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a b s t r a c t 

Alpha oscillations are thought to reflect alternating cortical states of excitation and inhibition. Studies of percep- 

tual thresholds and evoked potentials have shown the scalp EEG negative phase of the oscillation to correspond to 

a short-lasting low-threshold and high-excitability state of underlying visual, somatosensory, and primary motor 

cortex. The negative peak of the oscillation is assumed to correspond to the state of highest excitability based 

on biophysical considerations and considerable effort has been made to improve the extraction of a predictive 

signal by individually optimizing EEG montages. Here, we investigate whether it is the negative peak of sensori- 

motor μ-rhythm that corresponds to the highest corticospinal excitability, and whether this is consistent between 

individuals. 

In 52 adult participants, a standard 5-channel surface Laplacian EEG montage was used to extract sensori- 

motor μ-rhythm during transcranial magnetic stimulation (TMS) of primary motor cortex. Post-hoc trials were 

sorted from 800 TMS-evoked motor potentials (MEPs) according to the pre-stimulus EEG (estimated instantaneous 

phase) and MEP amplitude (as an index of corticospinal excitability). Different preprocessing transformations de- 

signed to improve the accuracy by which μ-alpha phase predicts excitability were also tested. 

By fitting a sinusoid to the MEP amplitudes, sorted according to pre-stimulus EEG-phase, we found that 

excitability was highest during the early rising phase, at a significant delay with respect to the negative peak by 

on average 45° or 10 ms. The individual phase of highest excitability was consistent across study participants 

and unaffected by two different EEG-cleaning methods that utilize 64 channels to improve signal quality by 

compensating for individual noise level and channel covariance. Personalized transformations of the montage 

did not yield better prediction of excitability from μ-alpha phase. 

The relationship between instantaneous phase of a brain oscillation and fluctuating cortical excitability ap- 

pears to be more complex than previously hypothesized. In TMS of motor cortex, a standard surface Laplacian 

5-channel EEG montage is effective in extracting a predictive signal and the phase corresponding to the high- 

est excitability appears to be consistent between individuals. This is an encouraging result with respect to the 

clinical potential of therapeutic personalized brain interventions in the motor system. However, it remains to be 

investigated, whether similar results can be obtained for other brain areas and brain oscillations targeted with 

EEG and TMS. 
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. Introduction 

Phase of sensorimotor μ-rhythm predicts corticospinal excitability,

s indexed by the amplitude of motor evoked potentials (MEPs) when

timulating primary motor cortex with transcranial magnetic stimula-

ion (TMS) ( Bergmann et al., 2019 ; Hussain et al., 2019 ; Triesch et al.,

015 ; Zrenner et al., 2018 ). Sensorimotor μ-rhythm can be extracted ef-

ectively at rest using electroencephalography (EEG) with a 5-channel

urface Laplacian montage ( Hjorth, 1975 ; Kayser and Tenke, 2015 )

entered on EEG sensor C3 (nomenclature according to the 10–

0 System of the International Federation of Clinical Neurophysiology

 Jasper, 1958 )). TMS during the negative peak of this 8–13 Hz oscilla-

ion results in larger MEPs on average, than during the positive peak

 Schaworonkow et al., 2019 ; Stefanou et al., 2018 ; Triesch et al., 2015 ;

renner et al., 2018 ). Such EEG-defined excitability states can serve as

temporal targets ” for brain-state-dependent TMS neuromodulation pro-

ocols. For example, repetitive stimulation with short bursts of TMS (3

ulses at 100 Hz) results in a long-term plasticity-like increase of ex-

itability when the bursts are triggered at the negative peak of the μ-

hythm (corresponding to a high-excitability state) but not the positive

eak ( Zrenner et al., 2018 ). This investigation is motivated by the need

o reliably detect phasic high-excitability states from EEG oscillation in

rder to develop more effective personalized therapeutic brain interven-

ions following an information-based approach ( Romei et al., 2016 ). 

