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Abstract: We suggest a technique to reduce the storage size of sparse matrices at
no loss of information. We call this technique Diagonally-Adressed (DA) storage.
It exploits the typically low matrix bandwidth of matrices arising in applications.
For memory-bound algorithms, this traffic reduction has direct benefits for both uni-
precision and multi-precision algorithms.

In particular, we demonstrate how to apply DA storage to the Compressed Sparse
Rows (CSR) format and compare the performance in computing the Sparse Matrix
Vector (SpMV) product, which is a basic building block of many iterative algorithms.
We investigate 1367 matrices from the SuiteSparse Matrix Collection [4] fitting into
the CSR format using signed 32 bit indices. More than 95% of these matrices fit
into the DA-CSR format using 16 bit column indices, potentially after Reverse Cuthill-
McKee (RCM) reordering [2]. Using IEEE 754 double precision scalars, we observe
a performance uplift of 11% (single-threaded) or 17.5% (multithreaded) on average
when the traffic exceeds the size of the last-level CPU cache. The predicted uplift in
this scenario is 20%. For traffic within the CPU’s combined level 2 and level 3 caches,
the multithreaded performance uplift is over 40% for a few test matrices.
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Novelty statement: We introduce Diagonally-Adressed (DA) storage as a general
technique to reduce sparse matrix traffic. Applying the DA variant of the CSR format
to the Sparse Matrix Vector (SpMV) product, we demonstrate that our practical
implementation achieves 87.5% of the theoretically predicted performance uplift.

1 Introduction
An operation is called memory-bound, if its performance is limited by the memory bandwidth
[Byte/s] of the executing hardware. In that context, it holds that

P1

P2
=

traffic2
traffic1

, (1)

where Pi denotes performance [FLOP/s], and traffici [Byte] accounts for all the memory involved.
Hence, reducing the traffic should directly lead to a performance improvement. It is often assumed
that computing the Sparse Matrix Vector (SpMV) product is memory-bound; see, e.g., [5, 7, 9].
The biggest contributor to the overall SpMV traffic is the matrix. Therefore, in the following, we
present a technique that allows for the reduction of the storage size of a sparse matrix at no loss
of information.

The key ingredient of the new storage technique is the observation that many matrices arising in,
e.g., finite element simulations have a very low matrix bandwidth (under certain permutations).
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Figure 1: Sample matrix (left) in Compressed Sparse Rows (CSR) storage (middle) and Diagonally-
Adressed CSR (DA-CSR) storage (right). Colorful dots represent non-zero entries,
gray dots are zero. Whiskers represent (column) indices with respect to a reference
line (dashed).

Listing 1: (DA-) CSR storage of a matrix.
1 struct {
2 oindex_t rowptr[nrows + 1];
3 iindex_t colids[nnz];
4 scalar_t values[nnz];
5 };

That means, potentially after permutation, all non-zero matrix entries are located close to the
matrix diagonal. This motivates storing the indices of these entries relative to the matrix diagonal
rather than as an absolute position, which we call Diagonally-Adressed (DA) storage. Due to
the small matrix bandwidth, the relative indices may be stored in a smaller (integer) data type.
This technique is easily applicable to many sparse formats, e.g., Compressed Sparse Rows (CSR),
Block CSR (BSR), or (one of the vectors of) Coordinate (COO) storage. In this paper we apply
DA storage to the CSR format; obtaining the Diagonally-Adressed CSR (DA-CSR) format; and
compare the SpMV performance against our implementation of CSR as well as Intel Math Kernel
Library (MKL) [6].

DA storage differs from Diagonal (DIA) storage in that the new technique still requires one index
per non-zero, depending on the underlying technique, instead of one index per diagonal. Also, it
does not impose a diagonal-major order of the entries, or require a potentially padded and full/dense
storage for each of the diagonals. The Recursive Sparse Blocks (RSB) format [10] is another data
structure for sparse matrices motivated by a cache-efficient and parallel implementation of the
SpMV product. It divides a sparse matrix into a tree structure of sparse blocks, whose leaves are
iterated in a Z- or Morton-order. The leaf blocks are stored in the COO, CSR, or Compressed
Sparse Columns (CSC) format.

