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The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the 
human brain like the g-ratio which characterises the relative myelination of axons. 
However, the fibre-orientation dependence of R2* degrades its reproducibility 
and any microstructural derivative measure. To estimate its orientation-
independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) 
measurements at arbitrary orientations, a second-order polynomial in time 
model (hereafter M2) can be used. Its linear time-dependent parameter, β1, can 
be biophysically related to R2,iso* when neglecting the myelin water (MW) signal 
in the hollow cylinder fibre model (HCFM). Here, we examined the performance 
of M2 using experimental and simulated data with variable g-ratio and fibre 
dispersion. We found that the fitted β1 can estimate R2,iso* using meGRE with long 
maximum-echo time (TEmax  ≈  54  ms), but not accurately captures its microscopic 
dependence on the g-ratio (error 84%). We proposed a new heuristic expression 
for β1 that reduced the error to 12% for ex vivo compartmental R2 values. Using 
the new expression, we  could estimate an MW fraction of 0.14 for fibres with 
negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental 
R2 values but not for the in vivo values. M2 and the HCFM-based simulations 
failed to explain the measured R2*-orientation-dependence around the magic 
angle for a typical in vivo meGRE protocol (with TEmax  ≈  18  ms). In conclusion, 
further validation and the development of movement-robust in vivo meGRE 
protocols with TEmax  ≈  54  ms are required before M2 can be used to estimate R2,iso* 
in subjects.
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1. Introduction

The effective transverse relaxation rate (R2* = 1/T2*) is a nuclear 
magnetic resonance (NMR) relaxation property (Tofts, 2004) that 
enables non-invasive characterisation of the microstructure of the 
human brain (MacKay et al., 2006; Does, 2018; Weiskopf et al., 2021). 
The microstructural sensitivity of R2* makes it particularly interesting 
for neuroscience and clinical research studies (Langkammer et al., 
2010; Draganski et al., 2011; Callaghan et al., 2014; Kirilina et al., 
2020). This is because R2* is sensitive not only to free and myelin water 
pools in the brain (MacKay et al., 2006; Dula et al., 2010; Weiskopf 
et  al., 2021) but also to microscopic perturbations in the main 
magnetic field (B0

� ��
) (Chavhan et  al., 2009). These microscopic 

perturbations are caused by the different magnetic susceptibilities of 
biological structures (Duyn and Schenck, 2017) like the diamagnetic 
myelin sheath (Kucharczyk et al., 1994; Duyn, 2014; Lee et al., 2017; 
Alonso-Ortiz et al., 2018) and paramagnetic iron deposits in glial cells 
(Ordidge et al., 1994; Li et al., 2009; Yao et al., 2009). Moreover, it has 
been shown that R2* is also strongly dependent on the angular 
orientation of the white matter fibre tracts relative to B0

� ��
 (Lee et al., 

2011, 2012) confounding the mapping of R2* to the underlying 
microstructure. The impact of this confounding factor can 
be attenuated by decomposing the angular orientation dependence of 
R2* into an isotropic, i.e., angular-independent component (R2,iso*), 
and an angular-dependent component using either complex gradient-
recalled echo (GRE) acquisitions at several angular orientations (Oh 
et al., 2013; Wharton and Bowtell, 2013; Rudko et al., 2014) or hybrid 
diffusion weighted imaging (DWI) and GRE acquisitions with 
reduced numbers of angular orientations (Gil et al., 2016). However, 
both methods are impractical for clinical research due to the 
constrained and inconvenient positioning of the patient’s head in the 
radiofrequency receiver coil needed to achieve the required distinct 
angular orientations.

A practical approach to estimate R2,iso* was recently proposed by 
Papazoglou et al. (2019). They showed that R2,iso* can be estimated 
from the magnitude signal of a single multi-echo GRE (meGRE) 
measurement using a second-order model in time hereafter denoted 
as M2. The model was derived from a two-pool system based on the 
hollow cylinder fibre model (HCFM) (Wharton and Bowtell, 2012, 
2013). In M2, the linear component in time (β1) is a proxy for R2,iso* 
and the orientation-dependent part is regressed out by the second-
order term in time (β2). Although M2 is just an approximation of the 
original HFCM multi-compartment model and thus less accurate, it 
is, to our knowledge, the only way of estimating R2,iso* from 
magnitude-only meGRE data with a single orientation of the head.

Another advantage of the M2 is its relation to the HCFM model, 
allowing for direct translation of the M2-proxy for R2,iso* (i.e., the β1 
parameter) into microscopic tissue properties. However, a drawback 
of this model is the assumption in M2 that the signal contribution of 
the myelin water can be  neglected, limiting the microscopic 
interpretability of the estimated β1 parameter. For example, the 
M2-based prediction of β1 depends only on the transverse relaxation 
rate of the free water molecules of the non-myelinated compartments 

(R2N) and thus is independent of any changes associated with the 
myelin water signal or the myelin water fraction (MWF). This model’s 
prediction could contradict experimental observations reporting that 
R2* (and presumably R2,iso*) is linearly dependent on MWF (see Lee 
et al., 2017; Kirilina et al., 2020; Milotta et al., 2023). Moreover, M2 
assumes that axonal fibres are perfectly aligned or even described by 
one representative axon. However, most of the fibre bundles in the 
human brain possess a diverse range of topographies, i.e., show 
fanning and bending, or mildly to acute crossing (e.g., Schmahmann 
et al., 2007, 2009; Jeurissen et al., 2019) and different levels of relative 
myelination (e.g., Mohammadi et  al., 2015). Besides that, the 
performance of M2 in estimating R2,iso* via β1 has only been tested 
with data acquired at very long maximum echo times up to ≈ 54 ms 
(Papazoglou et al., 2019). Such a long maximum echo time is unusual 
for in vivo meGRE measurements with whole-brain coverage 
(Weiskopf et al., 2013; Ziegler et al., 2019), because it increases the 
total scan time as well as the propensity for bulk and 
physiological motion.

This work explores the potential and pitfalls of using M2 to 
estimate R2,iso* via β1, from a single-orientation meGRE, while varying 
biological fibre properties and maximum echo times. To this end, 
we use simulated (hereafter in silico) data and ex vivo MRI. The in 
silico data are simulated using a three-pool system based on the 
HCFM to generate realistic meGRE datasets from an ensemble of 
myelinated axons, for which the ground truth biophysical parameters 
(i.e., g-ratio, fibre dispersion and angular orientation) are known and 
can be varied. The ex vivo dataset combines high-resolution DWI and 
multi-orientation meGRE imaging of a human optic chiasm to 
generate gold-standard datasets where the fibre orientation and 
dispersion can be estimated. Both datasets are used to perform the 
following analyses: First, we assess the performance of M2 to estimate 
R2,iso* via β1 for varying g-ratio values and fibre dispersions. Second, 
we assess the microstructural interpretability of β1. To this end, we test 
the model-prediction of M2 that β1 is independent of MWF by 
evaluating the deviation between the biophysically predicted β1 by M2 
and the fitted β1 using the in silico data. Additionally, we perform the 
same comparison to the fitted β1 as above using a novel heuristic 
expression that incorporates the MWF dependence into the predicted 
β1. Third, we use the heuristic expression for β1 to calculate MWF 
from the β1 of the ex vivo data for two sets of compartmental R2 values, 
i.e., in vivo and ex vivo configurations. And fourth, we  assess the 
performance of M2 to estimate R2,iso* via β1 for different echo 
times ranges.

2. Background

2.1. Overview of the hollow cylinder fibre 
model and the approximated log-quadratic 
model

The HCFM (Wharton and Bowtell, 2012, 2013) proposes an 
analytical approximation describing the dependence of the GRE signal 
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on the angular orientation (θµ) defined as the angle between the main 
magnetic field B0

� ��
 and the hollow-cylinder fibre ( µ



). This 
approximation establishes that the total MR signal comes from water 
molecules in an infinitely long and perfectly aligned hollow cylinder 
affected by the diamagnetic myelin sheath (Liu, 2010). The 
diamagnetic myelin sheath magnetically perturbs the water molecules 
in three distinct compartments: (1) the intra-axonal (SA), (2) myelin 
(SM) and (3) extra-cellular (SE) compartments (details in 
Supplementary material, section 2). When the signal of the water 
molecules in the myelin compartment is neglected (i.e., at long echo 
times: TE > T2 of myelin, T2M), the signal magnitude of the HCFM can 
be approximated by a log-quadratic model (M2) in time (Papazoglou 
et al., 2019):

 
M2 ,: ln ,S t t tN θ β β β θµ µ ( )( ) ≈ − − ( )0 1 2

2

 
(1)

where β0 1 2, ,  are the model parameters. In this model, the slope β1 
is considered as a proxy for R2,iso* because it does not possess any θµ  
dependence, whereas β2 contains all the θµ dependent information of 
R2* (detailed derivation can be  found in section 4, 
Supplementary Equations S17b,c).

Classically, R2* is estimated by the slope (α1) of the log-linear 
model (M1) (Elster, 1993):

 M1 0 1: ln S t t( )( ) ≈ − ( )α α θµ  (2)

where α1 is a function of R2,iso* and the θµ dependent components 
of R2* (e.g., see Lee et al., 2011, 2012).

