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Abstract  11 

Evoked neural responses to sensory stimuli have been extensively investigated in humans and animal 12 

models both to enhance our understanding of brain function and to aid in clinical diagnosis of 13 

neurological and neuropsychiatric conditions. Recording and imaging techniques such as 14 

electroencephalography (EEG), magnetoencephalography (MEG), local field potentials (LFPs), and 15 

calcium imaging provide complementary information about different aspects of brain activity at 16 

different spatial and temporal scales. Modeling and simulations provide a way to integrate these 17 

different types of information to clarify underlying neural mechanisms.  18 

In this study, we aimed to shed light on the neural dynamics underlying auditory evoked responses 19 

by fitting a rate-based model to LFPs recorded via multi-contact electrodes which simultaneously 20 

sampled neural activity across cortical laminae. Recordings included neural population responses to 21 

best-frequency (BF) and non-BF tones at four representative sites in primary auditory cortex (A1) of 22 

awake monkeys. The model considered major neural populations of excitatory, parvalbumin-23 

expressing (PV), and somatostatin-expressing (SOM) neurons across layers 2/3, 4, and 5/6. Unknown 24 

parameters, including the connection strength between the populations, were fitted to the data. Our 25 

results revealed similar population dynamics, fitted model parameters, predicted equivalent current 26 

dipoles (ECD), tuning curves, and lateral inhibition profiles across recording sites and animals, in spite 27 

of quite different extracellular current distributions. We found that PV firing rates were higher in BF 28 

than in non-BF responses, mainly due to different strengths of tonotopic thalamic input, whereas SOM 29 

firing rates were higher in non-BF than in BF responses due to lateral inhibition.  30 

In conclusion, we demonstrate the feasibility of the model-fitting approach in identifying the 31 

contributions of cell-type specific population activity to stimulus-evoked LFPs across cortical laminae, 32 

providing a foundation for further investigations into the dynamics of neural circuits underlying cortical 33 

sensory processing.  34 

 35 
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1 Introduction 37 

Neural responses to sensory stimuli have been extensively studied in order to elucidate how the brain 38 

represents features of the environment. Evoked responses are a specific kind of event-related signal 39 

that reflect (mostly electrical) brain activity in response to stimuli, such as tactile impulses, images, or 40 

sounds. In humans, cortical evoked responses can be recorded noninvasively via 41 

electroencephalography (EEG) and magnetoencephalography (MEG), which are widely used 42 

methodologies for probing brain function in health and disease. In order to draw valid and informative 43 

conclusions from these noninvasively recorded signals, it is important to understand the neural 44 

mechanisms underlying their generation. The cortical sources of EEG and MEG are thought to be 45 

intracellular currents primarily associated with postsynaptic potentials in pyramidal neurons (Lopes 46 

da Silva, 2013; Næss et al., 2021; Vaughan H.G.Jr, 1988). Pyramidal neurons and interneurons 47 

constitute multiple distinct populations in different layers of the cortex, which are locally and globally 48 

interconnected in a recurrent fashion. Already at the local level, these recurrent networks implement 49 

important functions (e.g., Chien et al., 2019; Hahn et al., 2022; Kunze et al., 2019). In order to 50 

eventually map the observed evoked responses onto these functions, it is crucial to obtain detailed 51 

information about how various neuronal cell types and synaptic connections contribute to their 52 

generation. 53 

 54 

Invasive studies in animal models can contribute substantially to this aim by allowing the 55 

recording/imaging of layer-specific local field potentials (LFP) and cell-type specific neural firing (see 56 

Sections 1.1 and 1.2). Such animal model studies have already provided considerable information 57 

about lamina-specific neural activity (Bruyns-Haylett et al., 2017; Hajizadeh et al., 2019, 2021, 2022; 58 

Kohl et al., 2022; Neymotin et al., 2020; Sumner et al., 2021) and enhanced our understanding of the 59 
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functional roles of various types of inhibitory interneurons in cortical processing (Aponte et al., 2021; 60 

Blackwell & Geffen, 2017; Liu et al., 2019; Liu & Kanold, 2021; Studer & Barkat, 2022). However, to 61 

more thoroughly elucidate the underlying neural generators of evoked responses and their 62 

relationship with information processing in the brain, it is necessary to mechanistically link together 63 

the available information about cell types and local neuronal circuits in the brain, intracranially-64 

recorded LFPs, and extracranially-measured EEG and MEG signals. This task requires computational 65 

models. Although several efforts in this direction have been made (see Section 1.3), most modeling 66 

studies, such as spiking-based single-column models or rate-based multi-column models, are limited 67 

by being purely forward simulations without fitting the models to actual recordings of brain activity 68 

(e.g., LFPs and EEG/MEG), leaving their proposed theories less mechanistically and empirically 69 

grounded. 70 

1.1 Layer-specific data - local field potentials  71 

Linear-array multi-channel electrodes are a unique methodological tool which allows the simultaneous 72 

recording of LPFs across cortical layers (e.g., Fishman et al., 2001; Schroeder et al., 1998; 73 

Steinschneider et al., 2003). The high spatial resolution of LFPs provides valuable information 74 

regarding the intracranial generators of event-related potentials/fields (ERPs/ERFs) and information 75 

flow within and across cortical layers. Multi-unit activity (MUA), which can be extracted from high-76 

frequency components of LFPs, reflects the spiking of local neuron populations in the vicinity of each 77 

electrode contact. Current source density (CSD), the second spatial derivative of the LFPs, provides 78 

information about the net transmembrane currents that give rise to the measured LFPs. MUA and 79 

CSD provide complementary insights into the dynamics of activity within local neural circuits, as MUA 80 

primarily reflects suprathreshold neuronal firing (output), while CSD primarily reflects current flow 81 

associated with synaptic input, such as excitatory and inhibitory post-synaptic potentials 82 

(EPSPs/IPSPs). However, the disentanglement of meaningful functional components of MUA and 83 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2022. ; https://doi.org/10.1101/2022.12.21.521407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521407
http://creativecommons.org/licenses/by-nc/4.0/


5 

CSD derived from trans-laminar LFP signals is an ill-posed problem. MUA contains spikes originating 84 

from different populations of excitatory and inhibitory neurons, and CSD is a spatial mixture of 85 

extracellular sinks and sources that can be either active (i.e., synaptic activity) or passive (i.e., return 86 

currents). Excitatory synaptic activity results in an active sink and a passive source, whereas inhibitory 87 

synaptic activity results in an active source and a passive sink. Moreover, the interpretation of activity 88 

(especially CSD) at later latencies is more uncertain due to the involvement of long-range cortical 89 

inputs (Happel et al., 2010). So far, evoked CSD and MUA have been extensively used to characterize 90 

tuning curves (Fishman et al., 2000a, 2000b; Fishman & Steinschneider, 2006, 2009; Steinschneider 91 

et al., 1998), differentiate responses to different stimuli (e.g., best-frequency [BF] vs. non-BF and 92 

standard vs. deviant) (Fishman & Steinschneider, 2012; Lakatos et al., 2020; O’Connell et al., 2011; 93 

Schaefer et al., 2015), and compare local neural population responses in different brain regions (e.g., 94 

core vs. belt regions of auditory cortex) (Banno et al., 2022). Statistical analyses in these studies 95 

mostly focused on neuronal activity occurring at specific latencies (usually within 50ms) in specific 96 

cortical layers (usually layer 4 or 2/3). An alternative approach, called laminar population analysis 97 

(LPA), was proposed to decompose the recorded LFP and MUA into firing rates of multiple neural 98 

populations and corresponding spatial profiles (Einevoll et al., 2007; Gła̧bska et al., 2014; Głąbska et 99 

al., 2016). However, the extracted components were only mapped to excitatory populations, and the 100 

connections between populations were indirectly estimated by a template-fitting analysis. In short, 101 

despite the high spatial specificity provided by LFPs and CSD analysis, our understanding of the 102 

information flow within neural circuits that give rise to these recorded signals is limited by the 103 

underdetermined inverse problem (Tenke & Kayser, 2012).  104 

1.2 Cell type-specific activity in auditory cortex 105 

Calcium imaging and optogenetic techniques make it possible to observe the activity of specific 106 

neuron types in auditory cortex. The activity of pyramidal cells is actively shaped by inhibitory 107 

interneurons (Liu et al., 2019). The major inhibitory interneuron types have specific characteristics 108 
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with regard to morphology, targets, electrophysiology, and plasticity (Studer & Barkat, 2022), and 109 

appear to play distinct functional roles in cortical information processing (Blackwell & Geffen, 2017). 110 

Parvalbumin-expressing (PV) interneurons are fast-spiking neurons and mostly show higher 111 

spontaneous and tone-evoked firing rates than excitatory neurons. They target the soma, proximal 112 

dendrites, and initial segment of the axon of excitatory neurons, providing efficient and strong 113 

inhibition to excitatory neurons within the cortical column (a radius of up to 130 μm). PV interneurons 114 

receive inputs from both local excitatory neurons and the thalamus (MGBv). Functionally, PV 115 

interneurons are thought to contribute to the balance of excitation and inhibition and to the control of 116 

bottom-up (feedforward) information flow (Hamilton et al., 2013). Somatostatin-expressing (SOM) 117 

interneurons, on the other hand, show lower spontaneous and tone-evoked firing rates than PV 118 

interneurons. They target the distal dendrites of excitatory neurons, and their inhibition can reach 119 

widely (a radius of up to 300 μm) along the tonotopic axis. SOM interneurons receive excitatory inputs 120 

mainly within the cortex and much less from the thalamus (Ji et al., 2016). The synapses from 121 

excitatory to SOM interneurons are short-term facilitating, whereas the synapses between various 122 

types of neurons (e.g, the excitatory synapses between pyramid cells and fast-spiking PV neurons) 123 

are mostly short-term depressing (Hayut et al., 2011). SOM interneurons show slower activation 124 

dynamics and wider lateral inhibition than PV interneurons, which suggests a functional role of SOM 125 

neurons in integrating information over temporal and spectral domains. PV and SOM interneurons 126 

mutually inhibit each other. Both PV and SOM interneurons are inhibited by vasoactive-intestinal-127 

peptide-expressing (VIP) interneurons which provide cross-modal modulation of sensory coding 128 

(Bigelow et al., 2019). The complex dynamics and functional roles of the various types of interneurons 129 

have been further investigated via modeling studies which considered the structural and functional 130 

properties of these different interneurons (Hahn et al., 2022; Park & Geffen, 2020). 131 
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1.3 Existing biological models 132 