RSB was designed for arbitrary sparse matrices, in particular, matrices without an inherent
low bandwidth (under certain permutations). RSB allows 16 bit indices as well, but only for its
leaf matrices. Meanwhile, DA-CSR has a conceptually simpler non-recursive design, allowing 16 bit
indices throughout, which leads to a much lower overhead in terms of Byte per non-zero. Therefore,
DA storage does not directly compete with the RSB format, but could be used in the leaf blocks
within the RSB format, to allow for an even smaller index type.

The remainder of this paper is structured as follows. Section 2 applies DA storage to the CSR
format. Section 3 describes the selection of test matrices. Section 4 describes how to compute
the SpMV product using that new DA-CSR format, and measures the performance of SpMV. We
conclude the paper in Section 5.

2 Diagonally-Addressed Storage
The CSR storage of a matrix A ∈ Fnrows×ncols comprises three vectors, cf. Listing 1, where nnz
denotes the number of non-zero entries, oindex_t and iindex_t are integer data types, and
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Figure 2: Sparsity patterns of the matrices GHS_psdef/ldoor (left) as well as Janna/Bump_2911
(right) from the SuiteSparse Matrix Collection [4].

scalar_t is an approximation of F, e.g., IEEE 754 double or float for F = R. The “row pointers”
stored in rowptr and “column indices” stored in colids do the bookkeeping imposed by only
storing non-zero matrix entries.

The rth entry 0 ≤ rowptr[r] < nnz is the index into colids and values corresponding to
the first non-zero of row r, 0 ≤ r ≤ nrows.1 The ith entry colids[i] is the column index and
values[i] is the value of the ith non-zero, 0 ≤ i < nnz. Let w denote the matrix bandwidth of
A = (arc), i.e. the farthest distance of a non-zero matrix entry from the matrix diagonal,

w := max{|c− r| : arc ̸= 0} ≪ ncols. (2)

For CSR storage, colids[i] = ci, which lies in the range [0,ncols). For DA-CSR storage,
colids[i] = ci − ri, which instead lies in the range [−w,w]. We illustrate this transformation in
the following example.

Example 1. The sample matrix shown in Figure 1 has nrows = ncols = 4, nnz = 5, and w = 1.
Its CSR representation is given by

rowptr = (0, 1, 2, 4, 5)

colids = (0, 2, 1, 3, 3) = ( , , , , )

values = ( , , , , )

(3)

while the DA storage replaces colids to become

colids = (0, 1,−1, 1, 0) = ( , , , , ). (4)

Observe that colids covers its full range in either storage scheme: [0,ncols − 1] for CSR and
[−w,w] for DA-CSR.

Sometimes it is necessary to reduce the bandwidth of a matrix before DA storage can be applied
effectively, which we observe in the next example.

Example 2. The matrix GHS_posdef/ldoor from the SuiteSparse Matrix Collection [4] has di-
mension 952 203 and 46 522 475 pattern entries,2 distributed over a bandwidth of 686 979. On
average, this matrix has 49 pattern entries per row. See Figure 2 (left) for its sparsity pattern.
Due to its block structure, the original matrix bandwidth is fairly large. Still, a Reverse Cuthill-
McKee (RCM) reordering [2] reduces the bandwidth to about 9100,3 which is only about 1% of
the matrix dimension. Ignoring the colors, the corresponding sparsity pattern would look almost
identical to Figure 2 (right). The reduced bandwidth is less than 215 = 32 768 and therefore allows
for the usage of 16 bit column indices in DA storage, while both the matrix dimension (for plain
CSR storage) and the original bandwidth (for naive DA-CSR storage) would require 32 bit indices.
1The final entry rowptr[nrows] is set to nnz for ease of use.
2Technically, nnz refers to the number of pattern entries, which contains non-zeros as well as explicitly stored zeros.
3Our implementation yields a bandwidth of 9120, while the SuiteSparse Matrix Collection [4] reports 9134.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-07-29