In this model, the offset parameter α0 captures a large portion of 
the remaining information like contrast parameters, e.g., 
magnetisation transfer and longitudinal relaxation rate; and 
experimental parameters, e.g., transmit field. For M2, we assume that 
β0 behaves in an identical fashion, i.e., this parameter captures all the 
remaining information as α0, even though this assumption is not 
explicitly shown in the HCFM [see Discussion in Wharton and 
Bowtell (2013)].

2.2. Myelin independence of β1 parameter 
as predicted by the log-quadratic model 
(M2)

The slope β1 of M2, which is a proxy for R2,iso*, is derived from 
the HCFM by assuming a two-pool system in the slow-exchange 
regime: a fast decaying water pool consisting of the myelin water 
with a relaxation rate R M2  and a non-myelin water pool with a 
relaxation rate R R RN A E2 2 2= = . In this work, we assumed that this 
non-myelin water pool consisted of the intra and extra cellular water, 
based on the findings and simplifications of Dula et al. (2010) and 
Wharton and Bowtell (2013). The only source of dephasing in the 
HCFM is caused by the magnetic properties of the hollow-cylinder 
fibre. All potential other perturbers are ignored (e.g., non-local 
effects of susceptibility inhomogeneities due to cavities, vessels, iron 
molecules, and diffusion) as well as other anisotropic magnetic 
properties, e.g., the magnetisation transfer effects (Pampel et al., 

2015), influencing transverse relaxation rate (Knight et al., 2017; 
Birkl et al., 2021; Tax et al., 2021) or longitudinal relaxation rate 
(Labadie et al., 2014; Schyboll et al., 2019; Chan and Marques, 2020; 
Kleban et al., 2021). In white matter, this simplification seems to 
be reasonable since the HCFM describes the orientation dependence 
of the meGRE signal to a great extend (Wharton and Bowtell, 2012). 
Consequently, in the approximation of M2 (Eq. 1), the predicted β1 
parameter (hereafter β1,nm , where nm represents ‘no myelin 
contribution’) is given by the transverse relaxation rate of the 
non-myelin water pool (R N2 ):

  β β1 1 2≈ =, .nm NR  (3)

We hypothesise here that for realistic tissue composition where 
the myelin compartment cannot be neglected (i.e., g-ratio equal to or 
smaller than 0.8), Eq. 3 is invalid. This hypothesis is supported by 
previous observations showing that R2* (and presumably R2,iso*) 
depends on the myelin water fraction, MWF (e.g., Lee et al., 2017; 
Weber et al., 2020; Milotta et al., 2023).

Here, we propose an alternative heuristic biophysical expression 
of the predicted β1 parameter (hereafter β1,m, where m denotes ‘with 
myelin contribution’):

  
β

ρ ρ
ρ ρ1

2 21

1
, ,m

N N M M M M

N M M M

R V V R
V V

=
−( ) +
−( ) +( )  

(4)

under the assumption that the proton densities of the 
non-myelinated compartments are equal (i.e., ρA = ρE ≡ ρN) and the 
volume of the non-myelinated compartment is defined as one minus 
the myelin compartment’s volume (= 1 – VM). The heuristic expression 
in Eq. 4 can be analytically derived under the condition that TE < T2 
of the myelin compartment based on the HCFM (details can be found 
in section 4, Supplementary Equation S18).

In this case, β1,m can be re-written as a function of the myelin 
water fraction (MWF, Supplementary Equation S19a, section 4), R2N 
and R2M:

  β β1 1 2 21≈ = −( ) +, · .m N MR RMWF MWF  (5)

Consequently, the MWF can be calculated by re-ordering Eq. 5 as 
a function of the R2’s values:

  
MWF

R
R R
m N

M N
=

−
−

β1 2

2 2

,
.

 
(6)

Based on our hypothesis, we expect that the heuristic expression 
for β1,m can better describe the fitted β1 when varying the g-ratio, and 
thus is a better proxy of R2,iso*.

3. Materials and methods

This section explains the approaches used for data acquisition, 
data analysis and for comparing the results obtained from the ex vivo 
data and the findings derived from the in silico data.
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3.1. Ex-vivo: optic chiasm

3.1.1. Sample and data acquisition
A human optic chiasm (OC) from a patient without any diagnosed 

neurological disorder was measured (male, 59 years, multi-organ failure, 
48 h postmortem interval, ~80 days of fixation in phosphate buffered 
saline (PBS) pH 7.4 with 0.1% sodium acide NaN3 containing 3% 
paraformaldehyde +1% glutaraldehyde) with prior informed consent 
(Ethical approval #205/17-ek). Two MR techniques were used: multi-
echo GRE (meGRE) and diffusion-weighted MRI (dMRI). The meGRE 
data used here have been in parts used already in Papazoglou et al. (2019).

All meGRE acquisitions were performed on a 7 T Siemens 
Magnetom MRI scanner (Siemens Healthcare GmbH, Erlangen, 
Germany) using a custom 2-channel transmit/receive circularly 
polarised (CP) coil with a diameter of 60 mm. The OC sample was fixed 
within an acrylic sphere of 60 mm diameter filled with agarose (1.5% 
Biozym Plaque low melting Agarose, Merck, Germany) dissolved in 
PBS (pH 7.4 + 0.1% sodium acide) and scanned at sixteen orientations 
(covering a solid angle, with azimuthal and elevation angles from 0° to 
90°, Figure 1A) using the 3D meGRE MRI (hereafter: GRE dataset). 
For each angular meGRE measurement (Figure 1B), sixteen echoes 
were acquired at equally spaced echo times (TE) ranging from 3.4 to 
53.5 ms (increment 3.34 ms) with a repetition time (TR) of 100 ms, a 
field of view (FoV) of (39.00 mm)3, a matrix size of 1123, resulting in an 
isotropic voxel resolution of (0.35 mm)3, non-selective RF excitation 
with a flip angle of 23° and a gradient readout bandwidth of 343 Hz/px.

The multi-shell dMRI data (hereafter: dMRI dataset), suitable for 
NODDI analysis, were acquired, three months later, on a 9.4 T small 
animal MR system (Bruker Biospec 94/20; Bruker Biospin, Ettlingen, 
Germany) using a 2-channel receiver cryogenically cooled quadrature 
transceiver surface RF coil (Bruker Biospin, Ettlingen, Germany) and 
a gradient system with Gmax = 700 mT/m per gradient axis. This dataset 
was acquired with a slice-selective (2D) pulsed-gradient spin-echo 
(PGSE) technique, consisting of four diffusion-weighting shells 
(number of directions) of b = 1,000 s/mm2 (60), 4,000 s/mm2 (60), 
8,000 s/mm2 (60) and 12,000 s/mm2 (60) with 35 non-diffusion-
weighted volumes (~ 0 s/mm2). The fixed diffusion parameters were 
diffusion time Δ = 13 ms, diffusion gradient duration δ = 6 ms. The 
remaining sequence parameters were TE = 27 ms, TR = 30 s (to acquire 

all the slices), FoV = 20.75 × 16.00 × 12.50 mm3, matrix size = 83 × 64 
× 50, isotropic voxel resolution = (0.25 mm)3, slice selective pulses with 
flip angles of 90° (excitation) and 180° (refocusing) and receiver 
bandwidth of 9,411 Hz/px.

Note that we used different MR systems for dMRI and meGRE 
measurements, because it was intended to use the optimal system for 
the respective measurement. The dMRI dataset was acquired on a 
Bruker Biospec with cryo-coil to take advantage of the scanner’s high 
gradient strength, allowing for acquisition of high-resolution images 
at optimal b-values for ex vivo tissue [up to 12,000 s/mm2 (Roebroeck 
et al., 2018)]. Moreover, we used a TR of 30 s for dMRI measurements 
to ensure full magnetisation recovery and to reduce possible biases for 
diffusion analysis (section 3.1.2). The meGRE data was acquired on a 
human 7 T Siemens Magnetom MRI scanner because an optimised 
meGRE sequence was available on this system, including a self-built 
ex vivo sample coil.

Since the tissue sample was already fixed and immersed in PBS 
and sodium acide solution to preserve the tissue quality (Minassian 
and Huang, 1979), the time between the acquisitions (less than 
2 weeks) did not affect the tissue quality.

3.1.2. Dispersion and mean fibre orientation 
estimation from dMRI dataset

To incorporate the voxel-wise information regarding the angular 
orientation of the fibres to B0

� ��
 and fibre’s dispersion, the dMRI datasets 

were corrected using a simple rigid-body registration to remove a 
potential drift of the sample during measurements. The dMRI data 
were analysed with two diffusion models: Neurite Orientation 
Dispersion and Density Imaging (NODDI) (Zhang et al., 2012) and 
Diffusion Tensor Imaging (DTI) (Basser et al., 1994). The NODDI 
toolbox was adjusted for ex vivo analysis (Wang et al., 2019) and used 
all the diffusion shells. The main neurite (hereafter fibre) orientation 
( µ


), a measure of the fibre dispersion (κ), and fibre density (volume 
fraction of the intracellular compartment, ICVF) maps were estimated 
from this analysis. The DTI model used the first two diffusion shells 
(b-values: 1000 s/mm2 and 4,000 s/mm2) and was used only for 
estimating the fractional anisotropy (FA) map, which in turn was used 
only for diffusion-to-GRE coregistration (section 3.1.3). Note that 
eddy currents were small in this dMRI data because the data were 

FIGURE 1

Acquisition of the multi-angular multi-echo gradient recalled echo (meGRE) ex vivo data. (A) An illustration of the different angular measurements 
performed on the optic chiasm (OC) specimen. The red dots show the position of the optical tracts (see inset) for the different measurements. The 
different coordinates (spatial, x-y-z and anatomical, anterior-head-right, A-H-R) are shown (adapted illustration from Papazoglou et al., 2019). 
(B) Illustration of the first echo meGRE image acquired at the first and last angular measurement. The 3D view shows the specimen position to the 
main magnetic field 0



B  and the position of the optical tract (red dot). The yellow line shows the same coronal slice image.
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acquired with a small FoV in the gradient-coil centre using the 
standard Bruker gradient coil. Moreover, the cryo-coil provided 
sufficiently high SNR values for unbiased dMRI model parameters 
(the mean SNR across the specimen was approximately 57 for the 
b-value = 0 s/mm2 images). The SNR was calculated by dividing the 
MR signal by the standard deviation of the background voxels of its 
corresponding image (Kellman and McVeigh, 2005).

