SUPPORTING INFORMATION

Taming of Furfurylidenes by Chiral Bismuth-Rhodium Paddlewheel Catalysts. Preparation and Functionalization of Optically Active 1,1-Disubstituted (Trifluoromethyl)cyclopropanes

Matthias Peeters, Jonathan Decaens, and Alois Fürstner
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
Email: fuerstner@kofo.mpg.de

Table of Contents

Supporting Crystallographic Data S-2
General S-6
Substrates S-7
Screening results S-8
[BiRh] Catalyzed [2+1] Cycloaddition Reactions S-9
Gram-Scale Cyclopropanation with Reduced Catalyst Loading S-22
Derivatization S-23
NMR Spectra S-26
References S-81

Supporting Crystallographic Data

Figure S1. Structure of compound $\mathbf{1 2}$ in the solid state. Atomic displacement ellipsoids are shown at the 50% probability level; crystallographic numbering scheme

Figure S2. Different projection, which shows that the structure of compound $\mathbf{1 2}$ in the solid state is likely stabilized by a $\mathrm{n} \rightarrow \pi^{*}$ interaction ${ }^{1}$ between the amide carbonyl group and the ester terminus; O1C6 2.791 Å, O1-C6-O2 107.4°

X-ray Crystal Structure Analysis of Compound 12: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N} \mathrm{O}_{3}, M_{r}=315.29 \mathrm{~g} \mathrm{~mol}^{-1}$, colourless needle, crystal size $0.113 \times 0.046 \times 0.032 \mathrm{~mm}^{3}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ [19], $a=5.0016(2) \AA, b=14.7658(8) \AA, c=19.8117(10) \AA, V=1463.15(12) \AA^{3}, T=100(2)$ $\mathrm{K}, Z=4, D_{\text {calc }}=1.431 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu(M o-K \alpha)=0.124 \mathrm{~mm}^{-1}$, analytical absorption correction ($T_{\min }=0.99, T_{\max }=1.00$), Bruker-AXS Kappa Mach3 with APEX-II detector and $\mathrm{I} \mu \mathrm{S}$ microfocus source, $1.720<\theta<31.024^{\circ}$, 49169 measured reflections, 4666 independent reflections, 3892 reflections with $I>2 \sigma(I), R_{\text {int }}=0.0528$, absolute structure parameter $=0.1(2)$. The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^{2} to $R_{l}=0.035[I>2 \sigma(I)], w R_{2}=0.077,209$ parameters. CCDC 2287213

The quality of the dataset allowed for the experimental localization of the hydrogen atoms at C 1 and N 1 . The other hydrogen atoms were refined in ideal positions.

To determine the absolute configuration, three different crystals were measured; the outcome was the same for each crystal.

INTENSITY STATISTICS FOR DATASET \# 1 14922sadabs.raw

$0.71-0.70$	216	216	100.0	6.02	3.44	4.68	0.3049	0.1877
$0.70-0.69$	197	209	94.3	4.88	3.25	4.06	0.3144	0.2402
0.79-0.69	1552	1564	99.2	6.37	3.80	5.56	0.2695	0.1635
Inf - 0.69	4695	4707	99.7	10.49	15.98	26.76	0.0515	0.0318

Table S1. Crystal data and structure refinement.

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3}$
Color	colourless
Formula weight	$315.29 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	ORTHORHOMBIC
Space group	P2 $\mathbf{2}_{1} 2_{1}$, ($n \mathrm{l} .19$)
Unit cell dimensions	$a=5.0016(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=14.7658(8) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=19.8117(10) \AA \quad \gamma=90^{\circ}$.
Volume	1463.15(12) \AA^{3}
Z	4
Density (calculated)	$1.431 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
Absorption coefficient	$0.124 \mathrm{~mm}^{-1}$
F(000)	656 e
Crystal size	$0.113 \times 0.046 \times 0.032 \mathrm{~mm}^{3}$
θ range for data collection	1.720 to 31.024°.
Index ranges	$-7 \leq \mathrm{h} \leq 7,-21 \leq \mathrm{k} \leq 21,-28 \leq 1 \leq 28$
Reflections collected	49169
Independent reflections	$4666\left[\mathrm{R}_{\mathrm{int}}=0.0528\right]$
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$	3892
Completeness to $\theta=25.242^{\circ}$	100.0 \%
Absorption correction	Gaussian
Max. and min. transmission	1.00 and 0.99
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4666 / 0 / 209
Goodness-of-fit on F^{2}	1.025
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0353 \quad \mathrm{wR}^{2}=0.0714$
R indices (all data)	$\mathrm{R}_{1}=0.0508 \quad \mathrm{wR}^{2}=0.0772$
Absolute structure parameter	0.1(2)
Largest diff. peak and hole	0.3 and $-0.2 \mathrm{e} \cdot \AA^{-3}$

Bond lengths $[\AA]$ and angles [${ }^{\circ}$].

$\mathrm{F}(1)-\mathrm{C}(8)$	1.336(2)	F (2)-C(8)	1.339(2)
$\mathrm{F}(3)-\mathrm{C}(8)$	$1.3432(19)$	$\mathrm{O}(1)-\mathrm{C}(4)$	1.229(2)
$\mathrm{O}(2)-\mathrm{C}(6)$	1.204(2)	$\mathrm{O}(3)-\mathrm{C}(6)$	1.333(2)
$\mathrm{O}(3)-\mathrm{C}(7)$	1.446(2)	$\mathrm{N}(1)-\mathrm{H}(1)$	0.84(2)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.334(2)	$\mathrm{N}(1)-\mathrm{C}(5)$	1.448(2)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.94(2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.535(2)
$\mathrm{C}(1)-\mathrm{C}(3)$	1.504(2)	$\mathrm{C}(1)-\mathrm{C}(9)$	1.491(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.500(2)	C(2)-C(4)	1.513(2)
C(2)-C(8)	1.493(2)	C(5)-C(6)	1.510(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.397(2)	$\mathrm{C}(9)$-C(14)	1.395(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.387(2)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.392(3)
C(12)-C(13)	1.389(3)	$\mathrm{C}(12)-\mathrm{C}(15)$	1.503(2)
C(13)-C(14)	1.384(2)		
$\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(7)$	114.72(15)	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{H}(1)$	120.6(14)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)$	118.75(14)	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{H}(1)$	119.8(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	112.8(12)	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	117.0(12)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	59.14(11)	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	113.5(12)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$	121.42(14)	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(3)$	122.38(14)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	59.41(11)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	121.13(14)
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	118.08(14)	$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	118.07(14)
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(3)$	117.02(14)	$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(4)$	113.16(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	61.45(11)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(1)$	121.84(15)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	121.63(15)	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	116.52(14)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	114.27(14)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{O}(3)$	124.40(16)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	123.16(16)	$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	112.37(14)
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(2)$	106.57(14)	$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(3)$	106.50(14)
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{C}(2)$	112.76(14)	$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{F}(3)$	105.77(14)
$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{C}(2)$	113.67(14)	$\mathrm{F}(3)-\mathrm{C}(8)-\mathrm{C}(2)$	111.05(14)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	123.96(15)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(1)$	118.08(15)
C(14)-C(9)-C(10)	117.95(15)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.55(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	121.58(16)	C(11)-C(12)-C(15)	121.63(17)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	117.49(16)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	120.83(17)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	121.55(16)	C(13)-C(14)-C(9)	120.88(16)