A crucial parameter in investigating the relationship between the

hase of an EEG rhythm and instantaneous excitability is the spa-

ial filter montage through which the relevant signal is extracted. In-

ividualized montages designed to amplify the oscillation of interest

e.g., with spatial-spectral decomposition ( Nikulin et al., 2011 )) or de-

igned to target a specific anatomical area (e.g., with beamforming, see

 Gordon et al., 2021 )) provide moderate benefit compared to a simple

urface Laplacian centered on the EEG sensor of interest ( Gordon et al.,

021 ; Schaworonkow et al., 2019 ). However, in these studies, only two

istinct phase angles were compared, and the negative peak of the os-

illation was hypothesized a priori to correspond to the high-excitability

tate. Other studies in the motor system investigating multiple phase an-

les have found the rising phase to also coincide with a state of high ex-

itability using a C3 centered surface Laplacian ( Bergmann et al., 2019 ;

ischnewski et al., 2022 ), or have found no consistent phase effect

 Karabanov et al., 2021 ; Madsen et al., 2019 ), using various montages.

hus the assumption that the negative peak corresponds to the state

ith highest excitability requires further exploration. 

The present study is designed to address three methodological as-

ects related to this assumption. First, we investigate when exactly a

igh-excitability state occurs with respect to a full cycle of the sensori-

otor μ-rhythm. For this, we extract the sensorimotor μ-rhythm using a

-channel C3-centered surface Laplacian montage ( Hjorth, 1975 ) and a

ost hoc sorting approach similar to a previous study ( Metsomaa et al.,

021 ). Specifically, we address whether the average phase of highest

orticospinal excitability coincides with the negative peak of μ-rhythm.

econd, we analyze whether the phase of highest excitability is con-

istent among participants for this montage. Finally, we test whether

he result is affected by different preprocessing procedures designed to

mprove signal quality by participant-specific data-dependent transfor-

ations of the 5-channel C3-centered spatial filter: The first transfor-

ation aims to compensate for channel noise using the SOUND algo-

ithm ( Mutanen et al., 2018 ). The second transformation uses a beam-

ormer approach to compensate for covariance between the channels

 Haufe et al., 2014 ). 

We treat EEG-defined brain-states as temporal targets that add a new

imension to the existing choice of spatial targets in the application of

MS which, we expect, will enable new and more effective treatments of

europsychiatric disorders. In our view, the detection of localized phasic

ortical excitability states is a critical challenge for the development of

ersonalized neuromodulatory brain intervention protocols, informed

y synaptic plasticity models such as spike-timing-dependent plasticity
2 
 Bell et al., 1997 ; Bi and Poo, 1998 ; Markram et al., 1997 ; Sjöström et al.,

001 ). 

. Materials and methods 

.1. Participants 

60 right-handed participants (39 female, 21 male, mean ± SD age:

4.4 ± 3.7 years, age range: 18–36), with no history of neurological dis-

ase or substance use, were included in this study. We adhered to the

urrent TMS safety guidelines of the International Federation of Clini-

al Neurophysiology ( Rossi et al., 2021 ; Rossi et al., 2009 ). All partici-

ants gave written informed consent before measurements and tolerated

he procedures without any adverse effects. The study protocol was ap-

roved by the ethics committee at the medical faculty of the University

f Tübingen (protocol 716/2014BO2). 2 out of 60 participants were ex-

luded from the analysis since channels from the 5-channel C3 centered

urface Laplacian montage (C3, FC1, FC5, CP1, CP5) were determined

o be noisy during automated preprocessing (see below for details). 6 of

he remaining 58 participants were excluded because they did not com-

lete 800 trials, yielding a dataset consisting of 52 study participants.

ata from participants 1–8 has previously been reported in a similar

nalysis ( Metsomaa et al., 2021 ). 

.2. Experimental set-up 

Participants were seated in a comfortable chair and asked to keep

heir hands and arms relaxed. Single pulses of biphasic TMS were ap-

lied to the hand area of the left primary motor cortex using a figure-

f-eight coil oriented such as to most effectively evoke muscle contrac-

ions in the right hand, corresponding to a direction of the major com-

onent of the induced electric field orthogonal to the precentral motor

yrus, from left posterolateral to right frontomedial. An EEG-compatible

MS stimulator was used (participants 1–9: MAG & More Research 100

ith PMD70-pCool coil; participants 10–57: MagVenture R30 with MCF-

65 coil) with a stimulus intensity of 110% resting motor threshold.