3.1.3. Coregistration of the GRE angular 
measurements and dMRI results

To establish a voxel-to-voxel relationship between the meGRE 
signal at different angular orientations and the properties estimated 
from dMRI, i.e., κ, µ  and ICVF, we coregistered the angular meGRE 
measurements and the dMRI measurement. To this end, we estimated 
two sets of transformation matrices: first, transformation matrices that 
coregister the i-th angular measurements in GRE space, TGRE i: ,1 (with 
i = 2… 16, see Figure 2A); and second, a transformation matrix that 
coregisters from GRE space to dMRI space, TDiff GRE,  (see Figure 2B). 
The coordinate system of GRE space was defined by the first meGRE 
angular measurement. This reference was chosen due to the alignment 
of the optical nerves to B0

� ��
 and following the procedure adopted in a 

previous study (Papazoglou et al., 2019). The meGRE coregistration 
and estimation of TGRE i: ,1 were performed using the 3D Slicer 
software1 (Fedorov et  al., 2012), while the GRE-to-diffusion 

1 http://www.slicer.org

transformation was performed using the coregistration module in 
SPM 12.2

3.1.4. Voxel-wise estimation of the angular 
orientation, θµ, between fibres and B0

� ��

The angular orientation θµ between fibres and B0
� ��

 for each meGRE 
angular measurement was calculated in dMRI space and the resulting 
θµ maps mapped onto GRE space. For that, the arccosine of the inner 
product between B i0

� ��
θ( ) and 



∝ , i.e., ( )( )0 •µθ θ µ=




iBarccos  was 
computed (Figure 3C). In this computation, B i0

� ��
θ( ) is the resulting B0

� ��
 

after the transformation from the i-th meGRE angular measurement 
to the first meGRE angular measurement (TGRE i: ,1), and the 
transformation from GRE to dMRI space (TDiff GRE,

−1 ) (Figure 3A). The 
main fibre direction was obtained by the µ  map from the NODDI 
analysis (Figure 3B).

Note that θµ was computed in dMRI space instead of GRE space 
to avoid undersampling and interpolation caused by transforming the 
dMRI-based µ



 to GRE space. These sources of error do not occur by 
transforming B0

� ��
 to dMRI space, i.e., computing T T BDiff GRE GRE i, : ,· ·

−1
1 0

� ��
, 

for each GRE angular measurement, since it is a global rather than a 
per-voxel measure. Finally, the θµ maps together with the ICVF and 
κ maps (not shown in Figure 3) were transformed using TDiff GRE, . 
Exemplary θµ  maps in GRE space are shown in 
Supplementary Figure S1 (first row).

2 http://www.fil.ion.ucl.ac.uk/spm

FIGURE 2

Coregistration of the ex vivo GRE and dMRI measurements. (A) A transformation matrix (TGRE) is obtained by coregistering all other multi-echo 
gradient-recall-echo (meGRE) datasets (I2.0.16) to the first measurement (I1, TGRE: i,1). This transformation matrices not only align, voxel-wise, the images of 
the meGRE datasets (I’2.0.16) to the first dataset, but also adjusts the directions of the main magnetic field (B0

� ���
) per angular measurement to preserves 

their relative orientation with respect to the first meGRE dataset. (B) A transformation matrix (TDiff,GRE) is obtained by coregistering the diffusion MRI 
(dMRI) image to the first angular GRE measurement. This transformation will allow the coregistration of the NODDI analysis results to the GRE data.
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3.1.5. Masking and pooling the ex vivo data
Before analysis, the ex vivo data required further pre-processing 

to remove outliers and to ensure a robust assessment of the effect of 
fibre dispersion and θµ on R2*. For that, the ex vivo data were masked 
using the coregistered ICVF map and later pooled across the sixteen 
coregistered meGRE angular measurements.

In this process, all voxels in the OC with an ICVF >0.8 were 
selected and pooled across all the meGRE angular measurements, 
hereafter referred to as cumulated data. The ICVF threshold was used 
because the extra-axonal space in the ex vivo specimen is reduced 
(e.g., Stikov et al., 2011). The application of this threshold reduced the 
number of voxels in the OC by 7.2% (~ 600 over 8,744 voxels). By 
pooling the data, the resulting cumulated data dependent on TE but 
also on θµ  from 0° to 90°, and on fibre dispersion assessed by κ 
from 0 to 6.

3.2. Simulated R2* signal decay from the 
HCFM

Multi-echo GRE signal decay was simulated as ground truth 
(hereafter, in silico data) to assess the impact on M2 of variable fibre 
orientation, dispersion and myelination (i.e., g-ratio). For that, 
we estimated averaged MR signals calculated from an ensemble of 
1,500 hollow cylinders. The cylinders were evenly distributed on a 
sphere with defined spherical coordinates: an azimuthal angle φ 
rotating counter-clockwise from 0° to 359° starting aligned with the 
+X axis, and elevation angle θ rotating from 0° (+Z) to 180° (−Z). The 
signal contribution per hollow cylinder was modelled using the 
frequency-averaged signal equations from the HCFM for all the 
compartments including the myelin compartment 
(Supplementary Equations S1, S3, section 2).

In the simulation framework, three assumptions were made. First, 
the B0
� ��

 was fixed and oriented parallel to +Z (Figure 4A). Second, the 
approximated piece-wise function of DE in the SE signal was replaced 
by its analytical solution (Supplementary Equations S2b, S4, S7, S8, 
section 3; respectively), because a discontinuity in this piece-wise 
function was observed at the so-called critical time (Yablonskiy and 
Haacke, 1994; Wharton and Bowtell, 2013). See section 3  in 
Supplementary material for a detailed discussion. And third, 
we ignored the near-field effects between cylinders, therefore the total 
signal is the sum of all the complex signals from each cylinder as 
defined in Supplementary Equations S1–S3.

To incorporate the effect of fibre dispersion in the in silico data, 
the ensemble-average signal was calculated by weighting Sc with the 
Watson distribution (W) (Sra and Karp, 2013 and Eq. 8b). This weight 
from the Watson distribution was calculated using the position of each 
simulated cylinder, xi

���
, and a mean fibre orientation µ , both defined 

with spherical coordinates (φ, θ) and (φµ ,θµ), respectively (Figure 4A). 
For simplification, µ



 was restricted to an azimuthal angle of zero (φµ  
= 0°). Then, the analytical expression of the ensemble-average signal, 
SW, is defined as follows:

 
S t

S t W

WW
i C i i i

i i i
κ θ

θ κ θ φ θ

κ θ φ θµ
µ

µ
, ,

, , , ,

, , ,






( ) =
( ) ( ) ( )

( )
∑

∑
,,
 

(7a)

 
where , , , , ,

,
W C ei i

xi i iκ θ θ φ κµ
κ µ θ φ θµ�
� ���

�

( ) = 






− ( ) (

1

1
1

2

3

2

· ))( )2
.

    
(7b)

In Eq. 7b, C1() is the confluent hypergeometric function, which is 
the normalisation factor of the Watson distribution, and the exponent 
holds the norm of the inner product between each individual i-th 

FIGURE 3

Estimation of the voxel-wise angular θµ map. This estimation needed the B0 direction per angular GRE measurement (B i0
� ���

θ( )) in diffusion space and the 
main fibre direction. (A) The B i0

� ���
θ( ) was estimated by applying to B0

� ���
, first, the transformation matrix between GRE volumes (TGRE:i,1) and later from GRE-

to-diffusion (T−1
Diff,GRE). (B) The main fibre direction (

∝) was acquired by analysing the dMRI data with the NODDI model. (C) Then, the voxel-wise θµ 
per angular measurement was computed by the arccosine of the scalar product between the projected B i0

� ���
θ( ) and the main diffusion direction (

∝), 
( )( )•0θ θ µµ =





 acos B i . This sketch shows the steps for the last GRE angular measurement.
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cylinder xi
���

 and µ


. The level of dispersion was modulated by the 
parameter κ (Zhang et al., 2012; Sra and Karp, 2013) as shown in 
Figure 4B for a few cases. It is important to note that the notation θµ 
for the elevation angle of µ  used here is equal to the one used to 
describe the fibre’s angular orientation in the ex vivo data (section 
3.1.4). This is intentional since they stand for the same concept in both 
datasets. This simulation approach was used in previous conference 
publications [Fritz et al. (2020, 2021)].

With the ensemble averaged signal equation (Eq. 7a), a meGRE 
signal decay can be computed based on the relevant parameters listed 
in the following Table 1.