Biological models have been used to bridge the gap between microscopic properties (e.g., neuron 133 

types, single-unit neurophysiology, and morphology) and meso-/macroscopic observations (e.g., 134 

LFP/EEG/MEG signals). These models vary in their level of detail and scope. For example, a single-135 

column model of the primary visual cortex (consisting of excitatory and inhibitory neurons in layers 136 

2/3, 4, 5, and 6) was constructed to simulate laminar LFPs under different input conditions (Hagen et 137 

al., 2016, 2018). A single-column model of the primary auditory cortex (consisting of E, PV, SOM, VIP, 138 

and Neurogliaform cells in six layers) was recently constructed to simulate LFP, CSD, and EEG 139 

signals that replicate many experimental observations such as spontaneous neural activity and 140 

evoked responses to speech input (Dura-Bernal et al., 2022). Such detailed single-column models 141 

predict the contribution of layer- and cell-type-specific neuronal populations when the simulations 142 

match experimental observations. Some other, less detailed, models have been constructed to 143 

account for the generation of evoked responses. A single-column model (consisting of excitatory and 144 

inhibitory neurons in layers 2/3 and 5) using Human Neocortical Neurosolver suggests the contribution 145 

of a sequence of bottom-up thalamic inputs (targeting the soma of pyramidal neurons and causing 146 

upward currents) and top-down cortical inputs (targeting dendrites of pyramidal neurons and causing 147 

downward currents) (Kohl et al., 2022; Lakatos et al., 2020). This single-column model relates the 148 

ERP/ERF to intracellular currents in pyramidal long dendrites but leaves the origins of the sequences 149 

of inputs unexplained. This issue was addressed by a rate-based core-belt-parabelt model that 150 

includes an entire network of brain regions comprising auditory cortex (208 cortical columns, each 151 

column consisting of one excitatory and one inhibitory population), where ERFs are considered as 152 

the weighted sum of spatially distributed damped harmonic oscillators emerging out of coupled 153 

excitation and inhibition (Hajizadeh et al., 2019, 2021, 2022). This model provides a holistic 154 

perspective on the generation of ERFs. However, the proposed damped modes are extractions from 155 

the whole network dynamics, which can be difficult to link with LFP observations for validation. There 156 
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remain several principal shortcomings in modeling evoked responses. On the one hand, models that 157 

take into account neuronal details (e.g., various types of inhibitory neurons) lack a sufficient 158 

consideration of inter-column or inter-area interaction. On the other hand, models that focus on 159 

network dynamics and mechanisms provide less information about the role of different inhibitory 160 

neurons, and the simulations only qualitatively match the LFP/EEG/MEG recordings. Hence, there is 161 

a need for biological models that incorporate both a high degree of detail and a broad scope to clarify 162 

the neural underpinnings of cortical evoked responses.  163 

1.4 Goals and approach of this study 164 

In this study, we attempt to overcome the above-mentioned limitations by developing a multi-column 165 

model of auditory cortex with sufficient detail regarding neural populations and their interconnections 166 

to quantitatively reproduce layer-specific intracranial LFP recordings and qualitatively explain 167 

extracranially observable evoked responses. We utilized a biological cortical column model 168 

accounting for cell-type-specific interactions, which was integrated into a minimalistic multi-column 169 

array, representing the most relevant aspects of cortical architecture with respect to the tonotopic 170 

processing of auditory stimuli. Model parameters were specified by fitting the model to LFPs of tone-171 

evoked responses simultaneously recorded across the layers of primary auditory cortex (A1) of awake 172 

monkeys. We show that the proposed model not only consistently replicates and explains detailed 173 

features of tone-evoked LFPs in A1, but also reproduces relevant aspects of extracranially-recorded 174 

evoked responses and predicts cell-type specific contributions to these signals. 175 

 176 

2 Methods 177 
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2.1 Experimental data 178 

2.1.1 Acquisition and preprocessing  179 

Neurophysiological data were obtained from A1 in 3 adult male macaque monkeys (Macaca 180 

fascicularis) using previously described methods (Fishman & Steinschneider, 2010; Steinschneider 181 

et al., 2003). All experimental procedures were reviewed and approved by the Association for 182 

Assessment and Accreditation of Laboratory Animal Care-accredited Animal Institute of Albert 183 

Einstein College of Medicine and were conducted in accordance with institutional and federal 184 

guidelines governing the experimental use of non-human primates. Animals were housed in our 185 

Association for Assessment and Accreditation of Laboratory Animal Care-accredited Animal Institute 186 

under daily supervision of laboratory and veterinary staff. Before surgery, monkeys were acclimated 187 

to the recording environment and were trained to perform a simple auditory discrimination task (see 188 

below) while sitting in custom-fitted primate chairs. 189 

 190 

Surgical procedure. Under pentobarbital anesthesia and using aseptic techniques, rectangular holes 191 

were drilled bilaterally into the dorsal skull to accommodate epidurally placed matrices composed of 192 

18-gauge stainless steel tubes glued together in parallel. Tubes served to guide electrodes toward 193 

A1 for repeated intracortical recordings. Matrices were stereotaxically positioned to target A1 and 194 

were oriented to direct electrode penetrations perpendicular to the superior surface of the superior 195 

temporal gyrus, thereby satisfying one of the major technical requirements of one-dimensional current 196 

source density (CSD) analysis (Müller-Preuss & Mitzdorf, 1984; Steinschneider et al., 1992). Matrices 197 

and Plexiglas bars, used for painless head fixation during the recordings, were embedded in a 198 

pedestal of dental acrylic secured to the skull with inverted bone screws. Perioperative and 199 

postoperative antibiotic and anti-inflammatory medications were always administered. Recordings 200 

began after at least 2 weeks of postoperative recovery. 201 

 202 
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Stimuli. Stimuli were generated and delivered at a sample rate of 48.8 kHz by a PC-based system 203 

using an RX8 module (Tucker Davis Technologies). Frequency response functions (FRFs) derived 204 

from responses to pure tones characterized the spectral tuning of the cortical sites. Pure tones used 205 

to generate the FRFs ranged from 0.15 to 18.0 kHz, were 200 ms in duration (including 10 ms linear 206 

rise/fall ramps), and were randomly presented at 60 dB SPL with a stimulus onset-to-onset interval of 207 

658 ms. Resolution of FRFs was 0.25 octaves or finer across the 0.15–18.0 kHz frequency range 208 

tested. All stimuli were presented via a free-field speaker (Microsatellite; Gallo) located 60 degrees 209 

off the midline in the field contralateral to the recorded hemisphere and 1 m away from the animal’s 210 

head (Crist Instruments). Sound intensity was measured with a sound level meter (type 2236; Bruel 211 

and Kjaer) positioned at the location of the animal’s ears. The frequency response of the speaker was 212 

flat (within 5 dB SPL) over the frequency range tested. 213 

 214 

Recordings. Neurophysiological recordings were conducted in an electrically shielded, sound-215 

attenuated chamber. Monkeys were monitored via video camera throughout each recording session. 216 

To promote alertness and attention to the sounds during the recordings, animals performed a simple 217 

auditory discrimination task (detection of a randomly presented noise burst interspersed among test 218 

stimuli) to obtain liquid rewards.  219 

 220 

Local field potentials (LFPs) and multiunit activity (MUA) were recorded using linear-array multi-221 

contact electrodes, comprising 16 contacts, evenly spaced at 150-micron intervals (U-Probe; Plexon). 222 

Individual contacts were maintained at an impedance of 200 kΩ. An epidural stainless-steel screw 223 

placed over the occipital cortex served as the reference electrode. Neural signals were bandpass 224 

filtered from 3 Hz to 3 kHz (roll-off 48 dB/octave) and digitized at 12.2 kHz using an RA16 PA Medusa 225 

16-channel preamplifier connected via fiber-optic cables to an RX5 data acquisition system (Tucker-226 

Davis Technologies). LFPs time-locked to the onset of the sounds were averaged on-line by computer 227 

to yield auditory evoked potentials (AEPs). CSD analyses of the AEPs characterized the laminar 228 
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distribution of net current sources and sinks within A1 and were used to identify the laminar location 229 

of concurrently recorded AEPs and MUA (Steinschneider et al., 1992, 1994). CSD was calculated 230 

using a 3-point algorithm that approximates the second spatial derivative of voltage recorded at each 231 

recording contact (Freeman & Nicholson, 1975; Nicholson & Freeman, 1975). MUA used to 232 

characterize the frequency tuning of each recording site (i.e., electrode penetration) was derived from 233 

the spiking activity of neural ensembles recorded within lower lamina 3, as identified by the presence 234 

of a large-amplitude initial current sink that is balanced by concurrent superficial sources in mid-upper 235 

lamina 3 (Fishman et al., 2001; Steinschneider et al., 1992). This current dipole configuration is 236 

consistent with the synchronous activation of pyramidal neurons with cell bodies and basal dendrites 237 

in lower lamina 3. Previous studies have localized the initial sink to the thalamorecipient zone layers 238 

of A1 (Metherate & Cruikshank, 1999; Müller-Preuss & Mitzdorf, 1984; Steinschneider et al., 1992; 239 

Sukov & Barth, 1998). To derive MUA, neural signals (3 Hz to 3 kHz pass-band) were high-pass 240 

filtered at 500 Hz (roll-off 48 dB/octave), full-wave rectified, and then low-pass filtered at 520 Hz (roll-241 

off 48 dB/ octave) before averaging of single-trial responses (for a methodological review, see (Supèr 242 

& Roelfsema, 2005)). MUA is a measure of the envelope of summed (synchronized) action potential 243 

activity of local neuronal ensembles (Brosch et al., 1997; O’Connell et al., 2011; Schroeder et al., 244 

1998; Supèr & Roelfsema, 2005; Vaughan H.G.Jr, 1988). Thus, whereas firing rate measures are 245 

typically based on threshold crossings of neural spikes, MUA, as derived here, is an analog measure 246 

of spiking activity in units of response amplitude (e.g., see (Kayser et al., 2007)). MUA and single-unit 247 

activity, recorded using electrodes with an impedance similar to that in the present study, display 248 

similar orientation and frequency tuning in primary visual and auditory cortex, respectively (Kayser et 249 

al., 2007; Supèr & Roelfsema, 2005). Adjacent neurons in A1 (i.e., within the sphere of recording for 250 

