrangian developed in ref. [24] for the
quadrupole f -mode oscillation of a NS coupled to an external tidal field, describing the
dynamical tidal (DT) effects,1

LDT = z

4λω2
f

[
c2

z2
dQµν

dτ

dQµν

dτ
− ω2

f QµνQµν

]
− z

2QµνEµν − κd
G2

dm2

c6
z

2Qµν d2Eµν

dτ2 , (1.1)

where ωf is the frequency of the mode, λ is the tidal deformability [12], Qµν is a symmetric
trace-free tensor2 that models the relativistic quadrupole moment of the star, uµ = dxµ/dτ

is the four-velocity, Eµν = −c2Rµανβuαuβ/z2 is the gravitoelectric field and z =
√

u2 is the
redshift factor. We work with the gravitational constant in (d + 1) spacetime dimensions
written as Gd = (

√
4π exp(γE)R)ϵ GN . The last term in the above equation is the first

non-minimal coupling that starts contributing to the conservative sector from 3PN order and
κd = (

√
4π exp(γE)R)−2ϵκ is the post-adiabatic Love number in (d+1) spacetime dimensions.

We express Gd and κd in this particular form because later on we will employ the modified
minimal subtraction scheme [34], and hence the appearance of the 4π, the Euler-Mascheroni
constant γE, and the (arbitrary) lenghtscale R. In the adiabatic limit [35–37], where ωf →∞,
the tides do not oscillate independently and are instead locked to the external tidal field as

Qµν = −λEµν − λκd
G2

dm2

c6
d2Eµν

dτ2 . (1.2)

The first term is the leading order term in the small frequency expansion of the conservative
response function of the quadrupole [38], when sourced by external tidal field and the
second term is the next-to-leading-order correction of it, known as the post-adiabatic term.
Substituting the above equation in eq. (1.1), we obtain the Lagrangian for (post-)adiabatic
tides (AT), which is given by,

LAT = zλ

4 EµνEµν + λκd
G2

dm2

c6
z

2Eµν
d2Eµν

dτ2 . (1.3)

We can also write a similar adiabatic Lagrangian for the higher multipole moments which
are studied in ref. [39]. See also refs. [36, 37, 40–44]. In general relativity, in addition to the
relativistic gravitoelectric tides, we also get a new sector of gravitomagnetic tides [45–52]
that are coupled to the odd-parity normal modes of the NS, modeled by the current-type
multipole moments. For the adiabatic limit of the gravitomagnetic sector, see ref. [39]. In a
systematic EFT construction of dynamical tides, further couplings should be included, as
outlined in [52], and applied to gravitomagnetic tides, which we leave for future work.

In this article, we quantify the influence of the dynamic tides on the behavior of a compact
binary system. To achieve this goal, we employ effective field theory (EFT) techniques [53]

1This representation of the Lagrangian is not unique, as it is subject to field redefinition: for instance, the
last term could be equivalently replaced with a redefined λ along with terms involving (Eµν)2 and (dEµν/dτ)2.

2We also impose a supplementary condition Qµνuµ = 0 on the quadrupole to project out the unphysical
degrees of freedom.
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to analyze the inspiral phase of the binary, which occurs when its components are moving at
nonrelativistic velocities and the orbital separation is large as compared to the length scale
associated to each compact object. In this context, we apply a perturbative approach that
involves a series expansion based on powers of v/c, where v represents the orbital velocity of
the binary and c is the speed of light. The virial theorem dictates that, the kinetic energy
is (−1/2) times the potential energies of a bound state system. Thus, we set up the post-
Newtonian (PN) analysis, expanding in two perturbative parameters: v/c and GN , where GN

denotes Newton’s constant. Here, terms of the form (v/c)n are referred to as being of (n/2)PN
order. The PN analysis of the binary dynamics can be categorized into two sectors: the
conservative sector, where emitted radiation is neglected and the orbital separation remains
constant, and the radiative sector, where radiation carries away energy and momentum. At
higher PN orders, these sectors can interact due to tail effects, originating from radiation
being scattered by the orbital background curvature and affecting the orbital dynamics
(see, e.g., ref. [54].) By employing the EFT approach, we can determine observables at any
given PN order using diagrammatic methods, first proposed in [53] and modern integration
methods [55, 56], turning the problem into the determination of scattering amplitudes, which
can be systematically obtained through the calculation of corresponding Feynman diagrams
(see refs. [57–59], for reviews). Following the same computational strategy as developed
in [60–62], in order to compute the effective Lagrangian, we make use of an automated
in-house code, interfaced to QGRAF [63], for the diagram generation, to xTensor [64], for
tensor algebra manipulation, and to LiteRed [65], for the integral decomposition.

The effective Hamiltonian for conservative dynamical gravitoelectric tides was first
computed in refs. [24, 66] up to 1PN and then was extended up to 2PN in ref. [62]. The
effects of spin and tides were analyzed together in refs. [52, 67, 68] for gravitomagnetic tides.
In the adiabatic limit, the 2PN effective Hamiltonian was computed in refs. [39, 44] for
both gravitoelectric and gravitomagnetic tides. Other works in PN theory can be found in
refs. [39, 48, 66, 69–71]. In the post-Minkowskian (PM) expansion, where the perturbative
series is controlled by GN alone, the adiabatic tidal corrections were studied to 3PM order in
refs. [72, 73]. See also refs. [74–80]. Adiabatic tidal effects where also included in effective-
one-body waveform models [81, 82] in refs. [39, 43, 83–85] and in refs. [24, 25, 67] for the case
of dynamical tides. In this paper, we extend the state-of-the art of the analytic calculations
of dynamical and adiabatic gravitoelectric tides in the conservative sector to 3PN order .

Within the diagrammatic EFT approach, higher-order perturbative corrections to the
scattering amplitudes may contain divergent contributions. By adopting the dimensional
regularization scheme, the divergent terms of multi-loop Feynman integrals are parameterised
by poles in ϵ = (d − 3), where d is the continuous number of space-time dimension. The
so-called ultraviolet (UV) divergences can be absorbed in the redefinition of the free param-
eters of the theory, known as renormalization, thus yielding finite results. The process of
renormalization can be understood as a coarse-graining transformation on the system [86].
One can understand the effects of renormalization in classical context using the Kadanoff’s
block-spin transformations [87]. See refs. [88, 89] for renormalization in classical field theories
coupled to external spatial sources.
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Besides the UV divergences, the computation of the conservative potential for a binary sys-
tem may also involve infrared (IR) divergences. In the point particle sector, starting from the
4PN order, we encounter IR divergences in the conservative sector, which are due the artificial
separation of conservative and dissipative dynamics [90, 91]. However, in the computation of
3PN dynamical tides, we encounter only UV divergences. Part of these divergent terms can be
removed by adding counterterms based on the world-line operators, which eventually can be
removed with field-redefinitions. This procedure is equivalent to finding a suitable canonical
transformation (in the Hamiltonian picture) or adding a total derivative (in the Lagrangian
picture) [90]. We dub these divergences as spurious divergences as they do not have any
effect on any physical observables. Additionally, we encounter UV divergences that are not
spurious, which can be eliminated by the renormalization procedure, namely by introducing
a new counterterm in the point particle Lagrangian, eventually yielding finite results. This
counterterm affects the source coupling of the quadrupole moment with the gravitons. Hence,
the renormalization procedure introduces the running of the post-adiabatic Love number κ.

Furthermore, we note that the same counterterm can also remove the UV divergences
arising from the radiative sector [92, 93]. The appearance of an identical divergent term
in both the conservative and radiative sector was observed in ref. [53] just for the case of
spurious divergences, which can be removed through field redefinition completely.

Analogously, in the recent computation of 4PM observables due to scalar interactions [94],
the renormalization of one of the scalar tidal Love numbers was necessary to obtain finite
results. Renormalization and running for conservative and dissipative Love numbers was
also seen in ref. [95] by determining the counter terms in the tidal response using BHPT
(black-hole perturbation theory) for the case of Kerr black holes. In this article, we present
the renormalization of post-adiabatic Love number as a consequence of divergences appearing
in the conservative sector of the gravitational two-body system.

The paper is organized as follows. In section 2, we review the description of tidally-
interacting binaries in the EFT formalism. In section 3, we present the algorithm used to
compute the 3PN dynamic tidal potential. In section 4, we present the procedure of renormal-
ization required for the post-adiabatic Love number to get a finite interaction Hamiltonian.
Our main result, the effective dynamical tidal Hamiltonian (5.4), is presented in section 5. In
section 6, we consider the adiabatic limit, and derive an effective adiabatic tidal Hamiltonian.
We compute two gauge-independent observables: (i) the binding energy of a circular binary
and (ii) the scattering angle for the hyperbolic encounter of two stars. Finally, we present our
conclusions and avenues for future work in section 7. This work is supplemented with three
ancillary files: Hamiltonian-DT.m, containing the analytic expression of the Hamiltonian for
the dynamic tides, Hamiltonian-AT.m, containing the analytic expression of the Hamiltonian
for the adiabatic tides and Poincare_Algebra.m, containing the result for the center of mass
of the system which completes the Poincaré algebra and, hence, validates our results.

Notation. The mostly negative signature for the metric is employed. Bold-face characters
are used for three-dimensional variables, and normal-face font, for four-dimensional variables.
The subscript (a) labels the binary components on all the corresponding variables, like their
position x(a) and quadrupole moment Q(a). An overdot indicates the time derivative, e.g.,
v(a) = ẋ(a) is the velocity, a(a) = ẍ(a) the acceleration and Q̇ = dQ/dt. The separation
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between two objects is denoted by r = x(1) − x(2), with absolute value r = |r| and the unit
vector along the separation is n = r/r.

2 An EFT description of tides

In this section, we review the formalism developed to model the dynamic tidal oscillations of
compact objects in ref. [24]. The Lagrangian given in equation (1.1) can be written as

LDT(a) = cP(a)µν

dQµν
(a)

dτ
− z(a)

[
λ(a)ω

2
f(a)P

µν
(a)P(a)µν + 1

4λ
Qµν

(a)Q(a)µν

]
−

z(a)
2 Qµν

(a)Eµν − κd(a)
G2

dm2
(a)

c6
z(a)
2 Qµν

(a)
d2Eµν

dτ2 , (2.1)

where the conjugate momenta Pµν with respect to the quadrupole moment are defined as,

P(a)µν = 1
c

∂L
∂(dQµν

(a)/dτ) = c

2λω2
f z(a)

dQ(a)µν

dτ
. (2.2)

The action for dynamical tides, written explicitly in terms of the physical3 degrees of freedom,
Qij

(a) and P ij
(a), can be obtained by expressing the dynamical variables in the rest frame of

each body.4 This gives us the effective point-particle (“pp”) action

Spp =
∑

a=1,2

∫ dτ

c

[
−m(a)z(a)c

2 + LFD(a) + LMQ(a) + LEQ(a) + LËQ(a)

]
. (2.3)

The first term is simply the action for a point particle, while the remaining terms originate
from the Lagrangian (2.1) as follows. The first term in eq. (2.1) gives rise to,

LFD(a) = P ij
(a)Q̇

ij
(a) + c

−uµ
(a)ω

ij
µ

Sij
Q(a)
2 −

Sik
Q(a)u

k
(a)u

j
(a)

z(a)(z(a) + ua
(a)δ

0
a)

− uµ
(a)ω

ai
µ δ0

aSij
Q(a)

uj
(a)

z(a)

+
Sij

Q(a)u
i
(a)

z(a)(z(a) + ua
(a)δ

0
a)

duj
(a)

dτ

 , (2.4)

which describes frame-dragging (“FD”) effects on the quadrupole moment of each binary com-
ponent, where, the “tidal spin” tensor Sij

Q(a) = 2 (Qki
(a)P

jk
(a) −Qkj

(a)P
ik
(a)) , which describes the

angular momentum of the dynamical quadrupole moment. The second term in eq. (2.1) yields,

LMQ(a) = −z(a)

[
λ(a)ω

2
f(a)P

ij
(a)P

ij
(a) +

1
4λ(a)

Qij
(a)Q

ij
(a)

]
= −z(a)MQ(a) . (2.5)

3The supplementary condition for the dynamical degrees of freedom in the rest frame of the star becomes:
QA0

(a) = 0 , and P A0
(a) = 0 where, we now explicitly see that QAB

(a) and P AB
(a) are spatial tensors that encode only

the physical degrees of freedom. Thus, we define the spatial tensor QAB
(a) δi

Aδj
B = Qij

(a) and P AB
(a) δi

Aδj
B = P ij

(a).
4Different reference frames: (i) the general coordinate frame (denoted by Greek indices), (ii) the local

Lorentz frame (denoted by small Latin indices), (iii) and the rest frame of the compact objects (denoted by
capital Latin indices), and the Lorentz transformation, which boosts between the local Lorentz frame and the
rest frame of the body is given by

Ba
(a)A = ηa

A + 2
ua

(a)δ
0
A

z(a)
−

(ua
(a) + z(a)δ

a
0 )(u(a)A + z(a)δ

0
A)

z(a)(z(a) + uaδ0
a)

.
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This term governs the dynamics of the quadrupole moment, which, by the second equality,
can be described as a time-dependent effective mass term for quadrupole moment (“MQ”).
Finally, the last two terms in eq. (2.1) results in,

LEQ(a) = −
z(a)
2 Qij

(a)E
ij
(a) and LËQ(a) = −κd(a)

G2
dm2

(a)
c6

z(a)
2 Qij

(a)Ë
ij
(a) . (2.6)

These terms act as a driving source for the quadrupole moment’s dynamics and are induced
on each of the binary components by the gravitoelectric tidal field Eij

(a) = Ba
(a)iB

b
(a)jeµ

aeν
bEµν

of its companion.
Here the Poisson bracket of dynamical quantities i.e. the dynamic quadrupole Qij and

its conjugate momenta P ij is given as

{Qij , P kl} = 1
2
(
δikδjl + δilδjk

)
− 1

3δijδkl , (2.7)

which then implies a SO(3) angular momentum algebra for the tidal spin tensor Sij
Q .

3 Computational algorithm

3.1 The effective Lagrangian

In this section, we present the used computational algorithm. The resulting potential will
then be used in the next section to obtain the effective two-body Hamiltonian. The dynamics
of the gravitational field gµν is given by the Einstein-Hilbert action along with a harmonic
gauge fixing term in d + 1 spacetime dimensions,

SEH = − c4

16πGd

∫
dd+1x

√
g R+ c4

32πGd

∫
dd+1x

√
g gµν ΓµΓν , (3.1)

where Γµ = Γµ
ρσgρσ, Γµ

ρσ is the Christoffel symbol, R is the Ricci scalar, and g is the metric
determinant.

For the conservative dynamics of the system, we decompose the metric as gµν = ηµν+Hµν ,
where Hµν is the potential graviton. We use the Kaluza-Klein parametrization to decompose
the metric, where the 10 degrees of freedom of Hµν are encoded in three fields: a scalar ϕ, a
three-dimensional vector A and a three-dimensional symmetric rank two tensor σ [96, 97].
In this parametrization, we write the metric as

gµν =

 e2ϕ/c2 −e2ϕ/c2
Aj/c2

−e2ϕ/c2
Ai/c2 −e−2ϕ/((d−2)c2)γij + e2ϕ/c2

AiAj/c4

 , with γij = δij + σij/c2 .