We tested the validity of M2 and its microstructural derivatives 
like MWF (Eq 6) for varying microstructural parameter settings. This 
included two different sets of compartmental R2 values (i.e., R2N and 
R2M) (Dula et al., 2010; Wharton and Bowtell, 2013). The sets represent 
two possible extremes of compartmental R2 values at 7 T: (1) ex vivo 
compartmental R2 values measured from an ex vivo rat spinal cord 
with similar tissue preparation procedure as the optic chiasm in this 
work [i.e., fixed with 4% PFA and hydrated in PBS (Dula et al., 2010)], 
and (2) in vivo compartmental R2 values obtained from in vivo human 
measurements (Wharton and Bowtell, 2013). The ex vivo 
compartmental R2 values are reported in the main manuscript whereas 
the in vivo compartmental R2 values are reported in the 
Supplementary material, Section 7.

Finally, each simulated meGRE signal decay was replicated 5,000 
times with an additive Gaussian complex noise (Gudbjartsson and 
Patz, 1995) to approximate the SNR of the experimental ex vivo data 
(see Supplementary material, section 5). The experimental SNR was 
calculated by dividing the MR signal acquired at the first echo by the 
standard deviation of the background voxels of its corresponding 
image (Kellman and McVeigh, 2005), resulting in a mean SNR across 
the selected voxels of the OC of 112.

This simulation framework is publicly and freely available in 
Github.3

3.3. Data analysis

3.3.1. Data fitting and binning
The ex vivo data (section 3.1) and in silico data (each of 5,000 

replicas per simulated meGRE signal decay, section 3.2) were analysed 
with the log-linear and log-quadratic models, M1 (Eq. 2) and M2 

3 https://github.com/quantitative-mri-and-in-vivo-histology/

r2s_iso_estimation

FIGURE 4

Schematics of the simulated in silico data: (A) Simulation: 1500 
hollow cylinders, each of them defined by the vector 



xi , were 
distributed evenly on a sphere (see the blue dots). A mean 
orientation µ  of the cylinders is defined, with the external magnetic 
field ( B0

� ���
) oriented parallel to the Z-axis. The signal contribution per 

cylinder was modelled using the Hollow Cylinder Fibre Model 
(HCFM) with the intra-axonal (SA), extra-axonal (SE) and myelin (SM) 
compartments (inset). (B) Addition of cylinder’s dispersion: the 
dispersion effect was added by weighting the signal coming from the 
cylinders by the parameter κ from the Watson distribution and µ



 
(Eq. 8b). The parameter κ is limited from κ  =  0 for isotropically 
dispersed to κ  =  infinity to fully parallel fibres. Here, µ



 is parallel to 
B0
� ���

.

TABLE 1 Microstructural parameters used to generate the in silico data.

Parameter Value Reference

Anisotropic and isotropic 

susceptibilities (χA and χI)

−0.1 ppm Wharton and Bowtell 

(2013)

Exchange (E) 0.02 ppm Wharton and Bowtell 

(2013)

Proton density intra-and 

extra- axonal compartments 

(ρA and ρE)*

5,000 a. u. Wharton and Bowtell 

(2013)

Larmor frequency at 7 T (ω0) 1.873 ∙ 106 rad/ms –

Fibre volume fraction (FVF) 0.5 n. u. Wharton and Bowtell 

(2013)

Proton density myelin 

compartment (ρM)*

3,500 a. u. Wharton and Bowtell 

(2013)

R2 intra-and extra- axonal 

compartments 

(R2A = R2E = R2N)

18.53 s−1 (ex vivo)

27.8 s−1 (in vivo)

Dula et al. (2010)

Wharton and Bowtell 

(2013)

R2 myelin compartment 

(R2M)

75.41 s−1 (ex vivo)

125 s−1 (in vivo)

Dula et al. (2010)

Wharton and Bowtell 

(2013)

Angular orientation (θµ)
2°:2°:90° –

Index of fibre dispersion (κ) 0.001:0.1:6.0 –

g-ratio 0.66, 0.73, 0.8 Emmenegger et al. (2021) 

only for 0.66 and 

Wharton and Bowtell 

(2013) for 0.8.**

Time (i.e., echo time) 3.25:3.25:53.5 ms –

The last four parameters are the parameter or simulation space. *Proton densities were 
scaled by a factor of 5,000 but they kept the same proton density proportion between the 
non-myelinated and myelinated compartments (1:0.7). ** The mean g-ratio value of 0.73 
was arbitrarily defined.
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FIGURE 5

Preparation of the ex vivo data for analysis. (A) The cumulated ex vivo data were distributed first as a function of κ parameter, to ensure similar fibre 
dispersion. Heuristically it was divided in highly dispersed (κ  <  1), mildly dispersed (1  ≤  κ  <  2.5) and negligibly dispersed (κ  ≥  2.5) fibres. Coincidentally, this 
division enclosed specific areas in the OC (red, green and blue ROIs). (B) After division, the cumulated data were binned irregularly as a function of the 
estimated voxel-wise angular orientation ( µθ ) per κ range (orange bars), to avoid a possible effect size bias caused by its non-uniform distribution 
(blue bars). The first angular irregular bin or angular offset 0θ  was obtained and showed to be κ range dependent (Supplementary Table S1, section 5).

(Eq. 1), respectively. In both models, the α’s (α0 in arbitrary units, α1 
in units of 1/s) from M1, and β’s (β0 in arbitrary units, β1 in units of 
1/s and β2 in units of 1/s2) from M2, hereafter referred to as the 
α-parameters and β-parameters, were estimated. To fit the data, 
ordinary Least Square (OLS) optimization was used for both models 
in custom-made Matlab code. Three fittings were performed using 
three different meGRE subsets, that varied by their maximum TE 
(TEmax) values: TEmax = 54 ms (all 16 time points), TEmax = 36 ms (first 
10 points) and TEmax = 18 ms (first 5 time points). The first meGRE 
subset with TEmax of 54 ms replicated the meGRE protocols of the ex 
vivo studies, while the meGRE subset with TEmax of 18 ms could 
be considered as a typical meGRE protocol for in vivo studies [at least 
with regards to the sample size and TE range used in the multi-
parametric mapping protocol (Weiskopf et al., 2013)]. The meGRE 
subset with TEmax of 36 ms was chosen as an intermediate subset 
between both protocols.

To compare the α- and β-parameters between datasets as a 
function of fibre dispersion (κ) and θµ , the fitted parameters were 
binned and averaged for the ex vivo cumulated data (section 3.1.5) and 
for the in silico data. The binning on the fitted parameters was 
performed to ensure: (1) a reduced effect size bias in the ex vivo 
cumulated data, given the unequal number of voxels at specific θµ and 
κ (Figure 5); and (2) a better comparison between in silico and ex 
vivo data.

In the binning process, both datasets were distributed first as a 
function of κ, and later as a function of θµ. The first distribution was 
performed to ensure a similar degree of fibre dispersion as observed 
in Figure 4B and in the work of Fritz et al. (2020). For that, three 
different fibre dispersion ranges were defined as a function of κ: κ < 1 

for the highly dispersed fibres, 1 ≤ κ < 2.5 for the mildly dispersed 
fibres, and κ ≥ 2.5 for the negligibly dispersed fibres. Coincidentally, 
these fibre dispersion ranges depicted specific areas in the OC 
(Figure 5A). However, the in silico data required two extra averages 
on the fitted parameters to bin it as a function of the different fibre 
dispersion ranges: first, across the 5,000 replicas and, second, across 
the κ values within each fibre-dispersion range. The average across κ 
was performed in such a way that it resembled the frequency 
distribution of κ observed in the ex vivo cumulated data (for more 
detail, see Supplementary material, section 5). After separating the 
fitted parameters per fibre dispersion range for both datasets, the 
data were irregularly binned as a function of θµ  bins per defined 
κ range.

The irregular θµ  bins were introduced to avoid a bias due to the 
uneven distribution of voxels with azimuthal orientations across the 
16 angular measurements (Figure 5B, blue bars). To determine the 
irregular θµ  bin sizes, a cumulated θµ  distribution of voxels was 
estimated and divided into 20 equally populated bins (Figure  5B, 
orange bars). The mean of the first angular irregular bin was defined 
as the angular offset θ0. The range of θµ  values contained in each 
irregular bin and the θ0 values are shown in Supplementary Table S1, 
section 5.

After binning, the average and standard deviation (sd) of the α- 
and β-parameters between datasets was calculated per irregular θµ bin 
in the ex vivo cumulated data. For the in silico data, the average and sd 
of the same parameters were obtained by weighting the distribution 
of θµ in each bin in a similar way to that seen in the irregular bins in 
the ex vivo cumulated data (for more detail, see Supplementary material, 
section 5).
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3.3.2. Quantitative analysis
Four different analyses were performed in order to study: (1) the 

effect of g-ratio and fibre dispersion, via κ, on the estimated angular-
independent β1 parameter in M2, (2) the microstructural 
interpretability of β1 via the deviation between fitted β1 and its 
predicted counterparts from M2 (β1,nm, Eq. 3) and from the heuristic 
expression (β1,m, Eq. 4), (3) the possibility of calculating the MWF 
(Eq. 5) from the fitted β1 using the heuristic expression β1,m, and (4) 
the effect of TE, via the different meGRE subsets, on the performance 
of M2. The last analysis was divided into two parts, testing: (A) its 
capability to reduce the orientation dependence in β1 (and thus be a 
valid proxy for R2,iso*), and (B) if M2 can be better explained by the 
different meGRE subsets than M1. Using the simulation framework, 
the validity of M2 and its derived microstructural parameters were 
tested based on analyses 1, 2 and 4. While both datasets were used for 
the first and fourth analyses, only the in silico data were used for the 
second analysis while ex vivo data were only used for the 
third analysis.