J. Saak, J. Schulze: DAMN SpMV 4

float64 float32 float16 float8

int32

int16

int8

(dense)

· 2/3 · 3/4 · 5/6

· 3/5 · 2/3 · 3/4

· 5/9 · 3/5 · 2/3

· 1/2 · 1/2 · 1/2

· 5/6 · 3/4 · 2/3 · 3/5

· 9/10 · 5/6 · 3/4 · 2/3

Figure 3: Approximate matrix-related traffic reduction when exchanging the data types used to
store the matrix scalars (horizontally) or column indices (vertically) of (DA-) CSR stor-
age, as well as dense storage (no indices required).

Following Listing 1, the matrix-related traffic amounts to

(nrows + 1) · sizeof(oindex_t)+ nnz · (sizeof(iindex_t)+ sizeof(scalar_t)). (5)

If w may be stored in a smaller (integer) data type than ncols, this allows for a smaller iindex_t
to be used. Using an index type half the size nearly halves the bookkeeping traffic.

Example 3. The matrix Janna/Bump_2911 from the SuiteSparse Matrix Collection [4] has di-
mension 2 911 419 and 127 729 899 non-zeros, distributed over a bandwidth of only 31 343 < 215 =
32 768, which is only about 1% of the matrix dimension. On average, this matrix has 44 non-zeros
per row. See Figure 2 for its sparsity pattern. Therefore, standard CSR storage requires 32 bit
indices for both oindex_t and iindex_t, which require 11MiB and 487MiB in total, respectively.
DA-CSR allows for 16 bit iindex_t to be used, which requires only 244MiB, thus reducing the
bookkeeping traffic by 1 − 11+244

11+487 ≈ 48.8%, or from 4.09 to 2.09Byte per nnz, irrespective of
scalar_t. For 64 bit and 32 bit scalar_t, e.g., IEEE 754 double and float, which in total re-
quire 975MiB and 487MiB, using DA-CSR instead of CSR results in an overall matrix-related
traffic reduction of 1− 11+244+975

11+487+975 ≈ 16.5% and 1− 11+244+487
11+487+487 ≈ 24.7%, respectively.

For matrices with more than a few non-zeros per row, it is therefore reasonable to ignore the effect
of oindex_t, i.e. to assume sizeof(oindex_t) = 0. The final percentages of the previous example
would then be estimated by 1

6 and 1
4 . Figure 3 shows this approximate reduction in matrix-related

traffic by means of formula (5). Note how smaller iindex_t; i.e. lower bookkeeping traffic; yield
better approximations of the factor 1

2 observed for dense storage.4 Recall that by equation (1) a
traffic reduction is tightly coupled with expected performance gains for memory-bound operations.

While the goal of multi-precision algorithms is to exchange scalar_t for a smaller data type (as
in, e.g., [1]), i.e. traversing the rows of Figure 3, DA storage focuses on iindex_t, i.e. traversing
the columns of Figure 3. However, as the main motivation of multi-precision algorithms is the
memory bottleneck, DA storage is expected to enable even larger speedups in that context. CSR
using 64 bit scalars and 32 bit indices merely allows for a 3

2× performance speedup when switching
to 32 bit scalars. Meanwhile, if the matrix has a representation in DA-CSR using 16 bit indices,
the expected speedup is 5

3×. This speedup is much closer to the 2× possible for dense storage,
when using a scalar type half the size.

4Note that dense storage may be seen as having sizeof(oindex_t) = sizeof(iindex_t) = 0, i.e. having zero bit
of bookkeeping (per nnz).
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3 Selection of Matrices
The SuiteSparse Matrix Collection [4] contains 1367 square matrices having a CSR representation
using 32 bit indices and a full structural rank.5 Only 993 of these matrices (72.6%) have a dimension
less than 215, i.e. fit into CSR using 16 bit column indices. However, for 1302 matrices (95.2%) there
exists a permutation that reduces the matrix bandwidth to below 215, such that these matrices fit
into DA-CSR using 16 bit column indices. These are the matrices we select for further investigation.