(3.2)
We can now obtain the effective action for the binary by integrating out the gravitational

degrees of freedom as follows,

exp
[
i
∫

dt Leff

]
=
∫

DϕDAi Dσij exp[i (SEH + Spp)] , (3.3)

where the Einstein-Hilbert action is given by eq. (3.1) and the point-particle action is given
by eq. (2.3). To perform this integration, we first decompose the effective Lagrangian Leff as

Leff = Keff − Veff , (3.4)
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Gravity
Diagrams

←→

≡

Multi-loop
Diagrams

Figure 1. The diagrammatic correspondence between the four-point EFT-Gravity graphs and the
two-point quantum-field-theory (QFT) graphs.

where Keff is an effective kinetic term, which does not dependent on any integration of
potential graviton (i.e., it is independent of integration over ϕ, A, and σ). We can compute
Keff directly up to the required PN order. Explicitly, we decompose Keff in a point-particle,
a frame-dragging, and a “quadrupole mass” contribution, i.e., Keff = Kpp +KFD +KMQ,

Kpp=
∑

a=1,2
m(a)

[1
2v2

a+
1
8v4

(a)

( 1
c2

)
+ 1
16v6

(a)

( 1
c4

)
+ 5
128v8

(a)

( 1
c6

)]
+O

( 1
c8

)
, (3.5a)

KFD=
∑

a=1,2

{
P ij

(a)Q̇
ij
(a)+Sij

Q(a)v
i
(a)a

j
(a)

[1
2

( 1
c2

)
+3
8v2

(a)

( 1
c4

)
+ 5
16v4

(a)

( 1
c4

)]}
+O

( 1
c8

)
, (3.5b)

KMQ=
∑

a=1,2
M(a)

[
1+1

2v2
a

( 1
c2

)
+1
8v4

(a)

( 1
c4

)
+ 1
16v6

(a)

( 1
c6

)]
+O

( 1
c8

)
. (3.5c)

The terms that are obtained after performing the explicit integral are collectively denoted
by the potential Veff . These terms are computed by summing over the connected Feynman
diagrams without graviton loops, as shown below,

Veff = i lim
d→3

∫ ddp

(2π)d
ei p·(x(1)−x(2))

(2)

(1)
, (3.6)

where p is the linear momentum transferred between the two bodies. For this, we begin with
generating all the topologies that correspond to graviton exchanges between the worldlines of
the two compact objects. There is 1 topology at tree-level (GN ), 2 topologies at one-loop
(G2

N ), 9 topologies at two-loop (G3
N ), and 32 topologies at three-loop (G4

N ). We then dress
these topologies with the Kaluza-Klein fields ϕ, A and σ. The number of diagrams5 appearing
in the point-particle sector is given in table 1(a), whereas that in the tidal sector are given in
tables 1(b), 1(c), 1(d) and 1(e). We use an in-house code that uses tools from EFTofPNG [98]
and xTensor [64], for the tensor algebra manipulation, and LiteRED [65], for the integration-
by-parts reduction, to compute these Feynman diagrams. This reduction recasts the Feynman
diagrams in terms of two point massless master integrals [56] as shown in figure 1. Once the
exact expressions for the master integrals are substituted, we perform a Fourier transform
to obtain the position-space effective potential Veff . The details of the algorithm and the
expressions for the master integrals up to three loops can be found in ref. [60].

5The diagrams which can be obtained from the change in the label 1 ↔ 2, are not counted as separate
diagrams.
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Order Diagrams Loops Diagrams

3PN 130

0 9
1 38
2 75
3 8

(a) Point particle sector.

Order Diagrams Loops Diagrams

3PN 168

0 9
1 43
2 101
3 15

(b) EQ sector.

Order Diagrams Loops Diagrams

3PN 100
0 8
1 36
2 56

(c) FD sector.

Order Diagrams Loops Diagrams

3PN 21
0 6
1 10
2 5

(d) MQ sector.

Order Diagrams Loops Diagrams
3PN 1 0 1

(e) ËQ sector.

Table 1. Number of Feynman diagrams contributing different sectors.

After carrying out all these steps, the effective potential can be decomposed into a
point-particle and a dynamical tide contribution, i.e., Veff = Vpp + VDT, where

Vpp = VN +
( 1

c2

)
V1PN +

( 1
c4

)
V2PN +

( 1
c6

)
V3PN +O

( 1
c8

)
, (3.7a)

VDT =
3∑

n=0

( 1
c2

)n (
VEQ

nPN + VFD
nPN + VMQ

nPN

)
+
( 1

c6

)
V ËQ

3PN +O
( 1

c6

)
, (3.7b)

and we remark that VDT has contributions due to the driving source, the “quadrupole-mass”
and the frame-dragging terms, and the post adiabatic terms.

3.2 Removal of higher order time derivatives

The potential Veff computed in the previous section, is a function of the dynamical variables
x(a), Q(a), and SQ(a) and MQ(a), and their higher order time derivatives. The first and higher-
order time derivatives of Q(a), SQ(a), and MQ(a) are removed using integration by parts, while
second and higher-order time derivatives of x(a) are removed using a coordinate transformation
x(a) → x(a) + δx(a) [99–103]. This coordinate transformation changes the Lagrangian as

δL = δL
δxi

(a)
δxi

(a) +O(δx2
(a)) , (3.8)

where δx(a) is chosen such that it removes the undesirable terms from our final Lagrangian.
In our case, the process of removing the higher order time derivatives using a coordinate
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transformation is equivalent to the substitution of the equation of motion for the acceleration
a(a) and its higher order time derivatives back into the Lagrangian [101]. This procedure
converts the Lagrangian Leff into the Lagrangian L̄eff which depends only on x(a), v(a), and
Q(a), but still contains divergent terms.

3.3 Removal of spurious divergences

After the removal of the higher order time derivatives, the effective Lagrangian L̄eff contains
several divergent terms. These divergent terms are generated by the two topologies as shown
in figure 2. Part of these divergent terms can be removed by adding counter-terms based
on the world-line operators, which ultimately can be removed by using field-redefinitions.
So, this procedure becomes equivalent to adding total derivative terms to the Lagrangian
or finding a canonical transformation on the corresponding Hamiltonian. As a result these
divergences do not have any effect on the physical observable and are dubbed as spurious
divergences.6 For the removal of the 3PN spurious divergence in the point particle sector,
following [105], we can add a total derivative term

LTD1 =
( 1

c6

) d
dt

[
G3

N

r2

(
c1
(
v(1) · n

)
+ c2

(
v(2) · n

) )]
, (3.9)

and gaining insights from [99], we choose another total derivative term

LTD2=
(

1
c6

)
d
dt

{
G3

N

r4

[
c3

(
Qij

(1)v
i
(1)n

j
)
+c4

(
Qij

(1)v
i
(2)n

j
)
+c5

(
Qij

(2)v
i
(1)n

j
)
+c6

(
Qij

(2)v
i
(2)n

j
)]

+G3
N

r4

[(
Qij

(1)n
inj
)(

c7
(
v(1) ·n

)
+c8

(
v(2) ·n

))
+
(

Qij
(2)n

inj
)(

c9
(
v(1) ·n

)
+c10

(
v(2) ·n

))]}
, (3.10)

to remove the spurious divergence in the 3PN tidal sector. Here the coefficients are represented
in the notation,

cn ≡ cϵn
1
ϵ
+ cLn log

(
r

R

)
, for n = 1, 2, · · · 10 , (3.11)

and their particular values are given as,

cϵ1 = 1
3
(
4m3

(1)m(2) −m(1)m
3
(2)

)
, cϵ2 = 1

3
(
m3

(1)m(2) − 4m(1)m
3
(2)

)
,

cϵ3 = −107
35 m2

(1)m
2
(2), cϵ4 = 107

35 m3
(1)m(2) ,

cϵ5 = −107
35 m(1)m

3
(2), cϵ6 = 107

35 m2
(1)m

2
(2) ,

cϵ7 = 107
14 m2

(1)m
2
(2), cϵ8 = −107

14 m3
(1)m(2) ,

cϵ9 = 107
14 m(1)m

3
(2), cϵ10 = −107

14 m2
(1)m

2
(2) , (3.12)

and

cLi = −3 cϵi for i = 1, 2 cLi = −2 cϵi for i = 3, . . . , 10 . (3.13)
6The spurious divergences appearing in 3PN order can also be removed from the equation of motion [104].

