
Received: 1 July 2023 Accepted: 11 September 2023

DOI: 10.1002/pamm.202300228

RESEARCH ARTICLE

Diagonally-Addressed Matrix Nicknack: How to improve
SpMV performance

Jens Saak Jonas Schulze

Max Planck Institute for Dynamics of
Complex Technical Systems, Magdeburg,
Germany

Correspondence
Jonas Schulze, Max Planck Institute for
Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany.
Email: jschulze@mpi-magdeburg.mpg.de

Abstract
We suggest a technique to reduce the storage size of sparse matrices at no loss
of information. We call this technique Diagonally-Addressed (DA) storage. It
exploits the typically low matrix bandwidth of matrices arising in applications.
For memory-bound algorithms, this traffic reduction has direct benefits for both
uni-precision andmulti-precision algorithms. In particular, we demonstrate how
to apply DA storage to the Compressed Sparse Rows (CSR) format and compare
the performance in computing the Sparse Matrix Vector (SpMV) product, which
is a basic building block of many iterative algorithms. We investigate 1367 matri-
ces from the SuiteSparse Matrix Collection fitting into the CSR format using
signed 32 bit indices. More than 95% of these matrices fit into the DA-CSR for-
mat using 16 bit column indices, potentially after Reverse Cuthill-McKee (RCM)
reordering. Using IEEE 754 𝚍𝚘𝚞𝚋𝚕𝚎 precision scalars, we observe a performance
uplift of 11% (single-threaded) or 17.5% (multithreaded) on average when the
traffic exceeds the size of the last-level CPU cache. The predicted uplift in this
scenario is 20%. For traffic within the CPU’s combined level 2 and level 3 caches,
the multithreaded performance uplift is over 40% for a few test matrices.

1 INTRODUCTION

An operation is called memory-bound, if its performance is limited by the memory bandwidth [Byte/s] of the executing
hardware. In that context, it holds that

𝑃1
𝑃2

=
traf f ic2
traf f ic1

, (1)

where 𝑃𝑖 denotes performance [FLOP/s], and traf f ic𝑖 [Byte] accounts for all the memory involved. Hence, reducing the
traffic should directly lead to a performance improvement. It is often assumed that computing the Sparse Matrix Vector
(SpMV) product ismemory-bound; see, for example, [1–3]. The biggest contributor to the overall SpMV traffic is thematrix.
Therefore, in the following, we present a technique that allows for the reduction of the storage size of a sparse matrix at
no loss of information.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

Proc. Appl. Math. Mech. 2023;23:e202300228. wileyonlinelibrary.com/journal/pamm 1 of 8
https://doi.org/10.1002/pamm.202300228

https://orcid.org/0000-0001-5567-9637
https://orcid.org/0000-0002-2086-7686
mailto:jschulze@mpi-magdeburg.mpg.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/pamm
https://doi.org/10.1002/pamm.202300228
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpamm.202300228&domain=pdf&date_stamp=2023-11-20

2 of 8

The key ingredient of the new storage technique is the observation that many matrices arising in, for example, finite
element simulations have a very low matrix bandwidth (under certain permutations). That means, potentially after per-
mutation, all non-zero matrix entries are located close to the matrix diagonal. This motivates storing the indices of these
entries relative to the matrix diagonal rather than as an absolute position, which we call Diagonally-Addressed (DA) stor-
age. Due to the small matrix bandwidth, the relative indices may be stored in a smaller (integer) data type. This technique
is easily applicable to many sparse formats, for example, Compressed Sparse Rows (CSR), Block CSR (BSR), or (one of
the vectors of) Coordinate (COO) storage. In this paper we apply DA storage to the Compressed Sparse Rows (CSR)
format; obtaining the Diagonally-Addressed CSR (DA-CSR) format; and compare the SpMV performance against our
implementation of CSR as well as the Intel Math Kernel Library (MKL) [4].
DA storage differs fromDiagonal (DIA) storage in that the new technique still requires one index per non-zero, depend-