Some of the investigated matrices are already stored in a bandwidth-reduced way. We ap-
plied an RCM reordering [2] to the ones that are not. Unfortunately, our implementation of
the RCM permutation has not been able to sufficiently reduce the bandwidth of two matrices
(Janna/Long_Coup_dt0 and Janna/Long_Coup_dt6), which reduces the number of matrices to
1300 (95.1%).

4 Sparse Matrix Vector Product
Let A denote a matrix, x and y be vectors, and α and β be scalars. The SpMV product denotes
the operation y ← αAx+ βy, which requires

W := 2nnz + 2nrows (6)

floating-point operations of work W [FLOP]. The performance P [FLOP/s] is then defined as the
ratio of work W and runtime t, where t denotes the runtime measured in elapsed time. The relative
performance w.r.t. some baseline is computed via

Pcandidate/Pbaseline = tbaseline/tcandidate, (7)

assuming Wcandidate = Wbaseline. The traffic [Byte] of computing the SpMV accounts for x and y
on top of the three components of A in (DA-) CSR storage, cf. Listing 1 and formula (5). The
throughput [Byte/s] is given by the ratio of traffic and t, and the relative throughput is then
computed via

trafficcandidate

trafficbaseline
·
tbaseline

tcandidate
, (8)

which is a scaled form of the relative performance. Refer to Figure 3 for typical and approximate
expected traffic ratios. In the following, we aim to verify the predicted 6

5× speedup when replacing
32 bit column indices by 16 bit ones.

4.1 Implementation Details and Methodology
A prototypical implementation of the SpMV product for a matrix in DA-CSR format is given
in Listing 2. Instead of reversing the index translation in the innermost loop, i.e. computing
oindex_t col = row + colids[i], we instead compute a shifted view xshift into the factor x
one level up. This replaces nnz oindex_t-additions by nrows pointer-additions. Recall that in
C/C++ the memory access x[row + col] is equivalent to *(x + (row + col)). Applying asso-
ciativity to the computation of the pointer address, we see that this access is also equivalent to
*((x + row) + col) and xshift[col].

Remark 4 (Non-Square Matrices). For tall matrices, i.e. nrows > ncols, xshift points to memory
outside x, and must therefore never be dereferenced directly. Within Listing 2 however, it will only
be dereferenced at an offset col that yields a memory address within x.

The code has been compiled with GCC 10.3.0 using -O3 -NDEBUG -mavx2 -mfma. The bench-
marks have been run on an Intel Xeon Skylake Silver 4110 running CentOS 7.9.2009,6 with

5Eventually, we are interested in using DA storage when solving linear systems. We thus take full structural rank
as a proxy for regularity, as the collection’s metadata does not contain the numerical rank for all the matrices.
Consequently, our selection of matrices contains irregular matrices as well.

6https://www.mpi-magdeburg.mpg.de/cluster/mechthild
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Listing 2: SpMV for DA-CSR
1 // Input: oindex_t *rowptr , nrows;
2 // iindex_t *colids;
3 // scalar_t *values , *x, *y, alpha , beta;
4 // Output: scalar_t *y;
5 for (oindex_t row = 0; row < nrows; ++row) {
6 scalar_t accumulator = 0;
7 scalar_t *xshift = x + row;
8 for (oindex_t i = rowptr[row]; i < rowptr[row +1]; ++i) {
9 iindex_t col = colids[i];

10 scalar_t val = values[i];
11 accumulator += val * xshift[col];
12 }
13 y[row] = alpha * accumulator + beta * y[row];
14 }

threads pinned using taskset7. Runtime measurements have been taken using nanobench [8]
with minEpochTime set to 100ms, minEpochIterations and warmup both set to 10, using the
minimum over 11 epochs.

