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A B S T R A C T   

Evoked neural responses to sensory stimuli have been extensively investigated in humans and animal models 
both to enhance our understanding of brain function and to aid in clinical diagnosis of neurological and 
neuropsychiatric conditions. Recording and imaging techniques such as electroencephalography (EEG), mag
netoencephalography (MEG), local field potentials (LFPs), and calcium imaging provide complementary infor
mation about different aspects of brain activity at different spatial and temporal scales. Modeling and simulations 
provide a way to integrate these different types of information to clarify underlying neural mechanisms. 

In this study, we aimed to shed light on the neural dynamics underlying auditory evoked responses by fitting a 
rate-based model to LFPs recorded via multi-contact electrodes which simultaneously sampled neural activity 
across cortical laminae. Recordings included neural population responses to best-frequency (BF) and non-BF 
tones at four representative sites in primary auditory cortex (A1) of awake monkeys. The model considered 
major neural populations of excitatory, parvalbumin-expressing (PV), and somatostatin-expressing (SOM) neu
rons across layers 2/3, 4, and 5/6. Unknown parameters, including the connection strength between the pop
ulations, were fitted to the data. Our results revealed similar population dynamics, fitted model parameters, 
predicted equivalent current dipoles (ECD), tuning curves, and lateral inhibition profiles across recording sites 
and animals, in spite of quite different extracellular current distributions. We found that PV firing rates were 
higher in BF than in non-BF responses, mainly due to different strengths of tonotopic thalamic input, whereas 
SOM firing rates were higher in non-BF than in BF responses due to lateral inhibition. 

In conclusion, we demonstrate the feasibility of the model-fitting approach in identifying the contributions of 
cell-type specific population activity to stimulus-evoked LFPs across cortical laminae, providing a foundation for 
further investigations into the dynamics of neural circuits underlying cortical sensory processing.   

1. Introduction 

Neural responses to sensory stimuli have been extensively studied in 
order to elucidate how the brain represents features of the environment. 
Evoked responses are a specific kind of event-related signal that reflect 
(mostly electrical) brain activity in response to stimuli, such as tactile 
impulses, images, or sounds. In humans, cortical evoked responses can 
be recorded noninvasively via electroencephalography (EEG) and 
magnetoencephalography (MEG), which are widely used methodologies 

for probing brain function in health and disease. In order to draw valid 
and informative conclusions from these noninvasively recorded signals, 
it is important to understand the neural mechanisms underlying their 
generation. The cortical sources of EEG and MEG are thought to be 
intracellular currents primarily associated with postsynaptic potentials 
in pyramidal neurons (Lopes da Silva, 2013; Næss et al., 2021; Vaughan 
H.G.Jr, 1988). Pyramidal neurons and interneurons constitute multiple 
distinct populations in different layers of the cortex, which are locally 
and globally interconnected in a recurrent fashion. Already at the local 
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level, these recurrent networks implement important functions (e.g., 
Chien et al., 2019; Hahn et al., 2022; Kunze et al., 2019). In order to 
eventually map the observed evoked responses onto these functions, it is 
crucial to obtain detailed information about how various neuronal cell 
types and synaptic connections contribute to their generation. 

Invasive studies in animal models can contribute substantially to this 
aim by allowing the recording/imaging of layer-specific local field po
tentials (LFP) and cell-type specific neural firing (see Sections 1.1 and 
1.2). Such animal model studies have already provided considerable 
information about lamina-specific neural activity (Bruyns-Haylett et al., 
2017; Hajizadeh et al., 2019, 2021, 2022; Kohl et al., 2022; Neymotin 
et al., 2020; Sumner et al., 2021) and enhanced our understanding of the 
functional roles of various types of inhibitory interneurons in cortical 
processing (Aponte et al., 2021; Blackwell and Geffen, 2017; Liu et al., 
2019; Liu and Kanold, 2021; Studer and Barkat, 2022). However, to 
more thoroughly elucidate the underlying neural generators of evoked 
responses and their relationship with information processing in the 
brain, it is necessary to mechanistically link together the available in
formation about cell types and local neuronal circuits in the brain, 
intracranially recorded LFPs, and extracranially measured EEG and MEG 
signals. This task requires computational models. Although several ef
forts in this direction have been made (see Section 1.3), most modeling 
studies, such as spiking-based single-column models or rate-based 
multi-column models, are limited by being pure forward simulations 
without fitting the models to actual recordings of brain activity (e.g., 
LFPs and EEG/MEG), leaving their proposed theories less mechanisti
cally and empirically grounded. 

1.1. Layer-specific data - local field potentials 

Linear-array multi-channel electrodes are a unique methodological 
tool which allows the simultaneous recording of LFPs across cortical 
layers (e.g., Fishman et al., 2001; Schroeder et al., 1998; Steinschneider 
et al., 2003). The high spatial resolution of LFPs provides valuable in
formation regarding the intracranial generators of event-related poten
tials/fields (ERPs/ERFs) and information flow within and across cortical 
layers. Multi-unit activity (MUA), which can be extracted from 
high-frequency components of LFPs, reflects the spiking of local neuron 
populations in the vicinity of each electrode contact. Current source 
density (CSD), the second spatial derivative of the LFPs, provides in
formation about the net transmembrane currents that give rise to the 
measured LFPs (Mitzdorf, 1985; Pitts, 1952). MUA and CSD provide 
complementary insights into the dynamics of activity within local neural 
circuits, as MUA primarily reflects suprathreshold neuronal firing 
(output), while CSD primarily reflects current flow associated with 
synaptic input, such as excitatory and inhibitory post-synaptic potentials 
(EPSPs/IPSPs). However, the disentanglement of meaningful functional 
components of MUA and CSD derived from trans-laminar LFP signals is 
an ill-posed problem. MUA contains spikes originating from different 
populations of excitatory and inhibitory neurons, and CSD is a spatial 
mixture of extracellular sinks and sources that can be either active (i.e., 
synaptic activity) or passive (i.e., return currents). Excitatory synaptic 
activity results in an active sink and a passive source, whereas inhibitory 
synaptic activity results in an active source and a passive sink. Moreover, 
the interpretation of activity (especially CSD) at later latencies is more 
uncertain due to the involvement of long-range cortical inputs (Happel 
et al., 2010). So far, evoked CSD and MUA have been extensively used to 
characterize tuning curves (Fishman et al., 2000a, 2000b; Fishman and 
Steinschneider, 2006, 2009; Steinschneider et al., 1998), differentiate 
responses to different stimuli (e.g., best-frequency [BF] vs. non-BF and 
standard vs. deviant) (Fishman and Steinschneider, 2012; Lakatos et al., 
2020; O’Connell et al., 2011; Schaefer et al., 2015), and compare local 
neural population responses in different brain regions (e.g., core vs. belt 
regions of auditory cortex) (Banno et al., 2022). Statistical analyses in 
these studies mostly focused on neuronal activity occurring at specific 
latencies (usually within 50 ms) in specific cortical layers (usually layer 

4 or 2/3). An alternative approach, called laminar population analysis 
(LPA), was proposed to decompose the recorded LFP and MUA into 
firing rates of multiple neural populations and corresponding spatial 
profiles (Einevoll et al., 2007; Gła̧bska et al., 2014; Głąbska et al., 2016). 
However, the extracted components were only mapped to excitatory 
populations, and the connections between populations were indirectly 
estimated by a template-fitting analysis. In short, despite the high spatial 
specificity provided by LFPs and CSD analysis, our understanding of the 
information flow within neural circuits that give rise to these recorded 
signals is limited by the underdetermined inverse problem (Tenke and 
Kayser, 2012). 

1.2. Cell type-specific activity in auditory cortex 

Calcium imaging and optogenetic techniques make it possible to 
observe the activity of specific neuron types in auditory cortex. The 
activity of pyramidal cells is actively shaped by inhibitory interneurons 
(Liu et al., 2019). The major inhibitory interneuron types have specific 
characteristics with regard to morphology, targets, electrophysiology, 
and plasticity (Studer and Barkat, 2022), and appear to play distinct 
functional roles in cortical information processing (Blackwell and Gef
fen, 2017). Parvalbumin-expressing (PV) interneurons are fast-spiking 
neurons and mostly show higher spontaneous and tone-evoked firing 
rates than excitatory neurons. They target the soma, proximal dendrites, 
and initial segment of the axon of excitatory neurons, providing efficient 
and strong inhibition to excitatory neurons within the cortical column (a 
radius of up to 130 μm). PV interneurons receive inputs from both local 
excitatory neurons and the thalamus (MGBv). Functionally, PV in
terneurons are thought to contribute to the balance of excitation and 
inhibition and to the control of bottom-up (feedforward) information 
flow (Hamilton et al., 2013). Somatostatin-expressing (SOM) in
terneurons, on the other hand, show lower spontaneous and 
tone-evoked firing rates than PV interneurons. They target the distal 
dendrites of excitatory neurons, and their inhibition can reach widely (a 
radius of up to 300 μm) along the tonotopic axis. SOM interneurons 
receive excitatory inputs mainly within the cortex and much less from 
the thalamus (Ji et al., 2016). The synapses from excitatory neurons to 
SOM interneurons are short-term facilitating, whereas many other 
classes of synapses (e.g., the excitatory synapses between pyramidal 
cells and fast-spiking PV neurons) are short-term depressing (Hayut 
et al., 2011). SOM interneurons show slower activation dynamics and 
wider lateral inhibition than PV interneurons, which suggests a func
tional role of SOM neurons in integrating information over temporal and 
spectral domains (Yavorska and Wehr, 2016). PV and SOM interneurons 
mutually inhibit each other (Walker et al., 2016; Yavorska and Wehr, 
2016). Both PV and SOM interneurons are inhibited by 
vasoactive-intestinal-peptide-expressing (VIP) interneurons which pro
vide cross-modal modulation of sensory coding (Bigelow et al., 2019). 
The interaction among these various types of interneurons (with 
different time scales in spiking pattern and plasticity) can lead to com
plex dynamics and may implement specific neural computations. 
Modeling approaches provide a good way to identify the functional roles 
of each type of interneuron. For example, Park and Geffen built minimal 
rate-based and spiking models that incorporate a simple PV-SOM 
compensating mechanism to account for experimental findings in 
auditory studies, such as stimulus-specific adaptation, forward sup
pression, and tuning-curve adaptation (Park and Geffen, 2020). Hahn 
and colleagues used a rate-based mean-field modeling approach to study 
the interaction between pyramidal cells as well as SOM, PV, and VIP 
interneurons in different layers, which implements ultrasensitive 
switches toggling pyramidal neurons between high and low firing rate 
states associated with oscillations in distinct frequency bands (Hahn 
et al., 2022). Specifically, the pyramidal upstate is dominated by PV 
mediated high-frequency (gamma) activity, while the downstate is 
characterized by SOM mediated low-frequency (beta) oscillations. 
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1.3. Existing biological models 