ing on the underlying technique, instead of one index per diagonal. Also, it does not impose a diagonal-major order of
the entries, or require a potentially padded and full/dense storage for each of the diagonals. The Recursive Sparse Blocks
(RSB) format [5] is another data structure for sparse matrices motivated by a cache-efficient and parallel implementation
of the SpMV product. It divides a sparse matrix into a tree structure of sparse blocks, whose leaves are iterated in a Z- or
Morton-order. The leaf blocks are stored in the COO, CSR, or Compressed Sparse Columns (CSC) format.
RSB was designed for arbitrary sparse matrices, in particular, matrices without an inherent low bandwidth (under cer-

tain permutations). RSB allows 16 bit indices as well, but only for its leaf matrices. Meanwhile, DA-CSR has a conceptually
simpler non-recursive design, allowing 16 bit indices throughout, which leads to a much lower overhead in terms of Byte
per non-zero. Therefore, DA storage does not directly compete with the RSB format, but could be used in the leaf blocks
within the RSB format, to allow for an even smaller index type.
The remainder of this paper is structured as follows. Section 2 applies DA storage to the CSR format. Section 3 describes

the selection of test matrices. Section 4 describes how to compute the SpMV product using that new DA-CSR format, and
measures the performance of SpMV. We conclude the paper in Section 5.

2 DIAGONALLY-ADDRESSED STORAGE

The CSR storage of a matrix 𝐴 ∈ 𝔽nrows×ncols comprises three vectors, compare Listing 1, where nnz denotes the number
of non-zero entries, oindex_t and iindex_t are integer data types, and scalar_t is an approximation of 𝔽, for example,
IEEE 754 𝚍𝚘𝚞𝚋𝚕𝚎 or 𝚏𝚕𝚘𝚊𝚝 for 𝔽 = ℝ. The “row pointers” stored in 𝚛𝚘𝚠𝚙𝚝𝚛 and “column indices” stored in 𝚌𝚘𝚕𝚒𝚍𝚜 do
the bookkeeping imposed by only storing non-zero matrix entries.

Listing 1: (DA-) CSR storage of a matrix.

1 struct {
2 oindex_t rowptr[nrows+1];
3 iindex_t colids[nnz];
4 scalar_t values[nnz];
5 };

The 𝑟th entry 0 ≤ rowptr [𝑟] < nnz is the index into 𝚌𝚘𝚕𝚒𝚍𝚜 and 𝚟𝚊𝚕𝚞𝚎𝚜 corresponding to the first non-zero of row 𝑟,
0 ≤ 𝑟 ≤ nrows.1 The 𝑖th entry 𝚌𝚘𝚕𝚒𝚍𝚜[𝑖] is the column index and 𝚟𝚊𝚕𝚞𝚎𝚜[𝑖] is the value of the 𝑖th non-zero, 0 ≤ 𝑖 < nnz.
Let 𝑤 denote the matrix bandwidth of 𝐴 = (𝑎𝑟𝑐), i.e. the farthest distance of a non-zero matrix entry from the matrix
diagonal,

𝑤 ∶= max { |𝑐 − 𝑟| ∶ 𝑎rc ≠ 0} ≪ ncols. (2)

For CSR storage, colids[𝑖] = 𝑐𝑖 , which lies in the range [0, ncols). For DA-CSR storage, colids[𝑖] = 𝑐𝑖 − 𝑟𝑖 , which
instead lies in the range [−𝑤,𝑤]. We illustrate this transformation in the following example.

1 The final entry rowptr[nrows] is set to nnz for ease of use.

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SAAK and SCHULZE 3 of 8

F IGURE 1 Sample matrix (left) in CSR storage (middle) and DA-CSR storage (right). Colorful dots represent non-zero entries, gray dots
are zero. Whiskers represent (column) indices with respect to a reference line (dashed). CSR, Compressed Sparse Rows; DA,
Diagonally-Addressed.