3.3.2.1. First analysis: ability of M2 to obtain the 
angular-independent β1 parameter for varying g-ratio and 
fibre dispersion values

For the first analysis, the ability of M2 to estimate an 
orientation-independent effective transverse relaxation rate, 
R2,iso*, via the β1 parameter was assessed. Since R2,iso* by definition 
is the angular independent part of R2 * and according to the 
HCFM should be given by β1 parameter at θ θµ = ≡0 0, we assessed 
the residual θµ  dependence of the β1 parameter with respect to 
θ0 and compared it with its counterpart for α1, i.e., the proxy for 
the θµ  dependent R2*.

For this, we first calculated the θµ dependence of each parameter 
with respect to θ0 using the normalised-root-mean-squared deviation 
(nRMSD, in %):
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where θ0 varied slightly for each κ range (sub-index j) but was 
close to zero (see Supplementary Table S1) with 𝛾 ∈ {𝛼1, 𝛽1}.

To compare the nRMSD of each parameter, we calculated the 
difference between them, ΔnRMSD, as:

  
( ) ( )( ) ( )( )1 1j j jnRMSD nRMSD nRMSDκ β κ α κ∆ = −

 (9)

in percentage-points (%-points). If the ΔnRMSD is positive or 
higher than 0%-points, this implies that the θµ  dependency of β1 
is similar or higher, in magnitude, to α1. The latter says therefore 
that M2 failed in estimating an angular-independent parameter 
from R2*. A negative ΔnRMSD in turn implies that the θµ  
independence of β κ1 j( ) has been reduced. A perfect orientation 
independence is achieved if nRMSD jβ κ1 0( )( ) =  and, 
consequently, ( ) ( )( )1j jnRMSD nRMSDκ α κ∆ = − .

3.3.2.2. Second analysis: assessment of the 
microstructural interpretability of β1

For the second analysis, the microstructural interpretation of β1 
was quantitatively assessed by comparing the relative difference (ε) 
between estimated β1 at the angular orientation θµ  for the fitted in 
silico data (β θµ1 ( )) and the predicted β1 (β1, p ) using M2 or the 
heuristic expression:
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where β β β1 1 1, , ,p nm m∈{ },  were defined in Eqs 5, 6, respectively. 
Additionally, the mean  θ κµ , j p( )  across angles was 

calculated as ( ) ( )
1

1 ,κ θ κ
=

≡ ∑
N

j l jp p
lN

  .

3.3.2.3. Third analysis: myelin water fraction and g-ratio 
estimation from ex vivo data using the heuristic 
expression of R2,iso* via β1,m

For the third analysis, the MWF was estimated from the fitted β1 
in ex vivo data using the analytical expression for β1,m (Eq. 6). For that, 
we used the two sets of R2 values for the non-myelinated (R2N) and 
myelinated (R2M) compartments reported in Table 1. Only the ex vivo 
R2 values were reported in this section, while the in vivo R2 values were 
reported in Supplementary material, section 7.2.3.

3.3.2.4. Fourth analysis: the effect of echo time ranges on 
the performance of M2

In the fourth analysis, the performance of M2 was tested in two 
sub-analyses when using the meGRE datasets with different TE ranges 
(see section 3.3.1).

3.3.2.4.1. First sub-analysis: assessing the residual µθ  
dependence in β1 for meGRE subsets with different maximum 
echo times

For the first sub-analysis, the orientation dependence of β1 was 
assessed for the different meGRE subsets from the ex vivo dataset and 
the in silico data for variable g-ratio. For that, α1 and β1 from M1 and 
M2 were compared once again as in the first analysis and the ΔnRMSD 
was calculated to assess the residual θµ  dependence of β1 in 
comparison to the θµ dependence of α1.

3.3.2.4.2. Second sub-analysis: assessing if M2 is better 
explained by the data using meGRE subsets with different 
maximum echo times

For the second sub-analysis, the weighted-corrected Akaike 
Information Criterion (wAICc, Eq. 12) was introduced [more details 
can be found in Supplementary Equation S30, section 6  and Burnham 
et al. (2011)]. According to Burnham et al. (2011), the wAICc can 
be used to assess whether a given model (here M2) is better explained 
[or “supported” as introduced in Burnham et al. (2011)] by the data 
than a set of other models (here M1). In this work, we used the AICc 
(i.e., Akaike Information Criterion, AIC, with a correction for small 
sample sizes) instead of the AIC or the Bayesian Information Criterion 
(BIC) to better account for the small sample size in comparison to the 
number of model’s parameters. Note that to use the AIC the ratio 
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between the sample size and the number of parameters (n/k) should 
be above 40 (Burnham and Anderson, 2002) and this condition was 
not always fulfilled in our data.

The wAICc for M2 is defined by:

  
( )( )
1wAICc ,

1 exp 0.5 AIC
=

+ − ∆
 

(11)

where ΔAICc in Eq. 12 is the difference of the AICc for models 
M1 and M2:

 ( ) ( )AICc AICc M1 AICc M2∆ = −
 (12)

The AICc and wAICc were estimated per voxel (for ex vivo) 
and replica (for in silico) from the previous analysis using the 
sum-of-squares error (SSE) from the fitting of each model (see 
Supplementary Equation S32, section 6) and for each of the three 
meGRE subsets. Note that the AICc and wAICc were estimated 
only ex vivo and in silico data with negligible fibre dispersion 
(κ ≥ 2.5). Then, the averaged wAICc as well as its standard 
deviation (sd) were calculated. In this work, we interpreted the 
range of possible wAICc values in a more conservative manner. 
Hereby, we mainly focused on the case AICc(M1) > AICc(M2) 
(Eq. 12), where the resulting wAICc (Eq. 11) is greater than 0.5: a 
wAICc >0.73 implies that M2 is better explained by the meGRE 
data than M1, and a wAICc between 0.5 and 0.73 implies that M2 
and M1 are ambiguously explained by the data but M2 is still 
preferred. For the case of AICc(M1) ≤ AICc(M2), where wAICc 
≤0.5, M2 was not explained by the data as compared to M1. More 
details regarding the calculations as well as the threshold of 0.73 
can be found in the Supplementary material, section 6. Note that 
we were only reporting the average wAICc, thus the wAICc for 
some voxels (for ex vivo) or replicas (for in silico) might belong to 
a different range than the average wAICc, which can be observed 
by the estimated sd wAICc.

In the following sections, the dependence of the parameters under 
study, i.e., nRMSD(α κ j( )), nRMSD(β κ j( )), ΔnRMSD (κ j ), 
α1(θ κµ , j ), β1(θ κµ , j ) (Eqs 8, 9),  θ κµ , j p( )  (Eq. 10) and  κ j p( ) , to 
θµ  and κ  were simplified for readability purposes. Therefore, these 
parameters will be hereafter nRMSD(α1), nRMSD(β1), ΔnRMSD, α1, 
β1,  p and  p, respectively.

4. Results

4.1. First analysis: ability of M2 to obtain the 
angular-independent β1 parameter for 
varying g-ratio and fibre dispersion values

Figure 6 shows the performance of M2 when estimating R2,iso* via 
β1 for variable g-ratio and fibre dispersion. To visualise this, 
we compared the θµ  dependence of α1 from M1 to the residual θµ  
dependence of β1 from M2 (Figures 6A,B). Both θµ dependencies were 
quantified in Figure 6C using their respective nRMSD (Eq. 8). The 
results are from the analysis performed on the ex vivo and in silico 

data. The in silico data was generated using the ex vivo compartmental 
R2 values (the corresponding results for the in vivo compartmental R2 
values are presented in Supplementary Figure S4).

The ability of M2 to reduce the θµ dependency of β1 varied with 
g-ratio and fibre dispersion. The θµ dependency of α1 (and residual θµ 
dependency of β1) was also strongly influenced by g-ratio and fibre 
dispersion: smaller g-ratio values and reduced fibre dispersion 
increased the θµ dependency of α1 and (the residual θµ dependency) 
of β1 (Figures 6A,B, respectively).

The fibre dispersion affected the performance of M2 the same 
between in silico and ex vivo datasets (Figure 6C). In both datasets, the 
improvement is largest for negligible dispersion (starting from 
ΔnRMSD = −12.0%-points for the in silico data with a g-ratio of 0.8 
and ΔnRMSD = −37.4%-points for the ex vivo data). For the ex vivo 
data, the nRMSD(β1) was the lowest for the negligibly dispersed fibres 
(nRMSD(β1): 1.3% at κ ≥ 2.5). For the in silico data, the nRMSD(β1) 
was the lowest for the highly dispersed fibres and for a g-ratio of 0.73 
(nRMSD(β1): 0.1%), and it increased with decreasing fibre dispersion 
(nRMSD(β1) up to 2.7%). For the g-ratios of 0.66 and 0.8, the 
nRMSD(β1) was higher but still below 12%.

The θµ dependence of α1 on fibre dispersion was the same between 
in silico and ex vivo datasets (Figure 6C, top): the lower the dispersion 
the higher the nRMSD(α1). The θµ dependence of α1 increased as the 
g-ratio decreased.

4.2. Second analysis: assessment of the 
microstructural interpretability of β1

Figures  7A,B report the angular-orientation (θµ) dependent 
relative differences (nm and m, Eq. 10) between the fitted β1 from the 
in silico data and its predicted counterparts using M2 (Eq. 3) and the 
heuristic expression (Eq. 4). Figure 7C shows the mean and standard 
deviation of nm and m across angles for ex vivo compartmental R2 
values (the corresponding results for the in vivo R2 values are presented 
in Supplementary Figure S5).
nm was large, between −100% and − 40%, and varied strongly 

with g-ratio and fibre dispersion. nm showed the largest θµ  
dependence where the largest deviation was observed (i.e., for the 
g-ratio of 0.66 and the lowest fibre dispersion, Figure 7A). m was 
always smaller than nm and showed a smaller θµ dependence across 
all the studied fibre dispersions and g-ratios. It varied between −20 
and 20% and had the largest values and variation for the smallest 
g-ratio and negligibly fibre dispersion. For the average across angles, 
we found that negligibly dispersed fibres showed the smallest nm and 
m per g-ratio.

The mean across angles for nm, nm , was up to −85% whereas 
the mean across angles for m, m , was only up to −12% (Figure 7C). 
On average across all g-ratios and fibre dispersion arrangements, 

nm  was approximately 8 to 9 times larger than m . Both relative 
mean differences became more negative with increasing g-ratio and 
decreasing fibre dispersion. The m  for the negligibly dispersed 
fibres at g-ratio 0.66 was close to −2% but accompanied by a large 
standard deviation across θµ due to the strong θµ-dependency of the 
corresponding fitted β1 parameters. For both nm and m, the variability 
(Figure  7C) across different θµ  values, sd nm( )  and sd m( ) 
respectively, was highest when the fibre dispersion and g-ratio 
were lowest.
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4.3. Third analysis: myelin water fraction 
estimation from ex vivo data using the 
heuristic expression of R2,iso* via β1,m

Figure 8 reports the MWF estimated from the ex vivo data by 
inverting the heuristic expression for β1,m (Eq. 6), using the ex vivo 
compartmental R2 values (the corresponding results for the in vivo R2 
values are presented in Supplementary Figure S6). Figure 8A shows 
the estimated MWF as a function of θµ  while Figure 8B shows the 
median and standard deviation (sd) of the estimated MWF across θµ.

The estimated MWF was larger with decreasing fibre dispersion 
(Figure 8A). Moreover, there was a trend towards larger estimated 
MWF for larger θµ . Across θµ , the estimated median ex vivo MWF 
was 0.14 for fibres with negligible dispersion but moved towards to 
even lower and unrealistically small values (MWF: 0.069) for dispersed 
fibres (Figure 8B). The standard deviation across MWF was similar for 
different fibre dispersions, ranging from 0.0068 to 0.0104.

4.4. Fourth analysis: the effect of echo time 
ranges on the performance of M2

In this section, two sub-analyses were performed for in silico data 
at variable g-ratio and ex vivo data, both with negligibly dispersed 
fibres (i.e., κ ≥ 2.5), using the three meGRE subsets with different 
maximum echo time (TEmax) for ex vivo compartmental R2 values (the 
corresponding results for the in vivo R2 values are presented in 

Supplementary Figures S7, S8). In the first sub-analysis, its result is 
depicted similarly as in Figure 6, but for different TEmax and κ ≥ 2.5. In 
the second sub-analysis, it was assessed whether M2 was better 
explained by the different meGRE subsets than M1 using the average 
wAICc of M2 (Eq. 11).

4.4.1. First sub-analysis: assessing the residual µθ  
dependence in β1 for meGRE subsets with 
different maximum echo times

Using the meGRE subsets with smaller TEmax (36 ms and 18 ms), 
M2 was less effective across all g-ratios (Figures 9A,B, second and 
third column). For some microstructural parameter settings, even 
an increased θµ  dependence was observed for β1 compared to α1: 
nRMSD(β1) went up by 5.6%-points at 36 ms (in silico, g-ratio: 0.8) 
and by 14.1%-points at 18 ms (ex vivo). Moreover, for the meGRE 
subset with the smallest TEmax (18 ms), an atypical θµ  dependence 
of β1 (and α1) was found in the ex vivo data: β1 (and α1) decreased 
with increasing θµ  up to approximately 55° (magic angle, dashed 
magenta lines in Figures 9A,B) and then slightly increased again. 
The θµ  dependence up to the magic angle was not observed in the 
in silico data at any investigated meGRE subset. Moreover, the θµ  
dependence of α1 in the ex vivo data decreased when meGRE 
subsets with decreasing TEmax were used. This trend was mostly also 
observable in the in silico data (Figure 9A). Note that we investigated 
the orientation dependence of α1 and β1 also for mildly and highly 
dispersed fibres but did not find new trends in those datasets (data 
not shown).

FIGURE 6

Orientation dependence of linear model parameters (α1 and β1) for varying g-ratio and fibre dispersion values. (A,B) Depicted is the α1 parameter of M1 
(proxy for R2*) and β1 parameter of M2 (proxy for the isotropic part of R2*) as a function of the angle between the main magnetic field and the fibre 
orientation (θµ) for different fibre dispersion and g-ratio values. The different columns depict different dispersion regimes: highly dispersed (κ  <  1, first 
column), mildly dispersed (1  ≤  κ  <  2.5, second column) and negligibly dispersed (κ  ≥  2.5, third column) fibres. Note that the smallest angle (θ0) varied 
across dispersion regimes: 17.3° (κ  <  1), 20.4° (1  ≤  κ  <  2.5) and 22.9° (2.5  ≤  κ). This was caused by the irregular binning (see section 3.1.4) (C) Depicted is 
the normalised root-mean-squared deviation (nRMSD, Eq. 11 in %) of the α1 parameter of M1 (proxy for R2*) and β1 parameter of M2 (proxy for the 
isotropic part of R2*) for different fibre dispersion and g-ratio values. Across the entire figure, the distinct colours (blue and green curves and bars) 
distinguish between in silico data with variable g-ratios (increasing blue hue with increasing g-ratio) and ex vivo data (olive curve).
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FIGURE 8

Dependence of the MWF estimation on angular orientation for three different fibre dispersion ranges in ex vivo data. (A) The MWF was estimated by 
using the heuristic analytical expression of β1 (β1,m, Eq. 4) and the fitted β1 for the ex vivo data using the compartmental R2 values from Dula et al. (2010) 
(hues of green) in Table 1. This calculation was performed per angle (θµ) and for the three different fibre dispersion ranges: highly dispersed, mildly 
dispersed and negligibly dispersed. The increasing green hue represents decreasing fibre dispersion. (B) The corresponding median and standard 
deviation (sd) were estimated across θµ per fibre dispersion range.

FIGURE 7

Assessment of the microstructural interpretability of β1 by the deviation between fitted and biophysically predicted β1. (A–B) The relative difference 
(ε, Equation 10) was calculated between the fitted β1 to the in silico data and two biophysically-modelled expressions for β1 based on the HCFM. The 
two expressions for β1 values were calculated from the original expression for M2, β1,nm (Equation 3, resulting in εnm, A) and the heuristic expression, β1,m 
(Equation 4, resulting in εm, B). This was calculated per g-ratio and fibre dispersion. (C) The corresponding mean, <ε>, and standard deviation, sd(ε), of 
the relative differences across the angular orientations (θµ) were estimated. The hue intensity coding represents increasing g-ratio value for both error 
estimations.
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4.4.2. Second sub-analysis: assessing if M2 is 
better explained by the data using meGRE 
subsets with different maximum echo times

The average wAICc showed different trends across the different 
meGRE subsets with varying TEmax for both datasets. For the ex vivo 
data, the average wAICc decreased when meGRE subsets with smaller 
TEmax were used. Using the meGRE subsets with the largest and 
intermediate TEmax (54 and 36 ms), the average wAICc indicated that 
M2 was better explained than M1 by the data with wAICc values in the 
ranges of wAICc >0.73 (TEmax = 54 ms) and 0.73 > wAICc >0.5 
(TEmax = 36 ms), respectively. Interestingly, for the in silico data, the 
average wAICc decreased as a function of g-ratio for the meGRE subset 
with the largest TEmax, from wAICc: 0.71 to 0.44; but increased with 
increasing g-ratio for the meGRE subset with intermediate TEmax, from 
wAICc: 0.31 to 0.59. However, none of the highest wAICc overpassed 
the threshold of 0.73. Note that the large standard deviation of the 
reported wAICc per dataset indicates that the results are only valid on 
average whereas the wAICc for single voxels (ex vivo data) or replicas 
(in silico data) can be outside the reported ranges (see Figure 10).