Biological models have been used to bridge the gap between 
microscopic properties (e.g., neuron types, single-unit neurophysiology, 
and morphology) and meso‑/macroscopic observations (e.g., LFP/EEG/ 
MEG signals). These models vary in their level of detail and scope. For 
example, a single-column model of the primary visual cortex (consisting 
of excitatory and inhibitory neurons in layers 2/3, 4, 5, and 6) was 
constructed to simulate laminar LFPs under different input conditions 
(Hagen et al., 2016, 2018). A single-column model of the primary 
auditory cortex (consisting of E, PV, SOM, VIP, and neurogliaform cells 
in six layers) was recently constructed to simulate LFP, CSD, and EEG 
signals that replicate many experimental observations such as sponta
neous neural activity and evoked responses to speech input (Dura-Ber
nal et al., 2022). Such detailed single-column models predict the 
contribution of layer- and cell-type-specific neuronal populations when 
the simulations match experimental observations. Some other, less 
detailed, models have been constructed to account for the generation of 
evoked responses. A single-column model (consisting of excitatory and 
inhibitory neurons in layers 2/3 and 5) using the Human Neocortical 
Neurosolver suggests the contribution of a sequence of bottom-up 
thalamic inputs (targeting the soma of pyramidal neurons and causing 
upward currents) and top-down cortical inputs (targeting dendrites of 
pyramidal neurons and causing downward currents) (Kohl et al., 2022; 
Lakatos et al., 2020). This single-column model relates the ERP/ERF to 
intracellular currents in pyramidal long dendrites but leaves the origins 
of the sequences of inputs unexplained. This issue was addressed by a 
rate-based core-belt-parabelt model that includes an entire network of 
brain regions comprising auditory cortex (208 cortical columns, each 
column consisting of one excitatory and one inhibitory population), 
where ERFs are considered as the weighted sum of spatially distributed 
damped harmonic oscillators emerging from coupled excitation and 
inhibition (Hajizadeh et al., 2019, 2021, 2022). This model provides a 
holistic perspective on the generation of ERFs. However, the proposed 
damped modes are extractions from the whole network dynamics, which 
can be difficult to link with LFP observations for validation. There 
remain several principal shortcomings in modeling evoked responses. 
On the one hand, models that take into account neuronal details (e.g., 
various types of inhibitory neurons) seemingly lack sufficient consid
eration of inter-column or inter-area interaction. On the other hand, 
models that focus on network dynamics and mechanisms currently 
provide less information about the role of different inhibitory neurons, 
and the simulations only qualitatively match the LFP/EEG/MEG re
cordings. Hence, there is a need for biological models that incorporate 
both a high degree of detail and a broad scope to clarify the neural 
underpinnings of cortical evoked responses. 

1.4. Goals and approach of this study 

In this study, we attempt to overcome the above-mentioned limita
tions by developing a multi-column model of auditory cortex with suf
ficient detail regarding neural populations and their interconnections to 
quantitatively reproduce layer-specific intracranial LFP recordings and 
qualitatively explain extracranially observable evoked responses. We 
utilized a biological cortical column model accounting for cell-type- 
specific interactions, which was integrated into a minimalistic multi- 
column array, representing the most relevant aspects of cortical archi
tecture with respect to the tonotopic processing of auditory stimuli. 
Model parameters were specified by fitting the model to LFPs of tone- 
evoked responses simultaneously recorded across the layers of primary 
auditory cortex (A1) of awake monkeys. We show that the proposed 
model not only consistently replicates and explains detailed features of 
tone-evoked LFPs in A1, but also reproduces relevant aspects of 
extracranially-recorded evoked responses and predicts cell-type specific 
contributions to these signals. 

2. Methods 

2.1. Experimental data 

2.1.1. Acquisition and preprocessing 
Neurophysiological data were obtained from A1 in 3 adult male 

macaque monkeys (Macaca fascicularis) using previously described 
methods (Fishman and Steinschneider, 2010; Steinschneider et al., 
2003). All experimental procedures were reviewed and approved by the 
Association for Assessment and Accreditation of Laboratory Animal 
Care-accredited Animal Institute of Albert Einstein College of Medicine 
and were conducted in accordance with institutional and federal 
guidelines governing the experimental use of non-human primates. 
Animals were housed in our Association for Assessment and Accredita
tion of Laboratory Animal Care-accredited Animal Institute under daily 
supervision of laboratory and veterinary staff. Before surgery, monkeys 
were acclimated to the recording environment and were trained to 
perform a simple auditory discrimination task (see below) while sitting 
in custom-fitted primate chairs. 

Surgical procedure. Under pentobarbital anesthesia and using 
aseptic techniques, rectangular holes were drilled bilaterally into the 
dorsal skull to accommodate epidurally placed matrices composed of 18- 
gage stainless steel tubes glued together in parallel. Tubes served to 
guide electrodes toward A1 for repeated intracortical recordings. 
Matrices were stereotaxically positioned to target A1 and were oriented 
to direct electrode penetrations perpendicular to the superior surface of 
the superior temporal gyrus, thereby satisfying one of the major tech
nical requirements of one-dimensional current source density (CSD) 
analysis (Müller-Preuss and Mitzdorf, 1984; Steinschneider et al., 1992). 
Matrices and Plexiglas bars, used for painless head fixation during the 
recordings, were embedded in a pedestal of dental acrylic secured to the 
skull with inverted bone screws. Perioperative and postoperative anti
biotic and anti-inflammatory medications were always administered. 
Recordings began after at least 2 weeks of postoperative recovery. 

Stimuli. Stimuli were generated and delivered at a sample rate of 
48.8 kHz by a PC-based system using an RX8 module (Tucker Davis 
Technologies). Frequency response functions (FRFs) derived from re
sponses to pure tones characterized the spectral tuning of the cortical 
sites. Pure tones used to generate the FRFs ranged from 0.15 to 18.0 kHz, 
were 200 ms in duration (including 10 ms linear rise/fall ramps), and 
were randomly presented at 60 dB SPL with a stimulus onset-to-onset 
interval of 658 ms. Resolution of FRFs was 0.25 octaves or finer across 
the 0.15–18.0 kHz frequency range tested. All stimuli were presented via 
a free-field speaker (Microsatellite; Gallo) located 60◦ off the midline in 
the field contralateral to the recorded hemisphere and 1 m away from 
the animal’s head (Crist Instruments). Sound intensity was measured 
with a sound level meter (type 2236; Bruel and Kjaer) positioned at the 
location of the animal’s ears. The frequency response of the speaker was 
flat (within 5 dB SPL) over the frequency range tested. 

Recordings. Neurophysiological recordings were conducted in an 
electrically shielded, sound-attenuated chamber. Monkeys were moni
tored via video camera throughout each recording session. To promote 
alertness and attention to the sounds during the recordings, animals 
performed a simple auditory discrimination task (detection of a 
randomly presented noise burst interspersed among test stimuli) to 
obtain liquid rewards. 