F IGURE 2 Sparsity patterns of the matrices GHS_psdef/ldoor (left) as well as Janna/Bump_2911 (right) from the SuiteSparse Matrix
Collection [6].

Example 2.1. The sample matrix shown in Figure 1 has nrows = ncols = 4, nnz = 5, and 𝑤 = 1. Its CSR representation
is given by

(3)

while the DA storage replaces colids to become

(4)

Observe that colids covers its full range in either storage scheme: [0, ncols − 1] for CSR and [−𝑤,𝑤] for DA-CSR.

Sometimes it is necessary to reduce the bandwidth of a matrix before DA storage can be applied effectively, which we
observe in the next example.

Example 2.2. The matrix GHS_posdef/ldoor from the SuiteSparse Matrix Collection [6] has dimension 952 203 and
46 522 475 pattern entries,2 distributed over a bandwidth of 686 979. On average, this matrix has 49 pattern entries per row.
See Figure 2 (left) for its sparsity pattern. Due to its block structure, the original matrix bandwidth is fairly large. Still, a

2 Technically, nnz refers to the number of pattern entries, which contains non-zeros as well as explicitly stored zeros.

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 8

F IGURE 3 Approximate matrix-related traffic reduction when exchanging the data types used to store the matrix scalars (horizontally)
or column indices (vertically) of (DA-) CSR storage, as well as dense storage (no indices required). DA, Diagonally-Addressed; CSR,
Compressed Sparse Rows.

Reverse Cuthill-McKee (RCM) reordering [7] reduces the bandwidth to about 9100,3 which is only about 1% of the matrix
dimension. Ignoring the colors, the corresponding sparsity pattern would look almost identical to Figure 2 (right). The
reduced bandwidth is less than 215 = 32 768 and therefore allows for the usage of 16 bit column indices in DA storage,
while both the matrix dimension (for plain CSR storage) and the original bandwidth (for naive DA-CSR storage) would
require 32 bit indices.

Following Listing 1, the matrix-related traffic amounts to

(nrows + 1) ⋅ sizeof(oindex_t) + nnz ⋅ (sizeof(iindex_t) + sizeof(scalar_t)). (5)

If 𝑤 may be stored in a smaller (integer) data type than ncols, this allows for a smaller iindex_t to be used. Using an
index type half the size nearly halves the bookkeeping traffic.

Example 2.3. The matrix Janna/Bump_2911 from the SuiteSparse Matrix Collection [6] has dimension 2 911 419 and
127 729 899 non-zeros, distributed over a bandwidth of only 31 343 < 215 = 32 768, which is only about 1% of the matrix
dimension. On average, this matrix has 44 non-zeros per row. See Figure 2 (right) for its sparsity pattern. Therefore, stan-
dard CSR storage requires 32 bit indices for both oindex_t and iindex_t, which require 11 MiB and 487 MiB in total,
respectively. DA-CSR allows for 16 bit iindex_t to be used, which requires only 244 MiB, thus reducing the bookkeeping
traffic by 1 − 11+244

11+487
≈ 48.8%, or from 4.09 to 2.09 Byte per nnz, irrespective of scalar_t. For 64 bit and 32 bit scalar_t,

for example, IEEE 754 𝚍𝚘𝚞𝚋𝚕𝚎 and 𝚏𝚕𝚘𝚊𝚝, which in total require 975 MiB and 487 MiB, using DA-CSR instead of CSR
results in an overall matrix-related traffic reduction of 1 − 11+244+975

11+487+975
≈ 16.5% and 1 − 11+244+487

11+487+487
≈ 24.7%, respectively.

For matrices with more than a few non-zeros per row, it is therefore reasonable to ignore the effect of oindex_t, i.e. to
assume sizeof(oindex_t) = 0. The final percentages of the previous example would then be estimated by 1

6
and 1

4
.