5. Discussion

This work quantitatively evaluated the performance of the 
log-quadratic model (M2) for estimating the orientation-independent 
part of R2* (R2,iso*) via its linear parameter, β1, using a single-
orientation multi-echo GRE (meGRE) measurement in simulations 
and in a human optic chiasm. We found that M2 can estimate R2,iso* 
via β1 when using meGRE with long maximum echo time 

(TEmax ≈ 54 ms) for all investigated fibre dispersion and g-ratios. Our 
simulation results show that the proposed heuristic expression for β1 
better explained the fitted β1 for ex vivo compartmental R2 values than 
the M2-based prediction. Using this heuristic model, we estimated 
realistic MWF values from β1 fitted to the ex vivo data. However, 
we found that its validity depends on the choice of compartmental 
R2-values and we found that the heuristic model cannot be used for 
tissue with dispersed fibres. We created an openly available simulation 
framework to test the validity of the heuristic expression for different 
microstructural arrangements. We found that M2 cannot reduce the 
orientation dependence of β1, and therefore cannot be used as a proxy 
of R2,iso* when the meGRE subsets with shorter maximum echo times 
were used (TEmax ≈ 36 ms or 18 ms). For the meGRE subset with the 
shortest TEmax of 18 ms, we found that the orientation-dependence of 
the classical R2* showed the highest deviation between ex vivo and in 
silico data for angles below the magic angle (55°), indicating that, at 
short echo times, the mechanism for the orientation-dependence of 
R2* is not captured by our HCFM-based simulation.

5.1. Ability of M2 to estimate the angular 
independent β1 for varying g-ratio and fibre 
dispersion values

Our results show that M2 has the potential to estimate R2,iso* from 
a single-orientation meGRE via β1 for the ex vivo data of an optic 
chiasm tissue sample and the in silico data. We  found that the 
performance of M2, assessed by the residual θµ  dependence of β1, 
varied for different g-ratios and fibre dispersions (Figure  5 and 

FIGURE 9

Effect of the maximal echo time, i.e., meGRE subsets with different maximum echo times, on the θµ dependency of α1 and β1. (A,B) Angular orientation 
(θµ) dependence of α1 in M1 and β1 in M2 for the three meGRE subsets with varying maximum TE (TEmax: 54  ms, 36  ms and 18  ms). Two datasets are 
compared: ex vivo (green curve) and in silico (blue curve) data at variable g-ratios. Only datasets of the negligibly dispersed fibres (κ  ≥  2.5) are 
presented. The magenta vertical lines in some of the subplots indicates the magic angle (θµ = 55°). (C) Depicted is the normalised root-mean-squared 
deviation (nRMSD, Eq. 8 in %) of the α1 parameter of M1 (proxy for R2*) and β1 parameter of M2 (proxy for the isotropic part of R2*) shown in (A) and (B), 
respectively.
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Supplementary Figure S4). For the ex vivo compartmental R2 values 
(Figure 5), the residual θµ dependence of β1 was always less than 12% 
even if the θµ dependence of the original R2* (using the α1 parameter 
of M1) was up to 50%. For the in vivo compartmental R2 values 
(Supplementary Figure S4), the residual θµ  dependence of β1 was 
always less than 20%. The comparison of the performance of M2 for 
different compartmental R2 values indicates that the performance of 
M2 might vary for tissue with different microstructural tissue 
properties such as the compartmental R2 values or the fibre 
volume fraction.

5.2. Assessment of the microstructural 
interpretability of β1

As hypothesised in the introduction, the fitted β1 parameter is an 
unsuitable proxy for estimating microscopic tissue parameters via the 
dependency of M2 on the biophysical HCFM (Eq. 3). Using the ex vivo 
compartmental R2 values to generate the in silico data, we obtained an 
error of up to −70% for the fibres with negligible dispersion 
(Figure  7C) between the fitted β1 and the β1 predicted using the 
biophysical relation in M2 (Eq.  3). With the proposed heuristic 
expression for β1 (Eq. 4), the relative error was reduced by a factor of 
about 10 and more for fibres with negligible dispersion (e.g., from 
−65% to −6% for a g-ratio of 0.73, Figure 7C), indicating that this 
expression is better suited for the biophysical interpretation of β1 than 
the M2-based expression. However, we also found that the heuristic 
expression is not valid for all microstructure parameters, e.g., for in 
vivo compartmental R2 values the error switched signed, e.g., it 
changed from −35 to 20% for a g-ratio of 0.73 and negligible fibre 
dispersion (Supplementary Figure S6). This shows that the validity of 

the new heuristic expression for β1 as a sum of the relaxation rates of 
the myelin and non-myelin water pools weighted by their signal 
fractions is constrained to a specific range of relaxation rate values.

In this manuscript, we provide a simulation framework that allows 
to test whether for a given set of microscopic parameters the validity 
of the heuristic expression is given.

Note that neither the proposed heuristic correction nor the 
previous M2-based expression account for the effect of fibre dispersion 
which might explain why the accuracy of the predictions decreased 
with increasing fibre dispersion (Figure 7). While the influence of fibre 
dispersion has been successfully incorporated into M2 in another 
study (Fritz et al., 2020), it remains an open task for future studies to 
also do this for the heuristic expression of β1.

5.3. Myelin water fraction estimation from 
ex vivo data using the heuristic expression 
for β1

Under the condition that M2 estimates an orientation-
independent β1 and that the heuristic expression of β1 provides a valid 
biophysical interpretation, the myelin water fraction (MWF) can 
be  estimated from the fitted β1 (Eq.  6). When using the ex vivo 
compartmental R2 values, we found a median (across orientation) 
MWF of 0.14 for fibres with negligible dispersion (Figure 8B), which 
is congruent with the mean value reported in white matter of 0.10 
(Uddin et al., 2019). In the Supplementary materials section 7.2.3, 
we exemplified what happens if the MWF is calculated for a set of 
microscopic parameters for which the heuristic expression is invalid. 
We found that the resulting MWF is negative and thus implausible. As 
such, the estimation of the MWF through β1 seems a less effective 

FIGURE 10

Assessing if model M2 is better explained by the meGRE signal decay than M1, quantified by the averaged wAICc for M2 (Eq. 11). This quantification was 
done per meGRE subsets with different maximum echo time (TEmax) for the in silico data at variable g-ratios (increased blue hue in bars, higher g-ratio) 
with R2 values from Dula et al. (2010); and ex vivo data (green bar) for negligibly dispersed fibres (κ  >  2.5). The magenta and orange lines mark the 
following ranges: over the magenta line (wAICc  =  0.73), M2 is better explained by the data; between the magenta and orange (wAICc  =  0.5) lines, there 
is a preference for M2 but it is ambiguous whether M2 is better explained than M1 by the data; and bellow the orange line, M2 is not better explained 
by the data than M1.
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method than existing MWF estimation approaches but might still 
be useful to estimate the MWF if magnitude-only meGRE data with 
a single head orientation are available.

5.4. The effect of echo time on the 
performance of M2

Our findings revealed that the ability of M2 to estimate β1 was 
reduced for meGRE subsets with shorter maximum echo time (TEmax). 
This was evidenced by: (i) an increased residual orientation 
dependence of β1, and (ii) M2 not being better explained by the 
meGRE data than M1. The performance of M2 decreased when the 
maximum TE (TEmax) also decreased. This was not only observed for 
meGRE subsets with TEmax values typically used for in vivo studies (i.e., 
TEmax = 18 ms), but also at the intermediate TEmax (= 36 ms). Note that 
these observations could also be driven by the reduced time points of 
the meGRE subsets at shorter TEmax: while the meGRE subset at 
TEmax = 54 ms contained 16 time points, the meGRE subset at 
TEmax = 18 ms only contained five time points. A limited sample size or 
number of time points, however, is an unsolved challenge for in vivo 
application of M2 because typical in vivo meGRE protocols, specifically 
MPM protocols, use short TEmax (~ 18 ms) and few echo times only (~ 
6–8 echoes). Therefore, future studies should aim at increasing the 
TEmax and/or the time points. This will require highly accelerated 
acquisitions [e.g., like in Han et al. (2014) for spin echo sequences or 
Kim et al. (2019) for 3D-GRE sequences] and the correction of motion 
artefacts (Magerkurth et al., 2011), B0 fluctuations due to breathing 
(e.g., Vannesjo et al., 2015) and susceptibility artefacts (e.g., Port and 
Pomper, 2000), which are particularly strong at later echo times.

Interestingly, the biggest discrepancy between in silico and ex vivo 
results for β1 was seen for the meGRE subset with the shortest TEmax 
value at θµ  smaller than the magic angle (55°, Figure 9B). This is 
because β1 and α1 of the measured ex vivo data showed an atypical θµ 
dependence in this θµ range: they decreased as a function of increasing 
θµ  up to the magic angle. A similar observation was also made by 
Bartels et  al. (2022) for the orientation dependence of R2. They 
suggested that a mechanism that could explain a reduction in R2 at the 
magic angle would be the Magic Angle Effect in highly structured 
molecules like myelin sheaths (see Bydder et al., 2007). Since, in our 
experiment, this phenomenon would be  superimposed on the 
orientation dependence of R2*, it may be particularly evident when the 
latter effect is negligible, i.e., at low θµ . Note that our finding was 
observed only for one tissue sample. Thus, further testing on different 
tissue samples is necessary to verify the generalisability of our finding.

5.5. Considerations

Our results indicate that the ability of M2 to estimate the orientation-
independent component of R2* varies with echo time and strongly 
depends on microstructural parameters. As the space of parameters in 
the simulations are large, not all possible combinations could 
be investigated here. In future studies, we will test the performance of 
M2 in scenarios that map directly to in vivo meGRE experiments as 
opposed to the ex vivo case that was the focus of this study.