Local field potentials (LFPs) and multiunit activity (MUA) were 
recorded using linear-array multi-contact electrodes, comprising 16 
contacts, evenly spaced at 150-micron intervals (U-Probe; Plexon). 
Individual contacts were maintained at an impedance of 200 kΩ. An 
epidural stainless-steel screw placed over the occipital cortex served as 
the reference electrode. Neural signals were bandpass filtered from 3 Hz 
to 3 kHz (roll-off 48 dB/octave) and digitized at 12.2 kHz using an RA16 
PA Medusa 16-channel preamplifier connected via fiber-optic cables to 
an RX5 data acquisition system (Tucker-Davis Technologies). LFPs 
time-locked to the onset of the sounds were averaged on-line by 
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computer to yield auditory evoked potentials (AEPs). CSD analyses of 
the AEPs characterized the laminar distribution of net current sources 
and sinks within A1 and were used to identify the laminar location of 
concurrently recorded AEPs and MUA (Steinschneider et al., 1992, 
1994). CSD was calculated using a 3-point algorithm that approximates 
the second spatial derivative of voltage recorded at each recording 
contact (Freeman and Nicholson, 1975; Nicholson and Freeman, 1975). 
MUA used to characterize the frequency tuning of each recording site 
(i.e., electrode penetration) was derived from the spiking activity of 
neural ensembles recorded within lower lamina 3, as identified by the 
presence of a large-amplitude initial current sink that is balanced by 
concurrent superficial sources in mid-upper lamina 3 (Fishman et al., 
2001; Steinschneider et al., 1992). This current dipole configuration is 
consistent with the synchronous activation of pyramidal neurons with 
cell bodies and basal dendrites in lower lamina 3. Previous studies have 
localized the initial sink to the thalamorecipient zone layers of A1 
(Metherate and Cruikshank, 1999; Müller-Preuss and Mitzdorf, 1984; 
Steinschneider et al., 1992; Sukov and Barth, 1998). To derive MUA, 
neural signals (3 Hz to 3 kHz pass-band) were high-pass filtered at 500 
Hz (roll-off 48 dB/octave), full-wave rectified, and then low-pass filtered 
at 520 Hz (roll-off 48 dB/ octave) before averaging of single-trial 
responses (for a methodological review, see Supèr and Roelfsema, 
2005). MUA (referred to as MUA_E in Supèr and Roelfsema, 2005) is a 
measure of the envelope of summed (synchronized) action potential 
activity of local neuronal ensembles (Brosch et al., 1997; O’Connell 
et al., 2011; Schroeder et al., 1998; Supèr and Roelfsema, 2005; 
Vaughan H.G.Jr, 1988). Thus, whereas firing rate measures are typically 
based on threshold crossings of neural spikes, MUA, as derived here, is 
an analog measure of spiking activity in units of response amplitude (e. 
g., see Kayser et al., 2007). MUA and single-unit activity, recorded using 
electrodes with an impedance similar to that in the present study, 
display similar orientation and frequency tuning in primary visual and 
auditory cortex, respectively (Kayser et al., 2007; Supèr and Roelfsema, 
2005). Adjacent neurons in A1 (i.e., within the sphere of recording for 
MUA) display synchronized responses with similar spectral tuning, a 
fundamental feature of local processing that may promote high-fidelity 
transmission of stimulus information to subsequent cortical areas 
(Atencio and Schreiner, 2013). 

Positioning of electrodes was guided by online examination of click- 
evoked AEPs. Pure tone stimuli were delivered when the electrode 
channels bracketed the inversion of early AEP components and when the 
largest MUA and initial current sink were situated in middle channels. 
Evoked responses to 40 presentations of each pure tone stimulus were 
averaged with an analysis time of 500 ms that included a 100 ms pre- 
stimulus baseline interval. The BF of each cortical site was defined as 
the pure tone frequency eliciting the maximal MUA within a time win
dow of 0–75 ms after stimulus onset. As it was very consistent across 
layers (see Fig. S1), we used, for each recording site, the electrode 
channel with the maximum MUA for BF determination. The response 
time window includes the transient “On” response elicited by sound 
onset and the decay to a plateau of sustained activity in A1 (e.g., see 
(Fishman and Steinschneider, 2009)). 

The neural responses to pure tones were acquired at the beginning of 
each recording session, after which the animals participated in at least 
three different auditory experiments. Finally, the monkeys were deeply 
anesthetized with sodium pentobarbital and transcardially perfused 
with 10% buffered formalin. Tissue was sectioned in the coronal plane 
(80-µm thickness) and stained for Nissl substance to reconstruct the 
(Morel et al., 1993) electrode tracks and to identify A1 according to 
previously published physiological and histological criteria (Kaas and 
Hackett, 2000; Merzenich and Brugge, 1973; Morel et al., 1993). Based 
upon these criteria, all electrode penetrations considered in this report 
were localized to A1, although the possibility that some sites situated 
near the low-frequency border of A1 were located in field R cannot be 
excluded. 

2.1.2. Preparation for model fitting 
The target data for model fitting comprise the laminar MUA and CSD 

profiles of evoked responses to the best frequency (BF, see an example in 
Fig. 1) and 4 non-BF tones at four recording sites (site 1 from monkey A, 
site 2 from monkey D, sites 3 and 4 from monkey E). The 4 sites were 
selected because they display stereotypical features of laminar AEP, 
MUA, and CSD neurophysiological response profiles which are charac
teristic of primary auditory cortex (A1), as described in previous pub
lications by various investigators (Fishman, 2014; Fishman et al., 2000b; 
O’connell et al., 2014). Moreover, the different BFs of these sites lie 
within the frequency range of maximum hearing sensitivity in ma
caques. Hence, we regard these sites as representative of population 
responses in A1, which are well-suited for the computational modeling 
of auditory cortical responses. See Fig. S2 for further details. For each 
recording site, the experimental data (BF and 4 non-BF responses) were 
cropped (time window: 0 to 200 ms, 200 timepoints), concatenated 
along the time axis and normalized to their maximum peak, resulting in 
a target MUA matrix [1000 timepoints × 16 channels] and a target CSD 
matrix [1000 timepoints × 12 channels] for model fitting. 

2.2. Cortical column model 

The cortical model consists of two columns. Each column contains 7 
neural populations identified by cell type and laminar location of their 
cell bodies: excitatory pyramidal neurons (L2/3 E, L4 E, and L5/6 E), 
inhibitory PV interneurons (L2/3/4 PV and L5/6 PV), and inhibitory 
SOM interneurons (L2/3/4 SOM and L5/6 SOM). Each neural popula
tion is described by a rate-to-potential operator (Section 2.2.4) and a 
potential-to-rate operator (Section 2.2.5) as in the Jansen-Rit model 
(Jansen and Rit, 1995). Different types of inhibitory interneurons were 
considered because of their distinct characteristics regarding 
morphology, connection motif, target neurons/locations, plasticity, 
spiking rate, synaptic time constant, and afferent inputs (Studer and 
Barkat, 2022), making it likely that they differentially contribute to the 
observed MUA and CSD. Thus, the model was designed with the aim of 
reconstructing the dynamics of different interneuron types from the LFP 
data. To reduce model complexity, VIP interneurons were not included, 
as VIP interneurons are thought to be involved in cortico-cortical 
interaction and neuromodulatory control (Mesik et al., 2015). We 
would like to note that, within our model framework, the number of 
neural populations is flexible, and its modification would only lead to 
different degrees of granularity in the spatiotemporal decomposition of 
MUA and CSD. In the model, we merge neurons into L2/3, L4, and L5/6 
to characterize the dynamics at the spatial resolution of supragranular, 
granular, and infragranular layers. 

As illustrated in Fig. 2A, column 1 represents the recording site, 
which does not necessarily respond optimally to the presented frequency 
(non-BF site), while column 2 (BF site) represents a location (cortical 
column) that responds optimally to the presented tone stimulus. For 
simplicity, the configurations of the two columns were set to be iden
tical, and the two columns inhibit each other through symmetric inter- 
column E-to-SOM connections. The E and PV populations receive 
direct thalamic input with a fixed ratio based on the literature (see 
Section 2.2.2). Column 2 (BF site) receives the full strength of thalamic 
input (in=1), and column 1 (recording site) receives weaker input 
(in≤1), based on the tonotopic organization of the auditory pathway. 
The two-column model is a simplification of the anatomical and func
tional organization of A1, where the interactions with other cortical 
areas (e.g., non-primary fields of auditory cortex) are not considered. In 
the case of the BF response, both columns receive the same input 
strength (in=1), as they represent the same location and inter-column 
connections are in fact intra-column connections. This way, the same 
model could be used for both BF and non-BF situations. 

The model simulates the time series of latent variables including 
firing rates, postsynaptic potentials (PSP), and connectivity efficacy 
(related to short-term plasticity) under BF and non-BF conditions given 

V.S.C. Chien et al.                                                                                                                                                                                                                              



NeuroImage 281 (2023) 120364

5

the same model parameter settings but different input configurations. As 
illustrated in Fig. 2B, the network dynamics are transformed into 
simulated MUA and CSD via a forward model (see Section 2.3) to match 
the target data. The forward model also transforms network dynamics to 
a simulated equivalent current dipole (ECD) signal, which is equivalent 
(up to a scaling factor determined by the volume conduction of the head) 
to EEG/MEG signals. Thus, the model could be used to identify the 
specific contributions of different cell types to those signals. 

2.2.1. Thalamic input 
The thalamic input ith(t) to the two-column model is a decay function 

with a delay (Eq. (1)). The parameters include thalamic input strength I, 
decay time constant τin, decay level α, and delay td. This is to mimic the 
fast decaying firing rate observed in the auditory system 
(Pérez-González and Malmierca, 2014). 

ith(t) =

⎧
⎨

⎩

I
[
α + (1 − α)e

td − t
τin

]
, t ≥ td

0, t < td

(1)  

2.2.2. Connectivity 
The intra-column connectivity is derived from the reported connec

tion probabilities and synaptic strengths in the primary visual cortex of 
mice (Billeh et al., 2020). The calculation is illustrated in Fig. 3, while 
the exact connectivity values can be found in the supplementary 
Table S1. The connectivity is grouped into default connectivity matrices 
WEE, WPE, WSE, WEP, WPP, WSP, WES, and WPS, which can then be sepa
rately rescaled by free parameters θ1− 8 in the optimization. For example, 
the 2-by-3 matrix WPE (connections from E1, E2, and E3 to P1 and P2) is 
rescaled by θ2. The inter-column connections only consist of E-to-SOM 
connections Winter− SE (from E2 in column 1 to SOM1 and SOM2 in col
umn 2, and vice versa), which can be rescaled by parameters θ20− 24 that 
control the strength of lateral inhibition under BF and non-BF condi
tions. The scaling parameters also allow accounting for potential dis
crepancies in the intra- and inter-columnar connectivity between mice 
and primates. Including inter-column E-to-E connections Winter− EE does 
not significantly improve model performance and the resulting param
eters (as shown in supplementary Fig. S3 that tests variant models), so 
we decided to keep the model simple. 

The thalamic input is fed only to E and PV populations. The input 
connectivity across layers (as listed in Table 1) is based on the 

Fig. 1. Laminar profiles of evoked responses to a BF tone recorded in a representative electrode penetration into A1. The 16-channel electrode array records local 
field potentials (LFPs) from superficial to deep layers (2000 µm), from which current source density (CSD) and multi-unit activity (MUA) are derived. A schematic of 
the electrode array is shown on the left of the figure. For visualization, the values of response amplitude are also color-coded (positive values in blue; negative values 
in red). Tone onset and offset times are indicated by the vertical drop lines. 

Fig. 2. Two-column cortical model and for
ward simulation. (A) The model consists of two 
identical columns, where Column 1 represents 
the cortical area at the recording site, and 
Column 2 represents the latent cortical area 
that responds most strongly to the presented 
tonal stimulus (at the BF). The thalamic inputs 
make synaptic connections with the E and PV 
populations at L2/3, L4, and L5/6. The lateral 
inhibition consists of the connections from L5/6 
E to the SOM populations at L2/3 and L5/6. For 
clarity, intra-column connections are not 
shown. Different line widths and circle sizes 
indicate the difference in connection strength 
and contribution to MUA, respectively (details 
in Tables 1 and 5). (B) The forward simulation 
includes two stages. First, the network dy
namics are simulated based on the model pa
rameters and input configurations under BF and 
non-BF conditions at the recording site. Second, 
the observation model translates firing rates 
and current flows to the observations (i.e., MUA 
and CSD) through the spatial profiles calculated 
by constrained least square fit. The current 
flows and CSD can be further translated to 

dipole signals as model predictions.   
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normalized peak amplitude of thalamocortical responses and the 
laminar pattern of thalamocortical innervation in mouse primary audi
tory cortex reported in (Ji et al., 2016). The default thalamic input 
connectivity matrices WEth and WPth refer to connections from the 
thalamus to E1, E2, and E3, and to PV1 and PV2, respectively, which can 
be rescaled by parameters θ9,10 in the optimization. 

2.2.3. Rate-to-potential operator 
The rate-to-potential operator implements the transformation of the 

firing rate mj(t) of the jth population to the postsynaptic potential vij(t) at 
the ith population through an effective connection strength wij(t). This 
transformation is achieved by convolving the weighted firing rate 
wij(t)mj(t) with a synaptic kernel hij(t) (Eq. (2), as in Chien et al., 2019; 
Jansen and Rit, 1995; Wang and Knösche, 2013). Note that the effective 
connection strength wij(t) can become a variable, if short-term plasticity 
is taken into account (see Section 2.2.5). 

vij(t) =
[
wij(t)mj(t)

]
⊗ hij(t) (2) 

The synaptic kernel h(t) is described as a bi-exponential function 
parameterized by the scaling factor H and the time constants τ1 and τ2 

(Eq. (3)). 

h(t) =

⎧
⎨

⎩

H
τ1τ2

τ1 − τ2

(
e
− t
τ1 − e

− t
τ2

)
, t ≥ 0

0, t < 0
(3) 

The convolution in Eq. (2) can be numerically realized by two first- 
order ordinary differential equations Eqs. (4) and (5). 

v̇(t) = u(t) (4)  

u̇(t) = Hw(t)r(t) −
τ1 + τ2

τ1τ2
u(t) −

1
τ1τ2

v(t) (5) 

The shape of synaptic kernels depends on pre- and postsynaptic 
properties of the neurotransmitter-receptor systems, and the respective 
parameters H, τ1, and τ2 are listed in Table 2. 

The PSPs v(t) are then used to calculate the current flows c(t). In Eq. 
(6), a current flow cj(t) caused by the jth input source (from a cortical or 
a thalamic input) is calculated as the sum of the absolute values of PSPs 
vij(t) at all E populations (NE = 3) at the recording site (i.e., Column 1). 
The mapping to MUA and CSD is illustrated in Fig. 4. 

cj(t) =
∑NE

i

⃒
⃒vij(t)

⃒
⃒ (6)  

2.2.4. Potential-to-rate operator 
The potential-to-rate operator transforms the overall PSP vi(t) at the 

ith population into mean firing rate mi(t) using a sigmoid function Eqs. 

Fig. 3. Default intra-column connectivity. (A, B) The connection probabilities and synaptic strengths are taken from (Billeh et al., 2020). The numbers in the pa
rentheses stand for the cortical layers. (C, D) The probabilities and strengths are merged by averaging into coarser layers matching our model definitions. (E) The 
default intra-column connectivity is defined as the product of probabilities and strengths. Matrices A to E are normalized for visualization. (F) The default 
intra-column connectivity is visualized in a graph where the edge widths discretize the normalized connectivity values in matrix F. Values above 1/2 have the 
thickest edges, while values lower than 1/16 are not shown in the graph. For detailed values of connection probabilities, synaptic strengths, and connectivity, please 
refer to supplementary Table S1. 

Table 1 
Thalamic input connectivity across laminar layers (normalized to E3).  

Neural 
population 

(a) Normalized peak 
amplitude 

(b)% 
Innervated 

(a*b) Input 
connectivity 

E1 (L2/3) 129/418=0.3 75% 0.225 
E3 (L4) 418/418=1 100% 1 
E2 (L5/6) 163/418=0.4 85% 0.34 
PV1 (L2/3/4) 615/418=1.47 85% 1.25 
PV2 (L5/6) 426/418=1.02 100% 1.02 

(a) Thalamocortical input currents (pA). Source: Table 1 in (Ji et al., 2016). 
(b) Percentage of cells exhibiting thalamocortical responses. Source: Fig. 4 in (Ji 
et al., 2016). 
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(7) and (8). The overall PSP is the sum of EPSPs and IPSPs caused by Ncur 
presynaptic current sources which include Npop excitatory/inhibitory 
populations and thalamic input. 

mi(t) = Sigm[vi(t)] = Sigm

[
∑Ncur

j
vij(t)

]

(7)  

Sigm(v) =

⎧
⎨

⎩

1
1 + er(v0 − v) −

1
1 + erv0

, v ≥ 0

0, v < 0
(8) 

The output firing rate is limited to 0 ≤ m(t) ≤ 1, where m = 1 refers 
to the max firing rate of the E/PV/SOM neuron type. The sigmoid 
function is shifted so that Sigm(0) = 0, meaning no change in the firing 

rate relative to baseline. To make the fitting process more stable, 
negative firing rates are set to 0. The sigmoid functions for the E, PV, and 
SOM populations have different slopes r and thresholds v0 (as listed in 
Table 3) based on the firing characteristics of the neuron types reported 
in (Fanselow et al., 2008). 

2.2.5. Short-term plasticity 
Short-term plasticity (STP) refers to the modulation of synaptic 

strength based on the history of presynaptic activity. STP can be 
depressing (STD) or facilitating (STF), which depends on the synaptic 
type (Blackman et al., 2013; Fino et al., 2013; Ma et al., 2012; Regehr, 
2012; Silberberg et al., 2005). STD can be modeled by a synaptic efficacy 
variable x (0 ≤ x ≤ 1), which denotes the fraction of remaining neuro
transmitters (or synaptic vesicles). STF can be modeled by another 
synaptic utilization variable u (0 ≤ u ≤ 1) which denotes the neuro
transmitters ready for use (release probability) (Silberberg and Mark
ram, 2007). The two variables then modulate the fixed connection 
strength w0 as in Eq. (9). 

w(t) = x(t)u(t)w0 (9) 

The variables u(t) and x(t) depend on the presynaptic firing rate m(t)

Table 2 
Parameters of the synaptic-dendritic kernels for different connections.  

Synaptic type H τ1(ms) τ2(ms) Reference 

E→E(1) AMPA 14,400 1 5.3 (Dura-Bernal et al., 2022) 
NMDA 1200 3 70 

E→PV NMDA 7250 2.1 5.6 (Jouhanneau et al., 2018) 
E→SOM NMDA 3090 4.5 25.2 (Jouhanneau et al., 2018) 
PV→E GABAA − 4000 1 18.2 (Dura-Bernal et al., 2022) 
PV→PV GABAA − 5530 3.5 5.5 (Bacci et al., 2003) 
PV→SOM GABAA − 7380 1.4 101 (Bacci et al., 2003) 
SOM→E(2) GABAA − 1800 2 100 (Dura-Bernal et al., 2022) 

GABAB − 100 25 300 
SOM→PV GABAA − 1800 2 100 (Dura-Bernal et al., 2022) 

(1) AMPA:NMDA=83:17. 
(2) GABAA:GABAB=50:50. 

Fig. 4. Forward mapping from network dynamics to observations. (A) The simulated MUA (simMUA) is the sum of individual firing rates (left column) weighted by 
the non-negative MUA spatial profile (middle column) of the recording site (Column 1). (B) The simulated CSD (simCSD) is the sum of individual current flows (left 
column) weighted by the CSD spatial profile (middle column) of the recording site (Column 1). (C) The simulated equivalent current dipole (simECD) is the sum of 
individual current flows (left column) weighted by dipole directions and lengths (red arrows in the middle column) derived from the CSD spatial profile (gray color in 
the middle column). 

Table 3 
Parameters of the sigmoid functions.   

r (mV− 1) v0 (mV) 

E 0.62 6 
PV 0.29 15.6 
SOM 1.14 2.76  
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as in Eqs. (10) and (11). The parameter U is the initial release proba
bility, and parameters τf and τd denote the decay and recovery time 
constants, respectively. The parameters κf and κd are the change rates 
and are tuned in the optimization procedure. 

u̇(t) =
U − u(t)

τf
− κf U[1 − u(t)]m(t) (10)  

ẋ(t) =
1 − x(t)

τd
− κdu(t)x(t)m(t) (11) 

The effect of STP on the dynamics of a network of E, PV, and SOM 
populations has been studied by Hayut and colleagues (Hayut et al., 
2011). Among the eight synaptic types, only E-to-SOM connections 
exhibit STF, while the remaining connections exhibit STD. To simplify 
the model, we only consider STF on E-to-SOM connections and STD on 
E-to-E connections in the model. These are two most prominent pre
synaptic plasticities in the neocortex reported in (Kalisman et al., 2005; 
Silberberg et al., 2005; Silberberg and Markram, 2007). The parameters 
of STP are based on (Hayut et al., 2011; Silberberg and Markram, 2007). 
See Table 4 for details. 