Figure 3 shows this approximate reduction in matrix-related traffic by means of formula (5). Note how smaller iindex_t;
i.e. lower bookkeeping traffic; yield better approximations of the factor 1

2
observed for dense storage.4 Recall that by

Equation (1) a traffic reduction is tightly coupled with expected performance gains for memory-bound operations.
While the goal of multi-precision algorithms is to exchange scalar_t for a smaller data type (as in, for example, [8]),

i.e. traversing the rows of Figure 3, DA storage focuses on iindex_t, i.e. traversing the columns of Figure 3. However, as
the mainmotivation of multi-precision algorithms is the memory bottleneck, DA storage is expected to enable even larger
speedups in that context. CSR using 64 bit scalars and 32 bit indices merely allows for a 3

2
× performance speedup when

3Our implementation yields a bandwidth of 9120, while the SuiteSparse Matrix Collection [6] reports 9134.
4 Note that dense storage may be seen as having sizeof(oindex_t) = sizeof(iindex_t) = 0, i.e. having zero bit of bookkeeping (per nnz).

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SAAK and SCHULZE 5 of 8

switching to 32 bit scalars. Meanwhile, if the matrix has a representation in DA-CSR using 16 bit indices, the expected
speedup is 5

3
×. This speedup is much closer to the 2× possible for dense storage, when using a scalar type half the size.

3 SELECTION OFMATRICES

The SuiteSparseMatrix Collection [6] contains 1367 squarematrices having a CSR representation using 32 bit indices and a
full structural rank.5 Only 993 of thesematrices (72.6%) have a dimension less than 215, i.e. fit into CSR using 16 bit column
indices.However, for 1302matrices (95.2%) there exists a permutation that reduces thematrix bandwidth to below 215, such
that these matrices fit into DA-CSR using 16 bit column indices. These are the matrices we select for further investigation.
Some of the investigated matrices are already stored in a bandwidth-reduced way. We applied an RCM reordering [7]

to the ones that are not. Unfortunately, our implementation of the RCM permutation has not been able to sufficiently
reduce the bandwidth of two matrices (Janna/Long_Coup_dt0 and Janna/Long_Coup_dt6), which reduces the number
of matrices to 1300 (95.1%).

4 SPARSEMATRIX VECTOR PRODUCT

Let𝐴 denote amatrix, 𝑥 and 𝑦 be vectors, and 𝛼 and 𝛽 be scalars. The SpMVproduct denotes the operation 𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦,
which requires

𝑊 ∶= 2nnz + 2nrows (6)

floating-point operations of work𝑊 [FLOP]. The performance 𝑃 [FLOP/s] is then defined as the ratio of work𝑊 and run-
time 𝑡, where 𝑡 denotes the runtime measured in elapsed time. The relative performance w.r.t. some baseline is computed
via

𝑃candidate∕𝑃baseline = 𝑡baseline∕𝑡candidate, (7)

assuming𝑊candidate = 𝑊baseline. The traffic [Byte] of computing the SpMV accounts for 𝑥 and 𝑦 on top of the three com-
ponents of 𝐴 in (DA-) CSR storage, compare Listing 1 and formula (5). The throughput [Byte/s] is given by the ratio of
traffic and 𝑡, and the relative throughput is then computed via

traf f iccandidate
traf f icbaseline

⋅
𝑡baseline
𝑡candidate

, (8)

which is a scaled form of the relative performance. Refer to Figure 3 for typical and approximate expected traffic ratios. In
the following, we aim to verify the predicted 6

5
× speedup when replacing 32 bit column indices by 16 bit ones.