MUA) display synchronized responses with similar spectral tuning, a fundamental feature of local 251 

processing that may promote high-fidelity transmission of stimulus information to subsequent cortical 252 

areas (Atencio & Schreiner, 2013).  253 

 254 
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Positioning of electrodes was guided by online examination of click-evoked AEPs. Pure tone stimuli 255 

were delivered when the electrode channels bracketed the inversion of early AEP components and 256 

when the largest MUA and initial current sink were situated in middle channels. Evoked responses to 257 

40 presentations of each pure tone stimulus were averaged with an analysis time of 500 ms that 258 

included a 100 ms pre-stimulus baseline interval. The BF of each cortical site was defined as the pure 259 

tone frequency eliciting the maximal MUA within a time window of 0-75 ms after stimulus onset. This 260 

response time window includes the transient “On” response elicited by sound onset and the decay to 261 

a plateau of sustained activity in A1 (e.g., see (Fishman & Steinschneider, 2009)).  262 

 263 

At the end of the recording period, monkeys were deeply anesthetized with sodium pentobarbital and 264 

transcardially perfused with 10% buffered formalin. Tissue was sectioned in the coronal plane (80 m 265 

thickness) and stained for Nissl substance to reconstruct the (Morel et al., 1993) electrode tracks and 266 

to identify A1 according to previously published physiological and histological criteria (Kaas & Hackett, 267 

2000; Merzenich & Brugge, 1973; Morel et al., 1993). Based upon these criteria, all electrode 268 

penetrations considered in this report were localized to A1, although the possibility that some sites 269 

situated near the low-frequency border of A1 were located in field R cannot be excluded. 270 

2.1.2 Preparation for model fitting 271 

The target data for model fitting are comprised of the laminar MUA and CSD profiles of evoked 272 

responses to the best frequency (BF, see an example in Figure 1) and 4 non-BF tones at four 273 

recording sites (site 1 from monkey A, site 2 from monkey D, sites 3 and 4 from monkey E). For each 274 

recording site, the experimental data were cropped (time window: 0 to 200 ms, 200 timepoints), 275 

concatenated along the time axis, and normalized to their maximum peak, resulting in target MUA [1000 276 

timepoints × 16 channels] and target CSD [1000 timepoints × 12 channels] for model fitting. 277 
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Figure 1. Laminar profiles of evoked responses to a BF tone recorded in a representative electrode 278 

penetration into A1. The 16-channel electrode array records local field potentials (LFPs) from 279 

superficial to deep layers (2000 µm), from which current source density (CSD) and multi-unit activity 280 

(MUA) are derived. A schematic of the electrode array is shown on the left of the figure. For 281 

visualization, the values of response amplitude are also color-coded (positive values in blue; negative 282 

values in red). Tone onset and offset times are indicated by the vertical drop lines.  283 

 284 

2.2 Cortical column model 285 

The cortical model consists of two columns. Each column contains 7 neural populations identified by 286 

cell type and laminar location of their cell bodies: excitatory pyramidal neurons (L2/3 E, L4 E, and 287 

L5/6 E), inhibitory PV interneurons (L2/3/4 PV and L5/6 PV), and inhibitory SOM interneurons (L2/3/4 288 

SOM and L5/6 SOM). Each neural population is described by a rate-to-potential operator (Section 289 

2.2.4) and a potential-to-rate operator (Section 2.2.5) as in the Jansen-Rit model (Jansen & Rit, 1995). 290 

Different types of inhibitory interneurons were considered because of their distinct characteristics 291 

regarding morphology, connection motif, target neurons/locations, plasticity, spiking rate, synaptic 292 

time constant, and afferent inputs, making it likely that they differentially contribute to the observed 293 

MUA and CSD. Thus, the model was designed with the aim of reconstructing the dynamics of different 294 

interneuron types from the LFP data. To reduce model complexity, VIP interneurons were not included, 295 
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as VIP interneurons are thought to be involved in cortico-cortical interaction and neuromodulatory 296 

control (Mesik et al., 2015). We would like to note that, within our model framework, the number of 297 

neural populations is flexible and its modification would only lead to different degrees of granularity in 298 

the spatiotemporal decomposition of MUA and CSD. 299 

As illustrated in Figure 2A, column 2 represents a BF recording site (cortical column) that responds 300 

optimally to the presented tone stimulus, while column 1 represents an adjacent non-BF recording 301 

site that responds sub-optimally to the presented tone stimulus. For simplicity, the configurations of 302 

the two columns were set to be identical, and the two columns inhibit each other through symmetric 303 

inter-column E-to-SOM connections. The E and PV populations receive direct thalamic input with a 304 

fixed ratio based on the literature (see Section 2.2.2). Column 2 (BF site) receives the full strength of 305 

thalamic input (in=1), and Column 1 (recording site) receives weaker input (in≤1), based on the 306 

tonotopic organization of the auditory pathway. The two-column model is a simplification of the 307 

anatomical and functional organization of A1, where the interactions with other cortical areas (e.g., 308 

non-primary fields of auditory cortex) are not considered. In the case of the BF response, both 309 

columns receive the same input strength (in=1), as they represent the same location and inter-column 310 

connections are in fact intra-column connections. Thus, the same model could be used for both BF 311 

and non-BF situations. 312 

 313 

The model simulates the time series of latent variables including firing rates, postsynaptic potentials 314 

(PSP), and connectivity efficacy (related to short-term plasticity) under BF and non-BF conditions 315 

given the same model parameter settings but different input configurations. As illustrated in Figure 316 

2B, the network dynamics are transformed into simulated MUA and CSD via a forward model (see 317 

Section 2.3) to match the target data. The forward model also transforms network dynamics to a 318 

simulated equivalent current dipole (ECD) signal, which is equivalent (up to a scaling factor 319 
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determined by the volume conduction of the head) to EEG/MEG signals. Thus, the model could be 320 

used to identify the specific contributions of different cell types to those signals.  321 

 322 

 

Figure 2. Two-column cortical model and forward simulation. (A) The model consists of two identical 323 

columns, where Column 1 represents the cortical area at the recording site, and Column 2 represents 324 

the latent cortical area that responds most strongly to the presented tonal stimulus (at the BF). The 325 

thalamic inputs make synaptic connections with the E and PV populations at L2/3, L4, and L5/6. The 326 

lateral inhibition consists of the connections from L5/6 E to the SOM populations at L2/3 and L5/6. 327 

For clarity, intra-column connections are not shown. (B) The forward simulation includes two stages. 328 

First, the network dynamics are simulated based on the model parameters and input configurations 329 

under BF and non-BF conditions at the recording site. Second, the observation model translates firing 330 

rates and current flows to the observations (i.e., MUA and CSD) through the spatial profiles calculated 331 

by constrained least square fit. The current flows and CSD can be further translated to dipole signals 332 

as model predictions.  333 
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2.2.1 Thalamic input 334 

The thalamic input 𝑖𝑡ℎ(𝑡) to the two-column model is a decay function with a delay (Eq. (1)). The 335 

parameters include the decay time constant 𝜏𝑖𝑛, decay level 𝛼, and delay 𝑡𝑑. This is to mimic the 336 

fast decaying firing rate observed in the auditory system (Pérez-González & Malmierca, 2014). 337 

 338 

𝑖𝑡ℎ(𝑡) = {𝛼 + (1 − 𝛼)𝑒
𝑡𝑑−𝑡
𝜏𝑖𝑛 , 𝑡 ≥ 𝑡𝑑
0, 𝑡 < 𝑡𝑑

 (1) 

2.2.2 Connectivity 339 

The default intra-column connectivity (Table 1) is derived from the reported connection probabilities 340 

and synaptic strengths in the primary visual cortex of mice (Billeh et al., 2020). The inter-column 341 

connections only consist of E-to-SOM connections (L5/6 E to L2/3/4 SOM and L5/6 E to L5/6 SOM), 342 

with the same ratio as the intra-column E-to-SOM connections.  343 

 344 

Table 1A. Connection probabilities after averaging across layers.  345 

To \ From E1 E2 E3 PV1 PV2 SOM1 SOM2 

E1 (L2/3) 0.1600 0.0105 0.1400 0.3305 0.0500 0.3370 0.0845 

E2 (L5/6) 0.0415 0.0503 0.0680 0.0395 0.1713 0.0118 0.1192 

E3 (L4) 0.0160 0.0035 0.2430 0.2435 0.0500 0.2005 0.0280 

PV1 (L2/3/4) 0.2390 0.0250 0.2650 0.2505 0.0340 0.4535 0.0075 

PV2 (L5/6) 0.0405 0.0670 0.0505 0.0410 0.1202 0.0075 0.2368 

SOM1(L2/3/4) 0.1325 0.0250 0.3355 0.0400 0.0075 0.0660 0.0057 

SOM2 (L5/6) 0.0510 0.0508 0.0640 0.0075 0.0425 0 0.0325 

 346 

Table 1B. Synaptic strengths (unitary PSP [mV]) after averaging across layers.  347 
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To \ From E1 E2 E3 PV1 PV2 SOM1 SOM2 

E1 (L2/3) 0.3600 0.2350 0.7800 0.5200 0.4050 0.3050 0.1250 

E2 (L5/6) 0.3700 0.5800 0.7950 0.2325 0.8100 0.1250 0.2700 

E3 (L4) 0.3400 0.1900 0.8300 0.6000 0.4050 0.2950 0.1400 

PV1 (L2/3/4) 1.4400 0.6250 1.3400 0.6800 0.3625 0.5000 0.1125 

PV2 (L5/6) 0.6600 2.5000 0.6250 0.4325 1.1900 0.1125 0.4000 

SOM1(L2/3/4) 0.7750 0.2600 0.6000 0.4200 0.1050 0.1500 0.1675 

SOM2 (L5/6) 0.2650 0.5200 0.2600 0.1050 0.4100 0.0700 0.4000 

 348 

Table 1C. Intra-column connectivity (connection probability*synaptic strength). 349 

To \ From E1 E2 E3 PV1 PV2 SOM1 SOM2 

E1 (L2/3) 0.0576 0.0025 0.1092 0.1719 0.0203 0.1028 0.0106 

E2 (L5/6) 0.0154 0.0291 0.0541 0.0092 0.1387 0.0015 0.0322 

E3 (L4) 0.0054 0.0007 0.2017 0.1461 0.0203 0.0591 0.0039 

PV1 (L2/3/4) 0.3442 0.0156 0.3551 0.1703 0.0123 0.2268 0.0008 

PV2 (L5/6) 0.0267 0.1675 0.0316 0.0177 0.1431 0.0008 0.0947 

SOM1(L2/3/4) 0.1027 0.0065 0.2013 0.0168 0.0008 0.0099 0.0010 

SOM2 (L5/6) 0.0135 0.0264 0.0166 0.0008 0.0174 0 0.0130 

 350 

The thalamic input is fed only to E and PV populations. The default ratio of input strengths across 351 

layers (as listed in Table 2) is based on the peak amplitude of thalamocortical responses and the 352 

laminar pattern of thalamocortical innervation in mouse primary auditory cortex reported in (Ji et al., 353 

2016). 354 

 355 
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Table 2. The ratio of thalamic input strengths across laminar layers (normalized to L4 E). 356 

Neural population (a) Peak amplitude  (b) % Innervated  (a*b) Relative input strengths 

L2/3 E 129/418=0.3 75% 0.225 

L4 E 418/418=1 100% 1 

L5/6 E 163/418=0.4 85% 0.34 

L2/3/4 PV 615/418=1.47 85% 1.25 

L5/6 PV 426/418=1.02 100% 1.02 

(a) Thalamocortical input currents (pA). Source: Table 1 in (Ji et al., 2016). 357 

(b) Percentage of cells exhibiting thalamocortical responses. Source: Fig. 4 in (Ji et al., 2016). 358 

2.2.3 Rate-to-potential operator 359 

The rate-to-potential operator implements the transformation of the firing rate 𝑟𝑗(t)  of the jth 360 

population to the postsynaptic potential 𝑣𝑖𝑗(t) at the ith population through an effective connection 361 

strength 𝑤𝑖𝑗(t). This transformation is achieved by convolving the weighted firing rate 𝑤𝑖𝑗(t)𝑟𝑗(t) with 362 

a synaptic kernel ℎ𝑖𝑗(𝑡) (Eq. (2)). Note that the effective connection strength 𝑤𝑖𝑗(𝑡) can become a 363 

variable, if short-term plasticity is taken into account (see Section 2.2.5). 364 

𝑣𝑖𝑗(𝑡) = [𝑤𝑖𝑗(𝑡)𝑟𝑗(𝑡)] ⊗ ℎ𝑖𝑗(𝑡) (2) 

 365 

The synaptic kernel ℎ(t) is described as a bi-exponential function parameterized by the scaling factor 366 

𝐻 and the time constants 𝜏1 and 𝜏2 (Eq. (3)).  367 

ℎ(𝑡) = {
𝐻

𝜏1𝜏2
𝜏1 − 𝜏2

(𝑒
−𝑡
𝜏1 − 𝑒

−𝑡
𝜏2) , 𝑡 ≥ 0

0, 𝑡 < 0

 (3) 

 368 

The convolution in Eq. (2) can be numerically realized by two first-order ordinary differential equations 369 

(Eqs. (4) and (5)). 370 

𝑣̇(𝑡) = 𝑢(𝑡) (4) 
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𝑢̇(𝑡) = 𝐻𝑤(𝑡)𝑟(𝑡) −
𝜏1 + 𝜏2
𝜏1𝜏2

𝑢(𝑡) −
1

𝜏1𝜏2
𝑣(𝑡) (5) 

 371 

The shape of synaptic kernels depends on pre- and postsynaptic properties of the neurotransmitter-372 

receptor systems, and the respective parameters 𝐻, 𝜏1, and 𝜏2 are listed in Table 3.  373 

 374 

Table 3. Parameters of the synaptic-dendritic kernels for different connections. 375 

Synaptic type 𝐻 𝜏1(ms) 𝜏2(ms) Reference 

E→E(1) 
AMPA  14400 1 5.3 

(Dura-Bernal et al., 2022) 

NMDA  1200 3 70 

E→PV NMDA 7250 2.1 5.6 (Jouhanneau et al., 2018) 

E→SOM NMDA 3090 4.5 25.2 (Jouhanneau et al., 2018) 

PV→E GABAA -4000 1 18.2 (Dura-Bernal et al., 2022) 

PV→PV GABAA -5530 3.5 5.5 (Bacci et al., 2003) 

PV→SOM GABAA -7380 1.4 101 (Bacci et al., 2003) 

SOM→E(2) 
GABAA  -1800 2 100 

(Dura-Bernal et al., 2022)  
GABAB  -100 25 300 

SOM→PV GABAA -1800 2 100 (Dura-Bernal et al., 2022) 

(1) AMPA:NMDA=83:17 376 

(2) GABAA:GABAB=50:50 377 

 378 

The PSPs 𝑣(𝑡) are then used to calculate the current flows 𝑐(𝑡). In Eq. (6), a current flow 𝑐𝑗(𝑡) 379 

caused by the jth input source (from a cortical or a thalamic input) is calculated as the sum of the 380 

absolute values of PSPs 𝑣𝑖𝑗(𝑡) at all E populations (𝑁𝐸 = 3) at the recording site (i.e., Column 1). 381 

The mapping to MUA and CSD is illustrated in Figure 3. 382 
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𝑐𝑗(𝑡) =∑|𝑣𝑖𝑗(𝑡)|

𝑁𝐸

𝑖

 (6) 

 383 

2.2.4 Potential-to-rate operator 384 

The potential-to-rate operator transforms the overall PSP 𝑣𝑖(t) at the ith population into mean firing 385 

rate 𝑟𝑖(𝑡) using a sigmoid function (Eqs. (7) and (8)). The overall PSP is the sum of EPSPs and 386 

IPSPs caused by 𝑁𝑐𝑢𝑟  presynaptic current sources which include 𝑁𝑝𝑜𝑝  excitatory/inhibitory 387 

populations and thalamic input.  388 

 389 

𝑟𝑖(𝑡) = 𝑆𝑖𝑔𝑚[𝑣𝑖(𝑡)] = 𝑆𝑖𝑔𝑚 [∑ 𝑣𝑖𝑗(𝑡)

𝑁𝑐𝑢𝑟

𝑗

] (7) 

𝑆𝑖𝑔𝑚(𝑣) = {

1

1 + 𝑒𝑟(𝑣0−𝑣)
−

1

1 + 𝑒𝑟𝑣0
, 𝑣 ≥ 0

0,  𝑣 < 0
 (8) 

 390 

The output firing rate is limited to 0 ≤ 𝑟(𝑡) ≤ 1, where 𝑟 = 1 refers to the max firing rate of the 391 

E/PV/SOM neuron type. The sigmoid function is shifted so that 𝑆𝑖𝑔𝑚(0) = 0, meaning no change in 392 

the firing rate relative to baseline. To make the fitting process more stable, negative firing rates are 393 

set to 0. The sigmoid functions for the E, PV, and SOM populations have different slopes 𝑟 and 394 

thresholds 𝑣0 (as listed in Table 4) based on the firing characteristics of the neuron types reported 395 

in (Fanselow et al., 2008). 396 

 397 

Table 4. Parameters of the sigmoid functions 398 

 
𝑟 (mV-1) 𝑣0 (mV) 

E 0.62 6 
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PV 0.29 15.6 

SOM 1.14 2.76 

 399 

2.2.5 Short-term plasticity 400 

Short-term plasticity (STP) refers to the modulation of synaptic strength based on the history of 401 

presynaptic activity. STP can be depressing (STD) or facilitating (STF), which depends on the 402 

synaptic type (Blackman et al., 2013; Fino et al., 2013; Ma et al., 2012; Regehr, 2012; Silberberg et 403 

al., 2005). STD can be modeled by a synaptic efficacy variable 𝑥 (0 ≤ 𝑥 ≤ 1), which denotes the 404 

fraction of remaining neurotransmitters (or synaptic vesicles). STF can be modeled by another 405 

synaptic utilization variable 𝑢 (0 ≤ 𝑢 ≤ 1) which denotes the neurotransmitters ready for use (release 406 

probability) (Silberberg & Markram, 2007). The two variables then modulate the fixed connection 407 

strength 𝑤0 as in Eq. (9). 408 

 409 

𝑤(𝑡) = 𝑥(𝑡)𝑢(𝑡)𝑤0 (9) 

 410 

The variables 𝑢(𝑡) and 𝑥(𝑡) depend on the presynaptic firing rate 𝑟(𝑡) as in Eqs. (10) and (11). 411 

The parameter 𝑈 is the initial release probability, and parameters 𝜏𝑓 and 𝜏𝑑 denote the decay and 412 

recovery time constants, respectively. The parameters 𝜅𝑓  and 𝜅𝑑  are the change rates and are 413 

tuned in the optimization procedure. 414 

 415 

𝑢̇(𝑡) =
𝑈 − 𝑢(𝑡)

𝜏𝑓
− 𝜅𝑓𝑈[1 − 𝑢(𝑡)]𝑟(𝑡) (10) 

𝑥̇(𝑡) =
1 − 𝑥(𝑡)

𝜏𝑑
− 𝜅𝑑𝑢(𝑡)𝑥(𝑡)𝑟(𝑡) (11) 

 416 
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The effect of STP on the dynamics of a network of E, PV, and SOM populations has been studied by 417 

Hayut and colleagues (Hayut et al., 2011). Among the eight synaptic types, only E-to-SOM 418 

connections exhibit STF, while the remaining connections exhibit STD. To simplify the model, we 419 

consider STF on E-to-SOM connections and STD on E-to-E connections in the model. This decision 420 

is based on two considerations. First, the SOM activity is relatively slow compared with E and PV, so 421 

its functionality with STF is a focus in our study. Second, Both E and PV display faster responses 422 

than SOM. The effect of STD on E-to-PV, PV-to-E, and PV-to-PV connections may cancel each other, 423 

and therefore, the gross effect could be integrated into STD on E-to-E connections. The parameters 424 

of STP are based on (Hayut et al., 2011; Silberberg & Markram, 2007). See Table 5 for details. 425 

 426 

Table 5. Parameters of short-term plasticity.  427 

 
𝑈 𝜏𝑓 (ms) 𝜏𝑑 (ms) 𝜅𝑓 𝜅𝑑 

E→E 1 - 200 0 20* 

E→SOM 0.05 670 - 600* 0 

Note: Values marked by * are default values that will be rescaled by free parameters. 428 

2.3 Observation model 429 

The observation model includes two spatial profiles which map the network dynamics to MUA and 430 

CSD. To match the target data, the network dynamics are subsampled to 𝑇 = 200 timepoints (i.e., 431 

firing rates 𝑟  into 𝑆𝑟𝑎𝑡𝑒  [𝑁𝑝𝑜𝑝  𝑇 ,, and current flows 𝑐  into 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  [𝑁𝑐𝑢𝑟  𝑇 ,, where 𝑁𝑝𝑜𝑝 = 7 432 

populations, and 𝑁𝑐𝑢𝑟 = 8 input sources. 433 
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Figure 3. Forward mapping from network dynamics to observations. (A) The simulated MUA (simMUA) 434 

is the sum of individual firing rates (left column) weighted by the non-negative MUA spatial profile 435 