2.3. Observation model 

The observation model includes two spatial profiles which map the 
network dynamics to MUA and CSD. To match the target data, the 
network dynamics are subsampled to T = 200 timepoints (i.e., firing 
rates r into Srate [Npop ×T], and current flows c into Scurrent [Ncur ×T], with 
Npop = 7 populations and Ncur = 8 input sources. 

2.3.1. Spatial profiles 
The MUA spatial profile AMUA [Nch ×Npop] describes the sensitivity of 

channels (Nch = 16) to the firing rates of neural populations (see Sec
tion 2.3.2), which is closely related to the spatial distribution of cell 
bodies (or axonal hillocks, where the spikes are generated). The simu
lated MUA ΦMUA [Nch ×T] is the multiplication of the mixing matrix 
AMUA and the firing rates Srate (Eq. (12)). 

ΦMUA = AMUA⋅Srate (12) 

The CSD spatial profile ACSD [Nch′ ×Ncur] describes the sensitivity of 
the spatial distribution of sinks and sources along the channels (Nch′ =

12) to the current flows. The simulated CSD ΦCSD [Nch′ ×T] is the 
multiplication of the mixing matrix ACSD and the current flows Scurrent 

(Eq. (13)). 

ΦCSD = ACSD⋅Scurrent (13)  

2.3.2. Constraints on the spatial profiles 
Both spatial profiles AMUA and ACSD are difficult to determine by 

measurements. They are estimated by constrained regression of the 
network dynamics Srate and Scurrent to the target data Φref

MUA and Φref
CSD. The 

goal is to find spatial profiles that minimize the distance between 
simulation Φ and target Φref , while, at the same time, obeying certain 
plausibility constraints. 

The constraint on the MUA spatial profile AMUA [Nch ×Npop] is based 
on the fact that the sensitivity to the firing rate of a certain cell type is 
proportional to the product of cell density and maximal firing rate. 
Therefore, the ratio of the column sums of AMUA should be fixed 

(Table 5). This is a relatively coarse constraint where the laminar dis
tribution of cell density is not considered. 

The constraint on the CSD spatial profile ACSD [Nch′ ×Ncur] is based on 
the fact that the transmembrane currents should be conserved. This 
means, the sources and the sinks need to match. Therefore, each column 
of ACSD should add up to zero (i.e., area of sinks = area of sources). 
Additionally, in order to avoid ambiguity with the overall current 
magnitudes, the norms of all column vectors of ACSD are constrained to 
be the same. 

2.3.3. Equivalent current dipole 
The neuronal generators of EEG/MEG signals are commonly esti

mated as equivalent current dipoles (ECDs) by source localization 
techniques such as dipole fitting and beamforming. The simulated ECDs 
provide a theoretical link between LFPs and EEG/MEG signals, by which 
we can also examine the contribution of E, PV, and SOM populations to 
event-related deflections, like P1, N1, and N2. 

The model predicts ΦECD [1 ×T] at the recording site once current 
flows Scurrent and a CSD spatial profile ACSD are given. As in Eq. (14), ΦECD 

is calculated as the multiplication of d [1 ×Ncur] and the current flows 
Scurrent [Ncur ×T], where d is the displacement from the mean center of 
sinks dsink to the mean center of sources dsource derived from each column 
of ACSD [Nch′ ×Ncur]. 

ΦECD = d⋅Scurrent = (dsource − dsink)⋅Scurrent (14)  

2.4. Optimization procedure 

In general, we use a genetic searching scheme (Eiben and Smith, 
2015; García-Martínez et al., 2018; Katoch et al., 2021) combined with a 
gradient descent (Gauss-Newton) method to optimize the 28 free pa
rameters θ within the predefined search ranges (Table 6), in order to 
minimize the cost function f(θ) for each recording site. Since the cost 
function has a complicated shape with multiple local minima, we made 
use of the assumption that the true solutions should yield similar pa
rameters across recording sites. In order to reliably find these solutions, 
we iteratively continued the search for each recording site starting at the 
solutions for all other recording sites. If our assumption is correct, this 
should lead to better fits for the individual recording sites. 

Note that this additional similarity criterion is only used to guide the 
search for the solutions, while the sole criteria for the goodness of fit are 
the cost functions for the individual recording sites. The optimization 
scheme is detailed in Fig. 5. 

The cost function f(θ) is defined as the sum of squared errors (SSE) 
between the simulation Φ(θ) and target Φref (Eq. (15)). The target data 
Φref comprises Φref

MUA and Φref
CSD under BF and non-BF conditions. The 

benefit of including non-BF conditions in the optimization procedure is 
two-fold. First, the amount of target data is increased while the degrees 
of freedom of spatial profiles remain the same, which reduces the risk of 
overfitting. Second, the dynamics of PV and SOM populations under BF 
vs. non-BF conditions can be compared. 

Table 4 
Parameters of short-term plasticity.   

U τf (ms) τd (ms) κf κd 

E→E 1 – 200 0 20* 
E→SOM 0.05 670 – 600* 0 

Note: Values marked by * are default values that will be rescaled by free 
parameters. 

Table 5 
Constraints on MUA spatial profile.  

Neural 
population 

(a) Proportion of 
neurons (Keller et al., 
2018; Rudy et al., 
2011) 

(b) Maximal 
firing rate ( 
Beierlein et al., 
2003) 

(a*b) Contribution 
to MUA (normalized 
to E1) 

E1, E2, and 
E3 

1/3 of 80% 59.4 Hz 1 

PV1 and 
PV2 

1/2 of 20%*40% 271.7 Hz 0.69 

SOM1 and 
SOM2 

1/2 of 20%*30% 120.7 Hz 0.23  

V.S.C. Chien et al.                                                                                                                                                                                                                              



NeuroImage 281 (2023) 120364

9

f (θ) = ‖ Φ(θ) − Φref ‖
2
2 =

∑

i

∑

j

(
ϕij(θ) − ϕref

ij
)2 (15) 

The simulated data Φ(θ) of an individual recording site comprises of 
ΦMUA(θ) and ΦCSD(θ) as in Eqs. (12) and (13). The forward simulation 
includes two stages. In the first stage, the default two-column model and 
input configuration are rescaled by 28 free parameters θ to generate 
network dynamics Srate and Scurrent . The 28 free parameters θ rescale 
intra-column connections WEE, WPE, WSE, WEP, WPP, WSP, WES, and WPS 

(θ1− 8), thalamic input connectivity matrices WEth and WPth (θ9,10), rates of 
short-term plasticity κd,EE and κf ,SE (θ11,12), synaptic time constants τ 
(θ13), slopes of sigmoid functions r (θ14), thalamic input decay levels α1− 5 

for BF and non-BF conditions (θ15− 19), lateral inhibition Winter− SE for BF 
and non-BF conditions (θ20− 24), and thalamic input strengths to column 
1 for non-BF conditions (θ25− 28). We chose a reasonably larger range for 

connectivity-related free parameters (θ1− 10,20− 24) to allow enough flexi
bility of network dynamics. We chose a narrower range for the rest of the 
free parameters to adhere to the evidence from the literature. The search 
ranges of the 28 free parameters are summarized in Table 6. In the 
second stage, the spatial profiles AMUA and ACSD are optimized by 
regressing the resulting network dynamics Srate and Scurrent to the target 
Φref

MUA and Φref
CSD, respectively. Multiplication of spatial profiles with 

network dynamics then yields the predicted MUA and CSD, which can be 
compared to the observed MUA and CSD. 

We use the Gauss-Newton (gn) method to approach the minimum of 
the cost function f(θ) in Eq. (15). This method was successfully used in 
our previous studies for optimization of neural mass models with large 
numbers of free parameters (Wang et al., 2019; Wang and Knösche, 
2013). The Jacobian matrix  J =

∂f
∂θ is numerically approximated with 

Newton’s difference quotient. 
The genetic search scheme (see Fig. 5) includes three operating boxes 

for broadening the exploration in parameter space. In the ‘mutation’ 
box, the solutions are sorted based on the goodness-of-fit (cost). Then, 
each parameter of a solution can mutate (i.e., be replaced by a random 
value) with a chance that linearly ranges from 10% (for best fit case) to 
90% (for worst fit case) based on the ranking of the solution. 

In the ‘cross-over’ box, we randomly draw two solutions as parent 
solutions from the outputs of ‘selection’ and ‘mutation’ boxes. Then we 
randomly decide a cross-over point and generate two off-spring solu
tions by swapping the same sides of parameters between the parents (i. 
e., segment-wise swap). This is repeated to generate N3 solutions. 

In the ‘mt_co’ box, we run the cross-over operator again. However, 
instead of swapping the whole right side of the cross-over point, we only 
swap the cross-over point (i.e., element-wise swap). This is repeated to 
generate N3 solutions. The parent solutions come from the output of 
‘selection’, ‘mutation’, and ‘cross-over’ boxes. 

The effect of model parameters on the network dynamics can be 
highly nonlinear, and a global minimum in cost function is hard to 
identify in high-dimensional space. In addition, a global minimum for a 
single recording site may still be at risk of overfitting. Therefore, it is 
important to check the similarity and stability of the common solutions. 
We explore the cost function surface by deviating each parameter at a 
time, starting from a final solution in the parameter space. 

Table 6 
Free parameters and the corresponding default model parameters.  