4.1 Implementation details and methodology

A prototypical implementation of the SpMV product for amatrix in DA-CSR format is given in Listing 2. Instead of revers-
ing the index translation in the innermost loop, i.e. computing oindex_t col = row + colids[i], we instead compute a
shifted view 𝚡𝚜𝚑𝚒𝚏𝚝 into the factor 𝚡 one level up. This replaces nnz oindex_t-additions by nrows pointer-additions.
Recall that in C/C++ the memory access 𝚡[𝚛𝚘𝚠 + 𝚌𝚘𝚕] is equivalent to ∗ (𝚡 + (𝚛𝚘𝚠 + 𝚌𝚘𝚕)). Applying associativity to the
computation of the pointer address, we see that this access is also equivalent to ∗ ((𝚡 + 𝚛𝚘𝚠) + 𝚌𝚘𝚕) and 𝚡𝚜𝚑𝚒𝚏𝚝[𝚌𝚘𝚕].

5 Eventually, we are interested in using DA storage when solving linear systems. We thus take full structural rank as a proxy for regularity, as the
collection’s metadata does not contain the numerical rank for all the matrices. Consequently, our selection of matrices contains irregular matrices
as well.

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 8

Listing 2: SpMV for DA-CSR

1 // Input: oindex_t *rowptr, nrows;
2 // iindex_t *colids;
3 // scalar_t *values, *x, *y, alpha, beta;
4 // Output: scalar_t *y;
5 for (oindex_t row = 0; row < nrows; ++row) {
6 scalar_t accumulator = 0;
7 scalar_t *xshift = x + row;
8 for (oindex_t i = rowptr[row]; i < rowptr[row+1]; ++i) {
9 iindex_t col = colids[i];
10 scalar_t val = values[i];
11 accumulator += val * xshift[col];
12 }
13 y[row] = alpha * accumulator + beta * y[row];
14 }

Remark 4.1 (Non-Square Matrices). For tall matrices, i.e. nrows > ncols, 𝚡𝚜𝚑𝚒𝚏𝚝 points to memory outside 𝚡, and must
therefore never be dereferenced directly. Within Listing 2 however, it will only be dereferenced at an offset 𝚌𝚘𝚕 that yields
a memory address within 𝚡.

The code has been compiled with GCC 10.3.0 using -O3 -NDEBUG -mavx2 -mfma. The benchmarks have been run on
an Intel Xeon Skylake Silver 4110 runningCentOS 7.9.2009,6 with threads pinned using taskset7. Runtimemeasurements
have been taken using nanobench [9] with 𝚖𝚒𝚗𝙴𝚙𝚘𝚌𝚑𝚃𝚒𝚖𝚎 set to 100 ms, 𝚖𝚒𝚗𝙴𝚙𝚘𝚌𝚑𝙸𝚝𝚎𝚛𝚊𝚝𝚒𝚘𝚗𝚜 and 𝚠𝚊𝚛𝚖𝚞𝚙 both set to
10, using the minimum over 11 epochs.
We measured the performance of a naive implementation (with nnz additions instead of nrows) as well as several

implementations akin to Listing 2, optionally using OpenMP with two, four, six, or eight threads, both for CSR and DA-
CSR matrices. Among all implementations executed on the given hardware, the best performing ones were the naive
implementation, the one using three accumulators, and the one using a single AVX2 accumulator (four scalars wide)
accessing 𝚟𝚊𝚕𝚞𝚎𝚜 using unaligned load instructions. In the following, for each matrix, and each storage format tested, we
select the implementations and number of threads yielding the highest performance.
For the MKL [4] implementation of the CSR format, we measured single-threaded as well as multithreaded

performance. Again, for each matrix we select the number of threads yielding the highest performance.