(middle column) of the recording site (Column 1). (B) The simulated CSD (simCSD) is the sum of 436 

individual current flows (left column) weighted by the CSD spatial profile (middle column) of the 437 

recording site (Column 1). (C) The simulated equivalent current dipole (simECD) is the sum of 438 

individual current flows (left column) weighted by dipole directions and lengths (red lines in the middle 439 

column, red dots: centers of current sinks) derived from the CSD spatial profile (gray color in the 440 

middle column). 441 

2.3.1 Spatial profiles 442 

The MUA spatial profile 𝐴𝑀𝑈𝐴 [𝑁𝑐ℎ×𝑁𝑝𝑜𝑝] describes the sensitivity of channels (𝑁𝑐ℎ = 16) to the firing 443 

rates of neural populations, which is closely related to the spatial distribution of cell bodies (or axonal 444 

hillocks, where the spikes are generated). The simulated MUA 𝛷𝑀𝑈𝐴 [𝑁𝑐ℎ×𝑇] is the multiplication of 445 

the mixing matrix 𝐴𝑀𝑈𝐴 and the firing rates 𝑆𝑟𝑎𝑡𝑒 (Eq. (12)).  446 
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 447 

𝛷𝑀𝑈𝐴 = 𝐴𝑀𝑈𝐴 ⋅ 𝑆𝑟𝑎𝑡𝑒 (12) 

 448 

The CSD spatial profile 𝐴𝐶𝑆𝐷 [𝑁𝑐ℎ′×𝑁𝑐𝑢𝑟] describes the sensitivity of the spatial distribution of sinks 449 

and sources along the channels (𝑁𝑐ℎ′ = 12) to the current flows. The simulated CSD 𝛷𝐶𝑆𝐷 [𝑁𝑐ℎ′×𝑇] 450 

is the multiplication of the mixing matrix 𝐴𝐶𝑆𝐷 and the current flows 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (Eq. (13)).  451 

 452 

Φ𝐶𝑆𝐷 = 𝐴𝐶𝑆𝐷 ⋅ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (13) 

 453 

2.3.2 Constraints on the spatial profiles 454 

Both spatial profiles 𝐴𝑀𝑈𝐴 and 𝐴𝐶𝑆𝐷 are difficult to determine by measurements. They are estimated 455 

by constrained regression of the network dynamics 𝑆𝑟𝑎𝑡𝑒 and 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the target data 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 and 456 

𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

. The goal is to find spatial profiles that minimize the distance between simulation 𝛷  and target 457 

𝛷𝑟𝑒𝑓, while, at the same time, obeying certain plausibility constraints.  458 

 459 

The constraint on the MUA spatial profile 𝐴𝑀𝑈𝐴 [𝑁𝑐ℎ×𝑁𝑝𝑜𝑝] is based on the fact that the sensitivity to 460 

the firing rate of a certain cell type is proportional to the product of cell density and maximum firing 461 

rate. Therefore, the ratios of the column sums of 𝐴𝑀𝑈𝐴 should be fixed. The cell densities (E: 128400, 462 

PV: 4345, SOM: 2142 cells/mm3) are estimated from (Keller et al., 2018), and the maximum firing 463 

rates (E: 59.4 Hz, PV: 271.7 Hz, SOM: 120.7 Hz) are based on (Beierlein et al., 2003).  464 

 465 

The constraint on the CSD spatial profile 𝐴𝐶𝑆𝐷  [ 𝑁𝑐ℎ′ ×𝑁𝑐𝑢𝑟 ] is based on the fact that the 466 

transmembrane currents should be conserved. Therefore, each column of 𝐴𝐶𝑆𝐷 should add up to 467 
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zero (i.e., area of sinks = area of sources). Additionally, in order to avoid ambiguity with the overall 468 

current magnitudes, the norms of all column vectors of 𝐴𝐶𝑆𝐷 are constrained to be the same.  469 

 470 

2.3.3 Equivalent current dipole 471 

The neuronal generators of EEG/MEG signals are commonly estimated as equivalent current dipoles 472 

(ECDs) by source localization techniques such as dipole fitting and beamforming. The simulated 473 

ECDs provide a theoretical link between LFPs and EEG/MEG signals, by which we can also examine 474 

the contribution of E, PV, and SOM populations to event-related deflections, like P1, N1, and N2.  475 

 476 

The model predicts 𝛷𝐸𝐶𝐷 [1×𝑇] at the recording site once current flows 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and a CSD spatial 477 

profile 𝐴𝐶𝑆𝐷 are given. As in Eq. (14), 𝛷𝐸𝐶𝐷 is calculated as the multiplication of 𝑑̅ [1×𝑁𝑐𝑢𝑟] and the 478 

current flows 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑁𝑐𝑢𝑟×𝑇], where 𝑑̅ is the displacement from the mean center of sinks 𝑑̅𝑠𝑖𝑛𝑘 to 479 

the mean center of sources 𝑑̅𝑠𝑜𝑢𝑟𝑐𝑒 derived from each column of 𝐴𝐶𝑆𝐷 [𝑁𝑐ℎ′×𝑁𝑐𝑢𝑟].  480 

 481 

𝛷𝐸𝐶𝐷 = 𝑑̅ ⋅ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = (𝑑̅𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑑̅𝑠𝑖𝑛𝑘) ⋅ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (14) 

 482 

2.4 Optimization procedure 483 

In general, we use a genetic searching scheme combined with a gradient descent (Gauss-Newton) 484 

method to optimize the 28 free parameters in 𝜃 within a predefined search range, in order to minimize 485 

the cost function 𝑓(𝜃) for each recording site. Since the cost function has a complicated shape with 486 

multiple local minima, we made use of the assumption that the true solutions should yield similar 487 

parameters across recording sites. In order to reliably find these solutions, we iteratively continued 488 

the search for each recording site starting at the solutions for all other recording sites. If our 489 

assumption is correct, this should lead to better fits for the individual recording sites. 490 
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 491 

Note that this additional similarity criterion is only used to guide the search for the solutions, while the 492 

sole criteria for the goodness of fit are the cost functions for the individual recording sites. The 493 

optimization scheme is detailed in Figure 4.  494 

  495 

The cost function 𝑓(𝜃) is defined as the sum of squared errors (SSE) between the simulation 𝛷(𝜃) 496 

and target 𝛷𝑟𝑒𝑓 (Eq. (15)). The target data 𝛷𝑟𝑒𝑓 comprises 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 and 𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

 under BF and non-BF 497 

conditions. The benefit of including non-BF conditions in the optimization procedure is two-fold. First, 498 

the amount of target data is increased while the degrees of freedom of spatial profiles remain the 499 

same, which reduces the risk of overfitting. Second, the dynamics of PV and SOM populations under 500 

BF vs. non-BF conditions can be compared. 501 

 502 

𝑓(𝜃) = ‖𝛷(𝜃) − 𝛷𝑟𝑒𝑓‖
2

2
=∑∑(𝜙𝑖𝑗(𝜃) − 𝜙𝑖𝑗

𝑟𝑒𝑓
)
2

𝑗𝑖

 (15) 

 503 

The simulated data 𝛷(𝜃) of an individual recording site comprises of 𝛷𝑀𝑈𝐴(𝜃) and 𝛷𝐶𝑆𝐷(𝜃) as in 504 

Eqs. (12) and (13). The forward simulation includes two stages. In the first stage, the default two-505 

column model and input configuration are rescaled by 28 free parameters 𝜃 to generate network 506 

dynamics 𝑆𝑟𝑎𝑡𝑒  and 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . The 28 free parameters rescale intra-column connections (8 507 

parameters: 𝑊𝐸𝐸 , 𝑊𝑃𝐸 , 𝑊𝑆𝐸 , 𝑊𝐸𝑃 , 𝑊𝑃𝑃 , 𝑊𝑆𝑃 , 𝑊𝐸𝑆 , and 𝑊𝑃𝑆 ), the ratio of thalamic inputs (2 508 

parameters: 𝑖𝑡ℎ,𝐸 and 𝑖𝑡ℎ,𝑃𝑉), rates of short-term plasticity (2 parameters: 𝜅𝑑,𝐸𝐸 and 𝜅𝑓,𝑆𝐸), synaptic 509 

time constants (1 parameter: 𝜏 ), slopes of sigmoid functions (1 parameter: 𝑟 ), thalamic input 510 

strengths for non-BF conditions (4 parameters), thalamic input decay levels for BF and non-BF 511 

conditions (5 parameters: 𝛼), and inter-column E-to-SOM connections for BF and non-BF conditions 512 

(5 parameters). The search ranges of the 28 free parameters are listed in Table 6. In the second 513 

stage, the spatial profiles 𝐴𝑀𝑈𝐴  and 𝐴𝐶𝑆𝐷  are optimized by regressing the resulting network 514 
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dynamics 𝑆𝑟𝑎𝑡𝑒  and 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  to the target 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 and 𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

, respectively. Multiplication of spatial 515 

profiles with network dynamics then yields the predicted MUA and CSD, which can be compared to 516 

the observed MUA and CSD. 517 

 518 

We use the Gauss-Newton (gn) method to approach the minimum of the cost function 𝑓(𝜃) in Eq. 519 

(15). This method was successfully used in our previous studies for optimization of neural mass 520 

models with large numbers of free parameters (Wang et al., 2019; Wang & Knösche, 2013). The 521 

Jacobian matrix  𝐽 =
𝜕𝑓

𝜕𝜃
 is numerically approximated with Newton’s difference quotient.  522 

 523 

The genetic search scheme (see Figure 4) includes three operating boxes for broadening the 524 

exploration in parameter space. In the ‘mutation’ box, the solutions are sorted based on the goodness-525 

of-fit (cost). Then, each parameter of a solution can mutate (i.e., be replaced by a random value) with 526 

a chance that linearly ranges from 10% (for best fit case) to 90% (for worst fit case) based on the 527 

ranking of the solution.  528 

 529 

In the ‘cross-over’ box, we randomly draw two solutions as parent solutions from the outputs of 530 

‘selection’ and ‘mutation’ boxes. Then we randomly decide a cross-over point and generate two off-531 

spring solutions by swapping the same sides of parameters between the parents (i.e. segment-wise 532 

swap). This is repeated to generate 𝑁3 solutions.  533 

 534 

In the ‘mt_co’ box, we run the cross-over operator again. However, instead of swapping the whole 535 

right side of the cross-over point, we only swap the cross-over point (i.e., element-wise swap). This is 536 

repeated to generate 𝑁3  solutions. The parent solutions come from the output of 537 

