
Coupled Climate Models Systematically Underestimate
Radiation Response to Surface Warming
Dirk Olonscheck1 and Maria Rugenstein2

1Max Planck Institute for Meteorology, Hamburg, Germany, 2Colorado State University, Fort Collins, CO, USA

Abstract A realistic representation of top‐of‐the‐atmosphere (TOA) radiation response to surface warming
is key for trusting climate model projections. We show that coupled models with freely evolving ocean‐
atmosphere interactions systematically underestimate the observed global TOA radiation trend during 2001–
2022 in 552 simulations. Locally, even if a simulation spontaneously reproduces observed surface temperature
trends, TOA radiation trends are more likely under‐ than overestimated. This response bias stems from the
models' inability to reproduce the observed large‐scale surface warming pattern and from errors in the
atmospheric physics affecting short‐ and longwave radiation. Models with a better representation of the TOA
radiation response to local surface warming have a relatively low equilibrium climate sensitivity. Our bias
metric is a novel process‐based approach which links a model's current response to climate change to its
behavior in the future.

Plain Language Summary A realistic representation of the radiation balance at the top of the Earth’s
atmosphere (TOA) by coupled climate models is essential for trust in future climate projections. Despite that
relevance, it is still not clear whether the models correctly simulate the coupling between surface warming and
TOA radiation because of the short observational record. We show that climate models systematically
underestimate the observed increase in global TOA radiation during 2001–2022 in 552 simulations. Locally,
even if a simulation reproduces observed changes in surface temperature, changes in TOA radiation are more
likely under‐ than overestimated. This response bias stems from the models' inability to reproduce the observed
large‐scale patterns of surface warming and from errors in the atmospheric physics which suppress the
communication of the surface information to the TOA. Models that better represent the TOA radiation response
to local surface warming have a relatively low equilibrium climate sensitivity, that is, a weak global‐mean
surface warming in response to a doubling of the atmospheric CO2 concentration above pre‐industrial levels.
Our new bias metric links a model’s current response to climate change to its behavior in the future.

1. Introduction
Virtually all future projections of climate change rely on coupled climate simulations in which ocean and at-
mosphere interact freely. Recent research debates why these models have difficulties to reproduce observed
surface warming patterns potentially caused by errors in the simulated spatial and temporal patterns of internal
variability, the forced response, or a biased representation of radiative forcing (e.g., Coats & Karnauskas, 2018;
Heede et al., 2020; Heede & Fedorov, 2021; Olonscheck et al., 2020; Raghuraman et al., 2021; Raghuraman
et al., 2023; Seager et al., 2019; Seager et al., 2022; Watanabe et al., 2021). When atmosphere‐only models are
forced with the observed time and spatial evolution of sea surface temperatures, they are able to reproduce
observed interannual variations in global and local TOA radiation (Andrews et al., 2018, 2022; Loeb et al., 2020).
This is interpreted as supporting trust in the atmospheric component of the climate models (Sherwood
et al., 2020). However, research has also pointed out that radiative feedbacks–the response of the global mean
radiation to a certain global mean warming–are as uncertain and little‐overlapping with observations in
atmosphere‐only models with prescribed surface warming as in fully coupled models (Chung et al., 2010; Uribe
et al., 2022). Hence, it remains unclear whether coupled climate models are able to reproduce the observed
coupling between TOA radiation and global and local surface warming.

Investigating the realism of the simulated coupling between TOA radiation and surface warming is challenging
because we are confined to a 22‐yr long observed record (NASA/LARC/SD/ASDC, 2023). Interannual variability
is large within these 22 years, but a trend is clearly detectable (Raghuraman et al., 2021). However this trend is
very dependent on the number of years it is computed, hence the internal variability of 22‐yr trends is still large.
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We tackle this problem by comparing the observational record CERES EBAF 4.2 and the gridded observational
surface temperature data set HadCRUT5 in its infilled mode (Morice et al., 2021) to eleven single‐model initial‐
condition large ensembles with each 30–100 realizations of year 2001–2022 (Deser et al. (2020), Table S1 in
Supporting Information S1). Four large ensembles are CMIP5‐ and seven are CMIP6‐generation models. Using
multiple large ensembles enables us to consistently quantify agreement between models and observations, ac-
counting for internal variability, the forced response, and differences in the model configuration. The switch from
historical emissions to emission scenarios is in 2005 for CMIP5 and in 2014 for CMIP6. We use the emission
scenarios RCP8.5 for CMIP5 models and SSP2‐4.5 or SSP3‐7.0 for CMIP6 models. The inconsistent use of
scenarios is caused by the limited availability from the large ensembles and justified by very similar emissions in
the global mean before year 2030 (Maher et al., 2019). We analyze the net radiation at the top‐of‐the‐atmosphere
(net TOA = rsdt − rsut − rlut; CMIP notation, here referred to as “TOA radiation”), and the 2 m surface air
temperature (“tas”, here referred to as “surface temperature”). From CERES EBAF Edition 4.2, we use the TOA
net flux for all‐sky conditions. CERES uses a 1° × 1° resolution and we regrid HadCRUT5 and all simulations to
that same horizontal grid by bilinear interpolation.

We introduce a new metric of surface‐TOA coupling that differs from radiative feedbacks and shows that coupled
climate models consistently underestimate observed TOA radiation trends even if they reproduce observed
surface temperature trends (Section 2 and 3). This too weak local coupling between surface warming and TOA
radiation is caused by errors in both the atmospheric model component itself and the simulated spatial pattern of
warming (Section 4). We find that this systematic response bias in surface‐TOA coupling strength correlates with
the long‐term climate response: less‐sensitive models are able to reproduce observations at the TOA better than
more‐sensitive models (Section 5).

2. Hypotheses for Underestimated TOA Radiation Trends
The global‐mean TOA radiation observed by CERES falls within the range of the simulations for all 11 coupled
models for anomalies to 2001–2022 (Figures 1a–1k, Figure S1 in Supporting Information S1). Although coupled
model simulations have their own internal variability, the large number of ensemble members allows a few re-
alizations to also reproduce the observed evolution in TOA radiation, as measured by the correlation coefficient
between the observations and ensemble members. However, we find that all simulations systematically under-
estimate the observed 2001–2022 TOA radiation trend (Figure 1l). The maximum trend (tmax) ranges from 0.18 to
0.45 Wm− 2 dec− 1 across models compared with 0.46 Wm− 2 dec− 1 in the observations. Positive TOA radiation
trends indicate an increasing uptake of energy into the climate system. We here estimate the uncertainty of the
observed trend as two standard errors of the linear regression of ±0.13 Wm− 2 dec− 1. This estimate is in between
previous estimates: Loeb et al. (2021) quantified the difference between global‐mean ocean‐ and TOA‐based
radiation trends as ±0.09 Wm− 2 dec− 1 over the period 2005–2019 (Loeb et al., 2021) whereas Raghuraman
et al. (2021) estimate an observational uncertainty of ±0.20 Wm− 2 dec− 1 over the period 2001–2020, which is
still substantially smaller than the observed trend itself. No model simulates trends higher than observed. When
accounting for the observational uncertainty of ±0.13 Wm− 2 dec− 1, 97% of the simulations fall out of this range,
notably all on the lower side. The discrepancy between models and observations stems from both larger regions
under‐ than overestimating the observed TOA radiation trends (33%–61% of global area with negative trends for
the full range of simulations vs. 33% in the observations) and greater magnitudes of negative trends (− 0.82 to
− 0.59 Wm− 2 dec− 1) than observed (− 0.57 Wm− 2 dec− 1), compare Figure S2 in Supporting Information S1). We
conclude that all models systematically underestimate the observed global mean TOA radiation trend.

We test five hypotheses that, in principle, could explain the observation‐model discrepancy: (a) the interannual
variability in TOA radiation is underestimated in all models; (b) the observed trend is an extreme outlier in the
distribution of the real climate system; (c) local mean‐state (climatological) biases prevent the models from
simulating strong enough TOA radiation trends; (d) the effective radiative forcing is too weak in the models, and
(e) the local coupling between surface warming and TOA radiation trends is too weak in the models.

We reject hypothesis (1) because the models overestimate rather than underestimate global and local interannual
variability (Figures S2 and S3 in Supporting Information S1). For the global mean, the observed standard de-
viation across the 22 years detrended with the multi‐model ensemble mean lies well within the simulated range
(0.38 Wm− 2 in the observation, 0.24–0.47 Wm− 2 in the models). Regions of strong trends tend to also show high
interannual variability in both observations and models (Figure S2, in Supporting Information S1 see
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Figure 1. Observed and simulated global‐mean radiation anomaly at TOA. (a)–(k) Annual‐mean CERES observations are shown in black and model simulations in
color. The ensemble member with the maximum correlation coefficient to the observations (rmax) is depicted in gray and the ensemble member with the maximum 22‐yr
trend (tmax) is highlighted in color. The observed 22‐yr trend is 0.46 ± 0.13 Wm− 2 dec− 1. The number of ensemble members is shown in the panel title. The triangle
shows where the historical simulations are continued with the scenario simulations. The mean of the entire period is subtracted for observations and models. (l)–(m)
Observed (black) and simulated (colored) 2001–2022 trends in (l) global mean TOA radiation and (m) global mean surface temperature. Each filled dot represents one
ensemble member; black circles represent the ensemble mean. The vertical dashed line and gray shading shows the observed trend±2 standard errors of the 22‐yr linear
regression. Positive TOA radiation trends indicate an increasing uptake of energy into the climate system. See Table S1 in Supporting Information S1 for details on the
model ensembles and for numerical values of correlation coefficients and trends.
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Supplementary text for details on quantifying variability). Simulated interannual variability is in large regions of
greater magnitude than in the observations and the exact regions of large interannual variability and strongest
trends differ considerably between models and between models and observations (Figure S2 in Supporting In-
formation S1). Averaged globally, the models (2.63–3.74 Wm− 2) overestimate the observed local interannual
variability (2.68 Wm− 2) while underestimating the observed trend which is in contrast to the fluctuation–
dissipation theory (Cox et al., 2018; Leith, 1975). This rejects the hypothesis that the models have too little
variability and therefore do only hardly include the observed trend in the ensemble spread. Note that we here
evaluate the magnitude of simulated interannual variability, which differs from the simulated internal variability
of trends that we account for in this study but which cannot be robustly estimated from the short CERES‐observed
record.

Concerning hypothesis (2), the trend in observed ocean heat uptake matches the trend in TOA radiation (Loeb
et al., 2021), indicating that if internal variability was the main driver of the trend it would have been caused by
coherent ocean‐atmosphere interactions able to force strong 22‐yr trends. The only mode capable of such strong
variability might be the Pacific Decadal Oscillation, which changed sign within the 22 yr and thus cannot explain
the continued trend. ENSO events are, on average, neutral in their net radiation although they have a strong pattern
effect during the event (Ceppi & Fueglistaler, 2021). Further, model analyses have shown that the observed 2001–
2020 trend is larger than any trend in 20‐yr periods of unforced simulations (Raghuraman et al., 2021). This
renders hypothesis (2) possible but unlikely and impossible to prove wrong with only one realization of the real
world. Furthermore, we cannot exclude the possibility that the observed trend is wrong, because CERES was not
built to be fully stable in time.

Hypothesis (3) is difficult to rebut without specific model simulations correcting for mean‐state biases. We relate
the models' ability to simulate the observed trends with the magnitude of its mean‐state bias and do not find any
relationship (Figures S4 and S5 in Supporting Information S1). That is, models with a smaller versus stronger
mean‐state bias in TOA radiation and surface temperature do not reproduce the observed trends more versus less
likely, respectively. Regions of large mean‐state biases can–but do not need to–overlap with regions of strong
observation‐model discrepancies. With our model set‐up, we do not find a first‐order correspondence between the
models' mean‐state bias and their inability to simulate observed global or local TOA radiation trends.

We cannot reject hypothesis (4) that the model‐underestimated TOA radiation trends are caused by too weak
effective radiative forcing in all models. However, it is unlikely that errors in radiative forcing cause the consistent
underestimation of TOA radiation trends across models because the prescribed emissions differ between CMIP5
and CMIP6 models with radiative forcing in CMIP6 being lower than in CMIP5 at the end of the historical period
(Fredriksen et al., 2023; Fyfe et al., 2021), and the models also show substantial spread in their effective radiative
forcing within each model generation (Smith et al., 2020; Raghuraman et al., 2023). In addition, we find that the
simulated and observed surface temperature responses to radiative forcing much better agree with each other
during 2001–2022 than the simulated and observed TOA radiation trends (see Section 3).

In summary, although hypotheses (1)–(4) may still contribute to the discrepancy between observed and simulated
TOA radiation trends, we find them unlikely to play a dominant role. Instead, we show in the following that the
model bias in TOA radiation trends is due to a too weak local surface‐TOA coupling (hypothesis 5), which is
driven by both erroneously simulated surface warming patterns and atmospheric physics.

3. Underestimated Local Surface‐TOA Coupling
To understand the bias in simulated global mean TOA radiation trends and its relation to surface warming, we first
show that the models do not underestimate the observed TOA radiation trend because of underestimated global
surface temperature trends (Figure 1m). We find that either observed global surface temperature trends fall
comfortably within the ensemble, or the models overestimate the observed trend. We now investigate the patterns
in the observation‐model discrepancy for trends in surface temperature and TOA radiation (Figures 2a and 2b;
see Figure S6 in Supporting Information S1 for the observed trend patterns). The discrepancy is calculated as the
difference at every grid point between the simulated 22‐yr trend of each ensemble member and the observed 22‐yr
trend, then averaged across the members of each model and across models. Most models do not reproduce
observed strong TOA radiation trends such as in the subtropical eastern Pacific and subtropical east Atlantic
(Figure S7 in Supporting Information S1). The congruity of large‐scale regions with a negative or positive
discrepancy in both simulated surface temperature trends and TOA radiation trends primarily over tropical to
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mid‐latitude oceans suggests a connection between surface warming and TOA radiation. We investigate this
“local surface‐TOA coupling” by regressing the discrepancy between simulated and observed trends of surface
temperature and TOA radiation. To minimize errors in both variables, we use orthogonal regression for which we
normalize both axes by division with the standard deviation across the discrepancies of all ensemble members
(Figures 2c–2e, Figures S10 and S11 in Supporting Information S1). We now focus on three regions that show
striking model‐observation discrepancies in TOA radiation, namely the subtropical eastern Pacific (Loeb
et al., 2020), the subtropical east Atlantic (Myers et al., 2018), and the difference between the West‐Pacific warm
pool and the Tropics (Dong et al., 2019; Fueglistaler, 2019).

In the subtropical eastern Pacific, the discrepancies between observed and simulated trends in surface temperature
and TOA radiation correlate well (r2 across all models is 0.49, ranging from 0.10 to 0.79 for each model). The
observed trends lay at the edge of the simulated ensemble spread. Importantly, all coupled models occasionally
reproduce the strong observed trend in surface temperature, while some models never, and others only rarely,

Figure 2. Relationship between surface temperature and TOA radiation. (a) and (b) Discrepancy between each ensemble member and observed 2001–2022 trends
averaged across models in a surface temperature and (b) TOA radiation. Black boxes frame regions of interest. Orthogonal regression across all ensemble members
between (a) and (b) averaged for (c), the subtropical eastern Pacific (150°W–1100°W, 10°N–40°N), (d), the subtropical east Atlantic (30W°–10°W, 25°N–40°N) and
(e), the West‐Pacific warm pool (90°E− 180°E, 20°N–22°S) minus the entire Tropics (30°N–30°S). Individual ensemble members are shown as dots colored for each
model as shown in the label bar in panel c. The multi‐model ensemble mean is shown as black filled dot. Pattern of the response bias of TOA radiation trends to observed
surface temperature trends measured as the y‐intercept of the regression line at x = 0 (compare (c)–(e)) for (f) net TOA radiation, (g) TOA shortwave radiation and (h)
TOA longwave radiation. Stippling highlights regions where the coefficient of determination is >0.25 and the regression coefficient is >1Wm− 2 C− 1. The percentages
indicate the global area for which the models overestimate (red) or underestimate (blue) the observed TOA radiation response to surface warming, and the number in
black shows the magnitude of the global mean response bias in Wm− 2 dec− 1. Figures S8–S14 in Supporting Information S1 show results for individual models.
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simulate the observed trend in TOA radiation. Thus, simulating the observed local trend in surface temperature is
necessary but not sufficient for simulating the observed local trend in TOA radiation. Coupled models under-
estimate the sensitivity of the local TOA radiation to surface temperature trends: the regression line across all
ensemble members does not cross (0,0) but at (0, <0). This is true when regressing all models' ensemble members
as shown here, but also for every single model ensemble, with the regression line passing x = 0 at y = − 1.6 to
− 0.5 Wm− 2 dec− 1.

For the subtropical east Atlantic, a similar interpretation holds: The discrepancies between observed and simu-
lated trends in surface temperature and TOA radiation correlate (r2 across all models is 0.28, ranging from 0.09 to
0.36 for each model), but observed trends lay at the edge of the simulated range in a subset of the models. The
observations are closer to the centre of the range of simulated surface temperature trends than of TOA radiation
trends, which reiterates that simulating the observed trend in surface temperature is necessary but not sufficient
for simulating the observed trend in TOA radiation. The coupled models overestimate the sensitivity of the local
TOA radiation to surface temperature trends: the regression line across all ensemble members for each model
does not cross (0,0) but at (0, >0). This is true when regressing all models' ensemble members, but also for 10 out
of the 11 single model ensembles, with the regression line passing x = 0 at y = 0.2 to 1.7 Wm− 2 dec− 1.

For the Tropics, it is debated whether coupled models are capable of simulating correct relative warming patterns
between the West‐Pacific warm pool and East‐Pacific or global Tropics (Andrews et al., 2018; Coats & Kar-
nauskas, 2018; Dong et al., 2019, 2020; Fueglistaler, 2019; Heede et al., 2020; Olonscheck et al., 2020; Seager
et al., 2019; Zhou et al., 2016). In the 22 years we focus on here, the difference between the West‐Pacific warm
pool and the tropical mean is reasonably simulated in the models: the CERES‐observed trend lays within the
simulated range of each model. This can be interpreted as either the observations are largely driven by interannual
variability which is well captured by the models or, as argued above, the models overestimate interannual
variability and hence cover up potential model bias (Heede et al., 2020; Olonscheck et al., 2020; Seager
et al., 2019).

To understand the local sensitivity of TOA radiation to surface temperatures more broadly, we expand the
analysis to the grid‐point scale (Figure 2f). Assuming that a simulation replicates the observed surface warming
(x = 0 in Figures 2c–2e), we find that the observed trend in TOA radiation is more often under‐ than over-
estimated. This is true for larger regions (64% vs. 36% of the global area, blue vs. red) and the magnitude of the
under‐ and overestimation with a global mean underestimation of − 0.47 Wm− 2 dec− 1, consistent with the un-
derestimation of global mean TOA radiation trends (Figure 1l). We call the discrepancy between the observed
and simulated response of the TOA radiation to the observed surface temperature trends a “response bias”. We
quantify the response bias by the y‐intercept of the regression line at x = 0 at every grid point (contours in
Figures 2f–2h), and the local surface‐TOA coupling strength by both the coefficient of determination and the
regression coefficient (stippling in Figures 2f–2h). We find that regions with a large local surface‐TOA coupling
strength primarily show a negative response bias in net TOA radiation. This highlights that models consistently
underestimate local and global TOA radiation trends–in larger regions and with a stronger magnitude than the
occasional local overestimation. Importantly, our finding is not only true using all ensemble members of all
models but also within each single model, representing different model physics, tuning strategies, climate sen-
sitivities, and cloud feedbacks (Hourdin et al., 2017; Schmidt et al., 2017; Zelinka et al., 2020) (Figure S12 in
Supporting Information S1). The underestimation occurs on large spatial scales representing different types of
clouds, lapse rate, water vapor, and circulation conditions as well as different mean‐state bias magnitudes.

In summary, we identify a robust response bias apparent in all coupled models studied here: Given a simulation
replicates the observed surface warming locally, the simulated local TOA radiation trend more often under‐ than
overestimates the observed trend, both in larger regions and with larger magnitudes. While global surface
warming is generally simulated well, the global TOA radiation trend is systematically, strongly underestimated.

4. Causes for the Too Weak Local Surface‐TOA Coupling
We investigate two possible causes of the identified response bias: First, next to the local surface warming the
leading factor controlling clouds, and hence TOA radiation, is the lower‐tropospheric inversion strength. The
inversion strength is set by the warming of the free troposphere which, in turn, is set by surface warming in
regions of deep atmospheric convection (e.g., Barsugli et al., 2006; Dong et al., 2019; Fueglistaler & Sil-
vers, 2021; Liu et al., 2018; Wood & Bretherton, 2006). Hence, the first reason for the error in local coupling

Geophysical Research Letters 10.1029/2023GL106909

OLONSCHECK AND RUGENSTEIN 6 of 10

 19448007, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106909, W

iley O
nline L

ibrary on [28/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



could be the inability of the models to replicate observed surface warming patterns. Second, atmospheric pro-
cesses could render the TOA response to a correct surface warming wrong, even for a potential correct surface
warming pattern. TOA radiation is influenced by myriads of processes such as radiative transfer, heat transport
and large‐scale circulation, the local boundary layer structure, humidity, cloud types, and cloud microphysics
(e.g., Myers et al., 2021; Wood & Bretherton, 2006; Zhou et al., 2017).

To separate the effect of the surfacewarming pattern versus the atmosphere alone, we compare the coupledmodels'
simulations with atmosphere‐only simulations that are forced with the observed sea surface temperature evolution
(“AMIP” simulations, Figures S15 and S16 in Supporting Information S1). Similar to the coupledmodels, we find
that three out of five AMIP ensembles also underestimate the observed TOA radiation trend, but at a lower
magnitude andwithin observational uncertainty. In themodel mean, about one third of themodels' error in surface‐
TOA coupling stems from atmospheric processes alone, but with substantial intermodel differences (see in Sup-
porting Information S1). Our finding supports recent research showing that radiative feedbacks in AMIP simu-
lations do not match observations substantially better than the ones in coupled models (Raghuraman et al., 2021;
Uribe et al., 2022). The relevance of the atmosphere in explaining the response bias is seemingly in contrast to some
studies arguing that the local atmosphere likely is not the dominant reason for biases in TOA radiation because
AMIP‐type simulations reproduce observed variations of TOA radiation (Andrews et al., 2018, 2022; Loeb
et al., 2021; Zhou et al., 2021). However, these studies do not investigate trends but interannual variability, which
matches the observations astonishingly well (Figure S17 in Supporting Information S1). Initial condition en-
sembles of updated AMIP‐type simulations are urgently needed to assess climate models' response biases with
respect to radiation. We conclude that we cannot rule out the atmosphere as a cause for the local surface‐TOA
coupling response bias and in some models, errors in the atmospheric physics might be a dominant cause.

The other reason for the response bias stems from the inability of the models to reproduce the observed surface
warming pattern. Our analysis in Figure 2 reveals that simulating the observed local surface warming is necessary
but not sufficient for simulating the observed local trend in TOA radiation. This is in line with a growing body of
literature arguing that the spatial pattern of surface warming is key to the global TOA radiation trends (“pattern
effect”, e.g., Senior and Mitchell (2000); Andrews et al. (2015, 2022); Dong et al. (2019); Fueglistaler (2019);
Bloch‐Johnson et al. (2020); Zhou et al. (2021)). A contributing driver for the model bias in the surface warming
pattern could be model biases in aerosol emissions (Takahashi &Watanabe, 2016; Smith et al., 2016) but the main
cause for the discrepancy is unknown.

We further investigate the cause of the response bias by separating the net TOA radiation response bias into its
shortwave and longwave component (Figures 2g–2h). The shortwave response bias shows a similar pattern as the
total response bias especially in mid‐ and high‐latitudes, whereas the shortwave response bias in the Tropics is
largely compensated ormodified by the longwave response bias (Raghuraman et al., 2021). For all (net, shortwave,
and longwave) fluxes, larger regions show a negative than a positive discrepancy of the simulated TOA radiation
for a correct surfacewarming (blue vs. red). In the shortwave radiation, the underestimation has substantially larger
magnitudes (− 0.56 vs. − 0.18Wm− 2 dec− 1) such that in the global‐mean the shortwave radiation trends showmuch
larger discrepancies than the longwave radiation trends (Figure S18 in Supporting Information S1).

In summary, we find that the response bias stems from both differences in the large‐scale surface warming
patterns and errors in atmospheric physics affecting short‐ and longwave radiation.

5. Response Bias Reflects in Climate Sensitivity
The global‐mean underestimation of the TOA radiation response to surface warming is correlated with the
models' short‐term, global‐mean effective feedback parameter λeff and effective climate sensitivity (EffCS,
Rugenstein and Armour (2021)). Coupled models with a greater response bias have a less negative 2001–2022 λeff
and a higher EffCS (Figure 3). We quantify the global feedback parameter λeff by calculating the anomalies in
ΔN − ΔF and regressing them against ΔT. While ΔN and ΔT are easy to quantify for observations and each
ensemble member, the effective radiative forcing F is uncertain for observations and models. We calculate F from
the RFMIP simulations available for CanESM5 (1.13 Wm− 2/22 yr), IPSL‐CM6A‐LR (0.97 Wm− 2/22 yr) and
MIROC6 (0.87 Wm− 2/22 yr), and use the multi‐model average of the three estimates (0.99 Wm− 2/22 yr) for the
other model's F and for the observations. λeff based on the observation is − 0.48Wm− 2 °C− 1 which is similar to the
estimate derived for 2001–2017 in Loeb et al. (2020), and much more positive than the estimates derived from
2001 to 2014 (− 2.1 Wm− 2 °C− 1 in Loeb et al. (2020)), 1850–2005 (− 1.43 Wm− 2 °C− 1 in Dessler et al. (2018)),
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or 1985–2014 (− 2 Wm− 2 °C− 1 in Andrews et al. (2022)), or other periods and observational products (Huber
et al., 2011). The spread of ensemble members in λeff is substantial which highlights that a feedback defined with
just 22‐yr regressions has limited explanatory power. Importantly, ensemble members which reproduce the
observed feedback do so combining a wrong TOA radiation trend with a wrong surface warming. Contrary to
interpreting radiative feedbacks as a potential emergent constraint, our analysis suggests that models with a
smaller surface‐TOA coupling bias tend to have more negative feedbacks and hence a lower EffCS. Our new
metric takes into account whether a model–which is given the opportunity to act‐out its full spectrum of internal
variability–is able to reproduce local observed TOA radiation trends given the observed correct local surface
warming. Using the concept of local radiative feedbacks results in a similar interpretation (Figure S19 in Sup-
porting Information S1). The metric is a measure of a response bias and, even though it is not based on one single
well understood process, gives us indications about the erroneous processes counter to global‐mean surface
warming (Flynn &Mauritsen, 2020; Jiménez‐de‐la Cuesta &Mauritsen, 2019; Tokarska et al., 2020) or radiative
feedbacks (Dessler, 2013; He et al., 2021; Uribe et al., 2022) to constrain λeff or EffCS.

Our response bias metric is a new line of evidence that low‐EffCS models more realistically reproduce climate
change over the last 22 years than high‐EffCS models (e.g., Modak & Mauritsen, 2021; Myers et al., 2021).
Models with a stronger response bias, that is, a weaker TOA radiation response to surface warming, accumulate
too much energy in the atmosphere which reflects in a higher EffCS. These models might have a less realistic
pattern of warming leading to wrong magnitudes of ocean heat uptake and radiative feedbacks and/or larger errors
in their atmospheric physics reflecting in wrong radiative feedbacks but also the wrong representation of forcing.
To actually constrain EffCS and more importantly, warming over the next decades, we need to disentangle these
issues and increase trust in the models' ability to faithfully represent both, the surface warming pattern and the
atmospheric physics.

Data Availability Statement
The data that support the findings of this study are openly available. The model output (listed in Table S1 in
Supporting Information S1) is obtained from the Multi‐Model Large Ensemble Archive https://www.cesm.ucar.
edu/community‐projects/mmlea. All other model output used here is accessible from the Earth System Grid
Federation https://esgf‐data.dkrz.de/projects/esgf‐dkrz/. CERES EBAF Edition 4.2 were downloaded at https://
ceres‐tool.larc.nasa.gov/ord‐tool/jsp/EBAFTOA42Selection.jsp and the HadCRUT5 near surface temperature
data version 5.0.1.0 at https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.1.0/download.html

Figure 3. Relationship between response bias, λeff and EffCS. (a) Regression between the 2001–2022 response bias of global
mean TOA radiation to surface warming and the simulated ensemble mean (large dots) and individual members of λeff (small
dots) compared to the observational estimate (horizontal dashed line). (b) Regression between the 2001–2022 response bias
of global mean TOA radiation to surface warming and EffCS. EffCS values are taken from Smith et al. (2021), Meehl
et al. (2013) and Maher et al. (2019). The vertical dashed lines indicate no response bias. The coefficient of determination is
shown in the top left. Regressions are ordinary least squares. Note that the response bias shown here corresponds to the global
means of the maps shown in Figure S12 in Supporting Information S1.
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The code used to both process the data and create the figures for this paper can be publicly accessed at Olonscheck
and Rugenstein (2024).

References
Andrews, T., Bodas‐Salcedo, A., Gregory, J. M., Dong, Y., Armour, K. C., Paynter, D., et al. (2022). On the effect of historical SST patterns on

radiative feedback. Journal of Geophysical Research: Atmospheres, 127(18), e2022JD036675. https://doi.org/10.1029/2022JD036675
Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., et al. (2018). Accounting for changing temperature patterns

increases historical estimates of climate sensitivity.Geophysical Research Letters, 45(16), 8490–8499. https://doi.org/10.1029/2018GL078887
Andrews, T., Gregory, J. M., &Webb, M. J. (2015). The dependence of radiative forcing and feedback on evolving patterns of surface temperature

change in climate models. Journal of Climate, 28(4), 1630–1648. https://doi.org/10.1175/JCLI‐D‐14‐00545.1
Barsugli, J. J., Shin, S.‐I., & Sardeshmukh, P. D. (2006). Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dy-

namics, 27(5), 483–492. https://doi.org/10.1007/s00382‐006‐0143‐7
Bloch‐Johnson, J., Rugenstein, M., & Abbot, D. S. (2020). Spatial radiative feedbacks from internal variability using multiple regression. Journal

of Climate, 33(10), 4121–4140. https://doi.org/10.1175/JCLI‐D‐19‐0396.1
Ceppi, P., & Fueglistaler, S. (2021). The El Niño–Southern oscillation pattern effect. Geophysical Research Letters, 48(21), e2021GL095261.

https://doi.org/10.1029/2021GL095261
Chung, E.‐S., Soden, B. J., & Sohn, B.‐J. (2010). Revisiting the determination of climate sensitivity from relationships between surface tem-

perature and radiative fluxes. Geophysical Research Letters, 37(10). https://doi.org/10.1029/2010GL043051
Coats, S., & Karnauskas, K. B. (2018). A role for the equatorial undercurrent in the ocean dynamical thermostat. Journal of Climate, 31(16),

6245–6261. https://doi.org/10.1175/JCLI‐D‐17‐0513.1
Cox, P. M., Huntingford, C., & Williamson, M. S. (2018). Emergent constraint on equilibrium climate sensitivity from global temperature

variability. Nature, 553(7688), 319–322. https://doi.org/10.1038/nature25450
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., et al. (2020). Insights from Earth system model initial‐condition

large ensembles and future prospects. Nature Climate Change, 10(4), 277–286. https://doi.org/10.1038/s41558‐020‐0731‐2
Dessler, A. E. (2013). Observations of climate feedbacks over 2000–10 and comparisons to climate models. Journal of Climate, 26(1), 333–342.

https://doi.org/10.1175/JCLI‐D‐11‐00640.1
Dessler, A. E., Mauritsen, T., & Stevens, B. (2018). The influence of internal variability on Earth’s energy balance framework and implications for

estimating climate sensitivity. Atmospheric Chemistry and Physics, 18(7), 5147–5155. https://doi.org/10.5194/acp‐18‐5147‐2018
Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., & Andrews, T. (2020). Intermodel spread in the pattern effect

and its contribution to climate sensitivity in CMIP5 and CMIP6 models. Journal of Climate, 33(18), 7755–7775. https://doi.org/10.1175/JCLI‐
D‐19‐1011.1

Dong, Y., Proistosescu, C., Armour, K. C., & Battisti, D. S. (2019). Attributing historical and future evolution of radiative feedbacks to regional
warming patterns using a Green’s Function Approach: The preeminence of the western pacific. Journal of Climate, 32(17), 5471–5491. https://
doi.org/10.1175/JCLI‐D‐18‐0843.1

Flynn, C. M., & Mauritsen, T. (2020). On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmo-
spheric Chemistry and Physics, 20(13), 7829–7842. https://doi.org/10.5194/acp‐20‐7829‐2020

Fredriksen, H.‐B., Smith, C. J., Modak, A., & Rugenstein, M. (2023). 21st Century scenario forcing increases more for CMIP6 than CMIP5
models. Geophysical Research Letters, 50(6), e2023GL102916. https://doi.org/10.1029/2023GL102916

Fueglistaler, S. (2019). Observational evidence for two modes of coupling between sea surface temperatures, tropospheric temperature profile,
and shortwave cloud radiative effect in the tropics. Geophysical Research Letters, 46(16), 9890–9898. https://doi.org/10.1029/2019GL083990

Fueglistaler, S., & Silvers, L. (2021). The peculiar trajectory of global warming. Journal of Geophysical Research: Atmospheres, 126(4),
e2020JD033629. https://doi.org/10.1029/2020JD033629

Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S., & Gillett, N. P. (2021). Significant impact of forcing uncertainty in a large ensemble of
climate model simulations. Proceedings of the National Academy of Sciences, 118(23), e2016549118. https://doi.org/10.1073/pnas.
2016549118

He, H., Kramer, R. J., & Soden, B. J. (2021). Evaluating observational constraints on intermodel spread in cloud, temperature, and humidity
feedbacks. Geophysical Research Letters, 48(17). https://doi.org/10.1029/2020GL092309

Heede, U. K., & Fedorov, A. V. (2021). Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature
Climate Change, 11(8), 696–703. https://doi.org/10.1038/s41558‐021‐01101‐x

Heede, U. K., Fedorov, A. V., & Burls, N. J. (2020). Time scales and mechanisms for the tropical pacific response to global warming: A tug of war
between the ocean thermostat and weaker walker. Journal of Climate, 33(14), 6101–6118. https://doi.org/10.1175/JCLI‐D‐19‐0690.1

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.‐C., Balaji, V., Duan, Q., et al. (2017). The art and science of climate model tuning. Bulletin of
the American Meteorological Society, 98(3), 589–602. https://doi.org/10.1175/BAMS‐D‐15‐00135.1

Huber, M., Mahlstein, I., Wild, M., Fasullo, J., & Knutti, R. (2011). Constraints on climate sensitivity from radiation patterns in climate models.
Journal of Climate, 24(4), 1034–1052. https://doi.org/10.1175/2010JCLI3403.1

Jiménez‐de‐la Cuesta, D., &Mauritsen, T. (2019). Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post‐
1970s global warming. Nature Geoscience, 12(11), 902–905. https://doi.org/10.1038/s41561‐019‐0463‐y

Leith, C. E. (1975). Climate response and fluctuation dissipation. Journal of the Atmospheric Sciences, 32(10), 2022–2026. https://doi.org/10.
1175/1520‐0469(1975)032〈2022:CRAFD〉2.0.CO;2

Liu, F., Lu, J., Garuba, O., Leung, L. R., Luo, Y., & Wan, X. (2018). Sensitivity of surface temperature to oceanic forcing via q‐flux green’s
function experiments. Part I: Linear response function. Journal of Climate, 31(9), 3625–3641. https://doi.org/10.1175/JCLI‐D‐17‐0462.1

Loeb, N. G., Johnson, G. C., Thorsen, T. J., Lyman, J. M., Rose, F. G., & Kato, S. (2021). Satellite and ocean data reveal marked increase in earth’s
heating rate. Geophysical Research Letters, 48(13), e2021GL093047. https://doi.org/10.1029/2021GL093047

Loeb, N. G., Wang, H., Allan, R. P., Andrews, T., Armour, K., Cole, J. N. S., et al. (2020). New generation of climate models track recent
unprecedented changes in earth’s radiation budget observed by CERES.Geophysical Research Letters, 47(5), e2019GL086705. https://doi.org/
10.1029/2019GL086705

Maher, N., Milinski, S., Suarez‐Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., et al. (2019). The Max Planck Institute Grand Ensemble:
Enabling the exploration of climate system variability. Journal of Advances in Modeling Earth Systems, 11(7), 2050–2069. https://doi.org/10.
1029/2019MS001639

Acknowledgments
This project has received funding from the
European Union’s Horizon 2020 research
and innovation programme under grant
agreement 820829. M.R. was further
funded by the National Aeronautics and
Space Administration under Grant
80NSSC21K1042. Computational
resources were made available by the
German Climate Computing Centre
(DKRZ). We thank the two anonymous
reviewers for valuable comments, Cathy
Hohenegger for a pre‐submission review,
Timothy Andrews, Yue Dong, Eric
Maloney, Mark Richardson, Shiv Priyam
Raghuraman, and Jochem Marotzke for
valuable comments on the draft paper. We
further thank the US CLIVAR Working
Group on Large Ensembles for providing
the Multi‐Model Large Ensemble Archive,
and the various modeling groups for
carrying out the large ensemble
simulations used here. Open Access
funding enabled and organized by Projekt
DEAL.

Geophysical Research Letters 10.1029/2023GL106909

OLONSCHECK AND RUGENSTEIN 9 of 10

 19448007, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106909, W

iley O
nline L

ibrary on [28/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1029/2022JD036675
https://doi.org/10.1029/2018GL078887
https://doi.org/10.1175/JCLI-D-14-00545.1
https://doi.org/10.1007/s00382-006-0143-7
https://doi.org/10.1175/JCLI-D-19-0396.1
https://doi.org/10.1029/2021GL095261
https://doi.org/10.1029/2010GL043051
https://doi.org/10.1175/JCLI-D-17-0513.1
https://doi.org/10.1038/nature25450
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1175/JCLI-D-11-00640.1
https://doi.org/10.5194/acp-18-5147-2018
https://doi.org/10.1175/JCLI-D-19-1011.1
https://doi.org/10.1175/JCLI-D-19-1011.1
https://doi.org/10.1175/JCLI-D-18-0843.1
https://doi.org/10.1175/JCLI-D-18-0843.1
https://doi.org/10.5194/acp-20-7829-2020
https://doi.org/10.1029/2023GL102916
https://doi.org/10.1029/2019GL083990
https://doi.org/10.1029/2020JD033629
https://doi.org/10.1073/pnas.2016549118
https://doi.org/10.1073/pnas.2016549118
https://doi.org/10.1029/2020GL092309
https://doi.org/10.1038/s41558-021-01101-x
https://doi.org/10.1175/JCLI-D-19-0690.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/2010JCLI3403.1
https://doi.org/10.1038/s41561-019-0463-y
https://doi.org/10.1175/1520-0469(1975)032%E2%8C%A92022:CRAFD%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032%E2%8C%A92022:CRAFD%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/JCLI-D-17-0462.1
https://doi.org/10.1029/2021GL093047
https://doi.org/10.1029/2019GL086705
https://doi.org/10.1029/2019GL086705
https://doi.org/10.1029/2019MS001639
https://doi.org/10.1029/2019MS001639


Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J., & Trenberth, K. E. (2013). Externally forced and internally generated decadal climate variability
associated with the interdecadal pacific oscillation. Journal of Climate, 26(18), 7298–7310. https://doi.org/10.1175/JCLI‐D‐12‐00548.1

Modak, A., & Mauritsen, T. (2021). The 2000–2012 global warming hiatus more likely with a low climate sensitivity. Geophysical Research
Letters, 48(9), e2020GL091779. https://doi.org/10.1029/2020GL091779

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., et al. (2021). An updated assessment of near‐surface tem-
perature change from 1850: The HadCRUT5 data set. Journal of Geophysical Research: Atmospheres, 126(3). https://doi.org/10.1029/
2019JD032361

Myers, T. A., Mechoso, C. R., & DeFlorio, M. J. (2018). Coupling between marine boundary layer clouds and summer‐to‐summer sea surface
temperature variability over the North Atlantic and Pacific. Climate Dynamics, 50(3–4), 955–969. https://doi.org/10.1007/s00382‐017‐3651‐8

Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., & Caldwell, P. M. (2021). Observational constraints on low cloud feedback
reduce uncertainty of climate sensitivity. Nature Climate Change, 11(6), 501–507. https://doi.org/10.1038/s41558‐021‐01039‐0

NASA/LARC/SD/ASDC. (2023). CERES Energy Balanced and Filled (EBAF) TOA and surface monthly means data in netCDF Edition 4.2.
NASA Langley Atmospheric Science Data Center DAAC. https://doi.org/10.5067/TERRA‐AQUA‐NOAA20/CERES/EBAF_L3B004.2

Olonscheck, D., & Rugenstein, M. (2024). Coupled climate models systematically underestimate radiation response to surface warming.
[Software]. Max Planck Society Publication Repository. Retrieved from https://hdl.handle.net/21.11116/0000‐000D‐B68C‐8

Olonscheck, D., Rugenstein, M., & Marotzke, J. (2020). Broad consistency between observed and simulated trends in sea surface temperature
patterns. Geophysical Research Letters, 47(10), e2019GL086773. https://doi.org/10.1029/2019GL086773

Raghuraman, S. P., Paynter, D., Menzel, R., & Ramaswamy, V. (2023). Forcing, cloud feedbacks, cloud masking, and internal variability in the
cloud radiative effect satellite record. Journal of Climate, 36(12), 4151–4167. https://doi.org/10.1175/JCLI‐D‐22‐0555.1

Raghuraman, S. P., Paynter, D., & Ramaswamy, V. (2021). Anthropogenic forcing and response yield observed positive trend in earth’s energy
imbalance. Nature Communications, 12(1), 4577. https://doi.org/10.1038/s41467‐021‐24544‐4

Rugenstein, M. A. A., & Armour, K. C. (2021). Three flavors of radiative feedbacks and their implications for estimating equilibrium climate
sensitivity. Geophysical Research Letters, 48(15), e2021GL092983. https://doi.org/10.1029/2021GL092983

Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.‐C., Hannay, C., et al. (2017). Practice and philosophy of climate model tuning
across six US modeling centers. Geoscientific Model Development, 10(9), 3207–3223. https://doi.org/10.5194/gmd‐10‐3207‐2017

Seager, R., Cane, M., Henderson, N., Lee, D.‐E., Abernathey, R., & Zhang, H. (2019). Strengthening tropical pacific zonal sea surface temperature
gradient consistent with rising greenhouse gases. Nature Climate Change, 9(7), 517–522. https://doi.org/10.1038/s41558‐019‐0505‐x

Seager, R., Henderson, N., & Cane, M. (2022). Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean.
Journal of Climate, 35(14), 1–41. https://doi.org/10.1175/JCLI‐D‐21‐0648.1

Senior, C. A., & Mitchell, J. F. B. (2000). The time‐dependence of climate sensitivity. Geophysical Research Letters, 27(17), 2685–2688. https://
doi.org/10.1029/2000GL011373

Sherwood, S., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. (2020). An assessment of Earth’s climate
sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4). https://doi.org/10.1029/2019RG000678

Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., et al. (2021). The earth’s energy budget, climate feedbacks,
and climate sensitivity supplementary material. In V. Masson‐Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y.
Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B.
Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the inter-
governmental panel on climate change.

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., et al. (2020). Effective radiative forcing and adjustments in CMIP6
models. Atmospheric Chemistry and Physics, 20(16), 9591–9618. https://doi.org/10.5194/acp‐20‐9591‐2020

Smith, D. M., Booth, B. B. B., Dunstone, N. J., Eade, R., Hermanson, L., Jones, G. S., et al. (2016). Role of volcanic and anthropogenic aerosols in
the recent global surface warming slowdown. Nature Climate Change, 6(10), 936–940. https://doi.org/10.1038/nclimate3058

Takahashi, C., & Watanabe, M. (2016). Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Climate Change,
6(8), 768–772. https://doi.org/10.1038/nclimate2996

Tokarska, K., Stolpe, M., Sippel, S., Fischer, E., Smith, C., Lehner, F., & Knutti, R. (2020). Past warming trend constrains future warming in
cmip6 models. Science Advances, 6(12), eaaz9549. https://doi.org/10.1126/sciadv.aaz9549

Uribe, A., Bender, F. A.‐M., & Mauritsen, T. (2022). Observed and CMIP6 modelled internal variability feedbacks and their relation to forced
climate feedbacks. Geophysical Research Letters, 49(24). https://doi.org/10.1029/2022GL100075

Watanabe, M., Dufresne, J., Kosaka, Y. e., Mauritsen, T., & Tatebe, H. (2021). Enhanced warming constrained by past trends in equatorial pacific
sea surface temperature gradient. Nature Climate Change, 11(1), 33–37. https://doi.org/10.1038/s41558‐020‐00933‐3

Wood, R., & Bretherton, C. (2006). On the relationship between stratiform low cloud cover and lower‐tropospheric stability. Journal of Climate,
19(24), 6425–6432. https://doi.org/10.1175/JCLI3988.1

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po‐Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in
CMIP6 models. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019GL085782

Zhou, C., Zelinka, M. D., Dessler, A. E., & Wang, M. (2021). Greater committed warming after accounting for the pattern effect. Nature Climate
Change, 11(2), 132–136. https://doi.org/10.1038/s41558‐020‐00955‐x

Zhou, C., Zelinka, M. D., & Klein, S. A. (2016). Impact of decadal cloud variations on the Earth’s energy budget. Nature Geoscience, 9(12),
871–874. https://doi.org/10.1038/ngeo2828

Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface
temperature change with a green’s function approach. Journal of Advances in Modeling Earth Systems, 9(5), 2174–2189. https://doi.org/10.
1002/2017MS001096

Geophysical Research Letters 10.1029/2023GL106909

OLONSCHECK AND RUGENSTEIN 10 of 10

 19448007, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106909, W

iley O
nline L

ibrary on [28/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1175/JCLI-D-12-00548.1
https://doi.org/10.1029/2020GL091779
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1007/s00382-017-3651-8
https://doi.org/10.1038/s41558-021-01039-0
https://doi.org/10.5067/TERRA-AQUA-NOAA20/CERES/EBAF_L3B004.2
https://hdl.handle.net/21.11116/0000-000D-B68C-8
https://doi.org/10.1029/2019GL086773
https://doi.org/10.1175/JCLI-D-22-0555.1
https://doi.org/10.1038/s41467-021-24544-4
https://doi.org/10.1029/2021GL092983
https://doi.org/10.5194/gmd-10-3207-2017
https://doi.org/10.1038/s41558-019-0505-x
https://doi.org/10.1175/JCLI-D-21-0648.1
https://doi.org/10.1029/2000GL011373
https://doi.org/10.1029/2000GL011373
https://doi.org/10.1029/2019RG000678
https://doi.org/10.5194/acp-20-9591-2020
https://doi.org/10.1038/nclimate3058
https://doi.org/10.1038/nclimate2996
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.1029/2022GL100075
https://doi.org/10.1038/s41558-020-00933-3
https://doi.org/10.1175/JCLI3988.1
https://doi.org/10.1029/2019GL085782
https://doi.org/10.1038/s41558-020-00955-x
https://doi.org/10.1038/ngeo2828
https://doi.org/10.1002/2017MS001096
https://doi.org/10.1002/2017MS001096

	description
	Coupled Climate Models Systematically Underestimate Radiation Response to Surface Warming
	1. Introduction
	2. Hypotheses for Underestimated TOA Radiation Trends
	3. Underestimated Local Surface‐TOA Coupling
	4. Causes for the Too Weak Local Surface‐TOA Coupling
	5. Response Bias Reflects in Climate Sensitivity
	Data Availability Statement



