3

NETWORK

NEURO
SCIENCE

an open access G journal

Check for
updates

RESEARCH

The arrow of time of brain signals in cognition:
Potential intriguing role of parts of the
default mode network

Gustavo Deco'??*, Yonatan Sanz Perl'’, Laura de la Fuente®, Jacobo D. Sitt®,
B. T. Thomas Yeo’, Enzo Tagliazucchi>®, and Morten L. Kringelbach®'*"!

"Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and
Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain

2Institucié Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
3Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
4School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
>Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP,
Hopital de la Pitié Salpétriere, Paris, France

"Centre for Sleep & Cognition, Centre for Translational MR Research, Department of Electrical and Computer Engineering,
N.1. Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore

8Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
9Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
"ODepartment of Psychiatry, University of Oxford, Oxford, UK
"Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Keywords: Thermodynamics, Neuroimaging, Brain, Default mode network, Orchestration

d-ajo1e/UleU/NPa W 1081Ip//:dlY WO} papeojumoq

0 & UBU/6L8YS | Z/996/E/L/IP

ABSTRACT
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A promising idea in human cognitive neuroscience is that the default mode network (DMN) is
responsible for coordinating the recruitment and scheduling of networks for computing and
solving task-specific cognitive problems. This is supported by evidence showing that the physical
and functional distance of DMN regions is maximally removed from sensorimotor regions
containing environment-driven neural activity directly linked to perception and action, which
would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However,
discovering the functional hierarchy of brain dynamics requires finding the best way to measure
interactions between brain regions. In contrast to previous methods measuring the hierarchical
flow of information using, for example, transfer entropy, here we used a thermodynamics-
inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the
Competing Interests: The authors have asymmetry in the flow of events, ‘arrow of time’, in human brain signals. This provides an
declared that no competing interests . e . . . . . . .
exist. alternative way of quantifying hierarchy, given that the arrow of time measures the directionality
of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the
arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When
applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a
thousand participants, the TENET framework suggests that the DMN plays a significant role in
orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting
state and when performing seven different cognitive tasks. Furthermore, this quantification of the
hierarchy of the resting state is significantly different in health compared to neuropsychiatric
disorders. Overall, the present thermodynamics-based machine-learning framework provides
vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions
between cognition and brain in complex environments.
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The arrow of time of brain signals in cognition

Hierarchy:

Here defined as the asymmetrical
relationship between forward and
backward interactions between brain
regions.

Network Neuroscience

AUTHOR SUMMARY

Here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork
(TENET) framework to assess the asymmetry in the flow of events, ‘arrow of time’, in human
brain signals. This was applied to large-scale HCP neuroimaging data which showed
significant changes between the hierarchy of orchestration for the resting state and seven
different cognitive tasks. Similarly, the hierarchy of the resting state is significantly different in
health compared to neuropsychiatric disorders. This framework provided new insights into the
orchestrating of brain dynamics in different brain states.

INTRODUCTION

A major aim of cognitive neuroscience is to discover the physical underpinnings of cognition
and behaviour. Early studies used recordings and lesions in animal models ( ;
), while human research has been mostly constrained to study
the consequences of neurological disorders leading to relatively precise cognitive and emo-
tional deficits ( ). The invention of human neuroimaging started an avalanche of
studies monitoring the changes in brain activity during cognitive tasks ( ), which
led to a better understanding of the processing in sensorimotor regions and during tasks. In
addition, these studies curiously also led to the discovery of a network of regions deactivated
during task ( ; ), which came to be known as the default
mode network (DMN) and which includes the precuneus/posteromedial cortex (PMC) and
angular gyrus, regions of the inferior frontal gyrus, the medial prefrontal cortex (MPFC) and
the anterolateral middle temporal cortex. Paradoxically, despite the DMN’s apparent deacti-
vation during task, subsequent careful studies of the DMN have instead led to this network
becoming a leading candidate for the orchestration of cognition during task ( ;
). According to this view, the DMN is responsible for coordinating the
recruitment and scheduling of networks computing and solving the task-specific cognitive
problems ( ). In other words, rather than the DMN being deactivated
during tasks, findings from recent studies have suggested that in certain task contexts the
DMN can activate, for example, during memory guided decision-making (

, ). Note that this view is not incompatible with a static deactivation of the DMN
during tasks over longer time periods ( ; ) but could
reflect a more dynamic view of how the DMN s stable across tasks and therefore able to
orchestrate activity ( ).

Importantly, Margulies and colleagues have demonstrated that the physical and functional
distance of the regions of the DMN are maximally removed from sensorimotor regions contain-
ing extrinsically driven neural activity directly linked to perception and action (

). This would make sense in terms of an evolutionary drive for more complex behaviour,
more decoupled from the here-and-now and able to make long-term predictions assuring
survival. As such, regions furthest away from externally driven regions would be able to take
on roles that are both more complex and less directly influenced by the external environment,
allowing for the orchestration of more complex behaviour ( ).

Despite these important findings and hypotheses, we are still missing a better understanding
and quantification of how the functional hierarchy changes when we engage in tasks compared
to the resting state, both of which require cognition but of different kinds. Hierarchy can be
defined from the causal interactions between different brain regions, which changes in tasks
according to the required computations. This in turn changes the direction of information flow,
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The arrow of time of brain signals in cognition

Thermodynamics:

A branch of physics dealing with the
relationship between heat and other
forms of energy, such as work. Here
used to measure the transfer of
energy/information from one brain
region to another, and the ways in
which this transfer affects the brain.

Detailed balance:

In thermodynamics, a concept
describing the equilibrium state of a
system in which the forward and
reverse reactions are occurring at the
same rate.

Production entropy:

A measure of the uncertainty or
unpredictability of a process. The
amount of production entropy
produced in any nonreversible
processes directly measures the
asymmetry in time of the evolution of
states in a nonequilibrium system.

Nonequilibrium:
A system out of equilibrium.

Nonreversibility (or irreversibility):
The asymmetry in the flow of events,
also known as the ‘arrow of time’.

Deep learning:

A broad class of machine-learning
methods based on artificial neural
networks able to learn from data in a
hierarchical manner using multiple
layers of interconnected nodes to
extract increasingly complex features
of the data at each layer.

Network Neuroscience

which in effect means that the asymmetry in the underlying causal interactions change. Prom-
ising research has used a plethora of ways to directly quantify the hierarchy through determining
the underlying causal interactions between brain regions, with methods ranging from Granger
causality ( ), transfer entropy ( ; ), and
dynamic causal modelling ( ; ; ).

Here, we propose to use an alternative thermodynamics-inspired approach to determine
the differences in hierarchical organisation in resting state and seven tasks. In other words, this
method allows for the quantification of the hierarchy defined as the asymmetrical relationship
between forward and backward interactions between brain regions.

The key idea is to be able to assess the asymmetry in the flow of events in human brain
signals. In thermodynamics this is called ‘arrow of time” and is a direct measure of hierarchy
since this directly provides the directionality of information flow, or ‘breaking the detailed
balance’ as this is known in physics and systems biology. In this way, a flat hierarchy is char-
acterised by a low level of breaking the detailed balance, since the information flow is mostly
symmetrical. When breaking the directionality of information flow, that is, when breaking the
detailed balance, this results in a high level of hierarchical organisation.

Importantly, such processes happen at every level in biology, where all living systems must
break detailed balance to survive. At a general level, the process of breaking the detailed
balance is achieved by consuming energy and producing entropy through a whole host of
molecular and cellular functions, including sensing, adaptation, and transportation (

). It is important to realise the difference between entropy as a measure of disorder,
that is, the variability of the states of a system, and the concept of production entropy, which
directly measures the asymmetry in time of the evolution of the states in a nonequilibrium
system. The latter is well suited to elucidate the differences in hierarchical organisation of
different systems given that it quantifies the level of nonreversibility.

More specifically, our new framework estimates hierarchical organisation, not using the
production entropy but using a direct way of measuring the ‘arrow of time’, central to thermo-
dynamics in physics, which was originally popularised by Arthur Eddington ( )
and since studied in great detail in a number of fields ( ; ;

; ; ; ). In the context of
neuroscience, there has been considerable interest in using production entropy and related
concepts to characterise the time reversibility of brain signals ( ;

; ; ; ). However, there are sig-
nificant statistical problems arising when the fluctuations are high, which makes it difficult to
determine the direction of the arrow of time. Here, we applied the excellent idea of turning the
quantification of the direction of arrow of time into a problem of statistical inference for a
physical system ( ; ; ;

; ; ). Among others, Seif and colleagues demonstrated
that deep learning can be used to measure the arrow of time in forward and time-reversed time
series, compare the two, and provide a quantitatively measure of the reversibility of signals
( ). They were able to show that deep learning is able to capture time’s arrow
in relatively simple physical systems where the ground truth is known.

Here we use a deep learning for human brain signals using a Temporal Evolution NETwork
(TENET) framework to discover the asymmetry in the flow of events, that is, arrow of time. The
face validity of this approach has been demonstrated in the pioneering work by Seif, Hafezi,
and Jarzynski using two model physical examples in nonequilibrium ( ). Please
note that recent progress in thermodynamics has allowed for the study describing the
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The arrow of time of brain signals in cognition

Clausius inequality:

The mathematical relationship
describing the relationship between
heat and work in a thermodynamic
system and stating that the change in
entropy of a system is always greater
than or equal to the amount of heat
transferred to the system, divided by
the temperature at which the heat
transfer occurs.

Free energy:

A thermodynamic concept, also
known as Gibb’s free energy, used to
describe the amount of energy in a
system that is available to do work.

Network Neuroscience

dynamics of open systems driven out of equilibrium rather than merely isolated systems
( ; ).

Here, we wanted to identify the functional hierarchy of the brain at rest and during tasks.
We achieved this by using the TENET framework to assess the level of nonreversibility (arrow
of time) in brain dynamics during the resting state and seven different tasks from the large
Human Connectome Project (HCP) neuroimaging fMRI dataset of 990 healthy human partic-
ipants. TENET was trained on the data from 890 participants, and the results were generated
from a generalisation set of data from the remaining 100 randomly selected participants. The
same 100 participants were used for all comparisons across conditions.

Given the importance of hierarchical organisation for the successful orchestration of a given
brain state, we wanted to discover how the functional hierarchy changes in neuropsychiatric
disorder. We therefore used exactly the same approach to study time’s arrow in health and
disease in a UCLA dataset of 261 neuropsychiatric patients (ADHD, schizophrenia, and bipo-
lar disorder as well as controls). Here, again TENET was trained on 90% of the data, and the
results were generated using a generalisation set of data from the remaining 10% of the data.

The results showed that in healthy participants, the whole-brain levels of nonreversibility
are at higher levels during task than when resting. Interestingly, in neuropsychiatric disorders,
the brain is less hierarchical with lower levels of nonreversibility during resting state than in
healthy individuals, suggestive of less specific computation. In disease, brain processing is less
efficient, which is reflected in a lower level of asymmetry of interactions between brain
regions, resulting in a different hierarchical organisation leading to the lower levels of nonre-
versibility. In healthy participants, we also found significant differences at the system level and
regional levels between resting state and the different tasks. Most importantly, consistent with
other compelling anatomical and functional neuroimaging findings, we were able to demon-
strate that across the seven tasks, DMN contains the most endogenous regions in terms of
stability across conditions. This suggests that key DMN regions can be found at the top of
the brain hierarchy, providing some support for the hypothesis that the DMN is involved in
orchestrating cognition. Overall, beyond identifying the potential role of the DMN, TENET
provides a general, convenient framework for assessing the functional hierarchy in any given
brain state.

RESULTS

Brain hierarchy can be defined as the asymmetrical relationship between forward and back-
ward interactions between brain regions. TENET uses the thermodynamic concept of ‘arrow of
time’ (also known as nonreversibility, or irreversibility) to reveal the hierarchical brain organi-
sation in different brain states. In the language of thermodynamics, this estimates the ‘breaking
of the detailed balance’ in the time series across the whole brain. The second law of thermo-
dynamics states that production entropy increases over time, including in an open nonequi-
librium system, such as the brain. The Clausius inequality of classical thermodynamics
predicts that the external work performed on the system will be no less than the free energy
difference between the terminal states ( ). This inequality precisely links produc-
tion entropy and nonreversibility, establishing the arrow of time in nonequilibrium systems
( ; ). This has been extensively used for problems related to
thermodynamics of system in nonequilibrium including biological problems such as protein
folding ( ). Indeed, the production entropy is a measure of nonreversibility
and arrow of time, when defined as the Kullback-Leibler distance Hp = >";; P;log(P;/P;),
where Pj; is the probability of transition between states i at time t to j at time t + 1. In other
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The arrow of time of brain signals in cognition

words, production entropy is directly measuring the difference between forward and backward
evolution of states over time.

Here, rather than directly estimating the production entropy, which as mentioned earlier is
very difficult, we created a deep learning based Temporal Evolution NETwork (TENET) frame-
work to discover the asymmetry in the flow of events, that is, ‘arrow of time’, in human brain
signals. TENET was used in different brain states in health and disease to provide a quantifi-
cation of the role of the DMN in orchestrating cognition.

Figure 1 and Figure 2 provide a schematised version of the general TENET paradigm used
here. The key concept of the arrow of time in nonequilibrium systems is demonstrated in

Time’s arrow in physics
A B

Forward

Backward

Forward
Backward

pW)

-<Wg> AF <W>
W

Forward
Backward

N SN = = P
i i i i
Second law of thermodynamics
Time reversal of backward trajectory

Non-reversibility: H>0
Reversibility: H =0 -<Wg> AF <W>
w

Arrow of time Reversibility vs non-reversibility Fluctuations in work distribution

Time’s arrow in the brain

D Forward brain activity evolution E Forward BOLD time series F Training time’s arrow in brain signals

Reverse brain activity evolution Reverse BOLD time series Faverd m Forviard

Ay M \ne a
Reversal Reversal
High Non-reversible =>
Classification ’:’> non-equilibrium
. 3 o : : " : performance
Time reversal of brain activity evolution Time reversal of BOLD time series .
...................... > i e Revgrsl.ble:>
equilibrium
Brain activity BOLD time series Classifying reversibility

Figure 1. The arrow of time in physics and brain dynamics. (A) The sequence of the four top images shows a glass being shattered by a bullet,
and we clearly perceive the causal passage of time, also called the arrow of time. In contrast, this cause and effect is shattered by showing
these images backward—Dby time reversing the backward evolution. This means that this process is nonreversible. (B) In thermodynamics,
nonreversibility can be associated with the production of entropy. The figure shows a nonequilibrium system with two states A and B and
the associated trajectories evolving during forward (A — B, black arrow) and backward (B — A, red arrow) processes. Both the forward and
backward trajectories can be depicted as the movie shown in the top of panel A, but with a different arrow of time. In contrast, the time reversal
of the backward trajectory (red stippled arrow) can be imagined as the movie of the backward trajectory that is played forward in time (see
bottom of panel A). If the forward and time reversal of the backward trajectories are different, this corresponds to nonreversibility of the
process. The second law of thermodynamics uses the entropy production to describe this. If the entropy production is larger than zero, this
corresponds to nonreversibility of a nonequilibrium system. In contrast, if there is no entropy production, this is a reversible, equilibrium
system. (C) More specifically, when small systems undergo thermodynamic processes, the fluctuations are nonnegligible and the second
law of thermodynamics expresses this in terms of averages. (D) First, we used large-scale empirical whole-brain neuroimaging data from over
1,000 participants when resting and performing seven different tasks. (E) From this data, we were able to extract the forward time series as well
as constructing the time reversal of the backward time series for a given parcellation. (F) This procedure provides a clear arrow of time for a
given time series and allows us to train a classifier to identify the forward and the time reversal for a given time series of any length. The
classification performance provides a measure of the degree of nonreversibility and nonequilibrium.
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The arrow of time of brain signals in cognition

Deep learning of time’s arrow in brain

A ——————————> time
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— .
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Input
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&
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Local (Nodes)

&

il

NET

Wou-fasar e 028

Sliding Windows

TENET: Deep learning

Global, nodes and networks
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F
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non-reversibility
disease
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|
Rest Tasks i
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(non-reversibility) | | (non-reversibility) | |

Reversibility of global state Breaking detailed balance As biomarker for disease

Figure 2. Deep learning the arrow of time in health and disease. In order to discover the arrow of time in brain dynamics in health and
disease, we designed a deep-learning pipeline named Temporal Evolution NETwork (TENET). (A) Specifically, we used sliding windows of
brain signal time series from all brain regions in all participants. (B) These sliding windows were then used in the TENET, a deep-learning
network classifier with 13 layers for classifying the arrow of time. (C) This strategy allowed us to study nonreversibility and nonequilibrium at
different levels of granularity, from global (all signals) to system level to individual node-level signals. (D) After training, TENET was able to
characterise the degree of reversibility, that is, nonreversibility for each sliding window (top panel). We performed this procedure on data
resting and seven tasks and computed the means of the levels of certainty of the classifier output (across time) as a measure of the degree
of nonreversibility (middle panel). The standard deviation of this measure establishes stability of this nonreversibility across time. Given that
nonequilibrium states are already nonstationary, this provides the second order of nonstationarity (see ). (E) Nonequilibrium is asso-
ciated with the breaking of detailed balance of a system. We estimated this by selecting windows of low and high reversibility, and computing
the FC(7), that is, the time-delayed functional connectivity between all pairs of brain regions. Specifically, the degree of asymmetry of the FC(z)
matrix is a proxy for the breaking of the detailed balance with more asymmetry corresponding to more unbalance. The level of asymmetry can
also be rendered on the brain (see ). (F) Finally, we used TENET on resting-state data from neuropsychiatric patients with diagnoses of
schizophrenia, ADHD, and bipolar disorder, as well as age-matched controls. Different levels of nonreversibility provide a potential biomarker
of neuropsychiatric disease.

, which shows four sequential images from a film of a glass being shattered by a
bullet. Below, the same four images are shown in a sequence in an opposite direction, that
is, in time reversal of the backward trajectory of the film. When comparing the two films, the
arrow of time is very clear, which is the signature of a nonreversible physical process produc-
ing entropy in nonequilibrium. More general, as shown in , the field of thermody-
namics in physics can be used to describe such processes associated with the production of
entropy and consequently with nonequilibrium/nonreversibility. The figure shows the evolu-
tion over time of a nonequilibrium system with two states A and B and their associated trajec-
tories. The forward and backward trajectories of the movies in are described as
forward (A — B, black arrow) and backward (B — A, red arrow) processes. The time reversal
of the backward trajectory (red stippled arrow) can be thought of as the movie of the backward
trajectory that is played forward in time (see bottom of ). A nonreversible process
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d-ajo1e/UleU/NPa W 1081Ip//:dlY WO} papeojumoq

€ UIdU/618YG12/996/C/L/AP!

€20z Joquiaidag g| uo Jasn YN LNLILSNI MONVId XVIN Ad Jpd'00£00



The arrow of time of brain signals in cognition

Machine learning:

A subset of artificial intelligence
involving the use of algorithms and
statistical models to enable a system
to improve its performance on a
specific task over time.

Network Neuroscience

results from the ability to differentiate between the trajectories in time described by the forward
(black arrow) and time reversal (stippled red arrow). The second law of thermodynamics
(usually attributed to Rudolph Clausius and Sadi Carnot) states that if the entropy production
is larger than zero, this corresponds to nonreversibility of a nonequilibrium system. In contrast,
if there is no entropy production, this describes a reversible, equilibrium system.

In thermodynamics, the Clausius inequality establishes that the work W associated with the
process (averaged over many repetitions) is larger than the change in its free energy AF.
shows distributions of the work p(W) for the average of the work associated with
the forward and backward trajectories, denoted <Wg> and <Wpg>, respectively. For nonrevers-
ible macroscopic processes (like the movie shown in ) fluctuations are negligible and
the distinction is clear between the distribution of work (top of panel) and therefore the arrow
of time is easy to establish. In contrast, in microscopic systems (which includes brain signals)
the average work is similar, but the fluctuations are more pronounced and therefore the dif-
ferences in distribution less clear. In such cases it is much harder to establish the arrow of time,
and thus establish whether a system is nonequilibrium and nonreversible.

This uncertainty is a perfect case for which to use advanced machine-learning techniques
( ). Here, we used deep learning in empirical brain-imaging data to detect the
reversibility of the system. and illustrate how we used whole-brain activity
from large-scale empirical whole-brain neuroimaging data from over 1,000 participants to
construct the forward and time-reversed time series needed to establish the arrow of time
and hence nonequilibrium by detecting the level of nonreversibility. Specifically,
illustrates how we extracted the forward time series as well as constructing the time reversal
of the backward time series for the DK80 parcellation (see ). The forward and reverse
time series were used to train a classifier to predict whether a given time series is forward or
reversed in time. If the classification performance is high, this provides evidence for nonrever-
sibility and nonequilibrium, while low performance implies the opposite. We hypothesized
that brain regions at the bottom of the functional hierarchy will exhibit greater nonreversibility
given that these regions will be driven to nonequilibrium. Therefore, this approach can be
used to identify the functional hierarchy of the human brain.

specifies the full learning pipeline using a deep-learning TENET to establish the arrow
of time. shows how we used sliding windows of brain signal time series from all brain
regions in all participants. shows how these sliding windows were then used in TENET,
a deep-learning network classifier with 13 layers for classifying the arrow of time.
shows how this strategy allowed us to study nonreversibility and nonequilibrium at different
levels of granularity, from global (all signals) to system level to individual nodes. TENET allows
to quantify the information transfer within the levels of granularity but not between levels.

shows how TENET should be able to characterise the degree of reversibility, that
is, nonequilibrium for each sliding window (top panel). We trained the TENET on a large data-
set of data resting and seven tasks and, on a validation dataset, computed the means of the
prediction performance of the classifier output (across time) as a measure of the degree of non-
reversibility (middle panel). Importantly, all datasets were shortened to the same task duration
to avoid the potential confound of one condition gaining undue prominence due to more data
being available. The standard deviation of prediction performance establishes stability of this
nonreversibility across time. Given that nonequilibrium states are already nonstationary, this
provides the second order of nonstationarity (see ).

shows that nonreversibility is associated with the breaking of detailed balance of
a system. In order to test the breaking of the detailed balance of the system, we selected
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Network Neuroscience

windows of low and high reversibility and computing the time-delayed functional connectivity
between all pairs of brain regions. Specifically, the degree of asymmetry of this matrix is a
proxy for the breaking of the detailed balance with more asymmetry corresponding to more
unbalance. Finally, shows how TENET can be used on resting-state data from neu-
ropsychiatric patients with diagnoses of schizophrenia, ADHD, and bipolar disorder, as well
as age-matched controls. Importantly, computing the different levels of nonreversibility could
provide a potential biomarker of neuropsychiatric disease and reveal the underlying funda-
mental problem with interacting with the environment.

In the following, we established the role of the DMN in cognition by applying the TENET
framework in healthy participants engaged in rest and seven tasks. We first show the results at
the whole-brain level, followed by the system level and the regional node level. Finally, we
apply the TENET framework to resting state in three neuropsychiatric disorders.

Significant Global Differences in Brain-Environment Interactions for Rest and Seven Tasks

For the global level of analysis of how the environment is driving the brain out of equilibrium,
we extracted BOLD time series from the DK80 parcellation covering the whole brain in rest
and the seven tasks. For each of HCP participant, we extracted forward and backward patterns
in sliding windows with a length of 20 TRs (of 0.72 sec), which were then shifted 3 TRs
forward. Each of the sliding windows consisted of two input patterns containing (1) forward
and (2) time-reversed backward-sliding windowed time series, which was each labelled with
an output class label of forward and backward, respectively.

For the training of TENET, in order to perfectly balance the data and avoid any potential
source of bias, we used 890 HCP participants with the longest possible duration available in
all conditions (176 TRs). For generalisation, we performed the data analysis on a separate 100
HCP participants. The data analysis consisted of computing the level of nonequilibrium/
nonreversibility, R(), using the output of TENET on this generalisation set after being trained
on the bulk of the data.

As specified in detail in the , R(d is computed as the accuracy of classification of
forward and time reversal of backward trajectory of the global time series (across sliding win-
dows at time tand across participants). Perfect classification of maximal nonreversibility is thus
assigned a value of 1 and where 0 corresponds to full reversibility.

(left panel) contains a box plot showing that the brain dynamics during REST
have significantly lower levels of reversibility than in tasks (all p < 0.01, Wilcoxon rank
sum, corrected for multiple comparisons with FDR). As can be seen, the highest level of non-
reversibility is found in the SOCIAL task, reflecting how the environment is forcing a stronger
arrow of time and thus nonreversibility. But, equally, the other tasks, ordered by levels of non-
reversibility (RELATIONAL, EMOTION, GAMBLING, MOTOR, WM (working memory) and
LANGUAGE) are significantly more hierarchically structured than REST, related to the
increase in the breaking of the balance directly related to the necessity of more structured
computation. It is interesting to note the significant differences between the tasks too (all
p < 0.01, Wilcoxon rank sum, corrected for multiple comparisons with FDR; all significant
comparisons between conditions except for MOTOR vs. LANGUAGE, MOTOR vs. WM,
and WM and GAMBLING).

In addition, the right panel shows the level of nonstationarity, which is the standard devi-
ation of the levels of nonreversibility across time. The differences between rest and tasks were
similar to the results of the mean of the nonreversibility in the sense that there were significant
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Figure 3. Global nonreversibility in HCP rest and seven tasks. (A) Left panel shows the mean nonreversibility for rest and the seven tasks
ordered by the increase in their mean level of nonreversibility. The level of nonreversibility, R(t), is computed using the output of TENET on a
10% validation set after being trained on 90% of the data. In brief, R(t) is computed as the accuracy of classification of forward and time
reversal of backward trajectory of global timeseries (across sliding windows at time 1), where a value of 1 corresponds to perfect classification,
that is, maximal nonreversibility (see Methods). As can be seen from the box plot, brain dynamics during rest exhibits significantly lower levels
of reversibility than that found in tasks (all p < 0.01, Wilcoxon rank sum, corrected for multiple comparisons with FDR). The highest level of
nonreversibility is found in the Social task, reflecting a stronger arrow of time. In other words, the brain dynamics in tasks are showing more
nonreversibility than rest and therefore more hierarchical organisation underlying specific computations. The right panel shows the stability of
this nonreversibility across time, that is, providing a measure of second order of nonstationarity. Brain activity during rest is showing signif-
icantly more variability in the second order of nonstationarity than tasks (all p < 0.01, Wilcoxon rank sum, corrected for multiple comparisons
with FDR). (B) The panel shows the level of nonreversibility, R(f), over time for rest (left panel) and the social task (right panel). Note how the
evolution of R(f) is more variable in rest. (C) Interactions vary across time and consistently show a significantly stronger breaking of the detailed
balance in windows with high compared to low levels of nonreversibility (compare low and high box plots, p < 0.001) for both rest (left panel)
and the social task (right panel). This is measured as the asymmetry of the time-shifted functional connectivity (see Methods). The renderings of
brains reflect which brain regions are showing more symmetry breaking between low and high levels of nonreversibility. The brain shows more
heterogenous patterns of change during the social task than in rest (compare right with left panel).
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differences between all conditions (all p < 0.01, Wilcoxon rank sum; corrected for multiple
comparisons with FDR, except between MOTOR vs. LANGUAGE and WM and GAMBLING),
but importantly for this measure, the SOCIAL task had the lowest variability over time, which
was much lower than REST. On the other hand, REST is showing one of the largest levels of
nonstationarity, which is consistent with the idea that resting state involves less computation
and thus less breaking of the detailed balance. This can also be appreciated from ,
where the two panels show time evolution of the levels of nonequilibrium/nonreversibility,
R(t), for REST (left) and the SOCIAL task (right).

Please note that the increase in nonreversibility during tasks, linked to the increase in pro-
duction entropy, is a measure of the increase in asymmetrical interactions. This should not be
confounded with the findings of a decrease in entropy for tasks found in the literature (

; ). The entropy measured in these studies is a measure of
the variability of the state, which has been shown to decrease in task. As such, entropy and
production entropy are complementary measures of the system.

Differences in Asymmetry Breaking Between Rest and Tasks

As mentioned above, equilibrium is associated with the fluxes of transitions between different
states, that is, how the detailed balance of the transitions between the underlying states disap-
pear in completely equilibrium. In thermodynamics, a nonequilibrium system contains net
fluxes between the states as a function of broken balance, which is the source of nonreversi-
bility and thus of the arrow of time ( ; ;

; ; ). In order to establish a quantitative link between
our measure of nonequilibrium/nonreversibility and broken detailed balance, we measured
the asymmetry of the time-shifted functional connectivity (see ).

In brief, in order to measure a proxy for the causal interactions, we selected patterns from sliding
windows of low and high reversibility, and computed the time-delayed functional connectivity
matrix, FC(7), between all pairs of brain regions, over all participants and all sliding windows
for each condition of HCP REST and the SOCIAL task, which is the task with the most nonrever-
sibility. The global level of asymmetry was computed for each sliding window as the mean value
over the elements of the difference between this matrix and its transposed. In contrast, for the node
level of asymmetry, we first computed the incoming and outgoing regional flow for each sliding
window and then computed the average over all sliding windows and participants of the absolute
difference between the two regional flows (see for detailed information). We render the
change between high and low levels of the node-level asymmetry.

As can be seen in , we found significantly stronger breaking of the detailed balance
in windows with high compared to low levels of nonequilibrium/nonreversibility (compare low
and high box plots, p < 0.001, Wilcoxon rank sum). On the right of the box plot, we show an
example of the asymmetry matrices for a single participant at a given time point. Below render-
ings are shown of the change between low and high levels of the node-level asymmetry.

Consistent with the close link between symmetry breaking and our measure, we found more
heterogenous patterns of change during the SOCIAL task than in REST. This again demonstrates
that when engaged in a task, the environment is driving the brain in very specific ways to higher
levels of nonreversibility. Please note, however, that in general, the breaking of the detailed
balance reflects the level of nonreversibility, although there could, of course, be rare cases of sys-
tems where the absence of directed information flow could still lead to nonreversibility ( ).

Please note that the findings of TENET that tasks have higher nonreversibility than resting
state make it highly unlikely the results are biased by the onset of task blocks. Four lines of
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argumentation supports this: (1) The asymmetry of the HRF associated with task blocks could be
a potential confound, especially if the windows used for classification are synchronised with
the task blocks. However, crucially, here we are using the same windows for the classification
of rest and all tasks, where the task onsets are completely different. Furthermore, similar to tasks,
resting state is also composed of spontaneous neuronal activity, which is also convolved with
HRF. Ultimately, if HRF was a confound, it would not be specific to task or rest. In fact, there is a
large literature showing how resting state can be obtained using neural discrete event convo-
lution (e.g., ). (2) The results show that the SOCIAL task is the task with
the highest nonreversibility and RELATIONAL has the lowest. Yet, SOCIAL has less blocks than
RELATIONAL, making it unlikely that task blocks are important for the estimation of reversibility.
(3) TENET uses sliding windows of 20 TRs (14 sec) with increase of 2 or 3 TRs, which are smaller
than most task blocks and makes it unlikely that the results are biased by the task blocks. (4) As
shown in , the windows with high nonreversibility are the ones with maximal asymme-
try. Note that this shows that the temporal asymmetry correlates with the hierarchical organisation,
that is, asymmetry of interactions. This is consistent with the examples using spin models used by
Lynn and colleagues, showing that nonreversibility (production entropy) correlates with the break-
ing of the detailed balance, that is, the asymmetry of interactions. In other words, different tasks
require different hierarchical organisation (asymmetry interactions), which is detected by the
nonreversibility.

System-Level Analysis of HCP Data Shows That DMN is the Most Endogenous Network

In order to assess the system level of the brain-environment interactions between rest and task,
we used TENET framework in the same manner as in the global analysis, but now used on the
parcels belonging to each Yeo network in the Schaefer 500 parcellation. Again, in order to
balance the data, we used 890 HCP participants with the longest possible duration available
in all conditions (176 TRs). The results are from the generalisation that was performed on a
separate 100 HCP participants (see ). We used the same sliding window size and
shifting of this window as in the global-level analysis, but now the input is the window size
multiplied by the number of parcels for a given level analysis of HCP rest and tasks. Analysis of
the nonreversibility of the seven Yeo resting-state networks showed differential responses
between rest and tasks for the seven resting-state networks.

shows the combined spider plot of the different levels of nonreversibility for each
Yeo network in rest and the seven tasks, with a rendering of each Yeo network using separate
colour coding. The bar next to the renderings shows the standard deviation across rest and
tasks (ranging from 0 and 0.14). Importantly, the smallest standard deviation is found for
DMN (circled), which is therefore the most stable and endogenous network. This corroborates
the compelling anatomical and functional neuroimaging evidence from Margulies and others
showing that the physical and functional distance of the regions of the DMN are maximally
removed from sensorimotor regions (containing extrinsically driven neural activity directly
linked to perception and action). Taken together this points to DMN being a strong candidate
for orchestrating cognition.

Further, we investigated the possibility for classifying the conditions based on the system-level
TENET output. Using a support vector machine (SVM) with Gaussian kernels on the 100 HCP
participants used for generalisation. For the SVM, we subdivided the 100 participants into
90% training and 10% validation, repeated and shuffled 100 times. The SVM had seven inputs
(the Yeo resting-state networks) corresponding to the output produced by the system-level TENET.
The output was eight classes corresponding to the conditions (rest and seven tasks).
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Figure 4. TENET system-level analysis of HCP rest and tasks. Similar to the whole-brain level analysis, we found different brain-environment
interactions between rest and task at the system level. Here our focus was on revealing how the seven Yeo networks are changing between rest
and tasks. (A) The combined spider plot shows the different levels of nonreversibility for each Yeo network in rest and the seven tasks. Each Yeo
network is rendered on the brain with a separate colour coding. Most importantly, the bar next to the rendering shows the standard deviation
across rest and tasks (ranging from 0 and 0.14). Importantly, the smallest standard deviation is found for DMN (circled), which is therefore the
most endogenous network. This can be linked with the compelling anatomical and functional neuroimaging evidence from Margulies and
others showing that the physical and functional distance of the regions of the DMN are maximally removed from sensorimotor regions (con-
taining extrinsically driven neural activity directly linked to perception and action). Together this provides evidence that the DMN is a strong
candidate for orchestrating cognition. (B) The system-level TENET results also allowed for a classification of conditions (rest and seven tasks). As
can be seen from the confusion matrix, the SVM provides excellent classification results much above chance level. Average classification for the
diagonal is 59% with a chance level of 12.5%. (C) Further probing the nonreversibility of the seven Yeo resting-state networks is demonstrated by
differential responses between rest and tasks for the seven resting-state networks shown by the spider plots of the level of nonreversibility for each
Yeo network in rest and seven tasks (colour coded similar to panel A). (D) This can be seen even more clearly in the box plots (for the validation
data), where, similar to the global-level analysis, there are lower levels of nonreversibility for rest compared to the seven tasks, suggesting, as
expected, that REST is more intrinsic and thus more in equilibrium. It is of interest to note that REST is characterised by having the highest levels
of nonreversibility in the DMN and Visual (VIS) network. Equally, across the tasks, except for LANGUAGE, the sensory networks (VIS and SOM)
show the highest level of nonreversibility. Interestingly, again except for LANGUAGE, the limbic network (LIM) exhibit the lowest levels of
nonreversibility. Overall, of the seven tasks, the Yeo networks in EMOTION and RELATIONAL show almost as low levels of nonreversibility levels
as REST. (E) In order to show the statistical significance, we show the comparisons between the level of nonreversibility of the seven Yeo networks
within condition (rest and the seven tasks). The figure shows the significance in the lower quadrangle of the matrices with brown squares signifying
p<0.05, Wilcoxon rank sum. As can be seen almost all comparisons within conditions are significant but less so for REST. (F) Similar, we show the
statistical significance between conditions for the level of nonreversibility of the seven Yeo networks. The figure shows the lower quadrangle of the
matrices (with brown squares signifying p < 0.05, Wilcoxon rank sum). Almost all comparisons across conditions are significant.

shows the resulting confusion matrix, which provides excellent classification results much above
chance level with an average classification accuracy of 59% (on the diagonal) compared with
the chance level of 12.5% (using permutation testing; see Methods). Interestingly, the results of
classifying rest versus all tasks, produced a very high accuracy of 93.1% on the generalisation
dataset, using exactly the same procedure as for classifying the individual tasks.
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and show the differential responses between rest and tasks for the seven
resting-state networks by presenting the spider plots and box plots of the level of nonreversi-
bility for each Yeo network in rest and seven tasks (for the validation data, colour coded similar
to ). Similar to the global-level analysis, the lower levels of nonreversibility were
found for rest compared to the seven tasks, suggesting that REST is more reversible and there-
fore less hierarchical. Overall, of the seven tasks, the Yeo networks in the tasks EMOTION and
RELATIONAL show almost as low levels of nonreversibility levels as REST. Interestingly, the
VIS and SOM networks exhibit very high levels of nonreversibility in all tasks, mostly likely
reflecting the computational requirements for the sensory regions to work out the complexity
of the environment. Similarly, the LIMBIC network has lower levels of nonreversibility in all
tasks, perhaps reflecting the intrinsic nature of this network.

and show the statistical significance within and across conditions, respec-
tively. Both figures show the significance in the lower quadrangle of the matrices with brown
squares signifying p < 0.05, Wilcoxon rank sum. As can be seen almost all comparisons within
and across conditions are significant.

Node-Level Analysis of Healthy Individuals Reveals DMN Orchestration of Cognition

Beyond the global and system-level analyses, we were interested in studying what endogenous
brain regions are common across rest and tasks, and thus able to orchestrate cognition inde-
pendently of the environment.

To this end, we applied the TENET framework at the node level using exactly the same
amount of data across rest and seven tasks, similar as above (see ). For the training
of TENET, in order to perfectly balance the data and avoid any potential source of bias, we
used 890 HCP participants with the longest possible duration available in all conditions
(176 TRs). For generalisation, we performed the data analysis on a separate 100 HCP
participants.

The node-level rendering for nonreversibility for REST and the SOCIAL task is shown in

. Similar to the global results, these are the two conditions with the lowest and highest

levels of nonreversibility (compare lighter shades of brown for REST to the darker for SOCIAL).

However, here we were also able to draw out the interregional heterogeneity. To further draw

out the differences between tasks, in we render the thresholded node level of

nonreversibility for all the seven tasks (thresholded to include the upper 30% quantile). This

demonstrates that sensorimotor regions are among the most stable regions and that there are
clear differences between the tasks.

Our main goal here, however, was to identify the endogenous regions at the top of the
hierarchy. shows the lower 30% quantile levels of nonreversibility for rest and all
the seven tasks, where darker blue colours show the less nonreversible brain regions. Note
how these regions are primarily located in higher order regions on the midline of the brain.

Confirming this finding, shows the brain regions common to the eight conditions
(rest and seven tasks) by selecting the lower 25% quantile levels for each condition and com-
puting the intersection between conditions for brain regions with low nonreversibility, that is,
top of hierarchy. This revealed a set of brain regions (including precuneus/posteromedial, tem-
poral, and ventromedial orbitofrontal cortices, mostly overlapping with the DMN), which are
common across all conditions and thus orchestrating cognition independently of the environ-
ment. Interestingly, this intersection also included regions not normally associated with the
DMN such as the insula and superior parietal cortex.
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Figure 5. Node-level analysis reveals that a DMN-like network is endogenously orchestrating cognition. Applying TENET framework at the
brain region level can distinguish the hierarchical organisation between rest and tasks. (A) The figure shows a brain rendering of the mean
node-level nonreversibility (across participants) for resting and the social task, which show the lowest and highest levels of global nonrever-
sibility, respectively. This is equally true at the node level but with significant interregional heterogeneity (compare the different shades in a
common colour map from yellow to brownish red). (B) The figure shows the upper 30% quantile levels of nonreversibility for brain regions in
rest and all the seven tasks, which shows that sensorimotor regions clearly at the bottom of the hierarchy. There are also clear differences
between the tasks. For instance, the working memory (WM) task shows high levels of nonreversibility in prefrontal regions, while the
LANGUAGE task shows high levels of nonreversibility in known language areas, consistent with the existing extensive literature. (C) In contrast
to the previous renderings, this figure shows the brain regions at the top of the hierarchy, that is, more endogenous, rendering the lower 30%
quantile levels of nonreversibility for rest and all the seven tasks. In the rendering, darker blue colours are more endogenous and thus at the top
of the hierarchy. (D) Combining these eight conditions (rest and seven tasks) by selecting the intersection (see text) revealed that a set of regions
(including precuneus/posteromedial, temporal, and ventromedial orbitofrontal cortices), mostly overlapping with the DMN is common across
all conditions and thus orchestrating cognition.

In Figure ST we further investigated these finding, demonstrating that our new measure
characterises the engagement across the whole brain rather than just in sensory regions. We
compared them directly to the myelinisation ratio (T1w/T2w ratio, obtained from HCP data),
which contains high values in the sensory regions of visual, somatomotor and auditory (Burt
et al., 2018). The nonsignificant correlations between the node levels of nonreversibility for
both REST and SOCIAL task (left row) with this map could indicate that the new measure is not
just linked to sensory but primarily to higher associative brain regions across the whole brain.
On the other hand, computing the full intersection as the mean across all conditions and cor-
relating this with the myelinisation ratio yielded a significant correlation (r = 0.26, p < 0.05,
nonparametric). Given that the top of the hierarchy of the intersection (Figure 5C) consists of
key regions in the DMN, the correlation with myelinisation provides further evidence for the
role of the DMN in orchestrating brain function.
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Further investigating links to other source of heterogeneity led us to investigate the various
forms of gene expressions in the brain as obtained from the Allen Human Brain Atlas
( ; ; ; ).
The middle row of shows the correlations between and the first PCA component of
all genes and the node level of nonreversibility of REST (top) and SOCIAL task (bottom). Interest-
ingly, there was a significant correlation between the PCA genes values and node levels in the
SOCIAL task (r=0.47, p < 0.001, nonparametric), but not with the node levels in REST. Again,
there was a significant correlation (r = 0.48, p < 0.001, nonparametric) with the intersection
between conditions for brain regions with low nonreversibility, that is, top of hierarchy.

We also investigated another major source of heterogeneity, namely, the excitation-
inhibition (E-1) ratio given by the gene expression for genes coding for the excitatory AMPA
and NMDA receptors and inhibitory GABA-A receptor isoforms and subunits. In contrast to the
PCA maps, the rightmost row of shows a significant correlation between the node
level of nonreversibility in REST and the E-I values (r= 0.23, p < 0.04, nonparametric) but not
for the node levels in the SOCIAL task.

Using the Arrow of Time in Neuropsychiatric Disease

Given that the TENET framework by design measures how the environment is driving the
brain, and its high level of sensitivity demonstrated above, it would appear a promising avenue
for better characterising the differences between health and neuropsychiatric diseases. We
therefore applied the TENET framework on the large public UCLA dataset of neuropsychiatric
patients with schizophrenia, bipolar, and ADHD and matched control group of participants.

shows the results of using the TENET framework to establish the reversibility on the
global and local node levels for the four groups. The left panel of shows box plots of
the average reversibility across time, where the control group was significantly higher than
each of the neuropsychiatric groups (all p < 0.05, Wilcoxon rank sum, corrected for multiple
comparisons with FDR). This suggests that neuropsychiatric disease reduces the levels of non-
reversibility, suggesting that the brain is less hierarchical. Furthermore, each neuropsychiatric
disease group was significantly different from each other (all p < 0.05, Wilcoxon rank sum,
corrected for multiple comparisons with FDR). Given that the median values are similar but
significant, we also provide the effect size for each comparison: control versus bipolar: 0.1005;
control versus ADHD: 0.1606; control versus schizophrenia: 0.0529; bipolar versus ADHD:
0.0693; bipolar versus schizophrenia: 0.0512; and ADHD versus schizophrenia: 0.1130.

The middle panel of shows box plots of the standard deviation of the reversibility
across time for each of the four group, reflecting the levels of nonstationarity. This is signifi-
cantly reduced for the control participants compared to neuropsychiatric groups and between
them (all p < 0.05, Wilcoxon rank sum, corrected for multiple comparisons with FDR except
controls vs. schizophrenia and bipolar vs. ADHD), that is, the brains of patients with ADHD
and bipolar disorder are more nonstationary than controls. To further appreciate the differ-
ences between groups, right panel of plots examples of the temporal evolution of
the global reversibility computed by TENET for all the four groups.

These promising results prompted us to use the TENET framework to compute the mean
node-level reversibility for each group. shows the corresponding renderings on
the human brain. We also computed the differences between the mean in the control group
with the three neuropsychiatric groups, shown rendered in . As can be seen, and
interpreted in details in the discussion, there are clear differences between groups, which sug-
gest that the node level of nonreversibility might be useful as a biomarker for disease.
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Figure 6. The arrow of time in neuropsychiatric disease. We used the nonreversibility on the global and local node levels on the large public
UCLA dataset of neuropsychiatric patients with schizophrenia, bipolar, and ADHD and matched control group of participants. (A) First, we
used the TENET framework to compute the level of nonreversibility at the global level for each group. The left panel of box plots shows that the
average reversibility across time for the control group is significantly higher than each of the neuropsychiatric groups (all p < 0.05, Wilcoxon
rank sum, corrected for multiple comparisons with FDR). In addition, each neuropsychiatric disease group are significantly different from each
other (all p < 0.05, Wilcoxon rank sum, corrected for multiple comparisons with FDR). The middle panel of box plots shows that the standard
deviation of the reversibility across time is significantly reduced for the control participants compared to neuropsychiatric groups and that
between them, there are also significant differences (all p < 0.05, Wilcoxon rank sum, corrected for multiple comparisons with FDR, except
for comparisons between controls vs. schizophrenia and bipolar vs. ADHD). The right panel shows examples of the temporal evolution of the
reversibility computed by TENET for a participant from each of the four groups. (B) Complementing these findings at the global level, we used

the TENET framework to compute the node-level reversibility for each group and show the corresponding thresholded renderings. (C) In order
to stress the differences between the control group and the three neuropsychiatric disorders, we show renderings of these differences.

DISCUSSION

Here we developed a thermodynamics-inspired, deep-learning TENET framework designed to
identify the hierarchical organisation of any brain state. This allowed us to address a central,
challenging problem in human cognitive neuroscience, namely, what brain networks are coor-
dinating the recruitment and scheduling of networks for computing and solving task-specific cog-
nitive problems. The leading hypothesis in human cognitive neuroscience is that the DMN is
responsible for this orchestration (Smallwood et al., 2021). Using the TENET framework, we were
able to demonstrate the breaking of detailed balance in rest and cognition. We found that an
endogenous network largely overlapping with the DMN is responsible for the orchestration of
cognition across rest and tasks. The TENET framework quantified the asymmetry in the flow of
events, ‘arrow of time’, in human brain signals. The results reveal the independent, endogenous
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regions able to orchestrate activity, in contrast to the sensorimotor regions at the bottom of the
hierarchy. These findings are in agreement with the findings of Margulies and colleagues, who
demonstrated that the physical and functional distance of the regions of the DMN are maximally
removed from sensorimotor regions ( ; ).

Whole-Brain Differences in Brain-Environment Interactions in Health and Disease

We found higher global levels of nonreversibility in different tasks than during resting state in
the large-scale HCP neuroimaging dataset ( ). Similarly, we showed lower and less var-
iable global levels of nonreversibility across time in three different neuropsychiatric patient
groups (ADHD, schizophrenia, and bipolar disorder) in the large-scale UCLA neuroimaging
dataset compared to healthy participants ( ). This suggests a flattening of the functional
hierarchy in disease, perhaps reflecting the lower asymmetry in functional interactions
between brain regions. As speculation, this could directly influence the computation and lead
to the more rigid and less flexible behavioural repertoire found in neuropsychiatric disorder.

At the System Level, DMN is the Most Endogenous Network

Complementary to investigating the hierarchical organisation of brain states by quantifying the
nonreversibility at the global level, we aimed to discover if there is more information to be
extracted from the system level, specifically regarding differences between rest and task. We
used the TENET framework on the seven Yeo resting-state networks in the Schaefer 500 par-
cellation. The results again showed lower levels of nonreversibility for rest compared to the
seven tasks, suggesting that REST is more in equilibrium, while the tasks have higher levels of
nonreversibility in the sensory networks (VIS and SOM).

Interestingly, the REST condition shows the highest levels of nonreversibility in the DMN and
visual (VIS) network. Similarly, the sensory networks (VIS and SOM) are showing the highest level
of nonreversibility across the seven tasks (except for LANGUAGE), and thus at the bottom of the
hierarchy. The lowest levels of nonreversibility are found in the limbic network (LIM), signalling
that the LIM network is less endogenous. Of the seven tasks the lowest levels of nonreversibility
are found in the EMOTION and RELATIONAL tasks, which are almost as low as REST.

We wanted to measure the stability of the different networks across the conditions, which is
captured by the standard deviation in the level of nonreversibility across time. In other words,
having the smallest standard deviation across time implies stability. Importantly, as shown in

in the combined spider plot in Yeo networks across all conditions, the DMN showed
the smallest standard deviation. This confirmed that the DMN is indeed the most endogenous
and at the top of the hierarchy, fitting well with the topographical evidence showing that the
DMN is located in regions furthest away from those contributing to sensory and motor systems
( ; ). As such this provides further evidence that the
DMN is strong candidate for leading the orchestration of cognition.

In addition, the system-level analysis can also be used to accurately classify condition.
Using a SVM with Gaussian kernels to classify the conditions (rest and seven tasks), the results
showed a very high accuracy of 59% compared to the 12.5% chance level. Equally, just clas-
sifying rest compared to all tasks the level of accuracy to 93.1%, showing that system-level
TENET is an excellent method for distinguishing different cognitive brain states.

Node-Level Identification of the Most Endogenous Brain Regions

We also used the TENET framework at the node level, which revealed that a network of endog-
enous brain regions largely overlapping with the DMN is orchestrating behaviour across rest
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and tasks. This provides further confirmation of the DMN as a strong candidate for leading the
orchestration of cognition.

In contrast to these results investigating the more endogenous brain regions, we were also
able to find brain regions with higher nonreversibility. Similar to the findings at the global scale,
the findings at the local scale reveal clear interregional heterogeneities between rest and tasks
(see ). The findings show that in many cases higher associative brain regions are more
nonreversible during task performance in the HCP dataset. Specifically, shows the
node-level rendering for nonreversibility for REST and the SOCIAL task. Like the results for the
global level, these are the two conditions with the lowest and highest levels of nonreversibility.

The power of the TENET framework is perhaps illustrated in the results for the MOTOR task,
where the thresholded results show selective engagement of the somatomotor regions as
expected ( ), but equally the results show engagement in visual cortices
and midline medial prefrontal regions. Another good example is the LANGUAGE task, where
the results show broad engagement of ventral lateral prefrontal cortex, superior and inferior
temporal cortex—including the anterior temporal poles bilaterally ( ;

). Also, as expected from this primarily auditory task, the visual regions are not in
the top 15% of the regions with the highest nonreversibility.

Similarly, the WM task shows high levels of driving in regions including the MPFC, poste-
rior cingulate, and the occipital-parietal junction, fully consistent with the literature (
; ). In particular recent studies have demonstrated the
importance of activity in MPFC for memory guided decision-making ( ,
). In these tasks, the decision is not possible based on the received input and thus dem-
onstrates how the DMN orchestrates behaviour. In addition, the activity in the MPFC was also
linked to self-reports indicating a greater focus on task-relevant detail ( ;

).

The findings support the view that the spatiotemporal dynamics of the brain cannot be ade-
quately captured by solely separable intrinsic and task-evoked dichotomy, but rather a
dynamic interplay of task-appropriate functional reconfigurations ( ).

Heterogeneity

We further investigated the heterogeneity found at the node level by comparing the TENET
results to various known forms of heterogeneity such as the gene expressions maps obtained
from the Allen Human Brain Atlas ( ; ;
; ). We found a significant correlation between the PCA genes
values and node levels in the SOCIAL task, but not with the node levels found in REST (see
). The reverse was true for excitation-inhibition ratio given by the gene expression,
which was correlated with the node levels in REST but not in SOCIAL. These significant differ-
ences between rest and task show how the environment is directing changes in the functional
hierarchy. It is of considerable interest that the E-I ratio is significantly correlated with node
levels in REST and not the node levels in task, since this suggest that REST is more intrinsically
shaped. On the other hand, the significant correlation between the node levels in the SOCIAL
task (but not with REST), suggests that the level of driving by the environment is not fully free but
still constrained to a certain degree by genetics (here captured by the first PCA of the genes).

Further investigating the heterogeneity, we compared REST and SOCIAL directly to the
myelinisation ratio (TTw/T2w ratio), which contains high values in the sensory regions of
visual, somatomotor, and auditory ( ). We did not find a correlation to the node
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levels of nonreversibility for both REST and SOCIAL task. This result clearly demonstrates that
the environment is not driving the brain to nonreversibility by solely affecting the sensory
regions but equally through driving higher associative brain regions across the whole brain.
This fits well with the evidence that the three sources of heterogeneity investigated here are
correlated among themselves ( ; ), yet influencing the func-
tional hierarchy at the node level of nonreversibility differently under different conditions.
Overall, these results provide evidence for the severe constraints in terms of degrees of free-
dom that the brain has to operate within.

Node-Level Investigation of Neuropsychiatric Disorders

As shown above, at the global level, the three neuropsychiatric patient groups (ADHD, schizo-
phrenia, and bipolar disorder) had lower levels of nonreversibility compared to healthy par-
ticipants. Further investigating this finding, we also found significant local heterogenous
node-level changes differentiating between the different disorders. Interestingly, in schizophre-
nia compared to controls, we found local decreases across the brain but primarily located in
the temporal, parietal, and prefrontal cortices. These regions clearly have less nonreversibility
compared to controls, which is compatible with the literature showing that the disorder is asso-
ciated with more isolation, as a function of the loss of balance between intrinsic and extrinsic
activity ( ).

In contrast, while in bipolar disorder the overall level of nonreversibility is lower than
controls, the somatomotor regions show increases in nonreversibility, perhaps linked to the
findings in the literature of large, sudden swings in mood, given that the brain is in more non-
equilibrium ( ; ). Comparing ADHD with controls
shows larger local levels of nonreversibility in somatosensory, temporal, parietal, and insular
cortices. In particular, the somatomotor regions are more nonreversible than in controls, sug-
gesting a potential route for hyperactivity, while the lower nonreversibility in parietal regions
could be linked to the known attentional deficits in the disorder ( ).

Discussion of TENET Framework

The results produced by the TENET framework relies on two essential elements, namely, the
concept of reversibility (as captured by the arrow of time) and how machine learning (and for
example deep learning) is able to quantify the reversibility of brain signals. In terms of the arrow
of time, this popularisation of this idea is usually credited to the physicist Arthur Eddington
( ). Here we showed that this key idea from physics and thermodynamics can
equally well be applied in neuroscience. The second law of thermodynamics, as immortalised
by Rudolph Clausius ( ) and Sadi Carnot ( ) states a nonequilibrium is
characterised by the arrow of time which indicates the nonreversibility of a system. In fact, the
second law of thermodynamics can be expressed by the Clausius inequality, which establishes that
the work associated with the process (averaged over many repetitions) is larger than the change in
its free energy, which is the same as stating that the system is nonreversible and in nonequilibrium.

As shown by Seif and colleagues, rather than computing the production entropy, the arrow
of time can be cast as a game in which a player is shown either a forward or a backward
trajectory and has to guess the direction of the arrow of time. The only information available
is the trajectory, and from this a player must guess was generated by a forward or reverse pro-
cess. The accuracy is then given by the ratio of correct predictions to the total number of sam-
ples. This statistical problem can be very hard when the fluctuations are high, and therefore the
direction of the arrow of time is very difficult to ascertain ( ; ;
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; ; ; ). One way of solv-
ing this is to use a machine-learning algorithm trained such as deep learning to infer the direc-
tion of the arrow time. In fact, Seif and colleagues have demonstrated that classification
between forward and reverse time series can identify the arrow of time in systems where
the direction is known, and therefore establishes a one-to-one relationship between this clas-
sification, production entropy, and nonreversibility ( ). Even more, Parrondo
and colleagues demonstrated this relationship analytically ( ).

However, given that the learning of the classifier could fail, this classification method is a
necessary but not sufficient condition for assessing the arrow of time. Yet, as we show here this
can be mitigated by using the same deep-learning network with the same training and gener-
alisation data samples that balance the method and provide robust results when used to com-
pare nonreversibility across different brain states. Note that other machine-learning methods
(like SVM) could equally well be used. Indeed, as shown by de la Fuente and colleagues,
different machine-learning architectures can successfully be used to determine the temporal
irreversibility of neural dynamics of different brain states ( ). Yet, not all
machine-learning architectures are equally good. Hence, why we took great care to build a
suitable deep-learning network utilising the same parameters for comparisons. We note that
the main results obtained here are in full agreement with the published literature. Lynn and
colleagues used a very different approach to measure the production entropy and arrived at
the same result for a subset of the HCP data used here, namely, that task is more nonreversible
than rest. A similar confirmation of this result (using the full HCP dataset) was also obtained
using the INSIDEOUT framework of classifying forward and reverse time series of the same
dataset but not using machine learning ( ).

In terms of the deep-learning framework, this method has received a lot of attention over
the last couple of years. This powerful machine-learning technique has proven highly useful
for providing solutions to a number of difficult computational problems ranging from vision to
playing Go ( , ; ; ). However, some
criticisms have been raised over the largely black box nature of these advances, which have
had considerable practical utility for solving complex problems, but have produced little in
way of new insight into how this is achieved mechanistically ( ). Recent research
has, however, started to harness the power of deep learning for discovering useful underlying
mechanisms ( ).

Here, we were not aiming to use deep learning as a technique for revealing underlying
brain mechanisms but rather simply as a tool for providing the level of the reversibility of
the arrow of time in brain signals. In other words, in our framework the important question
is to determine the level of distinction between forward and time-reversed back time series,
but not how this is achieved. As such, here the black box nature of deep learning was not
relevant for solving the nontrivial problem of determining nonreversibility.

As mentioned above, the TENET framework can be studied at all spatial scales. Here, how-
ever, we focused on three levels: global, system level, and node level, where the global level
considers all the whole-brain signals, while the node level considers the signals in each brain
region separately and the system level considers the typical large-scale resting-state networks
( , ; ). This allowed us to focus on different aspects of
nonequilibrium, that is, the interactions between the environment and different brain scales,
ranging from whole-brain to large-scale networks and to regions. Indeed, the node level turned
out to be a highly sensitive measure of quantifying and interpreting different cognitive brain
states and differences between health and multiple diseases.
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Use of Thermodynamics for Assessing the Environment Through Brain Signals

The TENET framework is especially powerful, given that thermodynamics can quantify the
influence of the environment by the level of nonreversibility. More broadly, this is related to
a fundamental question in general biology, namely, how survival is a key characteristic of life
and requires the ability to find order in a complex, largely disordered environment. As proposed
by the Austrian physicist and Nobel Laurate Ernst Schrodinger, survival is predicated on avoid-
ing equilibrium: “How does the living organism avoid decay? ... By eating, drinking, breathing
and ... assimilating. The technical term is metabolism” ( ). The avoidance of
decay thus requires nonequilibrium interactions with the complex environment—and the
brain is at the heart of these interactions.

There is a long history of understanding how the brain is able to interact with the environ-
ment. The initial extrinsic perspective proposed that the brain is primarily, reflexively driven by
momentary stimulation from the environment in a task-driven manner ( ;

; ). A more recent, complementary perspective was proposed
by Marcus Raichle, which holds that the brain is mainly intrinsic, resting but switching between
states whilst “interpreting, responding to, and even predicting environmental demands”
( ; ). The evidence is clear that the brain’s metabolic energy
budget for maintaining the intrinsic resting activity is large ( ). In fact, by
some estimates, 20% of the total energy consumption is taken up by the brain, which only rep-
resents 2% of body weight ( ; ;

), which has led to Raichle’s poetic proposal of “dark energy” ( ).

The brain’s energy budget governs the flow of energy between the brain and environment,
which is the ultimate cause of the nonequilibrium essential to the proposals of Schrodinger and
Raichle. Any living system requires the breaking of the detailed balance of the transitions
between the underlying states ( ; ). In a system with
detailed balance, the fluxes of transitions between different states disappear (

; ). This is conveniently described in the language of thermodynam-
ics, where a system ceases to produce entropy and becomes reversible in time (

). In contrast, a nonequilibrium system—where the balance is broken—shows net fluxes
between the underlying states, and thus becomes irreversible, establishing an arrow of time
( ; ; ; ;

). This is closely linked to turbulence, a classical example of nonequilibrium, which
has been shown to be highly useful for optimally transferring energy/information over

space-time due to its mixing properties ( ). Turbulence has recently been demon-
strated in the human brain, where the resulting information cascade is crucial for extracting
order from disorder ( ; ).

The ideas for the present framework comes from physics and thermodynamics, where non-

equilibrium is intrinsically linked to nonreversibility ( ) and the production of
entropy, leading to the arrow of time, as originally popularised by Arthur Eddington
( ) and since studied in great detail ( ; ;

; ; ; ). In fact, a simple
yet powerful way of assessing nonequilibrium in the brain is to quantitatively estimate the
arrow of time of the brain signals rather than the more difficult way of estimating the produc-
tion of entropy ( ; ).

The nonreversibility of a physical process and the arrow of time is clearly illustrated when
watching a film of a glass being shattered, which is very different from watching the same film
in reverse. In thermodynamics, this can be elegantly described in terms of the entropy
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production, which increases when a system becomes disordered. If the total entropy produc-
tion is larger than zero, it means that the system is nonreversible and in nonequilibrium. In
cases such when a glass is being shattered, the nonreversibility is very clear for all to see.
In contrast, a film of colliding billiards balls can be watched equally forward and backward,
making it very difficult to distinguish the correct arrow of time in the film. This process could
potentially be fully reversible and not producing entropy.

In most processes, however, like the evolution of brain signals, the level of reversibility is
much less clear. Here, we therefore used the power of deep machine learning to detect the
level of reversibility of empirical brain-imaging data. This allowed us to assess the level of
nonequilibrium in brain dynamics in different states. Specifically, for whole-brain data we
extracted the normal forward time series as well as constructing the time reversal of the
backward time series for a given parcellation. This procedure provides a clear arrow of time
for a given time series for which a deep-learning classifier (here named Temporal Evolution
NETwork, TENET) could be trained to identify the forward and the time reversal for a given
time series of any length. The performance of TENET provides a reliable measure of the degree
of nonreversibility and nonequilibrium at different levels of global and local brain organisation.

Perspectives

The present thermodynamics-based deep-learning TENET framework opens up for an exami-
nation of differences of nonreversibility for different levels of consciousness, from sleep and
anaesthesia to altered states of consciousness induced by psychedelics and meditation. The
framework can easily be extended to other neuroimaging modalities such as MEG/EEG. It can
even be used with LFP and other types of cell recordings in animals.

One particularly challenging question relates to the role of brain processing of reversible
external stimuli such as, for example, watching the forward and backward versions of the
movie of a glass being shattered. How will the nonreversibility in brain dynamics change with
identical stimuli, but where the order has been changed such that the arrow of time has been
violated? Will this elicit different nonreversibility in brain dynamics when showing the forward
and backward versions of a movie of billiard balls moving, which is not in any clear way vio-
lating the arrow of time? These stimuli are experienced radically different, which must be
linked to the interactions between the extrinsic stimulation with the dynamics of intrinsic pre-
dictability formed by prior experiences. However, intrinsic predictability is known to be
affected in neuropsychiatric disease, and it would be of considerable interest to study how
the reversibility of external stimulation influences the nonreversibility in brain dynamics. In
fact, this could potentially reveal new information about the interactions between intrinsic
and extrinsic dynamics, which are known to be compromised. The reversal of external stimuli
could also take place at higher cognitive levels, such as when inverting the nodes of Bach'’s
fugue or that of a complex narrative.

From its conception, the arrow of time is coupled to the deep notion of causality. Thermo-
dynamics offers important tools for establishing the causal directionality of information flow
through the concept reversibility and entropy. There is of course a large literature on causality,
best summarised in the seminal work by Judea Pearl ( ), where he shows that any
framework of causal inference is based on inferring causal structures that are equivalent in
terms of the probability distributions they generate; that is, they are indistinguishable from
observational data, and could only be distinguished by manipulating the whole system.

In neuroscience, there have been numerous attempts to capture causality in brain dynam-
ics. One influential concept is ignition, the idea that a stimulus can ignite a causal chain of
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events propagating across the brain ( ). This ignition can happen as a result
of extrinsic stimulation ( ; ; ) or as
part of intrinsic events ( , ). More sophisticated approaches use proba-

bilistic principles of mutual information ( ; ;
, ) to determine the directional causality underlying the functional hierarchical
organisation of brain function ( ).

The concept of the arrow of time has also been investigated from the perspective of chaos
theory, originating with the work of Henri Poincaré who published the first description of cha-
otic motion in 1890 ( ). Later work has confirmed that one key characteristic of
chaos is the infinite sensitivity to initial conditions ( ). Given this extreme sensitivity,
even if a classic mechanic deterministic chaotic system is in principle reversible, in practice this is
in fact nonreversible. In other words, chaos makes it very difficult to establish the computational
reversibility and thus causality. Turbulence is a classic example of a spatiotemporal chaotic sys-
tem that is associated with nonequilibrium and thus nonreversibility. Interestingly, turbulence is a
highly useful dynamical regime for optimally transferring energy/information over space-time,
and it has recently been shown that brain dynamics are indeed turbulent (

). The turbulent regime supports the information cascade that is crucial for extracting order
from disorder.

Overall, the novel thermodynamics-based deep-learning TENET framework can provide
detailed information of the varying levels of nonstationary and nonequilibrium nature of brain
dynamics in health and disease. The TENET framework offers a quantitative account of
differences in nonreversibility. Future work could integrate this with causal mechanistic
whole-brain modelling in a turbulent regime to deepen our understanding of how brain
dynamics organise human behaviour in the face of the second law of thermodynamics in
health and disease.

METHODS
Neuroimaging Ethics

For the HCP dataset, the Washington University—University of Minnesota (WU-Minn HCP)
Consortium obtained full informed consent from all participants, and research procedures
and ethical guidelines were followed in accordance with Washington University institutional
review board approval.

For the UCLA dataset, as detailed in , the Consortium for Neuropsy-
chiatric Phenomics recruited neuropsychiatric participants and healthy controls who gave
written informed consent following procedures approved by the Institutional Review Boards
at UCLA and the Los Angeles County Department of Mental Health.

Neuroimaging Participants HCP Rest and Task

The dataset used for this investigation was selected from the March 2017 public data release
from the HCP where we chose a sample of 990 participants from the total of 1,003 partici-
pants, since not all participants performed all tasks.

The HCP Task Battery of Seven Tasks

The HCP task battery consists of seven tasks: working memory, motor, gambling, language,
social, emotional, and relational, which are described in details on the HCP website (
). HCP states that the tasks were designed to cover a broad range of human
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cognitive abilities in seven major domains that sample the diversity of neural systems: (1)
visual, motion, somatosensory, and motor systems; (2) working memory, decision-making,
and cognitive control systems; (3) category-specific representations; (4) language processing;
(5) relational processing; (6) social cognition; and (7) emotion processing. In addition to
resting-state scans, all 1,003 HCP participants performed all tasks in two separate sessions (first
session: working memory, gambling and motor; second session: language, social cognition,
relational processing, and emotion processing). As a test-retest control condition, a small sub-
sample of 45 HCP participants performed the paradigm twice.

Neuroimaging Participants UCLA Rest

Consortium for Neuropsychiatric Phenomics published a dataset with neuroimaging as well as
phenotypic information for 272 participants. We used the preprocessed data with a total of
261 participants, since seven of the participants were missing T1-weighted scans (

), and three healthy controls and one ADHD patient were missing resting-state
scans. The total population analysed consists of 122 healthy controls, as well as participants
with diagnoses of adult ADHD (40 patients), bipolar disorder (49 patients), and schizophrenia
(50 patients).

Neuroimaging Structural Connectivity and Extraction of Functional Time Series

HCP preprocessing and extraction of functional time series in fMRI resting-state and task data. The
preprocessing of the HCP resting-state and task datasets is described in detail on the HCP web-
site. Briefly, the data is preprocessed using the HCP pipeline, which is using standardized
methods using FSL (FMRIB Software Library), FreeSurfer, and the Connectome Workbench
software ( ; ). This standard preprocessing included cor-
rection for spatial and gradient distortions and head motion, intensity normalization and bias
field removal, registration to the T1 weighted structural image, transformation to the 2-mm
Montreal Neurological Institute (MNI) space and using the FIX artefact removal procedure
( ; ). The head motion parameters were
regressed out, and structured artefacts were removed by ICA + FIX processing (independent
component analysis followed by FMRIB’s ICA-based X-noiseifier ( ;

). Preprocessed time series of all grayordinates are in HCP CIFTI gray-
ordinates standard space and available in the surface-based CIFTI file for each participants for
resting-state and eac