– 9 –



J
H
E
P
0
2
(
2
0
2
4
)
1
8
8

Now the modified Lagrangian L̄eff + LTD1 + LTD2 is free of all the spurious divergences
and still contains divergent terms in the 3PN tidal sector, which requires renormalization
and we analyse it in the next section.

4 Renormalization

In this section, we first analyze the divergent terms present in the effective Lagrangian,
which cannot be eliminated through the addition of total derivatives. These divergent
terms are generated by the two topologies shown in figure 2. We show that to eliminate
these remaining divergences, a renormalization procedure is necessary, where the divergent
contributions are absorbed into the bare post-adiabatic Love number κB. As a consequence,
we obtain a renormalized post-adiabatic Love number κ(R), which exhibits a nontrivial
renormalization group flow.

4.1 Analysis of divergent terms

First, we conduct a complete validity check of our computation, following the observation in
ref. [24]. Specifically, the Hamiltonians H̃EQ and H̃FD exhibit similarities to the spin-induced
quadrupole (H̃ES2) and spin-orbit Hamiltonians (H̃SO) when certain replacements are applied.
Our analysis starts with L̄eff + LTD1, from which we derive the corresponding Hamiltonians
H̃EQ

3PN and H̃FD
3PN. These Hamiltonians are free of divergent and logarithmic terms in the

point particle sector but contain such terms in the tidal sectors, respectively. On the other
hand, following [60, 61], we obtain the H̃SO

N2LO and H̃ES2

N3LO , which are free of divergent and
logarithmic terms in the point particle sector, but contains such terms in the spinning sector.
Further investigations led us to find that these Hamiltonians are equivalent to each other
up to a canonical transformation, with H̃EQ

3PN being equivalent to H̃ES2

N3LO , and H̃FD
3PN being

equivalent to H̃SO
N2LO , provided certain replacements are applied. This result serves as a robust

consistency check, confirming the accuracy of our computation of the effective Lagrangian
and the procedure of removing the higher-order time derivatives. However, an important
distinction arises, while eliminating the divergent terms using a canonical transformation,
between the tidal and the spinning sector. Notably, the kinetic term of Qij begins at 0PN
order, whereas the kinetic term of Sij starts at 0.5PN order. This discrepancy has a crucial
consequence while computing the canonical transformation. The contributions from the
Poisson bracket of the spin tensor at N3LO can be ignored (see ref. [61], section 4.3.2), whereas
the equivalent contributions from the Poisson bracket for the quadrupole tensor (eq. (2.7))
at 3PN order cannot be ignored. This distinction accounts for the origin of the residual
divergent terms present in the tidal sector while all the divergent pieces in the spinning sector
can be removed by finding a suitable canonical transformation.

After the removal of all the spurious divergent terms, we obtain the following residual
divergent term(
L̄eff + LTD1 + LTD2

)
1/ϵ

=
(
107
105m2

(1)G
2
N

1
c6

1
ϵ

)(
3
2

GN m(2)
r3

(
Q̈ij

(1)n
inj
))

+ (1↔ 2) , (4.1)

where we perform some algebraic manipulations to present the expression in a compact form.
We observe that the divergent terms in eq. (4.1) cannot be expressed as a total derivative and
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(a) (b)

Figure 2. The topologies that give divergent contribution in the tidal sector at 3PN. Solid lines
represent the compact object’s worldlines and the dashed lines represent the potential gravitons Hµν .

the tail effects in the case of dynamic tides start at 4PN order. So, we absorb the divergence in
one of the coupling constants of the Lagrangian given in eq. (1.1), by designing a counterterm,
which will eventually lead to finite results. By examining the structure of terms in eq. (4.1),
we identify the following counterterm, which we can add to the point particle action (2.3).

LCT(a) = −δκ(a)
G2

N m2
(a)

c6
z(a)
2 Qij

(a)Ë
ij
(a) , (4.2)

where δκ(a) contains the divergence. The counter term Lagrangian contributes through a tree
level diagram at this order as shown in figure 3, which renders the result finite, eventually.
Now, the particular value of δκ(a) that cancels the divergent terms presented in the effective
Lagrangian (4.1) is,

δκ(a) = −
107
105

1
ϵ

. (4.3)

We note that the counterterm has the structure similar to LËQ(a), while the divergence
produced in the eq. (4.1) is sourced by the LEQ(a). The addition of the counterterm to
the point particle action in eq. (2.3), leads to the renormalization of the post-adiabatic
Love number

κd(a) =
(√

4π exp(γE)R
)−2ϵ (

κ(a) + δκ(a)
)

, (4.4)

where, the renormalized post-adiabatic Love number κ(a) depends on the external scale
R, which we analyse in detail in section 4.2. One important thing to note is that the
Lagrangian presented in eq. (1.1) can be changed by a field redefinition, which in turn
redefines the different Love numbers. Hence, the above mentioned procedure of renormalizing
the post-adiabatic Love number κ is particular to this representation of the Lagrangian.

Moreover, the counterterm presented in eq. (4.2) has an intriguing form, as it turns out
to be identical to the counterterms introduced to eliminate the divergences in the radiation
emitted by each NS, as discussed in [92, 93]. In section 4.3, we discuss further into the
connection of this counterterm with radiation. Similar set of counterterms was also observed
in refs. [94, 95].

4.2 Beta-function for post-adiabatic Love number

Now both the gravitational constant and the post-adiabatic Love number depends on the
scale R. However, any physical quantity should be independent of the arbitrary scale R.
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Figure 3. Counter-term diagram. The the cross symbol stands for the insertion of the counterterm
constant δκ(a). Solid lines represent the compact object’s worldlines and the dashed lines represent
the potential gravitons Hµν .

Indeed by demanding the scale independence of the bare couplings in the Lagrangian we
obtain the corresponding renormalization group equations.

For the d-dimensional gravitational coupling, we obtain,

0 = dGd

dR
= d

dR

[(√
4πeγE R

)ϵ
GN

]
, (4.5)

which implies a trivial beta function for GN given by,

β(GN ) ≡ R
dGN

dR
= −ϵ

(√
4πeγE R

)ϵ
GN

ϵ→0= 0 . (4.6)

Similarly, for the post-adiabatic coupling, we obtain

0 =
dκd(a)
dR

= d
dR

[(√
4π exp(γE)R

)−2ϵ (
κ(a) + δκ(a)

)]
, (4.7)

which results in the following beta function,7

β(κ(a)) ≡ R
dκ(a)
dR

= −214
105 . (4.8)

The solution of the above given beta function is

κ(a)(R) = κ(a)(R0)−
214
105 log

(
R

R0

)
, (4.9)

where R0 in the integration constant. Now the idea for choosing R will be the following [53].
In principle, we are allowed to choose the scale R to whatever value we want. But as shown
in eq. (5.7), the R-dependence enters the effective Hamiltonian via κ(R) and logarithmic
terms of the form log (r/R).