General

Unless stated otherwise, all reactions were carried out under argon atmosphere in flame-dried Schlenk glassware, ensuring inert conditions. The solvents were purified by distillation over the indicated drying agents and were transferred under argon: THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg} /$ anthracene $)$; pentane, toluene $(\mathrm{Na} / \mathrm{K}) ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$, chlorobenzene $\left(\mathrm{CaH}_{2}\right)$. $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}$ and DMF were dried by an absorption solvent purification system based on molecular sieves. t - BuOH was dried over $3 \AA$ molecular sieves. Flash chromatography: Merck Geduran silica gel $60(40-63 \mu \mathrm{~m})$. Preparative TLC plates: Macherey-Nagel 1.00 mm silica gel 60 coated plate with fluorescent indicator UV_{254}

NMR spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AV III 600 spectrometers in the solvents indicated; chemical shifts are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}\right.$ $=77.2 \mathrm{ppm}$; residual $\mathrm{CHCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}}=54.0 \mathrm{ppm}$; residual $\mathrm{CHDCl}_{2}: \delta_{\mathrm{H}}=5.32 \mathrm{ppm}$; $\mathrm{CD}_{3} \mathrm{CN}: \delta_{\mathrm{C}}=1.3,118.3 \mathrm{ppm}$; residual $\mathrm{CHD}_{2} \mathrm{CN}: \delta_{\mathrm{H}}=1.94 \mathrm{ppm}$). Signal assignments were established using HSQC, HMBC, NOESY and HOESY experiments.

IR: Alpha Platinum ATR (Bruker), wavenumbers ($\tilde{\mathrm{v}}$) in cm^{-1}; medium and weak resonances are omitted.
MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker) or Thermo Scientific LTQ-FT or Thermo Scientific Exactive Spectrometer. HRMS: Bruker APEX III FT-MS (7 T magnet), MAT 95 (Finnigan), Thermo Scientific LTQ-FT or Thermo Scientific Exactive Spectrometer. GC-MS spectra were measured on a Shimadzu GCMS-QP2010 Ultra instrument.

LC analyses were conducted on a Shimadzu LC 2020 instrument equipped with a Shimadzu SPD-M20A UV/VIS detector. GC analyses were conducted on an Agilent technologies 7890B instrument with a FID detector.

Melting points were measured on a Büchi B-540 (uncalibrated). Optical rotations were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm . The values are given as specific optical rotation with exact temperature, concentration (c in $\mathrm{g} / 100 \mathrm{~mL}$) and solvent.

Unless stated otherwise, all commercially available compounds (abcr, Acros, Aldrich, Alfa Aesar, FluoroChem, Strem, TCI) were used as received.

Boc-protected 2-vinylpyrrole ${ }^{2}$ and o-trifluoromethylbenzenesulfonyl hydrazide $\left(\mathrm{TfsNHNH}_{2}\right)^{3}$ were prepared according to the literature.

The following heterobimetallic paddlewheel catalysts were prepared as previously described by our laboratory. ${ }^{4,5}$

7a

7b

7c

Substrates

2,2,2-Trifluoro-1-(furan-2-yl)ethan-1-one (S1). n-BuLi (1.6 M solution in hexanes, $27.5 \mathrm{~mL}, 44$ mmol) was added dropwise over 20 min to a stirred solution of furan ($2.90 \mathrm{~mL}, 40 \mathrm{mmol}$) in THF (80.0 mL) at $0^{\circ} \mathrm{C}$ (ice bath). Once the addition was complete, stirring was continued for 30 min before the solution was cooled to $-78^{\circ} \mathrm{C}$. Ethyl trifluoroacetate ($7 \mathrm{~mL}, 58 \mathrm{mmol}$) was added dropwise at this temperature to the reaction mixture. The solution was then allowed to warm to ambient temperature and stirring was continued overnight. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether. The combined organic phases were dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 95:5) to afford the title compound as a yellow oil ($53 \%, 3.5 \mathrm{~g}$). The spectral data were consistent with those previously reported in literature. ${ }^{6}$
\mathbf{N}^{\prime}-(2,2,2-Trifluoro-1-(furan-2-yl)ethylidene)-2-(trifluoromethyl)benzenesulfonohydrazide (8). A round bottom flask was charged with trifluoromethyl ketone $\mathbf{S 1}(5.4 \mathrm{~g}, 31.55 \mathrm{mmol})$ and trifluorotoluene (TFT):EtOAc (30:1, 62 mL). o-Trifluoromethylbenzenesulfonyl hydrazide $(\mathrm{TfsNHNH} 2,6.3 \mathrm{~g}, 26.3 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}(3.9 \mathrm{~mL}, 31.55 \mathrm{mmol})$ were then added and the resulting mixture was stirred at room temperature until a clear solution had formed ($\sim 2 \mathrm{~h}$). The mixture was then stirred at $40^{\circ} \mathrm{C}$ (bath temperature) for 16 h . The mixture was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane/EtOAc, 6:1) to give a brown solid. The solid was recrystallized from hexane/EtOAc to afford the title compound as a crystalline white solid material ($5.77 \mathrm{~g}, 57 \%$). M.p. $=142-143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.37(\mathrm{~s}, 1 \mathrm{H}), 8.47-8.37(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.68(\mathrm{~m}, 3 \mathrm{H}), 6.88$ (ddt, $J=3.7,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5$, $144.0,136.3,134.0,133.7,132.7,128.8(\mathrm{~d}, J=35.7 \mathrm{~Hz}), 128.6(\mathrm{q}, J=6.3 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=33.1 \mathrm{~Hz})$, $122.9(\mathrm{q}, J=273.8 \mathrm{~Hz}), 120.0(\mathrm{q}, J=275.0 \mathrm{~Hz}), 116.2(\mathrm{q}, J=2.6 \mathrm{~Hz}), 112.4 .{ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-68.3,-66.4$; IR (ATR): $\tilde{\mathrm{v}}=3317,1394,1361,1309,1274,1243,1181,1148,1119,1082$, 1033, 997, 864, 759, 583, $562 \mathrm{~cm}^{-1}$; HRMS (ESI $)$ for [M+Na] ${ }^{+}$: calcd: 409.00520, found: 409.00546.

\mathbf{N}^{\prime}-(1-(Benzofuran-2-yl)-2,2,2-trifluoroethylidene)-2-(trifluoromethyl)benzenesulfonohydrazide

(10). Prepared analogously from 1-(benzofuran-2-yl)-2,2,2-trifluoroethan-1-one. ${ }^{7}$ Purification by flash chromatography (hexane/EtOAc, $8: 1$ to $6: 1$) afforded the desired product as a yellow solid. The yellow impurity was removed by washing the product thrice with ice-cold pentane to leave the title compound as a white solid (133 mg , 41%). M.p. $=173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.74(\mathrm{~s}, 1 \mathrm{H}), 8.49-8.39$ $(\mathrm{m}, 1 \mathrm{H}), 7.94-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{ddd}, J=7.8,1.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{ddd}, J=8.5,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=8.1,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{qd}, J=1.8,0.9 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,144.4,136.3,134.0,133.6,132.8,128.7(\mathrm{q}, J=6.3 \mathrm{~Hz})$, $128.3,126.0,125.0,123.0(\mathrm{q}, J=274.4 \mathrm{~Hz}), 121.1(\mathrm{q}, J=275.7 \mathrm{~Hz}), 112.4(\mathrm{q}, J=2.6 \mathrm{~Hz}), 111.9 .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-58.3,-66.0 . \operatorname{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=1387,1341,1308,1271,1251,1177,1160$, $\left.1141,1086,1037,1007,862,751,728,584,561 \mathrm{~cm}^{-1} . \mathrm{HRMS}^{(E S I}{ }^{+}\right)$for $[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 437.03891, found: 437.03874.