M2 can separate the orientation dependence of R2* leaving an 
orientation-independent parameter β1, but at the same time this 

estimated β1 cannot be  predicted accurately based on the current 
analytical derivation of M2 (Supplementary Equations S15, S16, section 
4). Future studies should aim to find a better derivation of M2 from the 
HCFM that does not neglect the contribution of the myelin water as 
well as incorporating other sources of dephasing, e.g., due to diffusion 
and near-field interactions. In fact, an analytical derivation without 
neglecting the contribution of the myelin compartment was performed 
in this manuscript (Supplementary material, section 4). However, this 
derivation is mathematically valid only for meGRE subsets with a 
maximal TE smaller than the T2 of the myelin compartment. Thus, the 
derived expression (Supplementary Equations S13, S14, section 4) does 
not hold for our simulated datasets because TEmax > T2 myelin for all 
meGRE subsets. This might also explain why the heuristic expression 
does not work for the in vivo compartmental R2 values, for which the 
T2 myelin is smaller. Nevertheless, it can be  used to motivate our 
heuristic expression for β1 (Eq. 4) because it is the same expression as 
in Supplementary Equation S15b. This derivation might also be relevant 
for studies that are performed at lower magnetic fields, e.g., at 3 T, 
where the condition TEmax > T2 myelin could be fulfilled because the R2 
from the myelinated and non-myelinated compartments are different 
(e.g., shorter) from the ones used in our current simulation.

Our simulations did not always show the same trend as the ex vivo 
data (e.g., Figures 6, 9) and were occasionally quantitatively different. 
This could be related to simplifications that were employed in our 
simulations and/or the underlying simplifications of the HCFM. The 
most important simplifications in our simulations were: First, the 
assumption that the R2 was the same for both intra- and extracellular 
compartments. Although, these R2 have been found to be different 
(e.g., Beaulieu et al., 1998; Assaf and Cohen, 2000; Does and Gore, 
2000; Does, 2018; Veraart et al., 2018; Tax et al., 2021), we expect the 
differences not to play a substantial role at the short TEs that were 
used here [e.g., TEmax: 54 ms < T2 of the extra-axonal compartment ≈ 
58 ms in Tax et al. (2021)]. Second, we assumed that the signal coming 
from multiple dispersed hollow cylinders is a superposition of the 
complex signal of multiple single hollow cylinders at different 
orientations, neglecting the near-field interaction of the cylinders. As 
compared to previous studies where near-field interaction was more 
faithfully described in two dimensions (Xu et al., 2018; Hédouin et al., 
2021), our simulation framework allowed for better control over the 
fibre dispersion in three dimensions via the Watson distribution 
parameter κ. The most important simplifications of the HCFM are: (1) 
neglecting the orientation dependence of R2 with respect to the 
external magnetic field (Knight et al., 2017; Birkl et al., 2021; Tax et al., 
2021) and (2) the different longitudinal magnetisation of the 
compartments which affects the longitudinal relaxation rate (R1) (see, 
e.g., Labadie et al., 2014; Shin et al., 2019; van Gelderen and Duyn, 
2019; Chan and Marques 2020; Kleban et  al., 2021). While the 
anisotropic part of R2 is three times smaller than the anisotropic part 
of R2* at 3 T (Gil et al., 2016) and could explain residual orientation 
dependence of β1, other assumptions requires further study, for 
example removing the R1 dependence in the estimated R2* (Milotta 
et  al., 2023). Nevertheless, even with all the simplifications, the 
HCFM-based in silico data described the θµ dependence of α1 and β1 
similarly to the ex vivo data across all dispersion regimes when using 
the long maximal TE protocol.

The ex vivo data require further discussion. First, we investigated 
only one human optic chiasm tissue sample with relatively long 
postmortem interval of 48 h, which could explain parts of the differences 
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that we found when comparing with the in silico dataset. Second, the 
coregistration of the diffusion and meGRE datasets (see section 3.1.4) 
might lead to image interpolation artefacts affecting the κ and θµ  
estimates. Moreover, coregistration between meGRE images at different 
orientations could lead to additional blurring of the data. However, these 
coregistration steps are necessary to ensure maximal correspondence 
between the same voxels across maps. We expect that the additional 
coregistration-related blurring will only slightly reduce the variability 
when binning the data (e.g., the standard deviation along R2* in Figure 6). 
Third, the Watson dispersion from the NODDI model cannot describe 
all existing fibre arrangements in the brain accurately, e.g., the crossing 
fibre arrangement. However, in the optic chiasm specimen crossing-fibre 
arrangements were only found in a few regions, e.g., at the crossing of the 
optical tract and optic nerve. Therefore, the contribution of such 
crossing-fibre voxels with estimated κ values in the range of highly to 
mildly dispersed fibres will be  averaged-out with the single-fibre 
orientation voxels with similar κ values during the irregular binning 
pre-processing (section 3.3.1). However, this could result in an increasing 
standard deviation in the estimated α-parameters in the log-linear model 
and β-parameters in the log-quadratic model.

6. Conclusion

We showed that our recently introduced biophysical log-quadratic 
model (M2) of the multi-echo gradient-recall echo (meGRE) signal can 
estimate the fibre-angular-orientation independent part of R2* (R2,iso*) for 
varying g-ratio values and fibre dispersions. Thus, the estimated linear 
time-dependent parameter of M2, β1, provides an attractive alternative 
for estimating R2,iso* to standard methods that require multiple 
acquisitions with distinct positioning of the sample in the head-coil. 
We also showed that β1 can be used to estimate the myelin water fraction 
(MWF) for ex vivo compartmental R2 values using a newly proposed 
heuristic expression relating β1 to microstructural tissue parameters 
including the myelin water signal. We  provide a freely available 
simulation framework to test the validity of the heuristic expression for 
varying sets of microstructural parameters. We found that the heuristic 
expression cannot be used for in vivo compartmental R2 values.

Importantly, we found that an angular-independent β1 (and thus 
R2,iso*) cannot be estimated with the log-quadratic model for meGRE 
measurements with maximum shorter echo times, that are typically 
used for whole-brain in vivo meGRE experiments. Therefore, it 
indicates that we need to develop new meGRE protocols with longer 
echo times that remain time efficient and motion robust. This could 
be achieved by using highly accelerated acquisitions with a higher data 
sampling for shorter echo times. Finally, at echo time ranges of about 
18 ms, an unexpected R2* orientation-dependence was found in the ex 
vivo dataset at angles below the magic angle: a decrease of R2* for 
increasing angles. However, more testing is required to confirm that 
our finding can be generalised to other brain regions and specimens 
since our results are based on thorough measurements of one human 
optic chiasm tissue sample.
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Glossary

Acronyms

  Biophysical terms and model parameters

   AWF (Intra-) Axonal water fraction

   EWF Extra-axonal water fraction

   FVF Fibre volume fraction

   HCFM Hollow cylinder fibre model

   ICVF Intra-cellular volume fraction (from NODDI)

   MWF Myelin water fraction (Eq. 6)

   gratio g-ratio

  Magnetic resonance imaging and sequence acronyms

   dMRI Diffusion-weighted Magnetic Resonance Imaging

   DWI Diffusion-weighting Imaging

   GRE Gradient-recalled echo

   meGRE Multi-echo gradient-recalled echo

   OC Optic chiasm

   R2* Effective transverse relaxation rate

   R2,iso* Orientation independent or isotropic part of R2*

   TE Echo time

   TEmax Maximal echo time

  Hollow cylinder fibre model parameters

   SA Signal of the intra-axonal compartment

   SE Signal of the extra-axonal compartment

   SM Signal of the myelin compartment

   SN Sum of the signals of the non-myelinated (SA and SE) compartments

   SC Sum of all the signal compartments (SA, SE and SM)

   R2A Transverse relaxation rate of the intra-axonal compartment

   R2E Transverse relaxation rate of the extra-axonal compartment

   R2N Transverse relaxation rate of the non-myelinated compartments

   R2M Transverse relaxation rate of the myelin compartment

   ρA Proton density of the intra-axonal compartment

   ρE Proton density of the extra-axonal compartment

   ρN Proton density of the non-myelinated compartments

   ρN Proton density of the myelin compartment

   VM Volume fraction of the myelin compartment

Symbols

  In silico and ex vivo data descriptors

   θµ


Angular orientation of the mean fibre bundle

   0θ
First angular orientation or angular offset

   B0
� ��� Main magnetic field

   κ Coefficient of dispersion (from Watson Distribution and NODDI)

   µ
 Vector of the mean fibre bundle

   x Vector of the individual cylinder in the simulated in silico data

   TDiff GRE,
Transformation matrix from dMRI to GRE images
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   TGRE i: ,1
Transformation matrix from GRE images at the i-th angular orientation measurement to the first angular orientation measurement

  Model parameters and analysis metrics

   α0 Intercept parameter of M1

   α1 Slope or linear parameter of M1

   β0 Intercept of M2

   β1 Slope of linear parameter of M2

   β1,nm β1 ground-truth value without myelin signal contribution (Eq. 3)

   β1,m β1 ground-truth value with myelin signal contribution (Eq. 4)

   β2 Quadrature or second order parameter of M2

   εm Relative difference between fitted β1 and predicted β1,nm

   εnm Relative difference between fitted β1 and predicted β1,m

   AIC Akaike Information Criterion

   AICc Akaike Information Criterion corrected

   ΔAICc Difference of Akaike Information Criteria (Equation 13)

   wAICc Weighted Akaike Information Criterion corrected (Eq. 12)

   nRMSD Normalised root-mean-squared deviation (Eq. 9)

   ΔRMSD Normalised root-mean-squared deviation difference (Eq. 10)

   M1 Log-linear model (Eq. 2)

   M2 Log-quadratic model (Eq. 1)
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