We measured the performance of a naive implementation (with nnz additions instead of nrows)
as well as several implementations akin to Listing 2, optionally using OpenMP with 2, 4, 6, or 8
threads, both for CSR and DA-CSR matrices. Among all implementations executed on the given
hardware, the best performing ones were the naive implementation, the one using 3 accumulators,
and the one using a single AVX2 accumulator (4 scalars wide) accessing values using unaligned
load instructions. In the following, for each matrix, and each storage format tested, we select the
implementations and number of threads yielding the highest performance.

For the MKL [6] implementation of the CSR format, we measured single-threaded as well as
multithreaded performance. Again, for each matrix we select the number of threads yielding the
highest performance.

4.2 Numerical Results
For traffic within the size of the L1 cache, a single thread yields the best performance. Up to
about 100KiB, which is well within the size of a single L2 cache, the optimum number of threads
increases gradually. For traffic larger than that, the maximum number of threads yields the best
performance. This behavior is irrespective of the matrix format and the implementation vendor
(ourselves or MKL [6]).

Our implementation of the SpMV product for the CSR format using 32 bit indices performs about
the same as the MKL [6], see Table 1. Figure 4 shows the comparison of DA-CSR using 16 bit
column indices to CSR. Using DA-CSR shows almost no change for traffic within the combined
size of the L2 caches, i.e. up to 8 · 1MiB. For traffic larger than that, up to the combined size of
all caches, i.e. up to about 8 + 11MiB, we observe a larger than 1.4× speedup. For traffic beyond
that, we observe an average speedup of about +17.5%, which is reasonably close to the expected
+20%. However, the throughput drops slightly, indicating some unused potential on the given
hardware. See Table 2 for the comparison of DA-CSR to MKL [6].

Remark 5 (CSR using 16 bit column indices). Recall that 933 matrices have a direct representation
in CSR using smaller column indices. The DA-CSR format performs on par with CSR using the
same index types for these matrices.

7https://www.man7.org/linux/man-pages/man1/taskset.1.html and https://github.com/util-linux/
util-linux/blob/master/schedutils/taskset.c
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Table 1: Average relative performance
of our best SpMV implemen-
tation for CSR using 32 bit in-
dices w.r.t. MKL [6] as the
baseline. Values > 1 mean we
are faster.

Traffic Singlethreaded Multithreaded
L1d 1.131 1.129
L2 1.073 1.044
L3 1.012 1.011
Large 0.982 0.994

Table 2: Average relative performance
of our best SpMV implemen-
tation for DA-CSR using 16 bit
column indices w.r.t. MKL [6]
as the baseline. Values > 1
mean we are faster.

Traffic Single-threaded Multithreaded
L1d 1.103 1.098
L2 1.073 1.055
L3 1.052 1.032
Large 1.110 1.172
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Figure 4: Relative performance and throughput of SpMV using the DA-CSR format with 16 bit
column indices w.r.t. CSR using 32 bit column indices as the baseline (iso-scalar). The
sizes of the L1d, L2, and L3 CPU caches are marked with vertical lines (left to right).
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5 Conclusion and Outlook
Diagonally-Adressed (DA) storage allows to nearly halve the bookkeeping traffic in sparse matrix
storage formats, when the matrix bandwidth allows for an index type half the size. On the hardware
used, DA-CSR storage with 16 bit column indices improves the single-threaded SpMV performance
over CSR storage with 32 bit column indices by more than 17%, for both our implementation and
MKL [6] if the traffic exceeds the size of the L3 cache of the CPU. Meanwhile, DA-CSR performs
no worse than CSR when using the same data types.

Code and Data Availability
The source code is available at:

DOI 10.5281/zenodo.8104335

The visualizations in this paper have been created using TikZ [11] and Makie.jl [3]. The SpMV
performance measurements for the reported experiments are available at:

DOI 10.5281/zenodo.7551699
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