Screening results

			$\begin{gathered} \mathbf{B i R h L}_{4}{ }^{*}(0.5 \mathrm{~mol} \%) \\ \text { styrene }(5 \mathrm{eq}) \end{gathered}$			
\#	Catalyst	Solvent	Base	T (${ }^{\circ} \mathrm{C}$)	Yield \% (${ }^{1} \mathrm{H}$ NMR)	\% ee
1	7 a	$\mathrm{C}_{6} \mathrm{~F}_{6}$	DIPEA	r.t.	36	90
2	7 a	pentane	DIPEA	r.t.	(<5)	nd
3	7 a	DCM	DIPEA	r.t.	59 (60)	89
4	7 a	DCM	DBU	r.t.	52	89
5	7 a	DCM	DIPEA	-10	0	nd
6	7 a	DCM	DIPEA	40	95	88
7	7b	DCM	DIPEA	40	75	90
8	7c	DCM	DIPEA	40	74	91
9	7c	DCM	DIPEA	r.t.	84	92
10	7c	DCE	DIPEA	r.t.	46	92
11	7c	Toluene	DIPEA	r.t.	52	92
12	7c	DCM	DIPEA	10	(60)	93

Screening reactions were performed on a 0.1 mmol scale. Yields in brackets are determined via crude ${ }^{1} \mathrm{H}$ NMR analysis with triphenylmethane as internal standard. All other yields are isolated yields.

7a

7b

7c

[BiRh] Catalyzed [2+1] Cycloaddition Reactions

General Procedure. An oven-dried Schlenk flask equipped with a magnetic stir bar was charged with the bismuth-rhodium paddlewheel complex 7c ($0.5 \mathrm{~mol} \%$) under argon. Alkene or alkyne (0.45-0.9 $\mathrm{mmol})$, the triftosylhydrazone $(0.09 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added and the resulting mixture was stirred at room temperature. A solution of diisopropylethylamine $(0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added dropwise over 0.5 h . The resulting mixture was stirred until TLC showed complete consumption of the hydrazone (ca. 16-20 h). The mixture was concentrated and the residue purified by either flash chromatography or preparative thin layer chromatography to obtain the cyclopropane or cyclopropene product.

The corresponding racemates were prepared analogously using $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(2 \mathrm{~mol} \%)$ as the catalyst.

2-((1S,2R)-2-Phenyl-1-(trifluoromethyl)cyclopropyl)furan (3a). Prepared according to the general
 procedure with 0.45 mmol of styrene. Purification by flash chromatography (hexanes/ tert-butyl methyl ether, 98:2) afforded the title compound as a colorless liquid (19.5 $\mathrm{mg}, 85 \%$ yield, $92 \% e e$). [The ee was determined by HPLC analysis: Daicel 150 mm Chiralcel OJ-3R, Ø 4.6 mm , acetonitrile/water $=60 / 40, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=9.81$ $\min , \mathrm{t}($ major $)=10.75 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-23.1\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{dd}$, $J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}$, $J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.8,135.2,128.1(2 \mathrm{C}), 127.0,125.23(\mathrm{q}, J=274.0 \mathrm{~Hz}), 112.2$, $110.6,29.7(\mathrm{~d}, J=34.8 \mathrm{~Hz}), 27.2(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 14.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -69.4; IR (ATR): $\tilde{v}=3033,2865,1501,1334,1288,1138,1054,1014,740,695 \mathrm{~cm}^{-1} ;$ HRMS $\left.^{(E S I}{ }^{+}\right)$ for $[\mathrm{M}+\mathrm{H}]^{+}$: calcd: 252.07565 , found: 252.07605 .

HPLC traces of 3a (left) and the corresponding racemate (right).

2-((1S,2R)-2-(p-Tolyl)-1-(trifluoromethyl)cyclopropyl)furan (3b). Prepared according to the general
 procedure with 0.9 mmol of 4-methylstyrene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a colorless oil ($19.9 \mathrm{mg}, 83 \%$, $94 \% e e$). [The $e e$ was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, \varnothing 4.6 mm i.D., acetonitrile $/$ water $=50: 50, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=16.04 \mathrm{~min}, \mathrm{t}($ major $)=$ $17.63 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-58.1\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, J=9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{ddq}, J=7.5,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=9.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,142.7,136.6,128.8$ (2C), 128.0 (2C), 125.4 (q, $J=$ $274.6 \mathrm{~Hz}), 112.2,110.6,29.5(\mathrm{q}, J=34.6 \mathrm{~Hz}), 26.9(\mathrm{q}, J=2.0 \mathrm{~Hz}), 21.15,14.0(\mathrm{q}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-69.4$. IR (ATR): $\tilde{\mathrm{v}}=1333,1291,1223,1140,1059,1014,840,809,740 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 266.09130, found: 266.09153.

HPLC traces of $\mathbf{3} \mathbf{b}$ (left) and corresponding the racemate (right).

2-((1S,2R)-2-(4-Methoxyphenyl)-1-(trifluoromethyl)cyclopropyl)furan (3c). Prepared according to
 the general procedure with 0.45 mmol of 4 -methoxystyrene. Purified by preparative TLC (pentane:EtOAc, $90: 10$) as a pale yellow oil ($20.1 \mathrm{mg}, 80 \%, 91 \%$ $e e$). [The $e e$ was determined by HPLC analysis: 150 mm YMC Cellulose SJ-3, Ø 4.6 mm , acetonitrile/Water $=50: 50 \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=9.46 \mathrm{~min}, \mathrm{t}($ major $)=10.38$ $\min] .[\alpha]_{\mathrm{D}}^{20}=-63.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ $-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=9.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,146.4$, $142.7,129.2,127.2,125.3(\mathrm{q}, J=273.8 \mathrm{~Hz}), 113.6,112.1,110.6,55.3,29.4(\mathrm{q}, J=34.6 \mathrm{~Hz}), 26.6(\mathrm{q}, J$ $=2.1 \mathrm{~Hz}), 14.0(\mathrm{q}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.3$. IR (ATR): $\tilde{\mathrm{v}}=1517,1333,1287$, $1249,1223,1178,1134,1058,1034,1014,848,807,740 \mathrm{~cm}^{-1}$; HRMS (EI) for [M]+: calcd: 282.08622, found: 282.08657.

HPLC traces of $\mathbf{3 c}$ (left) and the corresponding racemate (right).

2-((1S,2R)-2-(4-Bromophenyl)-1-(trifluoromethyl)cyclopropyl)furan (3d). Prepared according to
 the general procedure with 0.9 mmol of 4-bromostyrene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a pale yellow oil ($22 \mathrm{mg}, 73 \%, 94 \% \mathrm{ee}$) which contained a small amount of an unknown impurity. An analytically pure sample was obtained via preparatory HPLC. [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, Ø 4.6 mm i.D.; acetonitrile $/$ water $=60: 40, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=220 \mathrm{~nm}, \mathrm{t}$ (minor) $=6.98 \mathrm{~min}, \mathrm{t}$ (major) $=7.65 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-42.5\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=$ $3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=9.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddq}, J=7.4,6.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 125.10(\mathrm{q}, J=274.2 \mathrm{~Hz})$, $29.74(\mathrm{q}, J=34.8 \mathrm{~Hz}), 26.62(\mathrm{q}, J=2.2 \mathrm{~Hz}), 14.14(\mathrm{q}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.5$ (d, $J=1.4 \mathrm{~Hz}$). IR (ATR): $\tilde{\mathrm{v}}=1493,1381,1333,1294,1224,1213,1152,1115,1076,1056,1012,843$, 813, $742 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 329.98618, found: 329.98622.

HPLC traces of $\mathbf{3 d}$ (left) and the corresponding racemate (right).

2-((1S,2R)-1-(Trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)cyclopropyl)furan (3e). Prepared
 according to the general procedure with 0.9 mmol of 4-(trifluoromethyl)styrene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a colorless oil ($18 \mathrm{mg}, 62 \%, 95 \% e e$). [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, Ø 4.6 mm i.D., acetonitrile/water gradient: 50% to 70% in $10 \mathrm{~min}, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=6.97 \mathrm{~min}, \mathrm{t}($ major $)=7.23 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-48.5(\mathrm{c}=0.4$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=9.4,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.6,143.1,139.5,129.3(\mathrm{q}, J=32.6 \mathrm{~Hz})$ $128.4(2 \mathrm{C}), 125.0(\mathrm{q}, ~ J=3.6 \mathrm{~Hz}, 2 \mathrm{C}), 124.6(\mathrm{q}, J=274.2 \mathrm{~Hz}), 124.3(\mathrm{q}, J=271.8 \mathrm{~Hz}), 112.6,110.7$, $30.1(\mathrm{q}, J=35.1 \mathrm{~Hz}), 26.8(\mathrm{q}, J=2.1 \mathrm{~Hz}), 14.4(\mathrm{q}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5$, -69.6. IR (ATR): $\tilde{v}=1324,1289,1219,116,1070,1058,1017,851,742 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 320.06304 , found: 320.06360 .

HPLC traces of $\mathbf{3 e}$ (left) and the corresponding racemate (right).

Methyl 4-((1R,2S)-2-(furan-2-yl)-2-(trifluoromethyl)cyclopropyl)benzoate (3f). Prepared according
 to the general procedure with 0.9 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, $40: 1$ to $30: 1$) afforded the title compound as a pale yellow oil ($19.6 \mathrm{mg}, 70 \%, 95 \% e e$). [The ee was determined by HPLC analysis: 150 mm Chiralcel IB-N3, Ø 4.6 mm i.D., acetonitrile $/$ water $=50: 50$, v $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \mathrm{t}($ minor $)=26.35 \mathrm{~min}, \mathrm{t}($ major $)=27.33 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-72.3\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H})$, 6.16 (dd, $J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=9.4,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97$ (ddq, $J=7.6,6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.0, 145.7, 143.0, 140.7, 129.4 (2C), 128.9, 128.1 (2C), 125.1 (q, $J=274.2 \mathrm{~Hz}$), 112.47, 110.67, $52.18,30.16(\mathrm{q}, J=35.1 \mathrm{~Hz}), 27.04(\mathrm{q}, J=2.3 \mathrm{~Hz}), 14.34(\mathrm{q}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-69.6. IR (ATR): $\tilde{\mathrm{v}}=1718,1332,1277,1217,1183,1139,1111,1058,1016,743,716 \mathrm{~cm}^{-1}$. HRMS (EI) for $[\mathrm{M}]^{+}$: calcd: 310.08113, found: 310.08133 .

HPLC traces of $\mathbf{3 f}$ (left) and the corresponding racemate (right).

2-((1S,2R)-2-(3-Chlorophenyl)-1-(trifluoromethyl)cyclopropyl)furan (3g). Prepared according to

the general procedure with 0.9 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a yellow oil $(18.4 \mathrm{mg}, 71 \%, 81 \% e e)$. [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, Ø 4.6 mm i.D., acetonitrile/water $=40: 60 \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=$ $56.87 \mathrm{~min}, \mathrm{t}($ major $)=65.45 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-45.4\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22$ $(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J$ $=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=3.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=9.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,143.0,137.4,134.0,129.3,128.4,127.3,126.3,125.0(\mathrm{q}, J=$ $273.8 \mathrm{~Hz}), 112.4,110.7,29.9(\mathrm{q}, J=35.5 \mathrm{~Hz}), 26.7(\mathrm{q}, J=2.3 \mathrm{~Hz}), 14.1(\mathrm{q}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.5$. IR (ATR): $\tilde{\mathrm{v}}=1391,1332,1300,1223,1152,1082,1062,1015,814,784,742$, $690 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 286.03668, found: 286.03656 .

HPLC traces of $\mathbf{3 g}$ (left) and the corresponding racemate (right).

2-((1S,2S)-2-(2-Chlorophenyl)-1-(trifluoromethyl)cyclopropyl)furan (3h). Prepared according to the general procedure with 0.9 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a pale yellow oil ($20 \mathrm{mg}, 77 \%, 89 \%$ ee). [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, Ø 4.6 mm i.D., acetonitrile/water $=60: 40 \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(\mathrm{minor})=$ $5.38 \mathrm{~min}, \mathrm{t}($ major $)=5.86 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-118.5\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=0.9,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{td}, J=7.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=9.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddd, $J=7.5,6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.8$, $142.5,136.2,133.2,129.3,128.5,128.4,126.4,125.2(\mathrm{q}, J=274.4 \mathrm{~Hz}), 111.6,110.7,29.5(\mathrm{q}, J=35.1$ $\mathrm{Hz}), 26.1(\mathrm{q}, J=2.2 \mathrm{~Hz}), 12.8(\mathrm{q}, J=2.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.4 . \mathrm{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=$ 1390, 1333, 1298, 1212, 1149, 1063, 1053, 1014, 754, $740 \mathrm{~cm}^{-1}$. HRMS (EI) for [M]+: calcd: 286.03668, found: 286.03672.

HPLC traces of $\mathbf{3 h}$ (left) and the corresponding racemate (right).

2-((1S,1aR,6aR)-1-(Trifluoromethyl)-1,1a,6,6a-tetrahydrocyclopropa[a]inden-1-yl)furan
Prepared according to the general procedure using 0.9 mmol of indene. Purification by flash chromatography (pentane:EtOAc, 50:1) afforded the title compound as a pale yellow oil ($17.5 \mathrm{mg}, 73 \%, 91 \% e e$). [The ee was determined by HPLC analysis: 150 mm Chiralcel OJ-3R, , Ø 4.6 mm i.D.; acetonitrile/water $=60: 40, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)$ $=12.28 \mathrm{~min}, \mathrm{t}($ major $)=13.70 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-24.0\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{tq}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ $(\mathrm{dd}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{ddq}, J=17.6,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{td}, J=$ $6.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8(\mathrm{q}, J=1.0 \mathrm{~Hz}), 143.1,142.9,139.9,126.9,126.5$, $125.1(\mathrm{q}, J=274.9 \mathrm{~Hz}), 125.0,124.3,113.3,110.0,34.4(\mathrm{q}, J=2.4 \mathrm{~Hz}), 33.0,31.3(\mathrm{q}, J=33.5 \mathrm{~Hz})$, $26.2(\mathrm{q}, J=2.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-68.6$. IR (ATR): $\tilde{\mathrm{v}}=1330,1278,1265,1224,1136$, 1026, 1011, 760, 739, 725, 598, $457 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 264.07565, found: 264.07612.

HPLC traces of $\mathbf{3 i}$ (left) and the corresponding racemate (right).

2-((1S,2R)-2-(Naphthalen-2-yl)-1-(trifluoromethyl)cyclopropyl)furan (3j). Prepared according to the general procedure with 0.45 mmol of alkene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a pale yellow oil ($22.8 \mathrm{mg} 83 \%, 87 \% e e$). [The ee was determined by HPLC analysis: 150 mm YMC Cellulose SJ-3, Ø 4.6 mm i.D., acetonitrile/water $=60: 40 \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (minor) $=7.76 \mathrm{~min}, \mathrm{t}($ major $)=9.47 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-33.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-$ $7.67(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J$ $=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{qd}, J=3.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddq}, J=7.6,6.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=9.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.5,143.1,133.5,133.2$, $132.9,128.0(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 127.3,126.6,126.5,126.2,125.6(\mathrm{q}, J=273.9 \mathrm{~Hz}), 112.6,110.9,77.7$, $30.1(\mathrm{q}, J=34.3 \mathrm{~Hz}) 27.7(\mathrm{q}, J=2.1 \mathrm{~Hz}), 14.5(\mathrm{q}, J=2.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-69.3$. IR (ATR): $\tilde{v}=1346,1332,1293,1224,1185,1137,1063,1014,859,813,742,476 \mathrm{~cm}^{-1} ;$ HRMS $\left.^{(E S I}{ }^{+}\right)$ for $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 325.08107 , found: 325.08074 .

HPLC traces of $\mathbf{3} \mathbf{j}$ (left) and the corresponding racemate (right).

2-((1S,2R)-2-methyl-2-phenyl-1-(trifluoromethyl)cyclopropyl)furan (3k). Prepared according to the

major

minor general procedure with 0.9 mmol of the alkene. Purification by flash column chromatography (pentane/EtOAc, $75: 1$ to $50: 1$) afforded a diastereomeric mixture of the title compound as a pale yellow oil ($19.6 \mathrm{mg}, 81 \%, \mathrm{dr}=1: 1.6$; major diastereomer: 83% $e e$; minor diastereomer: >99 \% ee). [The $e e^{\text {‘s }}$ were determined by HPLC analysis: 150 mm Chiralcel OD-3, Ø 4.6 mm i.D., n-heptan $=100 \%, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\text {minor dia }}($ minor $)=4.53 \mathrm{~min}, \mathrm{t}_{\text {major }}$ dia $($ major $)=4.66 \mathrm{~min} ; \mathrm{t}_{\text {major dia }}($ minor $)=10.47 \mathrm{~min}, \mathrm{t}_{\text {major dia }}($ major $\left.)=26.44 \mathrm{~min}\right] .[\alpha]_{\mathrm{D}}^{20}=-45.8(\mathrm{c}=1.0)$, CHCl_{3}). IR (ATR): $\tilde{v}=1339,1274,1214,1134,1113,1096,1084,1071,1043,1028,1011,927,766$, 736, $698 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 266.09130, found: 266.09140.

NMR characterization of the major diastereoisomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.12(\mathrm{~m}, 4 \mathrm{H})$, $7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ $(\mathrm{dq}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{q}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.70(\mathrm{q}, J=1.8 \mathrm{~Hz}), 142.13(\mathrm{q}, J=0.9 \mathrm{~Hz}), 141.98,128.35,127.99,126.65,126.00(\mathrm{q}, J=275.2$ $\mathrm{Hz}), 110.17,109.71(\mathrm{q}, J=0.9 \mathrm{~Hz}), 34.57,32.73(\mathrm{q}, J=33.8 \mathrm{~Hz}), 22.22(\mathrm{q}, J=2.7 \mathrm{~Hz}), 20.70(\mathrm{q}, J=$ $2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.25$.

NMR characterization of the minor diastereoisomer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{tt}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.43(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dq}, J=5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.07(\mathrm{q}, J=1.5 \mathrm{~Hz}), 142.74,141.15(\mathrm{q}, J=0.8 \mathrm{~Hz}), 128.75,128.47$, $127.11,125.29(\mathrm{q}, J=275.2 \mathrm{~Hz}), 111.29(\mathrm{q}, J=0.7 \mathrm{~Hz}), 110.76,34.08,32.33(\mathrm{q}, J=33.2 \mathrm{~Hz}), 25.77$ $(\mathrm{q}, J=0.8 \mathrm{~Hz}), 20.53(\mathrm{q}, J=2.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.24$.

HPLC traces of $\mathbf{3 k}$ (left) and the corresponding racemate (right).

2-((1S,2S)-2-(Thiophen-2-yl)-1-(trifluoromethyl)cyclopropyl)furan (31). Prepared according to the
 general procedure with 0.45 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a pale yellow oil ($17.6 \mathrm{mg} 75 \%$, $95 \% ~ e e$). [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, $\emptyset 4.6$ mm i.D., n-heptane $/ 2$-propanol $=98: 2, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=3.45 \mathrm{~min}, \mathrm{t}($ major $)=$ $3.98 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-51.7\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dt}, J=3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{qd}, J$ $=3.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{tdd}, J=6.1,3.2$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9,143.0,139.0,126.7,125.8,125.0(\mathrm{q}, J=274.6 \mathrm{~Hz})$, $124.5,112.5,110.7,30.2(\mathrm{q}, J=34.7 \mathrm{~Hz}), 22.5(\mathrm{q}, J=2.5 \mathrm{~Hz}), 16.4(\mathrm{q}, J=2.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}$, CDCl_{3}) δ-69.4. IR (ATR): $\tilde{\mathrm{v}}=1344,1295,1224,1150,1063,1014,742,698 \mathrm{~cm}^{-1}$. HRMS (EI) for $[\mathrm{M}]^{+}$: calcd: 258.03258, found: 258.03207.

HPLC traces of $\mathbf{3 1}$ (left) and the corresponding racemate (right)
tert-Butyl 2-((1S,2S)-2-(furan-2-yl)-2-(trifluoromethyl)cyclopropyl)-1H-pyrrole-1-carboxylate

(3m). Prepared according to the general procedure with 0.9 mmol of the alkene. Purification by preparative TLC (n-hexane:EtOAc, 20:1) afforded the title compound as a pale yellow oil ($22.1 \mathrm{mg}, 71 \%, 89 \% e e$). [The $e e$ was determined by HPLC analysis: 150 mm Chiralpak IB-N3, $\emptyset 4.6 \mathrm{~mm}$ i.D., n-heptane $/ 2$-propanol $=99.99: 0.01, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=220 \mathrm{~nm}, \mathrm{t}$ (minor $)=4.29 \mathrm{~min}, \mathrm{t}$ (major $)=4.79 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-180.8\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.22(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=3.3,1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=3.3$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{ddd}, J=3.2,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{dd}, J=9.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 149.6$, $147.3,143.0,130.0,125.6(\mathrm{q}, ~ J=274.3 \mathrm{~Hz}), 122.4,112.8,111.8,110.7,109.7,84.3,29.4(\mathrm{q}, J=34.1$ $\mathrm{Hz}), 28.1(3 \mathrm{C}), 22.3(\mathrm{q}, J=2.5 \mathrm{~Hz}), 14.1 \mathrm{z}(\mathrm{q}, J=2.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-69.0 . \mathrm{IR}$ (ATR): $\tilde{v}=1744,1417,1371,1327,1307,1288,1126,1102,1059,1013,729,717 \mathrm{~cm}^{-1}$. HRMS (EI) for $[\mathrm{M}]^{+}$: calcd: 341.12333, found: 341.12314 .

HPLC traces of $\mathbf{3 m}$ (left) and the corresponding racemate (right).

2-((1S,2S)-2-(tert-Butoxy)-1-(trifluoromethyl)cyclopropyl)furan (3n). Prepared according to the
general procedure with 0.9 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a colorless oil ($20 \mathrm{mg}, 89 \%, 17: 1$ $d r, 88 \%$ ee (major diastereomer)). [The $e e$ was determined by HPLC analysis: 150 mm Chiralpak IG-3, Ø 4.6 mm i.D., methanol $/$ water $=55: 45, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=22.74$ \min , t (major) $=25.49 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-62.7\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{t}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddq}, J=6.3,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.55(\mathrm{dd}, J=7.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.5,142.3,125.1(\mathrm{q}, J=$ 272.7 Hz), 110.7, $75.9,54.1(\mathrm{q}, ~ J=2.8 \mathrm{~Hz}$), $27.8(3 \mathrm{C}), 27.8$ (signal overlap quadruplet), 15.5 ($\mathrm{q}, ~ J=2.3$ Hz). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.5$ (minor diastereomer), -67.6. (major diastereomer). IR (ATR): $\tilde{v}=1719,1578,1468,1383,1366,1291,1271,1191,1183,1083,755,746 \mathrm{~cm}^{-1}$. HRMS (EI) for $[M]^{+}$: calcd: 248.10187, found: 248.10184.

HPLC traces of $\mathbf{3 n}$ (major diastereomer, left) and the corresponding racemate (right).

2-((1S,2S)-2-Butoxy-1-(trifluoromethyl)cyclopropyl)furan (30). Prepared according to the general
 procedure with 0.9 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, 75:1) afforded the title compound as a pale yellow oil (19.8 mg , $88 \%, 15: 1 \mathrm{dr}, 69 \% \mathrm{ee}$). [The ee was determined by HPLC analysis: 150 mm Chiralpak IB N-3, $\emptyset 4.6 \mathrm{~mm}$ i.D., $100 \% n$-heptane, $\mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=2.97 \mathrm{~min}$, $\mathrm{t}($ major $)=3.26 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-42.5\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{dd}, J=1.9$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=7.4,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56-3.43(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{ddq}, J=7.6,4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.24-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.1,142.7,124.9(\mathrm{q}, J$ $=272.8 \mathrm{~Hz}), 111.5,110.8,71.2,59.6(\mathrm{q}, J=2.6 \mathrm{~Hz}), 31.5,29.0-26.7(\mathrm{~m}), 19.2,15.6(\mathrm{q}, J=2.3 \mathrm{~Hz})$, 13.9. ${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5$ (minor diastereomer), -67.9 (major diasteromer). IR (ATR): $\tilde{\mathrm{v}}=1361,1337,1299,1225,1136,1087,1011,738 \mathrm{~cm}^{-1}$. HRMS (EI) for $[\mathrm{M}]^{+}$: calcd: 248.10187, found: 248.10174 .

HPLC traces of $\mathbf{3 0}$ (major diastereomer, left) and the corresponding racemate (right).

2-((1S,2S)-2-(Furan-2-yl)-2-(trifluoromethyl)cyclopropyl)benzofuran (3p). Prepared according to
 the general procedure with 0.9 mmol of the alkene. Purification by flash column chromatography (pentane:EtOAc, 75:1) afforded the title compound as a pale yellow oil ($23.4 \mathrm{mg}, 88 \%, 52 \% e e$). [The ee was determined by HPLC analysis: 150 mm Chiralpak IJ-3, Ø 4.6 mm i.D., methanol/water $=85: 15$, v $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=220 \mathrm{~nm}, \mathrm{t}$ (minor $)=7.22 \mathrm{~min}, \mathrm{t}($ major $)=9.57 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-31.5\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{ddd}, J=7.4,1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-$ $1.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.9,153.0,145.8,143.1,128.4,126.2(\mathrm{q}, J=274.4 \mathrm{~Hz})$, $124.0,122.8,120.7,112.2,110.9,110.8,104.1,29.5(\mathrm{q}, J=35.1 \mathrm{~Hz}), 20.8(\mathrm{q}, J=2.5 \mathrm{~Hz}), 14.2(\mathrm{q}, J=$ $2.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-69.8$. IR (ATR): $\tilde{\mathrm{v}}=1454,1334,1289,1139,1108,1061$, 1013, 804, 738, 723, $426 \mathrm{~cm}^{-1}$. HRMS (EI) for $[M]^{+}$: calcd: 292.07057, found: 292.07075.

HPLC traces of $\mathbf{3 p}$ (left) and the corresponding racemate (right).

(S)-2-(2-(4-Methoxyphenyl)-1-(trifluoromethyl)cycloprop-2-en-1-yl)furan (9a)

Prepared according to the general procedure with 0.9 mmol of the alkyne. Purification by flash chromatography (hexane:EtOAc, 50:1 to 40:1) afforded the title compound as a fluorescent yellow oil ($22.7 \mathrm{mg}, 90 \%, 92 \%$ ee). [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, $\emptyset 4.6 \mathrm{~mm}$ i.D., acetonitrile $/$ water $=60: 40$, v $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=15.80 \mathrm{~min}, \mathrm{t}($ major $)=22.49 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-198.8(\mathrm{c}=1.4$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.93$ $(\mathrm{m}, 2 \mathrm{H}), 6.89(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.30(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.6,152.0,141.6,131.9(2 \mathrm{C}), 125.9(\mathrm{q}, J=276.0 \mathrm{~Hz}), 117.3,114.7(2 \mathrm{C}), 110.7,107.5,94.0(\mathrm{q}, J=$ 2.5 Hz), $55.6,27.3(\mathrm{q}, J=37.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-66.6$. IR (ATR): $\tilde{\mathrm{v}}=1605,1505$, $1302,1251,1171,1149,1129,1030,953,834,731 \mathrm{~cm}^{-1}$. HRMS (ESI+) for $[\mathrm{M}+\mathrm{H}]^{+}:$calcd: 281.07839, found: 281.07848.

HPLC traces of $\mathbf{9 a}$ (left) and the corresponding racemate (right).
(S)-2-(2-(4-Chlorophenyl)-1-(trifluoromethyl)cycloprop-2-en-1-yl)furan (9b). Prepared according
 to the general procedure with 0.9 mmol of the alkyne. Purification by flash chromatography (hexane:EtOAc, 50:1) afforded the title compound as a fluorescent yellow oil ($20.7 \mathrm{mg}, 80 \%, 95 \% ~ e e$). [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, Ø 4.6 mm i.D.; methanol $/$ water $=85: 15, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=$ $15.18 \mathrm{~min}, \mathrm{t}($ major $)=17.99 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-226.4\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ $(\mathrm{d}, J=57.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=53.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{dt}, J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5$, $142.1,137.2,131.7,129.8,125.9(\mathrm{q}, ~ J=276.2 \mathrm{~Hz}), 123.6,114.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 111.2,108.1,98.1$ (q, $J=2.4 \mathrm{~Hz}), 27.9(\mathrm{q}, J=38.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-66.6 . \operatorname{IR}(\mathrm{ATR}): \tilde{\mathrm{v}}=1486,1308$, $1175,1131,1094,1014,953,869,831,767,725,686,452 \mathrm{~cm}^{-1}$. HRMS (EI) for $[M]^{+}:$calcd: 284.02103, found: 284.02124.

HPLC traces of 9b (left) and the corresponding racemate (right).

2-((1S,2R)-2-(p-Tolyl)-1-(trifluoromethyl)cyclopropyl)benzofuran (11). Prepared according to the
 general procedure using the benzofuran triftosylhydrazone 10 ($0.0917 \mathrm{mmol}, 40$ mg) and 0.9 mmol of the alkene. Purification by flash chromatography (pentane:EtOAc, 75:1 to $50: 1$) afforded the title compound as a yellow oil that solidified after prolonged standing at $\mathrm{rt} .(27.8 \mathrm{mg}, 96 \%, 96 \% e e)$. [The $e e$ was determined by HPLC analysis: 150 mm Chiralpak IJ-3, $\emptyset 4.6 \mathrm{~mm}$ i.D., methanol/water $=85: 15, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}($ minor $)=10.56 \mathrm{~min}, \mathrm{t}($ major $)=13.39 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-112.0\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{ddq}, J=20.2,8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=8.3,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.99-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.51(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=9.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.07$ (ddq, $J=7.6,6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=9.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8$, $149.2,136.8,131.6,129.0(2 \mathrm{C}), 128.1$ (2C), 128.1, 125.3 (q, $J=272.7 \mathrm{~Hz}$), 124.4, 122.7, 121.1, 111.3, $108.9,30.1(\mathrm{q}, J=34.5 \mathrm{~Hz}), 27.5(\mathrm{q}, J=2.0 \mathrm{~Hz}), 21.1,14.1(\mathrm{q}, J=2.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-68.8$. IR (ATR): $\tilde{\mathrm{v}}=1453,1384,1319,1282,1257,1235,1209,1132,1095,1053,850,816,780$, 750, 741, 730, $707 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 316.10695, found: 316.10710.

HPLC traces of $\mathbf{1 1}$ (left) and the corresponding racemate (right).

Gram-Scale Cyclopropanation with Reduced Catalyst Loading

A flame dried three-neck flask equipped with a magnetic stirring bar was charged with the [BiRh] paddlewheel complex $\mathbf{7 c}(9.2 \mathrm{mg}, 0.05 \mathrm{~mol} \%)$, triftosylhydrazone $\mathbf{8}(1.93 \mathrm{~g}, 5.0 \mathrm{mmol})$, p-methylstyrene ($6.6 \mathrm{~mL}, 50 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. A solution of diisopropylethyl amine ($1.74 \mathrm{~mL}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added dropwise to the mixture over a period of 1 h . Once the addition was complete, stirring was continued for 16 h . The mixture was concentrated and the residue purified by flash chromatography (pentane/EtOAc, 75:1 to 50:1) to afford product 3b as a pale yellow oil (1.08 g , $81 \%, 94 \% e e$). See above for the analytical and spectroscopic data.

Derivatization

(1S,2R)-2-(p-Tolyl)-1-(trifluoromethyl)cyclopropane-1-carboxylic acid (4b). $\mathrm{NaIO}_{4}(602 \mathrm{mg}, 2.82$ mmol) was added to a solution of cyclopropane 3b $(150 \mathrm{mg}, 0.56 \mathrm{mmol})$ in heptane $/ \mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(1: 1: 2,12 \mathrm{~mL})$. The mixture was stirred for 5 min before RuCl_{3} ($3 \mathrm{mg}, 2.5 \mathrm{~mol} \%$) was added. After stirring for 18 h at $25^{\circ} \mathrm{C}$ a second portion of $\mathrm{NaIO}_{4}(3 \mathrm{eq})$ was added to the mixture and stirring continued for an additional 4 h . Water (10 mL) was introduced followed by EtOAc (10 mL). The layers were separated, the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), and the organic layers were combined, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography (pentane: EtOAc, 10:1 +1 $\%$ formic acid) to afford the title compound as a white crystalline solid ($90 \mathrm{mg}, 65 \%, 94 \% \mathrm{ee}$).). [The ee was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$ i.D., methanol/TFA (0.1 $\%)$ in water $=70: 30, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}($ minor $)=17.6 \mathrm{~min}, \mathrm{t}($ major $)=19.2 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=$ $0.6\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~s}, 4 \mathrm{H}), 2.98(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 2.08 (ddq, $J=9.2,5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=9.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7$, 137.6, 129.9, 129.2, 129.0, 124.2 (q, $J=273 \mathrm{~Hz}), 34.1(\mathrm{q}, J=33.9 \mathrm{~Hz}), 30.4,21.3,16.1 .{ }^{19} \mathrm{~F}$ NMR (282
 (EI) for [M] ${ }^{+}$: calcd: 244.07057, found: 244.07060 .

HPLC traces of acid $\mathbf{4 b}$ (left) and the corresponding racemate (right).
(1S,2R)-2-Phenyl-1-(trifluoromethyl)cyclopropane-1-carboxylic acid (4a). Prepared analogously
 from 2-furyl cyclopropane $\mathbf{3 a}(100 \mathrm{mg}, 0.40 \mathrm{mmol})$. The residue was purified by flash chromatography (pentane/EtOAc, $10: 1+1 \%$ formic acid) to afford the title compound as a colorless solid $(72 \mathrm{mg}, 79 \%) .[\alpha]_{\mathrm{D}}^{20}=-12.4\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddq}, J=9.3$, $5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,133.1,129.2$ (2C), 128.5 (2C), $127.8124 .2(\mathrm{q}, J=274.0 \mathrm{~Hz}), 34.1(\mathrm{q}, J=33.9 \mathrm{~Hz}), 30.5(\mathrm{q}, J=2.0 \mathrm{~Hz}), 16.0(\mathrm{q}, J=$ $2.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-67.0$. IR (ATR): $\tilde{v}=1710,1433,1393,1322,1233,1147$, 1128, 1086, 783, 728, 697, $684 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 230.05492, found: 230.05496.
(1S,2R)-1-(Trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carboxylic acid (4e).

Prepared analogously from 2-furyl cyclopropane $\mathbf{3 e}(51 \mathrm{mg}, 0.16 \mathrm{mmol})$. The residue was purified by flash chromatography (pentane/EtOAc, $9: 1+1 \%$ formic acid) to afford the title compound as a colorless oil ($34.3 \mathrm{mg}, 72 \%$). $[\alpha]_{\mathrm{D}}^{20}=-4.2$ $\left(\mathrm{c}=0.74, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ $(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dddd}, J=7.6,6.1,3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=9.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,137.2,130.2(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.7(2 \mathrm{C}), 125.4(2 \mathrm{C}, \mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2$ $(\mathrm{q}, J=274.1 \mathrm{~Hz}), 124.0(\mathrm{q}, J=272.5 \mathrm{~Hz}), 34.2(\mathrm{q}, J=34.3 \mathrm{~Hz}), 30.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 16.1(\mathrm{~d}, J=2.1$ $\mathrm{Hz}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.7,-67.2$. IR (ATR): $\tilde{\mathrm{v}}=1712,1434,1392,1323,1233,1152$, 1124, 1113, 1065, 1020, $846 \mathrm{~cm}^{-1}$. HRMS (EI) for [M] ${ }^{+}$: calcd: 298.04230, found: 298.04246.

Methyl ((1S,2R)-2-(p-tolyl)-1-(trifluoromethyl)cyclopropane-1-carbonyl)glycinate (12). A flame
 dried Schlenk flask was charged with acid $\mathbf{4 b}(40 \mathrm{mg}, 0.164 \mathrm{mmol})$ and DMF (1 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ before HATU ($62.3 \mathrm{mg}, 0.164 \mathrm{mmol}$), diisopropylethylamine $(0.11 \mathrm{~mL}, 0.655 \mathrm{mmol})$ and glycine methyl ester hydrochloride ($30.8 \mathrm{mg}, 0.246 \mathrm{mmol}$) were successively added. The mixture was stirred at room temperature for 16 h before it was diluted with water and the aqueous phase extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic layer was washed with sat. aq. NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography (pentane/tert-butyl methyl ether, 60:40) to afford the title compound as transparent oil that solidified upon standing to give an off-white solid ($37.4 \mathrm{mg}, 72 \%, 94 \% e e$). [The $e e$ was determined by HPLC analysis: 150 mm Chiralpak IC-3, $\emptyset 4.6 \mathrm{~mm}$ i.D. n-heptane $/ 2$-propanol $=95: 5, \mathrm{v}=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}, \mathrm{t}($ minor $)=17.84 \mathrm{~min}, \mathrm{t}($ major $)=13.78 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=39.3\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) . \mathrm{M} . \mathrm{p} .=86-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~s}, 4 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=18.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=18.5$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{ddq}, J=7.8,5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.67(\mathrm{dd}, J=9.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,162.8,137.3,130.5,129.2,128.5$, $125.3(\mathrm{q}, J=274.0 \mathrm{~Hz}), 52.5,41.9,36.2(\mathrm{q}, J=32.9 \mathrm{~Hz}), 28.0(\mathrm{q}, J=2.1 \mathrm{~Hz}), 21.2,13.5(\mathrm{~d}, J=2.5 \mathrm{~Hz})$. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.5$. IR (ATR): $\tilde{\mathrm{v}}=1746,1688,1521,1439,1376,1323,1305,1208$, 1182, 1132, 1087, $828 \mathrm{~cm}^{-1}$. HRMS (EI) for $[M]^{+}$: calcd: 315.10768, found: 315.10750.

HPLC traces of $\mathbf{1 2}$ (left) and the corresponding racemate (right).
tert-Butyl ((1R,2R)-2-(p-tolyl)-1-(trifluoromethyl)cyclopropyl)carbamate (5b). A flame dried two-
 neck round bottom flask was charged with acid $\mathbf{4 b}$ ($35 \mathrm{mg}, 0.14 \mathrm{mmol})$) and toluene $(1.5 \mathrm{~mL})$. Triethylamine ($30 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) was added to the mixture, followed by dropwise addition of diphenylphosphoryl azide ($37 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$). The mixture was stirred at $90^{\circ} \mathrm{C}$ (bath temperature) for 30 min . Dry tert- $\mathrm{BuOH}(0.3 \mathrm{~mL}$) was slowly added and stirring was continued for 18 h at $90^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc and water. The organic phase was washed with water (2 x 20 mL) and brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography (pentane/tertbutyl methyl ether, 16:1) to afford the title compound as an off-white solid ($39.7 \mathrm{mg}, 89 \%, 93 \% e e$). [The $e e$ was determined by HPLC analysis: 150 mm Chiralpak OJ-3R, $\varnothing 4.6 \mathrm{~mm}$ i.D., acetonitrile/water $=40: 60, \mathrm{v}=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}, \mathrm{t}($ minor $)=43.91 \mathrm{~min}, \mathrm{t}($ major $)=45.98 \mathrm{~min}] .[\alpha]_{\mathrm{D}}^{20}=-109.9(\mathrm{c}=$ $\left.1.4, \mathrm{CHCl}_{3}\right)$.

The NMR spectra were recorded at $80^{\circ} \mathrm{C}$ to minimize signal broadening caused by the rotamers of the Boc group. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 2.72$ (dd, $J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{ddd}, J=10.0,7.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 156.2,138.3,132.5,130.2,129.9,126.8(\mathrm{q}, J=275.5 \mathrm{~Hz})$, $80.9,40.2(\mathrm{q}, J=37.0 \mathrm{~Hz}), 28.7,27.7,21.3,16.8 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-74.2$. IR (ATR): $\tilde{\mathrm{v}}$ $=1708,1495,1392,1367,1299,1245,1136,1091,1067,1047,827 \mathrm{~cm}^{-1}$. HRMS (ESI+) for $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd: 338.13383 , found: 338.13419 .

HPLC traces of $\mathbf{5 b}$ (left) and the corresponding racemate (right).

NMR Spectra

8: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

8: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

8: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

10: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

10: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}):

10: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3a：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

Cinn

3a：${ }^{13} \mathrm{C}$ NMR（101 MHz， CDCl_{3} ）：

（1）

3a: ${ }^{19}$ F NMR (282 MHz, CDCl_{3}):

3b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3b: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^0]3c: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3c: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}):

(1)

3c: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3d: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3d: ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3d: ${ }^{1} \mathrm{H}^{-1} \mathrm{H} \operatorname{NOESY}\left(\mathrm{CDCl}_{3}\right)$:

3d: ${ }^{1} \mathrm{H}^{-19} \mathrm{~F}$ HOESY $\left(\mathrm{CDCl}_{3}\right)$:

3e: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3e: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3e: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3f: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3f: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3f: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
(

[^1]3g: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3g: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^2]3g: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3h: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3h: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
(1)

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3h: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3i：${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
苞
卆夺

3i：${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：
$\underbrace{\infty}$
ㅇㅡㅡ
0
0
0
$\stackrel{-}{i}$
$\underset{i}{1}$

3i: ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3i: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY $\left(\mathrm{CDCl}_{3}\right)$:

3i: ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ NOESY $\left(\mathrm{CDCl}_{3}\right)$:

$\mathbf{3 j}$: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3j: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3j: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3k: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

major dia

minor dia

3k: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

major dia

minor dia

3k: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

major dia

minor dia

3k: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY $\left(\mathrm{CDCl}_{3}\right)$:

3k: ${ }^{1} \mathrm{H}^{-19} \mathrm{~F}$ HOESY $\left(\mathrm{CDCl}_{3}\right)$:

31: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

31: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

S-55

31: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3m: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$:

3m: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$):

3m: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3n: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3n: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3n: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3o: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\xrightarrow[\mathrm{O}_{3} \mathrm{C}]{1 \mathrm{Cl}_{2}}$

3o: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}):

(1)

3o: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\sim_{\mathrm{O}_{3} \mathrm{C}}^{1}$

3p: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3p: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^3]3p: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

9a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

9a: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

9a: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^4]9b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

9b: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

9b: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^5]11: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

11: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

11: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^6]4a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

Hooc...

4a: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}):
$\underbrace{\text { Fै }}$

Hooc...

4a: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Hooc....

4b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$

4b: ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\stackrel{8}{1}$ $-77.16 \mathrm{CDCl} 3$,

4b: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

ноос...

4e: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

4e: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

4e: ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

5b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, measured at $80^{\circ} \mathrm{C}$):

5b: ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$):
$\underbrace{\infty}$

5b: ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

12: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

12: ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}):
|
(

12: ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

References

1. Newberry, R. W.; Raines, R. T., The $n \rightarrow \pi^{*}$ Interaction. Acc. Chem. Res. 2017, 50 (8), 1838-1846.
2. Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M., Hydrazines and Azides via the Metal-Catalyzed Hydrohydrazination and Hydroazidation of Olefins. Journal of the American Chemical Society 2006, 128 (35), 11693-11712.
3. Ning, X.; Chen, Y.; Hu, F.; Xia, Y., Palladium-Catalyzed Carbene Coupling Reactions of Cyclobutanone N-Sulfonylhydrazones. Organic Letters 2021, 23 (21), 8348-8352.
4. Singha, S.; Buchsteiner, M.; Bistoni, G.; Goddard, R.; Fürstner, A., A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts. J. Am. Chem. Soc. 2021, 143 (15), 5666-5673.
5. Buchsteiner, M.; Singha, S.; Decaens, J.; Fürstner, A., Chiral Bismuth-Rhodium Paddlewheel Complexes Empowered by London Dispersion: The C-H Functionalization Nexus. Angew. Chem. Int. Ed. 2022, 61 (45), e202212546.
6. Kremlev, M. M.; Mushta, A. I.; Tyrra, W.; Naumann, D.; Fischer, H. T. M.; Yagupolskii, Y. L., Silver compounds in synthetic chemistry: Part 5: Selective syntheses of trifluoromethylketones, RCOCF_{3}, from trifluoromethylsilver, AgCF3, and corresponding acyl chlorides, RCOCl. Journal of Fluorine Chemistry 2007, 128 (11), 1385-1389.
7. Trost, B. M.; Debien, L., Palladium-Catalyzed Trimethylenemethane Cycloaddition of Olefins Activated by the σ-Electron-Withdrawing Trifluoromethyl Group. Journal of the American Chemical Society 2015, 137 (36), 11606-11609.

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