‘selection’, ‘mutation’, and ‘cross-over’ boxes.  538 

 539 
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The effect of model parameters on the network dynamics can be highly nonlinear, and a global 540 

minimum in cost function is hard to identify in high-dimensional space. In addition, a global minimum 541 

for a single recording site may still be at risk of overfitting. Therefore, it is important to check the 542 

similarity and stability of the common solutions. We explore the cost function surface by deviating 543 

each parameter at a time, starting from a final solution in the parameter space. 544 

 545 

 

Figure 4. Flow chart of optimization procedure. (A) Optimization for an individual recording site. The 546 

iteration starts with 𝑁1 = 60 initial random solutions (parameter sets). The orange box ‘selection_gn’ 547 

selects the best solution (with highest 𝑅2) and fine-tunes that solution using the Gauss-Newton (gn) 548 

method to the next local minimum. The orange box ‘mt_gn’ mutates that locally optimal solution, one 549 

parameter at a time, resulting in 𝑁2 = 28 modified solutions. These are then fine-tuned again using 550 

the gn method. The white box ‘selection’ keeps the first 𝑁1 solutions with highest 𝑅2 from the 𝑁1 +551 

1 + 𝑁2 solutions. The blue box ‘mutation’ creates another 𝑁1 solutions, while ‘cross-over’ and ‘mt_co 552 

(mutated_cross-over)’ boxes each generate 𝑁3 random solutions (𝑁3 = 2000). The next white box 553 

‘selection’ again keeps the first (best) 𝑁1 solutions from these 2𝑁1 + 2𝑁3 solutions and replaces the 554 

initial solutions. The best solution for an individual site is selected after 10 iterations. (B) Optimization 555 

across recording sites. The iteration starts with the best solution for each recording site. Noise is 556 

added to these solutions with a uniform distribution (range: ±𝑠𝑡𝑑(𝑖), 𝑖 ∈ 1,2, … ,28) to generate 𝑁4 =557 

1000 jittered solutions in the blue box ‘pool’. Each of these jittered solutions is then fine-tuned for 558 
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each recording site with respect to 𝑅2  using the gn method (the orange boxes). The optimized 559 

solution for each recording site is updated iteratively if a fine-tuned solution with higher 𝑅2 is found. 560 

The iteration ends when there is no update. Then, for each recording site, the best-fitting solution is 561 

selected as the final solution. The number in the parentheses in each box indicates the resulting 562 

number of solutions. 563 

 564 

Table 6. Search ranges of the free parameters. 565 

Free parameters  Default configurations to be rescaled Range [min, max] 

𝜃1−8 connection strengths  

𝑊𝐸𝐸, 𝑊𝑃𝐸, 𝑊𝑆𝐸, 𝑊𝐸𝑃, 𝑊𝑃𝑃, 𝑊𝑆𝑃, 𝑊𝐸𝑆, and 𝑊𝑃𝑆 

[0.1, 10] 

𝜃9,10 Ratio of thalamic inputs 𝑖𝑡ℎ,𝐸 and 𝑖𝑡ℎ,𝑃𝑉 [0.1, 10] 

𝜃11,12 Short-term plasticity 𝜅𝑑,𝐸𝐸 and 𝜅𝑓,𝑆𝐸 [0.8, 1.5] 

𝜃13 Synaptic kernel time constants 𝜏  [1, 1] 

𝜃14 Sigmoid function slopes 𝑟 [1, 1] 

𝜃15−19 Thalamic input decay levels 𝛼 

(BF and non-BF conditions) 

[0.1, 0.3] 

𝜃20−24 Inter-column 𝑊𝑆𝐸 for lateral inhibition 

(BF and non-BF conditions) 

[1, 15] 

𝜃25−28 Thalamic input strengths to Column 1  

(non-BF conditions)  

[0.1, 1.2] 

2.5 Non-negative matrix factorization 566 

We examined whether a blind decomposition approach would yield similar predictions (e.g., ECD) as 567 

our model-fitting approach. The non-negative matrix factorization (a Matlab function nnmf) was used 568 

to decompose target MUA 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 [𝑁𝑐ℎ×𝑇] into two non-negative matrices 𝐴𝑀𝑈𝐴
𝑛𝑛𝑚𝑓

 [𝑁𝑐ℎ×𝑁𝑝𝑜𝑝 ] and 569 

𝑆𝑟𝑎𝑡𝑒
𝑛𝑛𝑚𝑓

 [𝑁𝑝𝑜𝑝 × 𝑇 ] where the root mean square residual between 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 and 𝐴𝑀𝑈𝐴
𝑛𝑛𝑚𝑓

∙ 𝑆𝑟𝑎𝑡𝑒
𝑛𝑛𝑚𝑓

 is 570 
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minimized. The decomposed firing rates 𝑆𝑟𝑎𝑡𝑒
𝑛𝑛𝑚𝑓

 are then convolved with alpha kernels to generate 571 

current flows 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑛𝑛𝑚𝑓

. The time constants of the alpha kernels are optimized in similar procedure as 572 

in Figure 4A to minimize the SSE between 𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

 and 𝐴𝐶𝑆𝐷
𝑛𝑛𝑚𝑓

∙ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑛𝑛𝑚𝑓

. The ECD 𝛷𝐸𝐶𝐷
𝑛𝑛𝑚𝑓

 is then 573 

calculated in the same way as in Sections 2.3.3. 574 

 575 

 576 

3 Results 577 

We fitted the 28 parameters (see Methods section) of our cortical column model, such that the MUA 578 

and CSD derived from the electrophysiological data obtained at each recording site were explained 579 

best in a least squares sense. Concurrently with the parameters of the cortical column model, we also 580 

fitted a set of parameters of the observation model, namely the spatial sensitivity distribution of each 581 

neural population (i.e., MUA spatial profile 𝐴𝑀𝑈𝐴) and the spatial distribution of current sinks and 582 

sources on pyramidal dendrites (i.e., CSD spatial profile 𝐴𝐶𝑆𝐷). As a result, the fitted model predicted 583 

not only the MUA and CSD that we could compare to the empirically measured values, but also a set 584 

of latent (hidden) variables, namely the mean firing rates and the current flows of the neural 585 

populations. 586 

 587 

In Section 3.1, we present the predicted data (𝛷𝑀𝑈𝐴 and 𝛷𝐶𝑆𝐷) along with the target data (𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 and 588 

𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

) for a qualitative and quantitative comparison. In Section 3.2, we show the estimated latent 589 

variables, covering neural population activity (firing rates and current flows), as well as the ECD 590 

magnitude at the recording sites (ECD, 𝛷𝐸𝐶𝐷). We also compare 𝛷𝐸𝐶𝐷 with the ECD estimated by a 591 

non-negative decomposition approach 𝛷𝐸𝐶𝐷
𝑛𝑛𝑚𝑓

 to evaluate the advantages of our model-fitting 592 

approach. Section 3.3 reports the estimated parameters of the observation model: MUA spatial profile 593 

𝐴𝑀𝑈𝐴 and CSD spatial profile 𝐴𝐶𝑆𝐷. In Section 3.4, we finally examine the fitted parameters of the 594 
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cortical column model and assess their similarity across the four recording sites (electrode 595 

penetrations). 596 

 597 

3.1 Explanation of the target data 598 

The waveforms for measured and predicted MUA and CSD for all 4 recording sites are shown in 599 

Figure 5. These recording sites were selected to cover a wide range in tonotopic space in A1. More 600 

detailed depictions, alongside the goodness of fit (𝑅2), are given in Figure S1. The target data for 601 

model fitting includes the 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

 and 𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

 of the evoked response to the best frequency (BF) and 602 

non-BF tones (see Figure 5 A and B). The BFs of the four recording sites were determined to be 300 603 

Hz, 1000 Hz, 500 Hz, and 6400 Hz, respectively. In 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

, L4 (centering around Ch 10) shows higher 604 

MUA in BF conditions than in non-BF conditions. This corresponds to the frequency selectivity (tuning 605 

curves) of neural population responses that give rise to the tonotopic organization of A1. The BF 606 

response may include sustained activity (e.g., 500 Hz at site 3) or a second peak after 150 ms (e.g., 607 

300 Hz at site 1). The non-BF responses at recording site 1 (i.e., 200, 260, 400, and 600 Hz) show 608 

negative firing rates (after subtraction of the baseline), reflecting the strong effect of lateral inhibition. 609 

In 𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

, there are early L4 sinks and sources (especially clearly seen at sites 2 and 4) followed by 610 

sinks and sources at L2/3 and L5/6. There are also slow sinks and sources occurring after 100 ms 611 

(especially clearly seen at sites 3 and 4).  612 

 613 

The predicted data ΦMUA and ΦCSD capture the general pattern of target data (Figure 5 C and D). 614 

The negative firing rate (relative to the pre-stimulus baseline, as at site 1) cannot be reproduced 615 

because we only allow non-negative firing rates and a non-negative MUA spatial profile to avoid 616 

overfitting (see Discussion). There are some other minor differences between the simulated and target 617 

responses. For example, the sustained firing rate (e.g., 500 Hz at site 3) is not well captured by the 618 

model. The patterns in 𝛷𝑀𝑈𝐴  and 𝛷𝐶𝑆𝐷  tend to be sharper and do not capture the smooth 619 
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propagation across layers in 𝛷𝑀𝑈𝐴
𝑟𝑒𝑓

, and 𝛷𝐶𝑆𝐷
𝑟𝑒𝑓

, which is due to the limited number of populations 620 

(𝑁𝑝𝑜𝑝 = 7) in the model.   621 

 622 

 

Figure 5. Visual comparison of target data and model simulations. (A, B) Target MUA (A) and CSD 623 

(B) at the four recording sites. The rows show the responses to different tone frequencies at each 624 

recording site. For example, the 1st row shows responses to 200, 260, 300, 400, and 600 Hz at site 625 

1. The middle column represents the responses to tones at the BF of each recording site (300, 1000, 626 

500, and 6400 Hz, respectively). The other columns represent non-BF responses. In the target data, 627 

the maximum value of each row was normalized to 1. (C, D) The simulated MUA (C) and CSD (D) 628 
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from the final model solutions. Response amplitudes are color-coded (blue: positive; red: negative). 629 