Model parameters Default values of 
model 
parameters 

Free 
parameters 

Ranges of free 
parameters [min, 
max] 

Connectivity matrices 
WEE, WPE, WSE, WEP, 
WPP, WSP, WES, and WPS 

Table. S1C θ1− 8 [0.1, 15] 

Thalamic input 
connectivity matrices 
WEth and WPth 

Table 1 
θ9,10 [0.1, 15] 

Short-term plasticity κd,EE 

and κf ,SE 
Table 4 

θ11,12 [0.5, 4] 

Synaptic kernel time 
constants τ Table 2 

θ13 [0.5, 1.5] 

Sigmoid function slopes r 
Table 3 

θ14 [0.5, 1.5] 

Thalamic input decay 
levels α1− 5 (BF and 
non-BF conditions) 

Equal to 1 θ15− 19 [0.1, 0.5] 

lateral inhibition Winter− SE 

for (BF and non-BF 
conditions) 

Table. S1C θ20− 24 [0.1, 15] 

Thalamic input strengths 
I1− 4 to Column 1 (non- 
BF conditions) 

Equal to 1 θ25− 28 [0.1, 1]  

Fig. 5. Flowchart of optimization procedure. (A) Optimization for an individual recording site. The iteration starts with N1 = 60 initial random solutions (parameter 
sets). The orange box ‘selection_gn’ selects the best solution (with highest R2) and fine-tunes that solution using the Gauss-Newton (gn) method to the next local 
minimum. The orange box ‘mt_gn’ mutates that locally optimal solution, one parameter at a time, resulting in N2 = 28 modified solutions. These are then fine-tuned 
again using the gn method. The white box ‘selection’ keeps the first N1 solutions with highest R2 from the N1 + 1 + N2 solutions. The blue box ‘mutation’ creates 
another N1 solutions, while ‘cross-over’ and ‘mt_co (mutated_cross-over)’ boxes each generate N3 random solutions (N3 = 2000). The next white box ‘selection’ again 
keeps the first (best) N1 solutions from these 2N1 + 2N3 solutions and replaces the initial solutions. The best solution for an individual site is selected after 10 it
erations. (B) Optimization across recording sites. The iteration starts with the best solution for each recording site. Noise is added to these solutions with a uniform 
distribution (range: ±std(i), i ∈ 1,2,…,28) to generate N4 = 1000 jittered solutions in the blue box ‘pool’. Each of these jittered solutions is then fine-tuned for each 
recording site with respect to R2 using the gn method (the orange boxes). The optimized solution for each recording site is updated iteratively if a fine-tuned solution 
with higher R2 is found. The iteration ends when there is no update. Then, for each recording site, the best-fitting solution is selected as the final solution. The number 
in the parentheses in each box indicates the resulting number of solutions. 
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2.5. Non-negative matrix factorization 

We examined whether a blind decomposition approach would yield 
similar predictions (e.g., ECD) as our model-fitting approach. The non- 
negative matrix factorization (a Matlab function nnmf) was used to 
decompose target MUA Φref

MUA [Nch ×T] into two non-negative matrices 
Annmf

MUA [Nch ×Npop] and Snnmf
rate [Npop ×T] where the root mean square re

sidual between Φref
MUA and Annmf

MUA⋅Snnmf
rate is minimized. The decomposed 

firing rates Snnmf
rate are then convolved with alpha kernels to generate 

current flows Snnmf
current . The time constants of the alpha kernels are opti

mized in similar procedure as in Fig. 5A to minimize the SSE between 
Φref

CSD and Annmf
CSD ⋅Snnmf

current . The ECD Φnnmf
ECD is then calculated in the same way 

as in Sections 2.3.3. 

3. Results 

We fitted the 28 parameters (see Methods section) of our cortical 
column model, such that the MUA and CSD derived from the electro
physiological data obtained at each recording site were explained best in 
a least squares sense. Concurrently with the parameters of the cortical 
column model, we also fitted a set of parameters of the observation 
model, namely the spatial sensitivity distribution of each neural popu
lation (i.e., MUA spatial profile AMUA) and the spatial distribution of 
current sinks and sources on pyramidal dendrites (i.e., CSD spatial 
profile ACSD). As a result, the fitted model predicted not only the MUA 
and CSD that we could compare to the empirically measured values, but 
also a set of latent (hidden) variables, namely the mean firing rates and 
the current flows of the neural populations. 

In Section 3.1, we present the predicted data (ΦMUA and ΦCSD) along 
with the target data (Φref

MUA and Φref
CSD) for a qualitative and quantitative 

Fig. 6. Visual comparison of target data and model simulations. (A, B) Target MUA (A) and CSD (B) at the four recording sites. The rows show the responses to 
different tone frequencies at each recording site. For example, the 1st row shows responses to 200, 260, 300, 400, and 600 Hz at site 1. The middle column 
(highlighted by the blue rectangle) represents the responses to tones at the BF of each recording site (300, 1000, 500, and 6400 Hz, respectively). The other columns 
represent non-BF responses. In the target data, the maximum value of each row was normalized to 1. (C, D) The simulated MUA (C) and CSD (D) from the final model 
solutions. Response amplitudes are color-coded (blue: positive; red: negative). 
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comparison. In Section 3.2, we show the estimated latent variables, 
covering neural population activity (firing rates and current flows), as 
well as the ECD magnitude at the recording sites (ECD, ΦECD). We also 
compare ΦECD with the ECD estimated by a non-negative decomposition 
approach Φnnmf

ECD to evaluate the advantages of our model-fitting 
approach. Section 3.3 reports the estimated parameters of the observa
tion model: MUA spatial profile AMUA and CSD spatial profile ACSD. In 
Section 3.4, we finally examine the fitted parameters of the cortical 
column model and assess their similarity across the four recording sites 
(electrode penetrations). 

3.1. Explanation of the target data 

The waveforms for measured and predicted MUA and CSD for all 4 
recording sites are shown in Fig. 6. These recording sites were selected to 
cover a wide range in tonotopic space in A1. More detailed depictions, 
alongside the goodness of fit (R2), are given in Fig. S4. The target data 
for model fitting includes the Φref

MUA and Φref
CSD of the evoked response to 

the best frequency (BF) and non-BF tones (see Fig. 6A and B). The BFs of 
the four recording sites were determined to be 300 Hz, 1000 Hz, 500 Hz, 
and 6400 Hz, respectively. In Φref

MUA, L4 (centering around Ch 10) shows 
higher MUA in BF conditions than in non-BF conditions. This corre
sponds to the frequency selectivity (tuning curves) of neural population 
responses that give rise to the tonotopic organization of A1. The BF 
response may include sustained activity (e.g., 500 Hz at site 3) or a 
second peak after 150 ms (e.g., 300 Hz at site 1). The non-BF responses 
at recording site 1 (i.e., 200, 260, 400, and 600 Hz) show negative firing 
rates (after subtraction of the baseline), reflecting the strong effect of 
lateral inhibition. In Φref

CSD, there are early L4 sinks and sources (espe
cially clearly seen at sites 2 and 4) followed by sinks and sources at L2/3 
and L5/6. The CSD also revealed longer-lasting sinks (red) and sources 
(blue) occurring in various channels after 100 ms (especially clearly seen 
at sites 3 and 4). 

The predicted data ΦMUA and ΦCSD capture the general pattern of 

target data (Fig. 6C and D). The negative firing rate (relative to the pre- 
stimulus baseline, as at site 1) cannot be reproduced because we only 
allow non-negative firing rates and a non-negative MUA spatial profile 
to avoid overfitting (see Discussion). There are some other minor dif
ferences between the simulated and target responses. For example, the 
sustained firing rate (e.g., 500 Hz at site 3) is not well captured by the 
model. The patterns in ΦMUA and ΦCSD tend to be sharper and do not 
capture the smooth propagation across layers in Φref

MUA, and Φref
CSD, which 

is due to the limited number of populations (Npop = 7) in the model. 

3.2. Estimated latent variables 

3.2.1. Neural activity 
The final model solutions provide estimated network dynamics that 

may underlie the empirical observations. Fig. 7 shows the firing rates 
Srate of Column 1 (representing the recording site) as well as the strength 
of thalamic inputs based on the common solutions. The network dy
namics across the recording sites, especially sites 1, 2, and 4, share many 
similarities. The thalamic inputs are stronger under the BF than the non- 
BF conditions, which agrees with the tonotopic organization of A1. The 
direct input connections lead to stronger early peaks in E and PV activity 
under the BF than the non-BF conditions (early intra-column E→PV ef
fect). In contrast, the early peaks in SOM activity are often weaker under 
the BF than the non-BF conditions. This is due to the excitatory input 
from Column 2 via E→SOM connections (lateral inhibition, late inter- 
column E→SOM effect). Additionally, strong SOM activity at longer la
tencies appears to coincide with an increase in short-term facilitation of 
inter-column E-to-SOM connections (Fig. 7). The BF and non-BF re
sponses show opposite dynamic patterns: strong PV inhibits SOM in BF 
responses, whereas the SOM inhibits PV in non-BF responses. 

3.2.2. Contribution to EEG/MEG components P1, N1, and P2 
The equivalent current dipole (ECD) ΦECD derived at each recording 

site provides a link between intracranially-recorded LFPs and 
extracranially-recorded EEG/MEG signals. The ECD can be calculated by 

Fig. 7. Estimated firing rates and plasticity of inter-column connections under BF and non-BF conditions. (A) The estimated firing rates are grouped into layers for 
visualization. The PV populations (blue curves) show stronger activity in BF responses (middle column) than in non-BF responses (other columns), where the peak 
values seem mainly to be affected by the strength of thalamic input (i.e., tonotopy). In contrast, the SOM populations (red curves) show long-lasting activity in non-BF 
responses, which reflects the effect of lateral inhibition. (B) The plastic lateral inhibition is reflected by the short-term plasticity variables xinter− SE⋅uinter− SE on the inter- 
column E-to-SOM connections Winter− SE as in Eq. (9). The lateral inhibition from column 2 (BF site) to column 1 (recording site) is rising over time (red dashed curves) 
under non-BF conditions, whereas the lateral inhibition from column 1 to column 2 is slightly falling (black curves). In the BF conditions, the two curves are identical. 
(E1: L23 E population, P1: L234 PV population, S1: L234 SOM population, E3: L4 E population, E2: L56 E population, P2: L56 PV population, S2: L56SOM population, 
and Th: thalamic input). 
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Eq. (14), where the current flows associated with activity of specific 
neural populations contribute to the ECD by different weights and di
rections based on the CSD spatial profile ACSD. Fig. 8A shows the pre
dicted ECDs and the contributions of current flows by the E, PV, and 
SOM populations at the four recording sites under BF and non-BF con
ditions. Although there is no ground truth for verification, the predicted 
ECDs (the black curves in Fig. 8A) show a pattern of positive/negative/ 
positive deflections at approximately 25, 40, and 80 milliseconds (site 1 
deviates from that with considerably longer latencies) that can be 
related to the EEG/MEG components P1, N1, and P2. These deflections 
are well-known to occur in humans in response to pure tone stimulation 
at latencies of approximately 55, 100, and 160 milliseconds, while 
corresponding peaks have been described in macaques at 30, 55, and 70 
milliseconds (Itoh et al., 2019). The deflections are the net result of the 
summation and cancelation of current flows. To gain insight into 
cell-type specific contributions to these deflections, we summed the 
dipole magnitudes from each of the cell types (while keeping the 
thalamic input separate), resulting in only four dipole magnitudes (i.e., 
di⋅Scurrent, i where i ∈ {E,PV, SOM, Th} as in Eq. (14)). For example, the 
PV dipole signals (yellow curves in Fig. 8A) represent the gross current 
flow in pyramidal dendrites (i.e., the IPSP on E1, E2, and E3 

populations) elicited by the PV neurons (i.e., PV1 and PV2 populations). 
In Fig. 8A, we find that the first positive peak of the ECD (related to 

P1) is consistently due to the thalamic input (purple curves). The first 
negative peak of the ECD (related to N1) can be due to either the E 
current (blue curves, sites 2, 3, and 4) or the PV current (red curves, site 
1), which depends on the dipole direction derived from the CSD spatial 
profile. The second positive peak of the ECD (black line), associated with 
the P2, is not uniquely attributable to a particular deflection in the cell 
currents. For the non-BF condition, it mostly coincides with a positive 
deflection of the SOM current, except for site 3, where it coincides with a 
peak in the E current. For the BF condition, the P2 peak is mostly 
associated with a peak in the E current, except for site 1, where we see a 
positive peak in the PV current at that latency. Based on these predicted 
ECDs and cell-type specific contributions, the P1 component is likely to 
result from the thalamic input (including the BF and non-BF columns). 
The N1 component is likely to result from the activity of E/PV neurons 
(also including the BF and non-BF columns). The origin of the P2 
component cannot be identified so clearly. It may be caused by a change 
in SOM activity for non-BF columns (not confirmed in site 3) and by a 
change in E activity in BF columns (not confirmed in site 1). 

The model fitting approach provides a way to decompose the LFP 

Fig. 8. Simulated equivalent current dipole (ECD) signals. (A) The simulated ECD (black curves) reflects the contribution of a recording site to the EEG/MEG signal 
(before considering the orientation with respect to the MEG sensors). The simulated ECD signal is calculated as the sum of population-level CD signals (colored 
curves) representing the effective current flows along the long dendrites of pyramidal cells induced by individual neural populations or thalamic input (E: E1, E2, and 
E3; PV: PV1 and PV2; SOM: SOM1 and SOM2; Th: thalamic input). The vertical lines indicate the peak latencies of the deflections in the ECD signals. (B) Simulated 
ECD signals obtained by the NNMF approach. 
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into temporal and spatial components and predict the ECD at the 
recording site. We were curious whether a blind decomposition 
approach would yield similar predictions. To examine this possibility, 
we decomposed the MUA using non-negative matrix factorization 
(NNMF), determined optimized current flows and CSD spatial profile, 
and calculated the dipole signal (Section 2.5). We found that the NNMF 
approach, although it leads to improved goodness of fit (Fig. S5) 
compared with the model fitting approach, yields implausible time 
courses of the ECDs (Fig. 8B). The time courses of the magnitude of 
dipoles underlying auditory evoked responses usually feature a pattern 
of alternating peaks and troughs following that of the respective scalp 
recordings (see, e.g., Knösche et al., 2002). As the modeling approach 
does reproduce an EEG/MEG time course (through the ECD) with the 
typical peaks of P1, N1, and P2, it appears to be a promising candidate 
for realistically accounting for the MUA and CSD. Note that the precise 
latencies of these peaks are usually quite variable even in humans and 
depend on a number of factors (Picton, 2010). 

3.2.3. Parameters of the observation model 
The observation model contains an MUA spatial profile AMUA and a 

CSD spatial profile ACSD that project firing rates Srate and current flows 
Scurrent to observations ΦMUA and ΦCSD. We now check the estimated 

spatial profiles AMUA and ACSD provided by the final solutions. The MUA 
spatial profiles AMUA represent the sensitivity of the 16 laminar electrode 
channels to the firing rates of neural populations. Fig. 9A shows the 
MUA spatial profile at each recording site (electrode penetration). The 
distributions of E3 center around channel 10, which is consistent with 
the distribution of L4 excitatory neurons. However, the distributions of 
E1 and E2 form one to two clusters, a scenario which does not agree with 
the expected distribution of excitatory neurons in L2/3 and L5/6. 
Similar observations are made for SOM and PV neurons. This demon
strates that the best grouping of neurons into a few masses, such that 
their mean activities explain the measured effects, does not necessarily 
coincide with their strict assignment to some layers. 

Fig. 9B shows the CSD spatial profile of each recording site, which 
represents the overall distribution of current sinks and sources along the 
dendrites of the excitatory cells (incl. E1, E2, and E3). We found that the 
distributions of sinks and sources interlace and spread widely, and differ 
across recording sites. This may correspond to the relatively high vari
ability in CSD across recording sites. This may be also due to the fact that 
the depth of the 16-channel electrode within the cortex is not necessarily 
identical across the 4 electrode penetrations. 

Fig. 9. Estimated spatial profiles. (A) MUA spatial profiles. Each column represents the laminar distribution (across electrode channels) of firing rates of neural 
populations within each recording site. (B) CSD spatial profiles. Each column represents the corresponding laminar distribution of sinks and sources. The red arrow 
indicates the dipole length and direction (from center of sinks to center of sources). 
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3.3. Fitted parameters 

Next, we checked whether the common solutions for the four 
recording sites share similar patterns. In Fig. 10, we show parameters 
related to the tuning curve and lateral inhibition. The tuning curve is 
characterized by four parameters (θ25− 28) which define the strength of 
thalamic input to the recording site (Column 1) under the four non-BF 
conditions. The tone frequencies in Fig. 10 are plotted on a log scale. 
The lateral inhibition is characterized by five parameters (θ20− 24) which 
rescale the default strengths of inter-column E-to-SOM connections. We 
found M-shape lateral inhibition curves (Fig. 10, lower panel), where 
lateral inhibition increases as the tone frequency deviates from the BF 
tone but decreases as the tone frequency deviates further (not reached 
for site 2). The input strengths under the four non-BF conditions are all 
weaker than 0.5, and decrease as the tone frequency becomes more 
distant from the BF of the neurons (Fig. 10, upper panel), which is 
consistent with features of spectral tuning curves in A1. The lateral in
hibition and tuning curves directly affect the activities of PV and SOM 
populations, respectively, as demonstrated by the firing rates under BF 
and non-BF conditions in Fig. 7. 

We then checked the cost function surface by separately scanning 
each parameter around the solutions (scanning ranges as listed in 
Table 6). The surfaces of the four recording sites are shown in Fig. 11. In 
general, we found that the values of solutions (indicated by triangles) 
are close to each other in the scan range, and the cost (normalized SSE) 
increases as the values deviate from the solutions. Hence, at least local 
minima of the cost function exist, indicating clearly defined solutions. 
The fact that these solutions are close to each other in parameter space 
adds to their credibility, based on the assumption that the wiring 
schemes of cortical columns are similar within the auditory cortex. 

4. Discussion 

In this study, we combined a detailed neural circuit model of the 
cortex with fine-grained laminar LFP recordings in monkey primary 
auditory cortex (A1) to estimate cell-type specific contributions to both 
intracranially and extracranially recorded signals. We show that evoked 
responses at four example recording sites, covering a wide range in 
tonotopic space in A1, share similar network dynamics (i.e., E, PV, and 
SOM activity) (Fig. 7), but can show diverse patterns in net trans
membrane extracellular current flow, as reflected by CSD analysis, due 
to the variation in spatial profiles (Fig. 9). The four recording sites also 
share similar input curves and lateral inhibition curves (Fig. 10) as well 
as similar intra-column configurations (Fig. 11). These results support 
the notion of canonical microcircuits (Douglas et al., 1989; Douglas and 
Martin, 1991, 2004a) and a consistent pattern of neural dynamics and 
interactions contributing to sensory processing in A1. 

We demonstrate the feasibility of our model-fitting approach by 

transforming laminar profiles of MUA and CSD into products of spatial 
and temporal components. The fitted model provides insights into 
neural interactions and cell-type specific activities contributing to 
equivalent current dipoles (ECDs) underlying typical EEG or MEG re
cordings (Fig. 8A). This is supported by the plausible ECD signal derived 
from the estimated current flows and CSD spatial profile. In contrast, an 
alternative approach based on non-negative matrix factorization, 
despite a higher goodness of fit to MUA and CSD response profiles 
(Fig. S5A), is relatively uninformative with regard to elucidating the 
activities of distinct neural populations (Fig. S5B) and plausible syn
thesized ECD signals (Fig. 8B). 

4.1. PV-SOM interaction 

We observed distinct patterns in the estimated activity of PV and 
SOM interneurons between BF and non-BF responses (Fig. 7). In BF re
sponses, PV interneurons show faster and stronger activity than SOM 
interneurons. In non-BF responses, PV interneurons show relatively 
weak activity, and the activity of SOM interneurons dominates after 
around 50 ms. This phenomenon results from various literature-based 
settings for PV and SOM neurons in the cortical column model with 
regard to thalamic input (no direct input to SOM, Ji et al., 2016), syn
aptic time constants (slow dynamic in SOM, Dura-Bernal et al., 2022; 
Jouhanneau et al., 2018), inter-column connections (only E-to-SOM, 
considering a wider spatial distribution of inhibitory innervation by 
SOM than PV neurons, Kato et al., 2017; Lakunina et al., 2020), and 
short-term plasticity (STF on E-to-SOM connections, Hayut et al., 2011; 
Silberberg and Markram, 2007). In other words, the early PV activity is 
directly related to tonotopic (thalamic) input, and the late SOM activity 
is directly related to lateral inhibition. Based on this distinction, the 
switch between the “BF pattern” and “non-BF pattern” along the tono
topic axis is sharpened by mutual inhibition between PV and SOM in
terneurons (Hahn et al., 2022) and should be observable in possible 
future experiments involving detailed recordings from different neuron 
types, for example, through calcium imaging. 

4.2. Generation of P1, N1, and P2 components 

Auditory evoked responses recorded via EEG/MEG are typically 
characterized by a temporal sequence of positive and negative de
flections or waves designated as the P1, N1, and P2 components. Studies 
based on the Human Neocortical Neurosolver (Kohl et al., 2022; Ney
motin et al., 2020) suggest that the P1 and P2 components are partly 
generated by upward currents within the dendrites of cortical pyramidal 
neurons due to bottom-up inputs, while the N1 component is partly 
generated by downward currents associated with top-down inputs. 
Studies using a multi-column model of the auditory cortex (Hajizadeh 
et al., 2019, 2021, 2022) further emphasize the dependence of current 

Fig. 10. Input strength and lateral inhibition in 
evoked responses. The fitted parameters are 
plotted against tone frequency (Hz in log scale). 
The parameters θ25− 28 rescale the default 
thalamic input strengths I1− 4 (as illustrated by 
the red arrow to the cortical column 1, upper 
left panel) under the four non-BF conditions 
(depicted as open circles). Note that the input 
strength to Column 1 under the BF condition 
(solid circles) is always fixed to 1. The param
eters θ20− 24 rescale the default lateral inhibition 
Winter− SE (as illustrated by the red arrows be
tween the two cortical columns, lower left 
panel) under the BF conditions (solid circles) 
and four non-BF conditions (open circles). The 
BFs corresponding to the four recording sites 
(300, 1000, 500, and 6400 Hz) are indicated 
alongside the solid circles.   
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orientation on the cellular location of the active synapses (e.g., api
cal/somatic), synaptic type (i.e., excitatory/inhibitory), inter-column 
connection type (e.g., feedforward, feedback, within-field), and 
folding of the cortex (i.e., the neuroanatomical topography of the 
cortical surface). At the level of a cortical column, our analyses of the 
cell-specific contributions to ECDs (Fig. 8A) suggests that initial 
thalamic input primarily contributes to P1, subsequent early activity of 
E and PV neurons (both BF and non-BF columns) primarily contributes 
to N1, and late SOM activity (especially in non-BF columns) joins the 
contribution to P2. We observed variability in peak latencies of the ECD 
signals at the four recording sites (Fig. 8A), due to the variance in 
thalamic inputs, intra-column connection strengths, and the CSD 
laminar spatial profile across cortical columns. 

4.3. Patterns of activity propagation 

In this study, we were unable to identify a consistent pattern of 
neural activity propagation across cortical layers and neural populations 

contributing to the auditory evoked response. Such patterns (e.g., from 
L4 to L2/3 and to L5) have been assumed in canonical cortical column 
models of visual and somatosensory areas (e.g., (Douglas and Martin, 
2004b)). However, such a stereotypical pattern might not always be the 
rule. For example, a study using thalamic stimulation suggested that 
activity in supragranular layers is initiated by infragranular cells and 
regulated by feed-forward inhibitory cells (Krause et al., 2014). More
over, specific patterns of information propagation are less likely to be 
found from a more detailed and complex network derived from existing 
animal-model databases (Billeh et al., 2020; Campagnola et al., 2022; Ji 
et al., 2016; Markram et al., 2015). Based on our estimated firing rates 
(Fig. 7) and MUA spatial profile (Fig. 9A), the three E populations (E1, 
E2, and E3) show early peaks at similar latencies because they all receive 
thalamic input. Clear propagation from L4 to L2/3 to L5 is therefore not 
observed. As for the activity of inhibitory neurons, PV1 activity is in 
general stronger than PV2 activity in BF responses, and SOM2 activity is 
stronger than SOM1 activity in non-BF responses. However, this pattern 
cannot be projected onto specific cortical layers, because the estimated 

Fig. 11. Normalized sum of squared errors (nSSE) between predicted and target observations as function of the free parameters. Each plot shows how the nSSE varies 
as a function of one of the free scaling parameters, while the rest of the parameters are kept constant to their optimal values. These scaling parameters (column 3 of 
Table 6) are stated on top of each plot together with the scaled model parameter (column 1 of Table 6) in brackets. See Table 6 for an overview of the model 
parameters, their default values, the free parameters scaling them, and the scaling ranges. The x-axes represent the parameter values normalized to their respective 
default values. The triangles represent the solutions for the four recording sites. 
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MUA spatial profiles of the same cell type (e.g., PV1 vs. PV2; SOM1 vs. 
SOM2) are not spatially exclusive. While our cortical column model was 
built with default connectivity based on laminar classification, the 
neural populations are found to spatially overlap after model fitting. 
Such spatial overlap of functional components may provide an alter
native framework for understanding the neural computations underly
ing sensory processing, for example, the role of lateral inhibition in A1 in 
rhythmic masking release (Fishman et al., 2012), spectral resolution 
(Fishman and Steinschneider, 2006), and complex tone processing 
(Fishman et al., 2000b). 

4.4. Limitations and future directions 

Several important limitations of the present work should be noted. 
First, our model considers only thalamic and lateral input and disregards 
inputs from areas outside of primary auditory cortex, e.g., frontal and 
entorhinal cortices (Schaefer et al., 2015). Such input may be increas
ingly important for explaining neural activity occurring at longer la
tencies. Second, the firing rate in our model ranges from 0 to 1, 
corresponding to baseline activity and maximum firing rates of each cell 
type, respectively. We restricted the sigmoid functions to be 
non-negative in order to prevent unreasonable cancelation between 
negative and positive firing rates in the fitting procedure. This comes 
with the price of failing to explain negative (relative to the pre-stimulus 
baseline) MUA activity. Third, in order to avoid over-fitting, we reduced 
model complexity by making a number of simplifying assumptions. For 
example, the intra-column settings of the two columns are assumed to be 
identical. The ratio of thalamic input to E and PV neurons is assumed to 
be fixed. The inter-column connections are assumed to be symmetric. 
The MUA spatial profile is assumed to have a fixed ratio of sensitivity to 
E, PV, and SOM neurons. In general, these assumptions lead to a reduced 
goodness of fit. We cannot guarantee that we have found globally 
optimized solutions, but current best solutions show consistent neural 
activities and fitted parameters across the four recording sites examined. 
The current best solutions can serve as a prior to improve goodness of fit 
to data from individual sites using a more flexible model, or one with a 
greater number of free parameters. 

In this study, we demonstrated the feasibility of our model-fitting 
approach in estimating cell-type specific activity across cortical layers 
based on LFP recordings in A1. So far the target observations only include 
tone-evoked responses (BF and non-BF conditions) at four recording sites. 
Moreover, our cortical column model was designed with a relatively simple 
architecture in order to avoid an underdetermination issue arising from 
insufficient data constraints. However, our simplified model could be 
extended in several ways. For example, VIP interneurons could be included 
to examine the modulatory effects of attention on different inhibitory states 
(Hahn et al., 2022). The matrix thalamic input (innervating the supra
granular cortex) could be included as tone-insensitive input (Müller et al., 
2020) to investigate neural mechanisms underlying other neurophysio
logical phenomena in auditory cortex, such as “Off” responses and 
mismatch responses (e.g., (Fishman, 2014; Fishman and Steinschneider, 
2009)). Corticothalamic pathways (which emanate from L5/6 to the thal
amus) could also be included to model the modulation of thalamic input 
(Antunes and Malmierca, 2021). Lastly, spontaneous activity in LFP re
cordings could be considered in future work to examine the neural un
derpinnings of interactions between spontaneous and stimulus-evoked 
neural activity in auditory cortex (e.g., Dura-Bernal et al., 2022). 

5. Conclusions 

We demonstrated the feasibility of a model-fitting approach in esti
mating cell-type specific population activity from laminar LFPs evoked 
by sound stimuli, as well as estimating cell-type specific contributions to 
the P1, N1, and P2 components of extracranial evoked responses. This 
model-fitting approach provides a foundation for further investigation 
into the neural dynamics of cortical sensory processing. 
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