When matching the point particle theory to an overarching theory for NSs, we should
choose the scale R somewhere around the cutoff of the point particle theory, i.e. R ≈ R0 ≈ RNS
where RNS is some characteristic lengthscale of the NS. This will remove all the logarithmic
terms from the matching procedure and we obtain a value for κ(R0 ≈ RNS). Then, when we
analyse the two body system, we have Rorb ≈ r which is much larger than R ≈ RNS, where

7Similar beta-function can be found for the parameter λ8 of the following scalar theory,

L = 1
2(∂µϕ)2 − 1

2m2ϕ2 − 1
6!λ6ϕ6 − 1

8!λ
2
6λ8ϕ8
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Rorb is the characteristic lengthscale of the binary, and hence the logarithm in the Lagrangian
blows up. So, in this case we will have to pick R ≈ Rorb, so that the logarithm is small and
we get κ(Rorb) in the effective Lagrangian. Hence the logarithmic terms plays a role only in
flowing the κ from κ(RNS) to κ(Rorb) using the RG solution in eq. (4.9). Something peculiar
to observe is that, κ(Rorb)→ −∞ when Rorb →∞ i.e. when the radius of the binary is large.
This is acceptable because as Rorb → ∞ there are factors of 1/rm with the κ(Rorb) in the
effective Lagrangian that suppress this logarithmic growth.

Using the above procedure, we will see that the observables will be independent of the
arbitrary scale R only after performing the matching to an overarching UV theory of NSs.
An example of this can be seen in ref. [92], where the authors computed the flux emitted
by a binary and obtained scale dependent logarithmic terms similar to that in eq. (4.9).
Such terms drop out when they include terms obtained by matching the quadrupole of the
binary to the dynamics of two point particle constituents of the binary [54] and the total
flux is independent of the arbitrary scale.

4.3 Radiation from a single neutron star

In this section, we explore the relationship between the renormalization procedure used in
the previous section and the computation of radiative observables from a single NS with a
dynamical quadrupole oscillating at a frequency ω. The counter term required to achieve a
finite result in our 3PN conservative computation is the same counter term that addresses
the divergences in the radiative sector as the origin of the divergent is the same in both
the cases (tail-type diagrams presented in figure 2).

The radiative sector from the LEQ(a) term in the Lagrangian was computed in refs. [92, 93].
The radiative observable was expressed in terms of a matrix element of a single graviton
emitted from the NS. The expression of these amplitudes upto two loops are given in eq. (38)
of [93], where they found that these amplitudes contain UV divergent terms and they can
be removed by modifying the dynamics of the quadrupole as

QB
ij(ω) = Qij(ω, µ)

[
1 + 107

105

(
GN m(a)ω

c3

)2 1
ϵ

]
. (4.10)

If we only consider the LEQ(a) term, the above is equivalent to adding counter terms of the
form shown in eq. (4.2). This can be seen easily as follows,

−
z(a)
2 Eij

(a)Q
Bij
(a) = −

z(a)
2 Qij

(a)

[
1 + 107

105

(
GN m(a)

c3

)2(
− d2

dt2

)
1
ϵ

]
Eij

(a)

= −
z(a)
2 Qij

(a)E
ij
(a) − δκ(a)

G2
N m2

(a)
c6

z(a)
2 Qij

(a)Ë
ij
(a) . (4.11)

In our case, since we have a definite dynamics assigned to the quadrupole by the LFD(a)
and LMQ(a) terms, the renormalization of the quadrupole as done in refs. [92, 93] introduces
extra divergent terms. So, rather than performing the renormalization of the quadrupole, we
renormalize the post-adiabatic Love number by adding the counter term given in eq. (4.2),
which can also remove the divergence as obtained in eq. (38) of [93] in the radiative sector .
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Additionally, in ref. [53], it was observed that when starting with the point particle action
(non-spinning and without tides), the stress-energy tensor and, consequently, the metric
produced by a single compact object contain divergent terms. When we extend this analysis
to a binary system comprising two such point particles, the divergent metric generated by
the first object affects the second object, leading to the emergence of divergences in the
two-body interaction potential. The divergent terms from both the metric and the interaction
potential were removed with the introduction of a counter term in the point particle action
and ultimately these counter terms vanished by applying a field redefinition in the Lagrangian.
We see an analogous case for the 3PN tidal interaction potential. The radiative sector from
the LEQ(a) term in the Lagrangian contains divergent pieces. If one now computes the metric
from this, it should also be divergent. Hence we should expect the same divergence to also
show up in the two body tidal interaction potential. The only difference being, the counter
term that removes the tidal divergence, cannot be removed by a field redefinition as opposed
to the same in the point particle sector.

5 Dynamical tides

In this section, we present the result of the effective two-body Hamiltonian with dynamical
gravitoelectric tides. We compute the Hamiltonian H from the Lagrangian obtained in the
previous section using a Legendre transformation

H(x, p, Q) =
∑

a=1,2

(
pi

(a)v
i
(a) + P ij

(a)Q̇
ij
(a)

)
− L(x, v, Q) . (5.1)

We express this Hamiltonian in terms of the total mass of the binary, denoted by M =
m(1) + m(2), the reduced mass by µ = m(1)m(2)/M , the mass ratio by q = m(1)/m(2), the
symmetric mass ratio ν = µ/M , and the antisymmetric mass ratio δ = (m(1) −m(2))/M ,
which are related to each other by,

ν =
m(1)m(2)

M2 = µ

M
= q

(1 + q)2 = (1− δ2)
4 . (5.2)

We express the results in the center-of-mass (COM) frame of reference and define the
momentum in the COM frame as p ≡ p(1) = −p(2). In the COM frame, the orbital angular
momentum is defined as L = r × p. Hence, we can write p2 = p2

r + L2/r2, where pr = p · n,
p = |p| and L = |L|. We write the Hamiltonian in terms of dimensionless quantities, which
are obtained by rescaling all the variables as follows

p̃ = 1
c

p

µ
, r̃ = c2

GN

r

M
, L̃ = c

GN

L

Mµ
, H̃ = 1

c2
H
µ

, λ̃ = c10

G4
N

λ

M5 ,

Q̃(a) =
c4

G2
N

Q(a)
M2µ

, S̃Q(a) =
c

GN

SQ(a)
Mµ

, and M̃Q(a) =
1
c2

MQ(a)
µ

. (5.3)

The total EFT Hamiltonian in the dimensionless parameters is given by

H̃ = H̃pp + H̃DT , (5.4)
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where

H̃pp = H̃0PN +
( 1

c2

)
H̃1PN +

( 1
c4

)
H̃2PN +

( 1
c6

)
H̃3PN +O

( 1
c8

)
, (5.5a)

H̃DT =
3∑

n=0

( 1
c2

)n (
H̃EQ

nPN + H̃FD
nPN + H̃MQ

nPN

)
+
( 1

c6

)
H̃ËQ

3PN +O
( 1

c8

)
. (5.5b)

The point particle Hamiltonian till 3PN is presented in the same gauge in appendix C.1
of ref. [60], the tidal Hamiltonian up to 2PN is presented in ref. [62] and the novel result
of 3PN Hamiltonian is given as,

H̃EQ+ËQ
3PN =

(
Q̃ij

(1)r̃
ir̃ j
){

L̃6
(
− 15ν4

32r̃11 −
135ν3

32r̃11 + 45ν2

32r̃11

)
+ L̃4

(
p̃2

r

(
−15ν4

8r̃9 −
585ν3

32r̃9 + 327ν2

32r̃9

)
+75ν3

4r̃10 + 137ν2

4r̃10 −
101ν

32r̃10

)
+ L̃2

[
p̃4

r

(
−51ν4

16r̃7 −
225ν3

8r̃7 + 1527ν2

32r̃7 −
105ν

8r̃7

)
+p̃2

r

(
1977ν3

32r̃8 −
383ν2

16r̃8 −
79ν

32r̃8

)
+
(
−3763200 κ̄(1)+77175π2−35396224

)
ν2

501760r̃9

+
(3675 κ̄(1)+16651)ν

490r̃9 − 1269ν3

112r̃9

]
+ p̃2

r

(
3
(
3763200 κ̄(1)−77175π2+11490272

)
ν2

627200r̃7

−
3(117600 κ̄(1)+679671)ν

19600r̃7 − 153ν3

7r̃7

)
+ p̃4

r

(
477ν3

32r̃6 −
291ν2

8r̃6 + 327ν

32r̃6

)
+ p̃6

r

(
−6ν4

r̃5 + 45ν3

2r̃5 −
135ν2

8r̃5 + 105ν

32r̃5

)
+
(
705600 κ̄(1)−1157625π2+14115256

)
ν2

156800r̃8

−
3(14700 κ̄(1)+44197)ν

9800r̃8 + 1
q

[
L̃6
(
− 15ν4

32r̃11 −
45ν3

16r̃11 + 105ν2

32r̃11 −
21ν

32r̃11

)
+ L̃4

(
p̃2

r

(
−15ν4

8r̃9 −
399ν3

32r̃9 + 159ν2

32r̃9 −
39ν

32r̃9

)
+ 591ν3

32r̃10 + 973ν2

32r̃10 −
15ν

2r̃10

)
+ L̃2

(
p̃4

r

(
−51ν4

16r̃7 −
321ν3

16r̃7 + 399ν2

32r̃7 −
3ν

32r̃7

)
+ p̃2

r

(
1977ν3

32r̃8 + 933ν2

32r̃8 −
6ν

r̃8

)
+
(
77175π2−1536(2450 κ̄(1)+28169)

)
ν2

501760r̃9 − 1269ν3

112r̃9 −
369ν

8r̃9

)

+p̃2
r

(
−
3
(
−3763200 κ̄(1)+77175π2−659872

)
ν2

627200r̃7 − 153ν3

7r̃7 + 117ν

8r̃7

)

+p̃4
r

(
219ν3

8r̃6 −
735ν2

32r̃6 + 9ν

2r̃6

)
+ p̃6

r

(
−6ν4

r̃5 + 27ν3

2r̃5 −
45ν2

8r̃5 + 15ν

32r̃5

)
+
(
705600 κ̄(1)−1157625π2+15841456

)
ν2

156800r̃8 + 63ν

2r̃8

]}

+
(

Q̃ij
(1)L̃

iL̃j
){

p̃4
r

(
−21ν4

16r̃5 −
45ν3

4r̃5 + 24ν2

r̃5 −
105ν

16r̃5

)
+ p̃2

r

(
225ν3

16r̃6 + 577ν2

8r̃6 + 77ν

4r̃6

)
+L̃4

(
15ν2

16r̃9 −
45ν3

16r̃9

)
+ L̃2

(
p̃2

r

(
−3ν4

8r̃7 −
45ν3

4r̃7 + 21ν2

4r̃7

)
+ 9ν3

2r̃8 + 403ν2

16r̃8 −
209ν

16r̃8

)
+
(
3763200 κ̄(1)−77175π2−25954688

)
ν2

1254400r̃7 −
(3675 κ̄(1)+52288)ν

1225r̃7 − 3ν3

2r̃7

+1
q

[
L̃4
(
−45ν3

16r̃9 + 45ν2

16r̃9 −
9ν

16r̃9

)
+ L̃2

(
p̃2

r

(
−3ν4

8r̃7 −
12ν3

r̃7 + 39ν2

8r̃7 −
3ν

4r̃7

)
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+9ν3

2r̃8 + 325ν2

16r̃8 −
6ν

r̃8

)
+ p̃4

r

(
−21ν4

16r̃5 −
237ν3

16r̃5 + 69ν2

8r̃5 −
3ν

16r̃5

)
+p̃2

r

(
15ν3

r̃6 + 1065ν2

16r̃6 −
3ν

r̃6

)
+
(
384(9800 κ̄(1)−56157)−77175π2)ν2

1254400r̃7 − 3ν3

2r̃7 −
123ν

4r̃7

]}

+
(

Q̃ij
(1)r̃

iL̃j
)

p̃r

{
L̃4
(
15ν4

16r̃9 + 45ν3

16r̃9 −
9ν2

16r̃9

)
+ L̃2

(
p̃2

r

(
63ν4

16r̃7 + 45ν3

8r̃7 −
45ν2

8r̃7

)
−105ν3

8r̃8 + 5ν2

2r̃8 −
ν

2r̃8

)
+ p̃4

r

(
123ν4

16r̃5 −
45ν3

2r̃5 + 129ν2

16r̃5

)
+ p̃2

r

(
−81ν3

8r̃6 −
229ν2

2r̃6 + 453ν

8r̃6

)
+
(
77175π2−384(9800 κ̄(1)+8103)

)
ν2

156800r̃7 +
(235200 κ̄(1)+2662147)ν

9800r̃7 + 93ν3

7r̃7

+ 1
q

[
L̃4
(
15ν4

16r̃9 + 3ν3

r̃9 −
33ν2

16r̃9 + 3ν

16r̃9

)
+ L̃2

(
p̃2

r

(
63ν4

16r̃7 + 147ν3

16r̃7 −
45ν2

8r̃7 + 9ν

8r̃7

)
−15ν3

r̃8 + 3ν2

8r̃8 + 3ν

r̃8

)
+ p̃4

r

(
123ν4

16r̃5 −
81ν3

16r̃5 −
57ν2

16r̃5 + 15ν

16r̃5

)
+ p̃2

r

(
−171ν3

8r̃6 −
555ν2

8r̃6 + 9ν

r̃6

)
+
(
−3763200 κ̄(1)+77175π2−5256352

)
ν2

156800r̃7 + 93ν3

7r̃7 + 30ν

r̃7

]}
+(1↔ 2) , (5.6a)

H̃FD
3PN =

(
S̃Q(1) ·L̃

){
L̃4
(
11ν3

8r̃7 + 9ν2

16r̃7 −
ν

4r̃7

)
+ L̃2

(
p̃2

r

(
23ν3

4r̃5 + 21ν2

8r̃5 −
2ν

r̃5

)
− 17ν3

16r̃6

−275ν2

16r̃6 −
17ν

4r̃6

)
+ p̃2

r

(
−63ν3

16r̃4 −
207ν2

8r̃4 + 9ν

2r̃4

)
+ p̃4

r

(
10ν3

r̃3 −
81ν2

8r̃3 + 2ν

r̃3

)
+ 75ν2

8r̃5 + 25ν

2r̃5

+1
q

[
L̃4
(
17ν3

16r̃7 −
9ν2

4r̃7 + 7ν

16r̃7

)
+ L̃2

(
p̃2

r

(
73ν3

16r̃5 −
3ν2

r̃5 + 7ν

8r̃5

)
− 17ν3

16r̃6 −
133ν2

16r̃6 + 27ν

8r̃6

)
+p̃2

r

(
−63ν3

16r̃4 −
411ν2

16r̃4 + 27ν

8r̃4

)
+ p̃4

r

(
131ν3

16r̃3 −
9ν2

2r̃3 + 7ν

16r̃3

)
+ 43ν2

8r̃5 + 21ν

2r̃5

]}
+(1↔ 2) , (5.6b)

H̃MQ
3PN =M̃Q(1)