4.2 Numerical results

For traffic within the size of the L1 cache, a single thread yields the best performance. Up to about 100 KiB, which is
well within the size of a single L2 cache, the optimum number of threads increases gradually. For traffic larger than that,
the maximum number of threads yields the best performance. This behavior is irrespective of the matrix format and the
implementation vendor (ourselves or MKL [4]).
Our implementation of the SpMV product for the CSR format using 32 bit indices performs about the same as the

MKL [4], see Table 1. Figure 4 shows the comparison of DA-CSR using 16 bit column indices to CSR. Using DA-CSR
shows almost no change for traffic within the combined size of the L2 caches, i.e. up to 8 ⋅ 1MiB. For traffic larger than
that, up to the combined size of all caches, i.e. up to about 8 + 11 MiB, we observe a larger than 1.4× speedup. For traffic
beyond that, we observe an average speedup of about +17.5%, which is reasonably close to the expected +20%. However,

6 https://www.mpi-magdeburg.mpg.de/cluster/mechthild
7 https://www.man7.org/linux/man-pages/man1/taskset.1.htmland https://github.com/util-linux/util-linux/blob/master/schedutils/taskset.c

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.mpi-magdeburg.mpg.de/cluster/mechthild
https://www.man7.org/linux/man-pages/man1/taskset.1.html
https://github.com/util-linux/util-linux/blob/master/schedutils/taskset.c

SAAK and SCHULZE 7 of 8

TABLE 1 Average relative performance of our best SpMV implementation
for CSR using 32 bit indices w.r.t. MKL [4] as the baseline. Values > 1mean we
are faster.

Traffic Singlethreaded Multithreaded

L1d 1.131 1.129
L2 1.073 1.044
L3 1.012 1.011
Large 0.982 0.994

Abbreviations: CSR, Compressed Sparse Rows; MKL, Math Kernel Library; SpMV, Sparse
Matrix Vector.

F IGURE 4 Relative performance and throughput of SpMV using the DA-CSR format with 16 bit column indices w.r.t. CSR using 32 bit
column indices as the baseline (iso-scalar). The sizes of the L1d, L2, and L3 CPU caches are marked with vertical lines (left to right). CSR,
Compressed Sparse Rows; DA, Diagonally-Addressed; SpMV, Sparse Matrix Vector.

the throughput drops slightly, indicating some unused potential on the given hardware. See Table 2 for the comparison of
DA-CSR to MKL [4].

Remark 4.2 (CSR using 16 bit column indices). Recall that 933 matrices have a direct representation in CSR using smaller
column indices. The DA-CSR format performs on par with CSR using the same index types for these matrices.

TABLE 2 Average relative performance of our best SpMV implementation
for DA-CSR using 16 bit column indices w.r.t. MKL [4] as the baseline. Values
> 1mean we are faster.

Traffic Single-threaded Multithreaded

L1d 1.103 1.098
L2 1.073 1.055
L3 1.052 1.032
Large 1.110 1.172

Abbreviations: CSR, Compressed Sparse Rows; DA, Diagonally-Addressed; MKL, Math
Kernel Library; SpMV, Sparse Matrix Vector.

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 of 8

5 CONCLUSION AND OUTLOOK

DA storage allows to nearly halve the bookkeeping traffic in sparse matrix storage formats, when the matrix bandwidth
allows for an index type half the size. On the hardware used, DA-CSR storage with 16 bit column indices improves the
multithreaded SpMV performance over CSR storage with 32 bit column indices bymore than 17%, for both our implemen-
tation andMKL [4] if the traffic exceeds the size of the L3 cache of the CPU. Meanwhile, DA-CSR performs no worse than
CSR when using the same data types.

ACKNOWLEDGMENTS
Open access funding enabled and organized by Projekt DEAL.

DATA AVAILAB IL ITY STATEMENT
The source code is available at:
https://doi.org/10.5281/zenodo.8104335
The visualizations in this paper have been created using TikZ [10] and Makie.jl [11]. The SpMV performance

measurements for the reported experiments are available at:
https://doi.org/10.5281/zenodo.7551699

ORCID
Jens Saak https://orcid.org/0000-0001-5567-9637
Jonas Schulze https://orcid.org/0000-0002-2086-7686

REFERENCES
1. Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., & Koziris, N. (2008). Understanding the performance of sparse matrix-vector

multiplication. In 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008) IEEE. https://doi.org/10.
1109/pdp.2008.41