3.2 Estimated latent variables  630 

3.2.1 Neural activity  631 

The final model solutions provide estimated network dynamics that may underlie the empirical 632 

observations. Figure 6 shows the firing rates 𝑆𝑟𝑎𝑡𝑒 of Column 1 (representing the recording site) as 633 

well as the strength of thalamic inputs based on the common solutions. The network dynamics across 634 

the four recording sites share similar patterns. The thalamic inputs are stronger under the BF than the 635 

non-BF conditions, which agrees with the tonotopic organization of A1. The direct input connections 636 

lead to stronger early peaks in E and PV activity under the BF than the non-BF conditions (early intra-637 

column E→PV effect). In contrast, the early peaks in SOM activity are weaker under the BF than the 638 

non-BF conditions. This is due to the excitatory input from Column 2 via E→SOM connections (lateral 639 

inhibition, late inter-column E→SOM effect). Additionally, the SOM activity rises higher and lasts 640 

longer with short-term facilitation. The BF and non-BF responses show opposite dynamics. The strong 641 

PV inhibits SOM in BF responses, whereas the strong SOM inhibits PV in non-BF responses. 642 

  643 
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Figure 6. Estimated firing rates under BF and non-BF conditions. The firing rates are grouped into 644 

layers for visualization (L23: E1, PV1, and SOM1; L4: E3; L56: E2, PV2, and SOM2; Th: thalamic 645 

input). Note that the layer labeling refers to the original model construction (Figure 2), while the actual 646 

spatial profiles of the cell bodies arising from the fitting (Figure 8A) deviate from those initial 647 

assumptions. The PV populations (blue curves) show stronger activity in BF responses (middle 648 

column) than in non-BF responses, where the peak values are mainly affected by the strength of 649 

thalamic input (i.e., tonotopy). In contrast, the SOM populations (red curves) show strong and long-650 

lasting activity in non-BF responses, which reflects the effect of inter-column E→SOM connections 651 

(i.e., lateral inhibition).  652 
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3.2.2 Contribution to EEG/MEG components P1, N1, and P2 653 

The equivalent current dipole (ECD) 𝛷𝐸𝐶𝐷 derived at each recording site provides a link between 654 

intracranially-recorded LFPs and extracranially-recorded EEG/MEG signals. The ECD can be 655 

calculated by Eq. (14), where the current flows associated with activity of specific neural populations 656 

contribute to the ECD by different weights and directions based on the CSD spatial profile 𝐴𝐶𝑆𝐷. 657 

Figure 7A shows the predicted ECDs and the contributions of current flows by the E, PV, and SOM 658 

populations at the four recording sites under BF and non-BF conditions. Although there is no ground 659 

truth for verification, the predicted ECDs (the black curves in Figure 7A) show deflections that can be 660 

related to the EEG/MEG components P1, N1, and P2. The deflections are the net result of the 661 

summation and cancellation of current flows. To gain insight into cell-type specific contributions to 662 

these deflections, we summed the dipole magnitudes from each of the cell types (while keeping the 663 

thalamic input separate), resulting in only four dipole magnitudes (i.e., 𝑑̅𝑖 ∙ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖  where 𝑖 ∈664 

{𝐸, 𝑃𝑉, 𝑆𝑂𝑀, 𝑇ℎ} as in Eq. (14)). For example, the PV dipole signals (yellow curves in Figure 7A) 665 

represent the gross current flow in pyramidal dendrites (i.e., the IPSP on E1, E2, and E3 populations) 666 

elicited by the PV neurons (i.e., PV1 and PV2 populations).  667 

 668 

In Figure 7A, we find that the first positive peak of the ECD (related to P1) is consistently due to the 669 

thalamic input (purple curves). The first negative peak of the ECD (related to N1) can be due to either 670 

the E current (blue curves, sites 2, 3, and 4) or the PV current (red curves, site 1), which depends on 671 

the dipole direction derived from the CSD spatial profile. The second positive peak of the ECD (related 672 

to P2) can be due to either the decrease in E or PV currents (e.g., blue or red curves, sites 1,2,3, and 673 

4, BF condition) or the increase in SOM current (e.g., yellow curves, sites 2 and 4, non-BF conditions). 674 

Based on these predicted ECDs and cell-type specific contributions, the P1 component is likely to 675 

result from the thalamic input (including the BF and non-BF columns). The N1 component is likely to 676 

result from the activity of E/PV neurons (also including the BF and non-BF columns). The P2 677 
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component is likely to result from SOM activity (within non-BF columns) and from the decreased 678 

activity of E/PV neurons (within BF columns). 679 

 680 

The model fitting approach provides a way to decompose the LFP into temporal and spatial 681 

components and predict the ECD at the recording site. We were curious whether a blind 682 

decomposition approach would yield similar predictions. To examine this possibility, we decomposed 683 

the MUA using non-negative matrix factorization (NNMF), determined optimized current flows and 684 

CSD spatial profile, and calculated the dipole signal (Section 2.5). We found that the NNMF approach 685 

does not yield reasonable ECDs (Figure 7B) even though the decomposition leads to improved 686 

goodness of fit (Figure S2) compared with the model fitting approach. These findings suggest that the 687 

model fitting approach can successfully account for the MUA and CSD data and relate them to 688 

EEG/MEG signals.  689 

 

 690 

Figure 7. Simulated equivalent current dipole (ECD) signals. (A) The simulated ECD (black curves) 691 

reflects the contribution of a recording site to the EEG/MEG signal (before considering the orientation 692 

with respect to the MEG sensors). The simulated ECD signal is calculated as the sum of population-693 

level CD signals (colored curves) representing the effective current flows along the long dendrites of 694 
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pyramidal cells induced by individual neural populations or thalamic input (E: E1, E2, and E3; PV: 695 

PV1 and PV2; SOM: SOM1 and SOM2; Th: thalamic input). (B) Simulated ECD signals obtained by 696 

the NNMF approach.  697 

 698 

3.2.3 Parameters of the observation model 699 

The observation model contains an MUA spatial profile 𝐴𝑀𝑈𝐴 and a CSD spatial profile 𝐴𝐶𝑆𝐷 that 700 

project firing rates 𝑆𝑟𝑎𝑡𝑒 and current flows 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to observations 𝛷𝑀𝑈𝐴 and 𝛷𝐶𝑆𝐷. We now check 701 

the estimated spatial profiles AMUA  and A𝐶𝑆𝐷  provided by the final solutions. The MUA spatial 702 

profiles 𝐴𝑀𝑈𝐴 represent the sensitivity of the 16 laminar electrode channels to the firing rates of 703 

neural populations. Figure 8A shows the MUA spatial profile at each recording site (electrode 704 

penetration). The distributions of E3 center around channel 10, which is consistent with the distribution 705 

of L4 excitatory neurons. However, the distributions of E1 and E2 form one to two clusters, a scenario 706 

which does not agree with the expected distribution of excitatory neurons in L2/3 and L5/6. This 707 

suggests that the definition of neural populations, after model fitting, do not strictly adhere to the initial 708 

laminar definition (i.e., the default connectivity) but changes based on the temporal dynamics of neural 709 

activity. This alteration in distribution also applies to the PV and SOM populations. In other words, the 710 

estimated connectivity of the column model and the estimated spatial profiles of the observation model 711 

should not be directly mapped to the L2/3, L4, and L5/6 categorization. 712 

 713 

Figure 8B shows the CSD spatial profile of each recording site, which represents the overall 714 

distribution of current sinks and sources along the dendrites of the excitatory cells (incl. E1, E2, and 715 

E3). We found that the distributions of sinks and sources interlace and spread widely, and differ across 716 

recording sites. This may correspond to the relatively high variability in CSD across recording sites. 717 

This may be also due to the fact that the depth of the 16-channel electrode within the cortex is not 718 

necessarily identical across the 4 electrode penetrations. 719 
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Figure 8. Estimated spatial profiles. (A) MUA spatial profiles. Each column represents the laminar 720 

distribution (across electrode channels) of firing rates of neural populations within each recording site. 721 

(B) CSD spatial profiles. Each column represents the corresponding laminar distribution of sinks and 722 

sources. The red arrow ⊢ indicates the dipole length and direction (from center of sinks to center of 723 

sources) 724 

 725 

3.3 Fitted parameters 726 

Next, we checked whether the common solutions for the four recording sites share similar patterns. 727 

In Figure 9, we show parameters related to the tuning curve and lateral inhibition. The tuning curve is 728 

characterized by four parameters (𝜃25−28) which define the strength of thalamic input to the recording 729 

site (Column 1) under the four non-BF conditions. The tone frequencies in Figure 9 are plotted on a 730 
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log scale. The input strengths under the four non-BF conditions are all weaker than 0.5, and decrease 731 

as the tone frequency becomes more distant from the BF of the neurons, which is consistent with 732 

features of spectral tuning curves in A1. The lateral inhibition is characterized by five parameters 733 

(𝜃20−24) which rescale the default strengths of inter-column E-to-SOM connections. We found M-734 

shape lateral inhibition curves, where lateral inhibition increases as the tone frequency deviates from 735 

the BF tone but decreases as the tone frequency deviates further. The tuning curves and lateral 736 

inhibition curves directly affect the activities of PV and SOM populations, respectively, as 737 

demonstrated by the firing rates under BF and non-BF conditions in Figure 9.    738 

 739 

We then checked the cost function surface by separately scanning each parameter around the 740 

solutions (scanning ranges as listed in Table 6). The surfaces of the four recording sites are shown 741 

in Figure 10. In general, we found that the values of solutions (indicated by triangles) are close to 742 

each other in the scan range, and the cost (normalized SSE) increases as the values deviate from 743 

the solutions. This satisfies our expectations that the four final solutions are close in the parameter 744 

space, and that at least local minima of the cost function exist.  745 

 746 

 

 

Figure 9. Lateral inhibition and input strength in evoked responses. The two fitted parameters are 747 

plotted against tone frequency (Hz in log scale). Lateral inhibition (represented by red lines with circle 748 
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heads on the upper left) rescales default inter-column E2→SOM1 and E2→SOM2 connections. The 749 

parameter input strength (represented by the red arrow on the bottom left) rescales the default input 750 

strength of thalamic input Th→{E1, E2, E3, PV1, PV2} to Column 1 (representing the recording site). 751 

Note that the input strength to Column 2 (representing the BF site) is always 1 and is not shown in 752 

the plot. The fitted results for input strength are consistent with the tonotopic organization of A1, 753 

showing peaks at the BFs (300, 1000, 500, and 6400 Hz) of the four recording sites. The fitted results 754 

also suggest an M shape of lateral inhibition, with troughs occurring at the BFs of the recording sites 755 

and maxima occurring at surrounding frequencies. 756 

  757 

 

 

 

Figure 10. Parameter sensitivity analysis. Axis parallel cuts through the cost function surfaces to target 758 
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observations (i.e., sum of squared errors, SSE) of the four recording sites are normalized (nSSE) and 759 

shown in the color curves. The subplots contain the scanning on the 28 parameters (incl. W, InE, 760 

InPV, adaptation, facilitation, tau, slope, decay, lateral, and In2-5) and In1 (thalamic input under the 761 

BF condition, fixed to 1 during model fitting). The x-axis represents the scaling factors on default value 762 

1. The triangles represent the solutions for the four recording sites.  763 

4 Discussion 764 

In this study, we combined a detailed neural circuit model of the cortex with fine-grained laminar LFP 765 

recordings in monkey primary auditory cortex (A1) to estimate cell-type specific contributions to both 766 

intracranially- and extracranially-recorded signals. We show that evoked responses at four example 767 

recording sites, covering a wide range in tonotopic space in A1, share similar network dynamics (i.e., 768 

E, PV, and SOM activity) (Figure 6), but can show diverse patterns in net transmembrane extracellular 769 

current flow, as reflected by CSD analysis, due to the variation in spatial profiles (Figure 8). The four 770 

recording sites also share similar input curves and lateral inhibition curves (Figure 9) as well as similar 771 

intra-column configurations (Figure 10). These results support the notion of canonical microcircuits 772 

and a consistent pattern of neural dynamics and interactions contributing to sensory processing in 773 

A1.  774 

 775 

We demonstrate the feasibility of our model-fitting approach by transforming laminar profiles of MUA 776 

and CSD into products of spatial and temporal components. The fitted model provides insights into 777 

neural interactions and cell-type specific activities contributing to equivalent current dipoles (ECDs) 778 

underlying typical EEG or MEG recordings (Figure 7A). This is supported by the plausible ECD signal 779 

derived from the estimated current flows and CSD spatial profile. In contrast, an alternative approach 780 

based on non-negative matrix factorization, despite a higher goodness of fit to MUA and CSD 781 
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response profiles (Figure S2A), is relatively uninformative with regard to elucidating the activities of 782 

distinct neural populations (Figure S2B) and plausible synthesized ECD signals (Figure 7B). 783 

4.1 PV-SOM interaction 784 

We observed distinct patterns in the estimated activity of PV and SOM interneurons between BF and 785 

non-BF responses (Figure 6). In BF responses, PV interneurons show faster and stronger activity 786 

than SOM interneurons. In non-BF responses, PV interneurons show relatively weak activity, and the 787 

activity of SOM interneurons dominates after around 50 ms. This phenomenon results from various 788 

literature-based settings for PV and SOM neurons in the cortical column model with regard to thalamic 789 

input (no direct input to SOM), synaptic time constants (slow dynamic in SOM), inter-column 790 

connections (only E-to-SOM), and short-term plasticity (STF on E-to-SOM connections). In other 791 

words, the early PV activity is directly related to tonotopic (thalamic) input, and the late SOM activity 792 

is directly related to lateral inhibition. Based on this distinction, the switch between the “BF pattern” 793 

and “non-BF pattern” along the tonotopic axis is sharpened by mutual inhibition between PV and SOM 794 

interneurons (Hahn et al., 2022) and should be observable in possible future experiments involving 795 

detailed recordings from different neuron types, for example, through calcium imaging.  796 

 797 

4.2 Generation of P1, N1, and P2 components 798 

Auditory evoked responses recorded via EEG/MEG are typically characterized by a temporal 799 

sequence of positive and negative deflections or waves designated as the P1, N1, and P2 800 

components. Studies based on the Human Neocortical Neurosolver (Kohl et al., 2022; Neymotin et 801 

al., 2020) suggest that the P1 and P2 components are partly generated by upward currents within the 802 

dendrites of cortical pyramidal neurons due to bottom-up inputs, while the N1 component is partly 803 

generated by downward currents associated with top-down inputs. Studies using a multi-column 804 

model of the auditory cortex (Hajizadeh et al., 2019, 2021, 2022) further emphasize the dependence 805 
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of current orientation on the cellular location of the active synapses (e.g., apical/somatic), synaptic 806 

type (i.e., excitatory/inhibitory), inter-column connection type (e.g., feedforward, feedback, within-807 

field), and folding of the cortex (i.e., the neuroanatomical topography of the cortical surface). At the 808 

level of a cortical column, our analyses of the cell-specific contributions to ECDs (Figure 7A) suggests 809 

that initial thalamic input primarily contributes to P1, subsequent early activity of E and PV neurons 810 

(both BF and non-BF columns) primarily contributes to N1, and late SOM activity (especially in non-811 

BF columns) joins the contribution to P2. We observed variability in peak latencies of the ECD signals 812 

at the four recording sites (Figure 7A), due to the variance in thalamic inputs, intra-column connection 813 

strengths, and the CSD laminar spatial profile across cortical columns.  814 

 815 

4.3 Patterns of activity propagation 816 

In this study, we were unable to identify a consistent pattern of neural activity propagation across 817 

cortical layers and neural populations contributing to the auditory evoked response. Such patterns 818 

(e.g., from L4 to L2/3 and to L5) have been assumed in canonical cortical column models of visual 819 

and somatosensory areas (e.g., (Douglas & Martin, 2004)). However, such a stereotypical pattern 820 

might not always be the rule. For example, a study using thalamic stimulation suggested that activity 821 

in supragranular layers is initiated by infragranular cells and regulated by feed-forward inhibitory cells 822 

(Krause et al., 2014). Moreover, specific patterns of information propagation are less likely to be found 823 

from a more detailed and complex network derived from existing animal-model databases (Billeh et 824 

al., 2020; Campagnola et al., 2022; Ji et al., 2016; Markram et al., 2015). Based on our estimated 825 

firing rates (Figure 6) and MUA spatial profile (Figure 8A), the three E populations (E1, E2, and E3) 826 

show early peaks at similar latencies because they all receive thalamic input. Clear propagation from 827 

L4 to L2/3 to L5 is therefore not observed. As for the activity of inhibitory neurons, PV1 activity is in 828 

general stronger than PV2 activity in BF responses, and SOM2 activity is stronger than SOM1 activity 829 

in non-BF responses. However, this pattern cannot be projected onto specific cortical layers, because 830 
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the estimated MUA spatial profiles of the same cell type (e.g., PV1 vs. PV2; SOM1 vs. SOM2) are not 831 

spatially exclusive. While our cortical column model was built with default connectivity based on 832 

laminar classification, the neural populations are found to spatially overlap after model fitting. Such 833 

spatial overlap of functional components may provide an alternative framework for understanding the 834 

neural computations underlying sensory processing, for example, the role of lateral inhibition in A1 in 835 

rhythmic masking release (Fishman et al., 2012), spectral resolution (Fishman & Steinschneider, 836 

2006), and complex tone processing (Fishman et al., 2000b).  837 

 838 

4.4 Limitations and future directions 839 

Several important limitations of the present work should be noted. First, our model considers only 840 

thalamic and lateral input and disregards inputs from areas outside of primary auditory cortex, e.g., 841 

frontal and entorhinal cortices (Schaefer et al., 2015). Such input may be increasingly important for 842 

explaining neural activity occurring at longer latencies. Second, the firing rate in our model ranges 843 

from 0 to 1, corresponding to baseline activity and maximum firing rates of each cell type, respectively. 844 

We restricted the sigmoid functions to be non-negative in order to prevent unreasonable cancellation 845 

between negative and positive firing rates in the fitting procedure. This comes with the price of failing 846 

to explain negative (relative to the pre-stimulus baseline) MUA activity. Third, in order to avoid over-847 

fitting, we reduced model complexity by making a number of simplifying assumptions. For example, 848 

the intra-column settings of the two columns are assumed to be identical. The ratio of thalamic input 849 

to E and PV neurons is assumed to be fixed. The inter-column connections are assumed to be 850 

symmetric. The MUA spatial profile is assumed to have a fixed ratio of sensitivity to E, PV, and SOM 851 

neurons. In general, these assumptions lead to a reduced goodness of fit. We cannot guarantee that 852 

we have found globally optimized solutions, but current best solutions show consistent neural 853 

activities and fitted parameters across the four recording sites examined. The current best solutions 854 
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can serve as a prior to improve goodness of fit to data from individual sites using a more flexible 855 

model, or one with a greater number of free parameters.   856 

 857 

In this study, we demonstrated the feasibility of our model-fitting approach in estimating cell-type 858 

specific activity across cortical layers based on LFP recordings in A1. So far the target observations 859 

only include tone-evoked responses (BF and non-BF conditions) at four recording sites. Moreover, 860 

our cortical column model was designed with a relatively simple architecture in order to avoid an 861 

underdetermination issue arising from insufficient data constraints. However, our simplified model 862 

could be extended in several ways. For example, VIP interneurons could be included to examine the 863 

modulatory effects of attention on different inhibitory states (Hahn et al., 2022). The matrix thalamic 864 

input (innervating the supragranular cortex) could be included as tone-insensitive input (Müller et al., 865 

2020) to investigate neural mechanisms underlying other neurophysiological phenomena in auditory 866 

cortex, such as “Off” responses and mismatch responses (e.g., (Fishman, 2014; Fishman & 867 

Steinschneider, 2009)). Corticothalamic pathways (which emanate from L5/6 to the thalamus) could 868 

also be included to model the modulation of thalamic input (Antunes & Malmierca, 2021). Lastly, 869 

spontaneous activity in LFP recordings could be considered in future work to examine the neural 870 

underpinnings of interactions between spontaneous and stimulus-evoked neural activity in auditory 871 

cortex (e.g., (Dura-Bernal et al., 2022)). 872 
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Supplementary figures 877 

 878 

 

Figure S1. The goodness of fit, the target MUA and CSD (red), and the simulations (black) at sites 1 879 

to 4 (A-D). 880 

 881 
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Figure S2. The NNMF decomposition approach (site 1 used as example). (A) The goodness of fit, the 882 

target MUA and CSD (red), and the model simulations (black). (B) The MUA is decomposed by NNMF 883 

into firing rates (rates 2 to 8 in 1st column) and MUA spatial profile (2nd column). The thalamic input 884 

(rate1 in 1st column) and the firing rates are convolved with alpha kernels to generate current flows 885 

(3rd column). The CSD spatial profile is the regression coefficients, and the centers of sinks and 886 

sources are shown in red arrows (4th column).    887 
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