{
L̃6
(

5ν2

16r̃6 −
5ν3

8r̃6

)
+ L̃4

(
p̃2

r

(
15ν2

16r̃4 −
15ν3

8r̃4

)
+ 3ν3

8r̃5 + ν2

r̃5

)
+L̃2

(
p̃2

r

(
ν3

r̃3 + ν2

4r̃3 + ν

r̃3

)
+ p̃4

r

(
15ν2

16r̃2 −
15ν3

8r̃2

)
+ 3ν2

4r̃4 + 49ν

8r̃4

)
+ p̃2

r

(
7ν2

4r̃2 + 10ν

r̃2

)
+p̃4

r

(
ν3

r̃
+ 5ν

8r̃

)
+
(
5ν2

16 −
5ν3

8

)
p̃6

r +
3ν2

4r̃3 + ν

2r̃3 + 1
q

[
L̃6
(
−15ν3

16r̃6 + 5ν2

4r̃6 −
5ν

16r̃6

)
+L̃4

(
p̃2

r

(
−45ν3

16r̃4 + 15ν2

4r̃4 −
15ν

16r̃4

)
+ 3ν3

8r̃5 + 45ν2

8r̃5 −
15ν

8r̃5

)
+ L̃2

(
p̃2

r

(
ν3

r̃3 + 41ν2

4r̃3 −
15ν

4r̃3

)
+p̃4

r

(
−45ν3

16r̃2 + 15ν2

4r̃2 −
15ν

16r̃2

)
− 23ν2

8r̃4 −
11ν

4r̃4

)
+ p̃2

r

(
−13ν2

4r̃2 −
9ν

4r̃2

)
+p̃6

r

(
−15ν3

16 + 5ν2

4 −
5ν

16

)
+ p̃4

r

(
ν3

r̃
+ 5ν2

r̃
− 15ν

8r̃

)
+ 3ν2

4r̃3 −
ν

2r̃3

]}
+(1↔ 2) . (5.6c)

where,

κ̄(1)(R) = κ(1)(R)− 214
105 log

(
r

R

)
, (5.7)
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that combines the terms that depend on the external length scale R. The effective Hamiltonian
in a general reference frame is provided in the ancillary file Hamiltonian-DT.m.

6 Adiabatic tides

In this section, we present our results for the adiabatic tides, that is, we take the ωf →∞ limit
of the Hamiltonian (5.4). This eliminates the dependence of Hamiltonian on the variables
Q(a), SQ(a) and MQ(a), and hence simplifies our further calculations. We then compute the
binding energy and scattering angle using the adiabatic Hamiltonian and compare these
against known results in the literature.

The adiabatic limit physically refers to the quadrupole mode being locked to the external
tidal field induced by the binary companion. In this case, the equation of motion for the
Qij

(a) is given by

Qij
(a) = −λ(a)E

ij
(a) − λ(a)κd(a)

G2
dm2

(a)
c6 Ëij

(a) . (6.1)

We can then substitute eqs. (6.1) in the Hamiltonian (5.4) to obtain the effective Hamiltonian
for adiabatic tides.

Computationally it is efficient to compute dynamic tides and then take the adiabatic
limit, than directly computing the adiabatic tides from the Lagrangian (1.3). This is because
all the Feynman diagrams generated by (1.3) will be factorizable due to E2 terms. Hence in
this case we can compute 4-loop (G5

N ) terms in the adiabatic observables by doing a 3-loop
computation with the dynamic tides. The counter term for an adiabatic calculation starting
from Lagrangian given in eq. (1.3), can be obtained by using eq. (4.4) in eq. (1.3).

6.1 Effective Hamiltonian

The effective adiabatic Hamiltonian is given by,8

H̃ = H̃pp + H̃AT , (6.2)

where

H̃pp = H̃0PN +
( 1

c2

)
H̃1PN +

( 1
c4

)
H̃2PN ++

( 1
c6

)
H̃3PN +O

( 1
c8

)
, (6.3a)

H̃AT = H̃AT
0PN +

( 1
c2

)
H̃AT

1PN +
( 1

c4

)
H̃AT

2PN +
( 1

c6

)
H̃AT

3PN +O
( 1

c8

)
. (6.3b)

8At leading order, adiabatic tides contributes at 5PN which can be easily seen writing the Hamiltonian
in the form of the dimensional Love number as shown in eq. (5.3). We show here the relative scaling with
respect to the 5PN order contribution.
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The adiabatic Hamiltonian up to 2PN is presented in [62] and the novel result of 3PN
Hamiltonian is given as,

H̃AT
3PN = λ̃(1)

{
L̃6
(
− 45ν3

32r̃12 −
15ν2

4r̃12 −
33ν

32r̃12

)
+ L̃4

(
p̃2

r

(
−189ν3

32r̃10 + 99ν2

8r̃10 + 711ν

32r̃10

)
− 9ν2

r̃11 + 15ν

4r̃11

)
+ L̃2

[
p̃2

r

(
−9ν3

2r̃9 −
2775ν2

16r̃9 −
72ν

r̃9

)
+ p̃4

r

(
−99ν3

32r̃8 + 108ν2

r̃8 − 1431ν

32r̃8

)
+
3(117600 κ̄(1)+1584771)ν

19600r̃10 + 93ν2

2r̃10

]
+ p̃2

r

(
9993ν2

56r̃8 −
3(117600 κ̄(1)+626121)ν

9800r̃8

)
+ p̃4

r

(
−45ν3

r̃7 −
729ν2

8r̃7 + 777ν

16r̃7

)
+ p̃6

r

(
1485ν3

32r̃6 −
465ν2

8r̃6 + 465ν

32r̃6

)
−

3(29400 κ̄(1)+429119)ν
9800r̃9

+ 1
q

[
L̃6
(
−15ν3

8r̃12 −
75ν2

8r̃12 −
99ν

16r̃12 + 33
32r̃12

)
+ L̃4

(
p̃2

r

(
−9ν3

r̃10 −
171ν2

8r̃10 −
27ν

16r̃10 + 9
32r̃10

)
+273ν2

16r̃11 + 1545ν

16r̃11 + 495
16r̃11

)
+ L̃2

(
p̃4

r

(
−99ν3

8r̃8 + 315ν2

8r̃8 + 27ν

16r̃8 −
9

32r̃8

)
+p̃2

r

(
−9ν3

2r̃9 −
831ν2

16r̃9 + 567ν

8r̃9 −
99
8r̃9

)
+ 867ν2

28r̃10 +
3
(
8384+63π2)ν

512r̃10 − 1335
8r̃10

)

+p̃2
r

(
2097ν2

16r̃8 −
3
(
20576+63π2)ν

256r̃8 + 261
8r̃8

)
+ p̃4

r

(
−45ν3

r̃7 −
105ν2

8r̃7 −
327ν

16r̃7 + 99
16r̃7

)

+p̃6
r

(
99ν3

4r̃6 −
69ν2

8r̃6 −
45ν

16r̃6 + 15
32r̃6

)
− 1599ν2

56r̃9 +
(
6376−945π2)ν

64r̃9 + 519
4r̃9

]}
+(1↔ 2) . (6.4)

This Hamiltonian in a general reference frame is provided by us in the ancillary file
Hamiltonian-AT.m. Following the procedure described in section 5.2 of ref. [62], we have
validated the above result by computing the complete Poincare algebra [106, 107] using
the above result. The expression of the center of mass Gi is given in the ancilary file
Poincare_Algebra.m.

6.2 Binding energy

In this section, we compute the binding energy in the COM frame for circular orbits. The
gauge invariant relation between the binding energy and the orbital frequency for circular
orbits is obtained by eliminating the dependence on the radial coordinate. For circular
orbits we have ∂H̃(r̃, L̃)/∂r̃ = 0 . We invert this relation to express r̃ as a function of L̃.
Then, we substitute L̃, written as a function of the orbital frequency ω̃ = ∂H̃(L̃)/∂L̃, in the
Hamiltonian (6.2). Following this procedure we obtain the binding energy E as,

EAT = E0PN
AT + E1PN

AT + E2PN
AT + E3PN

AT , (6.5)

where the energy up to 2PN is presented in [62] and the 3PN result is given as,

E3PN
AT =x9

{[
−45
32ν3+ 74495

448 ν2+
(
−823243

784 + 8895π2

512

)
ν+ 894721

3136 + 321
7 (2ν−1) log

(
xR̃orb

)]
λ̃(+)

+
[
825
64 ν2− 42225

224 ν+ 378751
3136 −

321
7 log

(
xR̃orb

)]
δλ̃(−)−45(λ̃κ)(+)

}
, (6.6)
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where x = ω̃2/3, R̃orb = c2Rorb/(GN M) and the combined dimensionless Love numbers
are denoted by

λ̃(±) =
m(2)
m(1)

λ̃(1) ±
m(1)
m(2)

λ̃(2) , (6.7)

(λ̃κ)(±) = λ̃(1)κ(1)(Rorb) ± λ̃(2)κ(2)(Rorb) . (6.8)

Here, κ(a)(Rorb) is evaluated at the orbital length scale Rorb, after evolving it using the RG
eq. (4.9) from the matching scale RNS.

6.3 Scattering angle

Here we present the scattering angle χ in the COM frame for the hyperbolic encounter of
two stars. We begin by expressing the Hamiltonian H (which is a function of pr, L and r) to
obtain pr = pr(H, L, r). Then, we use relation between the Lorentz factor γ and the total
energy per total rest mass Γ = H/(Mc2) given by

γ = 1√
1− v2/c2 = 1 + Γ2 − 1

2ν
, (6.9)

where v ≡ |ṙ| is the relative velocity of the compact objects, and the total angular momentum
L and the impact parameter b are related by L = (µγvb)/Γ. This allows us to exchange H
for v and L for b. With this, we can then write the scattering angle as

χ(v, b) = − γ

µγv

∫
dr

∂pr(v, b, r)
∂b

− π . (6.10)

Performing this procedure with the Hamiltonian (6.2) yields the scattering angle computed
in the COM frame, which we write as

χAT = χ0PN
AT + χ1PN

AT + χ2PN
AT + χ3PN

AT (6.11)

where the scattering angle up to 2PN is presented in [62] and the 3PN result is given as9

χ3PN
AT
Γ = v2

Mb4

[
λ(+) δλ(−)

]
·

{
π
(

GN M

v2b

)2 1575
256

[
1
0

](
v6

c6

)
+
(

GN M

v2b

)3 1
70

[
18073
2713

](
v6

c6

)

+π
(

GN M

v2b

)4
(

1
458752

[
304535296−

(
46848512+231525π2)ν
51930496

]
+1605

64 log
( 2b

Rsc

)[1−2ν

1

])(
v6

c6

)

+
(

GN M

v2b

)5
{
192

[
1
0

]
+48

[
53−4ν

5

](
v2

c2

)
+12
35

[
28753−3480ν

7473−140ν

](
v4

c4

)

+

(
1

8575

[(
584325π2−68190952

)
ν+128915306

33894506−2486400ν

]
+903936

1225 log
(

b

2Rsc

)[1−2ν

1

])(
v6

c6

)}}

+ v2

Mb4

[
(λκ)(+) δ(λκ)(−)

]
·

{
π
(

GN M

v2b

)4 1575
64

[
−ν

0

](
v6

c6

)
+
(

GN M

v2b

)5 25344
35

[
−ν

0

](
v6

c6

)}

+O
(

G6
N ,

v8

c8

)
, (6.12)

9For computing the logarithmic terms in the scattering angle, check ref. [108].
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where combined Love numbers are denoted by,

λ(±) =
m(2)
m(1)

λ(1) ±
m(1)
m(2)

λ(2) , (6.13)

(λκ)(±) = λ(1)κ(1)(Rsc) ± λ(2)κ(2)(Rsc) . (6.14)

Here, κ(a)(Rsc) is evaluated at the typical length scale Rsc of the scattering system, after
evolving it using the RG eq. (4.9) from the matching scale RNS. Equation (6.12) agrees
to 3PM (i.e., G3

N ) with the result reported by refs. [72, 73], obtained using techniques of
worldline QFT [109] and the EFT developed for PM calculations [74], respectively.

7 Conclusions

We calculated the conservative two-body effective Hamiltonian, taking into account the
dynamical tidal interaction up to 3PN order. Our approach involves Feynman diagrams up
to three loops, which are evaluated using the dimensional regularization scheme. We also
studied the adiabatic limit and obtained the adiabatic tidal Hamiltonian up to 3PN order.
The fulfillment of Poincaré algebra constituted an important validation of the Hamiltonian.
Additionally, we presented the analytic expressions of two gauge-invariant observables, namely
the binding energy for bound orbits and the scattering angle for hyperbolic encounters.

In the considered action, we included the contribution from the non-minimal coupling (last
term of eq. (1.1)), which turned out to be crucial for ensuring the finite observables at the 3PN
order. Interestingly, we found that not all the divergent pieces can be removed by adding a
total derivative to the Lagrangian (canonical transformations on the Hamiltonian). Therefore,
we constructed a counter-term to reabsorb those divergent pieces, yielding the renormalization
of the post-adiabatic Love number κ(a). Consequently, the latter experiences a renormalization
group running, as shown in section 4.2. According to the corresponding beta function, we
observed that the value of κ(a) increases, when reducing the external length scale R.

In the adiabatic limit, our results depend on the two Love numbers (Wilson coefficients
within the context of point particle EFT), namely, λ (the tidal Love number) and κ (the post-
adiabatic Love number). The determination of their specific values in the case of BHs requires
a matching computation of an observable between the EFT and BHPT, as described in [110–
116]. Notably, the tidal Love number λ is found to be zero for BHs [36, 37, 110, 117, 118].
However, the specific value of the post-adiabatic Love number κ remains unknown and
requires further investigation. In the case of NSs, Love numbers are typically expressed in
terms of their EOS. For λ, this was accomplished in refs. [12, 35], and κ in ref. [119]. It will
be interesting to compute the particular values of κ for different compact objects [120–123].
The implications of the flow of the post-adiabatic Love number on the EOS of NS are very
intriguing and warrant further investigation. An interesting implication of the running
post-adiabatic Love number is that strictly adiabatic tides are impossible starting from the
3PN order of accuracy, but instead tides have to be dynamical. This also makes sense from a
microscopic point of view: an exactly instantaneous tidal response is impossible since the
propagation speed within the body cannot exceed the speed of light.
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The adiabatic Love number λ was found to have a non-zero value for Schwarzschild BHs
in spacetime dimensions other than four, as shown in ref. [110].10 Consequently, when using
dimensional regularization, the Love number λ yields a finite contribution at O(ϵ = d− 3),
which, in combination with the divergent terms generated by the LEQ, results in a finite
O(ϵ0) contribution. However, such contributions to observables could be absorbed into
the contributions from the counterterm, so that the number of degrees of freedom to be
matched does not increase. Furthermore, matching in arbitrary dimension d or in d = 3
will in general result in different values for λ and κ, but observables are the same in the
limit ϵ→ 0. We note that a matching for generic d might require the inclusion of evanescent
operators [34], which are non-zero only in spacetime dimensions other than four. Indeed,
it was observed in [125–127], that the scattering amplitudes from such operators can affect
the matching equation determining the Wilson coefficients. Also the appearance of such
operators in counterterms originating from physical operators leads to the mixing of physical
and evanescent operators during the RG evolution [125].

In this work, we focused on the dynamical gravitoelectric quadrupolar tides, but our frame-
work and our automatic computational techniques are general enough to be extended to obtain
further higher-order corrections and also other types of tidal effects, like the dynamical gravito-
magnetic tides [52, 68], as well as to incorporate higher order multipolar tides. The coupling of
the oscillation modes of the NS with other degrees of freedom, such as its spin [67, 128–130], or
other oscillation modes [131–136] could also be incorporated. Finally, our 3PN Hamiltonians
can be added to the time-domain effective-one-body waveform models of refs. [24, 25].
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