2. Koza, Z., Matyka, M., Mirosław, Ł., & Poła, J. (2014). In V. Kindratenko (Ed.), Sparse matrix-vector product (pp. 103–121). Springer
International Publishing. https://doi.org/10.1007/978-3-319-06548-9_6

3. Liu, X., Smelyanskiy, M., Chow, E., & Dubey, P. (2013). Efficient sparsematrix-vector multiplication on x86-basedmany-core processors. In
the 27th International ACMConference on International conference on supercomputing (ICS’13). ACMPress. https://doi.org/10.1145/2464996.
2465013

4. Intel. (2020). Math Kernel Library v2021.1. https://en.wikipedia.org/wiki/Math_Kernel_Library. Accessed 27 September 2023.
5. Martone,M., Filippone, S., Tucci, S., Paprzycki,M., &Ganzha,M. (2010). Utilizing recursive storage in sparsematrix-vectormultiplication -

preliminary considerationsc. In T. Philips (Ed.), Proceedings of the ISCA 25th International Conference onComputers and Their Applications,
CATA 2010, March 24-26, 2010, Sheraton Waikiki Hotel, Honolulu, Hawaii, USA. ISCA.

6. Davis, T. A., & Hu, Y. (2011). The university of florida sparse matrix collection.ACMTransactions onMathematical Software (TOMS), 38(1),
1–25.

7. Cuthill, E., & McKee, J. (1969). Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 1969 24th National Conference
(ACM’69). ACM Press. https://doi.org/10.1145/800195.805928

8. Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T., Dongarra, J., Fox, A., Gates, M., Higham, N. J., Li, X. S., Liu, Y., Loe, J.,
Luszczek, P., Pranesh, S., Rajamanickam, S., Ribizel, T., Smith, B. F., Swirydowicz, K., Thomas, S., . . . Yang, U.M. (2021). A survey of numer-
ical linear algebra methods utilizing mixed-precision arithmetic. The International Journal of High Performance Computing Applications,
35(4), 344–369. https://doi.org/10.1177/10943420211003313

9. Leitner-Ankerl, M. (2022). Ankerl::nanobench. https://github.com/martinus/nanobench. Accessed 27 September 2023.
10. Tantau, T. (2020). The TikZ and PGF Packages. Manual for version 3.1.5b. https://github.com/pgf-tikz/pgf. Accessed 27 September 2023.
11. Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software,

6(65), 3349. https://doi.org/10.21105/joss.03349

How to cite this article: Saak, J., & Schulze, J. (2023). Diagonally-Addressed Matrix Nicknack: How to improve
SpMV performance. Proceedings in Applied Mathematics and Mechanics, 23, e202300228.
https://doi.org/10.1002/pamm.202300228

 16177061, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300228 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.8104335
https://doi.org/10.5281/zenodo.7551699
https://orcid.org/0000-0001-5567-9637
https://orcid.org/0000-0001-5567-9637
https://orcid.org/0000-0002-2086-7686
https://orcid.org/0000-0002-2086-7686
https://doi.org/10.1109/pdp.2008.41
https://doi.org/10.1109/pdp.2008.41
https://doi.org/10.1007/978-3-319-06548-9_6
https://doi.org/10.1145/2464996.2465013
https://doi.org/10.1145/2464996.2465013
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://doi.org/10.1145/800195.805928
https://doi.org/10.1177/10943420211003313
https://github.com/martinus/nanobench
https://github.com/pgf-tikz/pgf
https://doi.org/10.21105/joss.03349
https://doi.org/10.1002/pamm.202300228

	Diagonally-Addressed Matrix Nicknack: How to improve SpMV performance
	Abstract
	1 | INTRODUCTION
	2 | DIAGONALLY-ADDRESSED STORAGE
	3 | SELECTION OF MATRICES
	4 | SPARSE MATRIX VECTOR PRODUCT
	4.1 | Implementation details and methodology
	4.2 | Numerical results

	5 | CONCLUSION AND OUTLOOK
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES

