Deco, G., Perl, Y. S., de la Fuente, L., Sitt, J. D., Yeo, B. T. T., Tagliazucchi, E., Kringelbach, M. L. (2022). Supporting information for "The arrow of time of brain signals in cognition: potential intriguing role of parts of the default mode network." *Network Neuroscience*. Advance publication. <u>https://doi.org/10.1162/netn_a_00300</u>

Supplementary material

The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network

Gustavo Deco¹⁻⁴, Yonatan Sanz Perl^{1,5}, Laura de la Fuente⁵, Jacobo D. Sitt⁶, B.T. Thomas Yeo⁷, Enzo Tagliazucchi^{5,8} and Morten L. Kringelbach⁹⁻¹¹

Figure S1. Hierarchy and heterogeneity at the node-level for resting state, most non-reversible task and intersection of all conditions. We studied the hierarchy of the mean levels (across participants) of non-reversibility for rest, most non-reversible task and intersection by comparing this to other known sources of heterogeneity such as the myelinisation ratio (T1w/T2w ratio, obtained from HCP data) and various forms of gene expressions in the brain, obtained from the Allen Human Brain Atlas (Arnatkeviciute et al., 2019; Deco et al., 2021a; Fornito et al., 2019; Hawrylycz et al., 2012). In particular, we used the first PCA component of all genes and the excitation/inhibition ratio given by the gene-expression for genes coding for the excitatory AMPA and NMDA receptors and inhibitory GABA-A receptor isoforms and subunits. In the resting state condition, we found a significantly correlation (p<0.04, non-parametric) with the excitation-inhibition ratio but not with the two other measures. In contrast, the SOCIAL task showed a clear significant correlation with the first PCA (p<0.001, non-

parametric) but not with the others. In contrast, we found significant correlations between the intersection of non-reversibility of all conditions with myelin (p<0.05, non-parametric) and Genes PCA (p<0.001, non-parametric). This bolsters the role of the DMN for orchestrating cognition.

		Accuracy '	Fraining Se	t	Accuracy Cross-validation Set				
Overlap	1	89.3	92.2	90.6	1	73.4	73.2	69.5	
	3	94.6	95.2	95.5	3	78.5	77.4	74.7	
	6	96.2	95.3	92.6	6	80.3	79.9	73.4	
		10	20	30		10	20	30	
		Informatio	n Loss Trai	ning Set	Information Loss Cross-validation Set				
Overlap	1	0.25	0.19	0.22	1	0.65	0.73	0.77	
	3	0.13	0.12	0.12	3	0.63	0.65	0.73	
	6	0.10	0.12	0.20	6	0.58	0.55	0.68	
		10	20	30		10	20	30	
		W	/indow sizes			V	Vindow sizes		

Table S1. Example of selection of window size and overlap parameters for the global-level analysis in resting state. The table shows the Accuracy and Information Loss for the Training set, and the Accuracy and Information Loss for the Cross-validation Set using varying window sizes [10,20,30] and overlaps [1,3,6] (both in TRs).