4 channel EEG (participants 1–9: 126 channels) was recorded using

 TMS-compatible sintered Ag/AgCl ring electrode cap system (Easy-

ap, Germany). Electromyography (EMG) was recorded using hydro-

el foam electrodes (Kendall, Covidien/Medtronic, Ireland) in a bipolar

elly-tendon montage from two muscles of the right hand (adductor pol-

icis brevis, and first dorsal interosseus). EEG and EMG were recorded

sing a 24 bit biosignal amplifier (NeurOne, Bittium, Finland) at 5 kHz

n DC mode. A total of 800 pulses (participants 1–9: 1200 pulses) were

riggered in a pre-programmed sequence with an inter-stimulus-interval

f 2.25 s (participants 1–9: 2.0 s) and a jitter of ± 0.25 s. 

ata preprocessing 

Data was processed using Mathworks Matlab (2021a ). The first 800

rials and the same standard set of 64 EEG channels were loaded from

ll participants (more trials and channels were available for participants

–9 but these were not considered in this study) to yield a homogenous

ataset. EMG epochs were extracted surrounding the TMS stimuli in the

eriod − 100 ms to + 100 ms (for the two EMG channels), and MEP am-

litude was determined as the range of the EMG signal between + 20 ms

nd + 40 ms after each stimulus. A joint excitability index was computed

or each trial from the MEP amplitudes from the two hand muscles by

he following procedure: First, the two amplitudes were log-transformed

hus reducing asymmetry in their distributions and reducing the relative

agnitude of extreme values. A single value was then computed using

rincipal component analysis and projecting the two amplitudes to the

rst principal component of the joint distribution. EEG epochs were ex-

racted from the period between − 604 ms and − 5 ms (for the 64 EEG

hannels), detrended (linear fit, order 1) and downsampled to 1 kHz

ielding a 600 ms pre-stimulus data window. Bad channels were auto-

atically removed if the median range in that epoch and for that chan-
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Fig. 1. Illustration of baseline shifts as a source of bias in phase estimation based on a Hilbert transformation. (A) Synthetic sinusoids (solid lines) with different 

zero offsets and corresponding instantaneous phase (dotted lines), derived from the angle of the Hilbert transformation. (B–D) The resulting phase distribution is 

homogenous for the zero-offset sinusoid (B), biased toward the positive peak in the case of an upward (offset greater than zero) shift of the baseline (D) and biased 

toward the negative peak in the case of a downward (offset smaller than zero) shift of the baseline (D). 
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el exceeded 150 μV. This criterion was chosen to exclude channels ex-

ibiting consistent slow drifts preceding the TMS pulse, which can cause

roblematic baseline shifts when included in the montage ( Fig. 1 ). An

verage of 1.4 channels out of 64 were removed (median = 1, s. d. = 2.3,

ax. = 13). No bad trials were removed in order not to bias the results

f the EEG cleaning transformations. 

.3. Signal quality optimization spatial filter transformations 

The motivation behind investigating the effect of different spatial

lter transformations designed to improve signal quality are twofold:

irstly, this allowed us to investigate whether the resulting phase of

ighest excitability was affected by procedures designed to clean the

ata and improve signal quality. Secondly, it allowed us to investigate

hether different methods of extracting the signal of interest yield a

ore predictive (and in that sense ‘better’) signal. The specifics of the

ransformations are briefly described below. 

The EEG datasets were preprocessed utilizing information from the

omplete 64-channel EEG channels to get an estimate of the cleaned

ignals from noiseless source localization (i.e., eliminating the sensor

oise from the original data by subtracting cleaned source activity back

o sensor level). Four different spatial filters were computed, all based

n a surface Laplacian ( Hjorth, 1975 ) centered on EEG sensor C3, and

pplied to the data to extract sensorimotor μ-rhythm. Namely: RAW·SL:

urface Laplacian transformation applied to raw data. SOUND·SL: sur-

ace Laplacian applied to SOUND cleaned data. RAW·BF: Beamforming

s a forward spatial filter applied to raw data. SOUND·BF: Beamforming

s a forward spatial filter applied to SOUND cleaned data. 

.3.1. SOUND cleaning spatial filter 

The source-estimate-utilizing noise-discarding (SOUND) algorithm

 Mutanen et al., 2018 ), uses the high dimensionality of EEG data to

lean data from sources external to brain activity. SOUND consists of

wo conceptual steps: (1) noise estimation of each sensor by means of
3 
ignals from the remaining sensors (2) cleaning of the whole EEG dataset

ccording to the single sensor noise estimates. We briefly summarize the

mplementation of this procedure below. 

The signal dataset can be written as: 

 = 𝐘 

′ + 𝐍 = 𝐋𝐉 + 𝐍 (1)

here Y and Y’ represent N × T matrices of the contaminated and the

oise-free EEG (N channels) time signals (T samples), respectively, and

 is the noise matrix with the same dimensions. Then, we can express Y’

s the product of the leadfield matrix L and the source amplitude matrix

 , where J is an array with dimension = S number of dipoles × T number

f time samples. 

To estimate Y’ from Y , minimally noisy source estimates are ex-

racted, and then used to estimate clean sensor signals, obtaining Y ’. 

Knowing the noise covariance matrix 𝚺, which denotes the spatial

istribution of noise over sensor space, we can maximize signal-to-noise

atio (SNR) in the estimation of source currents J . Therefore, after multi-

lying (1) by 𝚺− 1 2 to make the noise levels of unit size over all channels,

 can be estimated by means of minimum-norm estimate (MNE): 

 𝐞 = 𝐋 

′𝐓 
(
𝐋 

′𝐋 

′𝐓 + 𝝀𝐼 

)−1 
𝐘 

′ (2)

here L’ represents the whitened leadfield and 𝜆 a regularization pa-

ameter that can be a priori selected 

Assuming uncorrelated noise across the sensors, we estimate the

tandard deviation 𝜎n in each sensor. Starting with an initial guess for

= diag( 𝜎2 
i1 , …, 𝜎iN ) , the sigma value estimations are iteratively up-

ated by means of leave-one-channel-out cross-validation making use of

2) and then estimating the clean and noise signals within the left-out

hannel by (1) . The final set ( 𝜎2 
1 , …, 𝜎2 

N ) is employed to clean the

easured data. 

We calculate the cleaned version of our data as: 

 

′ = 𝐋 ( 𝚺−1∕2 𝐋 ) T ( 𝚺−1∕2 𝐋𝐋 

T 𝚺−1∕2 + λ𝐈 ) −1 𝚺−1∕2 𝐘 = 𝐌𝐘 (3)
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Table 1 

Summary of the four spatial filter transformations. W SL denotes the 5-channel surface Laplacian centered around C3. 𝐌 and 

𝐰 BF denote the SOUND cleaning matrix in Eq. (3) and the beamforming spatial filter in Eq. (5) , respectively. 

Filter Description Formula 

RAW·SL 5-channel surface Laplacian applied to raw data, considering only channels C3, FC1, FC5, CP1, and CP5 𝐰 SL 
SOUND·SL 5-channel surface Laplacian applied after 64-channel SOUND cleaning transformation 𝐌 

T 𝐰 SL 
RAW·BF 64-channel beamforming-derived filter applied to raw data 𝐰 BF ( 𝐚 ) 
SOUND·BF 64-channel beamforming-derived filter applied after 64-channel SOUND cleaning transformation 𝐌 

T 𝐰 BF ( 𝐌𝐚 SL ) 
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= 𝜆0 trace ( 𝚺−1∕2 𝐋𝐋 

T 𝚺−1∕2 )∕N 

.3.2. Beamformer as a backwards spatial filter 

As outlined above, in Eq. (2) , MNE was used in SOUND to clean the

ata via a source-modelling step. Additionally, we then used beamform-

ng to estimate individualized spatial filters, which takes into account

he variable EEG statistics across subjects, while still ‘targeting’ the same

euronal sources as C3-Hjorth does for idealistic noise free data. We em-

hasize that the application of beamforming presented here is concep-

ually distinct from its usage in EEG source estimation, but the theory

nd the mathematical properties of the estimated filter are the same,

ven though a head model is not required in this formulation. 

When approaching source localization by means of a set of EEG data

 making use of beamforming (BF), the mapping from EEG signals to

econstructed source activity ̄𝐬 , represented by the multi-sensor EEG to-

ography a, can be captured by the spatial filter vector 𝐰 BF : 

𝐰 BF 
)𝐓 𝐘 = ̄𝐬 (4)

here the sensor filter 𝐰 BF is defined with the help of classic beamform-

ng formulation as: 

 BF ( 𝐚 ) = 

(
𝐂 + λ𝐵𝐹 𝐈 

)−1 𝐚 
(
𝐚 𝐓 

(
𝐂 + λ𝐵𝐹 𝐈 

)−1 𝐚 
)−1 

(5)

here 𝐚 represents the sensor activity generated by a unitary dipole at

he location of s ̅and 𝐂 is the sensor covariance of the signal of interest

stimated as a sample covariance. 

While sensitivity to source activity is maximized in the target lo-

ation, the optimal spatial filter maximizes orthogonality to the noise

ources, suppressing them. In this way, we obtain estimated noiseless

ource activity time course ̄𝐬 by Eqs. (4) and (5) . 

To use beamforming as a sensor signal filter, we would need the to-

ography representing the EEG spatial pattern for a predefined source

istribution of interest. Here, the source distribution is not required to

epresent a single-dipole source activity (i.e. , a lead-field matrix col-

mn), but any (fixed) source distribution predictive of the MEP ampli-

udes. Since a C3-centered surface Laplacian (SL) is known to be effec-

ive at predicting corticospinal excitability, we hypothesized that the

espective topography estimated using noise-free EEG could serve as an

ducated guess for representing the relevant underlying source activity.

y Haufe et al. (2014) , the topography to which the spatial filter 𝐰 SL is

aximally sensitized is obtained by: 

 SL = 𝚺𝐘 𝐰 SL 𝚺−1 
𝐒̄ (6)

Here, we set the noise-free EEG covariance as 𝚺𝒀 = 𝜆∗ + LL T , and 𝚺𝐒̄ =
 𝐰 

T 
SL 𝚺𝐘 𝐰 SL ) , where 𝜆 is a regularization parameter unrelated to the 𝜆

sed in Eq. (3) . Thereby, we obtain the topography 𝐚 SL to be inserted in

q. (5) . The activation time-course of the underlying sources was then

btained by Eq. (4) , and the output ̄𝐬 can be used to predict MEPs based

n the phase estimate resulting from this signal. 

.3.3. Summary of derived spatial filter transformations 

Four different types of spatial filters were derived using differ-

nt combinations of the C3-centered surface Laplacian (SL), SOUND-

leaning by Eq. (3) , and beamforming filtering by Eqs. (4) and (5) . The

patial filter types are summarized in Table 1 . 
4 
The surface Laplacian was applied with and without the SOUND

leaning. When using SOUND, the spatial filter 𝐰 SL can be merged with

he SOUND correction matrix 𝐌 in Eq. (3) to give the combined filter

s 𝐰 SL 𝐌 

T . In this way, the SOUND cleaning step does not need to be

erformed as a separate step. 

Similarly, beamforming-based filter was also applied either with or

ithout SOUND. When SOUND is applied, all underlying topographies,

re transformed by operation Eq. (3) . Thus, beamforming by Eq. (5) is

omputed using the transformed topography as 𝐰 BF ( 𝐌𝐚 SL ). As above,

he two beamforming filter types are obtained as 𝐰 BF or 𝐰 BF 𝐌 

T , for

riginal or SOUND-cleaned data, respectively. 

This resulted in the following spatial filter transformations: 

.4. Determination of the phase of highest excitability 

We investigated the relationship between the phase of the μ-rhythm

t the time of the stimulus and corticospinal excitability as follows: First,

he signal of interest was extracted using the C3-centered 5-channel sur-

ace Laplacian montage directly or using one of the transformed spatial

lters, yielding four different EEG signals for the window of data preced-

ng each stimulus. Second, the phase at the time of the stimulus was es-

imated for each trial using the PHASTIMATE function as implemented

n Matlab ( Zrenner et al., 2020b ) using standard parameters (sample

ate 1 kHz; window size 600 ms; windowed FIR filter order 128 with

ass-band 9–13 Hz; edge removal 64 samples; autoregressive model or-

er 30) and configuring the forward prediction to bridge both the filter

dge and the 5ms offset to the timepoint of interest. These settings were

sed for each participant, as individualized parameters only improve

stimator accuracy moderately ( Zrenner et al., 2020b ) and not every

articipant exhibited a clear alpha peak in the spectral analysis (see be-

ow for details on the spectral estimation). 

Then, a sinusoidal, circular-to-linear regression was computed be-

ween the pre-stimulus phase estimates and the excitability index de-

ived from post-stimulus MEP amplitudes, separately for the phase es-

imates resulting after application of the four different spatial filters,

ielding a p-value (against the null hypothesis of a constant value fit

ith no effect of phase) and an R 

2 -value as a goodness-of-fit measure

or each regression fit. The phase corresponding to maximum excitabil-

ty (peak of the fitted sine wave) was determined for each transforma-

ion. Note that this analysis assumes a sinusoidal model, which may be

 simplification given the arch-like asymmetric nature of the μ-rhythm

 Schaworonkow and Nikulin, 2019 ) associated with a relatively short

uration of the high-excitability phase ( Bergmann et al., 2019 ). 

The phase-estimation method used in this study, PHASTIMATE

 Zrenner et al., 2020b ), is based on the Hilbert transform. As such, ar-

ifacts such as line noise, or drifts can bias the estimate (see Fig. 1 for

n illustration), but also the asymmetric nature of the μ-rhythm oscilla-

ion can lead to inhomogeneities in the distribution of phase estimates.

o control for the possibility of bias in the phase estimation algorithm

ffecting the results, we also perform the regression analysis with data

here the EMG amplitudes are randomly shuffled among the trials. 

.5. Spectral estimation and circular statistics 

Power spectra were computed from 1 s long pre-stimulus data win-

ows (800 trials) using Hanning-windowed FFT. The 1/f aperiodic
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Fig. 2. Validation of phase estimation method. (A) In addition to the causal estimate of phase at the time of the stimulus (1), phase is also estimated at an earlier 

time with the same algorithm (2), that is not affected by the stimulus artifact and where the estimate can be compared with a standard phase determination using 

data before and after the time of interest (3). (B) Histogram showing the average difference by-participant between the causal and standard estimate (mean phase 

difference < 0.1°). 
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omponent of the spectrum was estimated using the IRASA ( Wen and

iu, 2016 ) method with 18 factors between 1.1 and 2.9 (excluding 2.0)

nd subtracted from the full spectrum yielding the periodic component,

hich can be considered the SNR of the oscillation at a given frequency.

e follow the cosine convention for angular data where 0 degrees cor-

esponds to the positive peak of the oscillation, - 𝜋/2 ( − 90°) to the rising

hase, + 𝜋/2 ( + 90°) to the falling phase, etc. Circular statistics were per-

ormed using the Circular Statistics Toolbox for MATLAB ( Berens, 2009 ).

. Results 

.1. Phase estimation accuracy 

Due to the stimulus artifact affecting the signal after the TMS pulse,

t is not possible to assess the phase at the time of the stimulus with

tandard signal processing methods. Therefore, in order to assess the

ccuracy of the causal phase estimation method implemented in the

HASTIMATE script ( Zrenner et al., 2020b ), we used an earlier win-

ow of data not affected by a stimulus artifact (see Fig. 2 ). This allowed

s to compare the causal (preceding data only) phase estimate with a

tandard symmetrical estimate to validate that there was no systematic

ias. The mean circular difference between the estimates was < 0.1°. 

.2. Illustration of procedure to determine high-excitability state 

A representative example dataset illustrating the procedure is shown

n Figs. 3 and 4 . This serves to visualize the processing pipeline and

hows the type of data obtained at the single participant and single trial

evel ( Fig. 4 ). With regard to the spatial filter transformations ( Fig. 3 ),

ote that the power spectral densities estimated from the pre-stimulus

indows are similar regardless of the spatial filter used to extract the

ignal ( Fig. 3 A), showing a peak at 11 Hz and three harmonics, indi-

ating a strong sensorimotor μ-rhythm (see also the inset of Fig. 4 for a

hase-locked depiction of the oscillation). The sinusoidal regression fit

nd the phase of peak excitability, determined as the maximum of the

tted sine, is also similar for all four spatial filters at the early rising

hase, around − 140° ( Fig. 4 ). 

.3. High-excitability state group results 

Next, we analyzed the distribution across all 52 participants of the

hase corresponding to the state of highest excitability, which differs

ignificantly from the uniform distribution for all four cleaning trans-

ormations (RAW·SL: p = 5 × 10 − 8 ; SOUND·SL: p = 1 × 10 − 5 ; RAW·BF:

 = 2 × 10 − 5 ; SOUND·BF: p = 4 × 10 − 5 ). The average phase angle

s in the early rising phase (for the four filters respectively: circular

ean = − 124°, − 123°, − 129°, − 129°; circular median = − 137°, − 134°,
5 
 133°, − 126°) and the 99% confidence interval does not encompass the

egative peak of the oscillation ( − 180°), which was previously assumed

o correspond to the phase angle of highest excitability, for all four clean-

ng transformations (circular t -test, p < 0.001). The distribution for the

aw SL filter is shown in Fig. 5 A. 

As a control, we verified the distribution of phases across trials. The

verall distribution of phase estimates from all 52 participants (800

rials per participant) is biased toward the rising and falling phase

 Fig. 5 B), and the Rayleigh test for non-uniformity reaches p < 0.05

n at least one of the four spatial filters for 3 out of 52 study partici-

ants. However, this does not appear to significantly bias the sinusoidal

egression in a shuffled data control (100 repetitions), which does not

iffer significantly from a uniform distribution ( Fig. 5 C). 

.4. Consistency of high-excitability phase across participants 

To exclude the influence of noisy results from datasets where no

ignificant relationship between pre-stimulus phase and corticospinal

xcitability could be found or where non-uniformity of the phase esti-

ates might bias the fit, a subgroup analysis was performed, by applying

he following criteria: For all subsequent analysis, the 3/52 participants

here the distribution of phase estimates differed from uniformity as

escribed above, were excluded. Further, data was only included in the

nalysis where the regression fit reached a significance threshold indi-

idually. This was performed in two different ways: (1) inclusion by

ubject, considering only subjects where at least one of the cleaning

ransformations led to a significant sinusoidal regression fit at a p-value

hreshold of 0.05, but then including all data from each subject (this was

he case for 24/49 participants), see Fig. 6 A; (2) inclusion by cleaning

ransformation, considering only datasets with significant regression fits

t a p-value threshold of 0.05 (this was the case for between 12 and 16

atasets depending on the transformation), see Fig. 6 B. 

As can be seen in Fig. 6 , the average phase corresponding to high-

st corticospinal excitability is found consistently at the early rising

hase of the sensorimotor μ-rhythm also for these subgroups. The cir-

ular mean angle of highest excitability was, for the respective filters,

 134°, − 141°, − 140°, − 134°, with subgroups selected by participant and

 140°, − 151°, − 133°, − 132°, for the subgroups selected by transforma-

ion. The mean angle differs significantly from the negative peak of the

scillation for all four cleaning transformations in both subgroups (cir-

ular t-test, alpha = 0.05). No significant difference could be detected in

he resulting phase angles, when comparing them pairwise for all clean-

ng transformations (parametric Watson-Williams multi-sample test, see

 Berens, 2009 )) within both the by-subject and by-transformation sub-

roups. 
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Fig. 3. Spatial filter transformations based on a C3-centered 5-channel surface Laplacian (SL). Data from a representative study participant. (A) Spectral analysis of 

the resulting signal from each transformation, showing signal-to-noise ratio (SNR) after removal of aperiodic 1/f component of spectrum using the IRASA method. 

11.5 Hz peak and 3 harmonic frequencies are visible corresponding to sensorimotor μ-rhythm. (B) Topography of spatial filters weights corresponding to each of 

the four transformations. RAW·SL/SOUND·SL: Surface Laplacian transformation applied to raw data and to SOUND cleaned data, respectively. RAW·BF/SOUND·BF: 

Beamforming as a forward spatial filter applied to raw data and SOUND cleaned data, respectively. 

Fig. 4. Example dataset from a representative study participant consisting of 800 single TMS pulses to the hand area of primary motor cortex while recording EEG. 

Scatter plot of phase, determined post-hoc from pre-stimulus EEG, vs. log-transformed MEP amplitude. Phase is estimated separately for each spatial filter (color 

coding as in panel A). The sinusoidal regression fit is shown (solid curves) for each transformed data and the peaks are also indicated by the vertical lines. Dotted 

sinusoid illustrates the corresponding μ-rhythm phase. Insets: Average pre-stimulus EEG shown after discretizing data into 10 phase bins, below panel. 
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.5. Influence of data cleaning transformations 

Since the choice of cleaning transformation did not significantly im-

act the average phase of highest excitability, we investigated whether

he cleaning transformations differed with respect to how well phase

redicted MEP amplitude in the regression analysis. A qualitative anal-

sis of the resulting significance level and variance explained is shown

n Fig. 7 . The proportion of participants reaching individual signifi-

ance in the sinusoidal regression fit at a p-value threshold of 0.1 was

5% for the 5-channel surface Laplacian (33% when combined with 64-

hannel SOUND cleaning), and 37% for the backwards beamforming-

ased method (29% when combined with SOUND). 

In summary, the phase angle of sensorimotor μ-rhythm extracted

ith a montage centered on EEG sensor C3 corresponding to the highest
 b  

6 
orticospinal excitability falls on the early rising phase, about 45° after

he trough of the oscillation and this result is consistent between partic-

pants and robust under various spatial filter transformations designed

o improve signal quality. However, the predictive power of the EEG sig-

al from a 5-channel C3-centered Hjorth-style SL montage is not or only

arginally improved by the specific SOUND and/or beamforming-based

leaning transformations tested here. 

.6. Offset to the negative peak 

For 38 of 52 participants, a single peak frequency in the SNR spec-

rum could be determined between 8.5 and 14 Hz (the peak frequency

f average SNR was 11.25 Hz). For these participants, it was also possi-

le to convert the offset between the negative peak and the time of the
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Fig. 5. (A) Distribution of phase of maximum corticospinal excitability of sensorimotor μ-rhythm extracted using a C3-centered 5-channel surface Laplacian for all 

52 participants, according to circular-to-linear sinusoidal regression between phase and MEP size (800 trials per participant). Circular median phase angle ( − 134°) 

and 95% confidence interval of circular mean ( − 143° to − 105°) indicated. Magnitude is number of participants. Note that the median is more robust to outliers 

which is why the confidence interval of the mean appears skewed. (B) Normalized overall distribution of phase estimates for all 52 participants. (C) Normalized 

distribution of phase angle of highest corticospinal excitability for all data with MEP amplitudes randomly shuffled (100 repetitions). 

Fig. 6. Distribution of peak excitability phase across subjects, showing the circular mean ± 95% confidence intervals (red line and segment) of μ-rhythm extracted 

with different EEG spatial filters: 5-channel C3 centered surface Laplacian (SL) of raw data and after SOUND transformation, beamformer (BF) transformation of 

sensitivity profile on raw and on SOUND transformed data. Magnitude is number of participants. (A) Data selection by participant (excluding participants where the 

sinusoidal regression did not reach a p < 0.05 significance threshold for any of the spatial filter transformations). (B) Data selection by transformation, considering all 

sinusoidal fits reaching a p < 0.05 significance threshold (this leads to unequal sample sizes). For illustration, the timing of the three pulses of a 100 Hz TMS triplet, 

if it were triggered with the first pulse of the triplet at the negative peak, as in previous studies to induce plasticity, is indicated for a 10 Hz μ-rhythm frequency 

(circle mark). 

7 
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Fig. 7. Comparison of the results of circular to linear 

regression fitting of a sinusoid to predict MEP ampli- 

tude (log-transformed to reduce asymmetry of the distri- 

bution) from post-hoc estimated EEG phase at the time 

of the TMS pulse recorded from a montage centered on 

EEG sensor C3 after four different data cleaning trans- 

formations. 49/52 participants are included in this anal- 

ysis, 3 participants with inhomogeneous phase distribu- 

tions (Rayleigh test for non-uniformity p < 0.05 in any of 

the transformations) were excluded. (A) Cumulative his- 

togram of p -value of the sinusoid regression fit in com- 

parison to the alternative assumption of no phase ef- 

fect. Median p -value indicated (50th percentile) for each 

cleaning transformation, and proportion of participants 

reaching an individual significance level of p < 0.1 for 

the given EEG cleaning transformation. (B) Cumulative 

histogram of proportion of variance of MEP amplitudes 

explained by the regression model (median R 2 -value in- 

dicated for each cleaning transformation). 

Fig. 8. Offset of highest corticospinal excitability relative to 

the negative peak. ( A ) Data shown in cycles and ( B ) in millisec- 

onds. 21 participants were included in this analysis, having a 

significant fit in any of the cleaning transformations, and hav- 

ing an individual alpha in the range between 8.5 and 14.0 Hz. 

Fitted Gaussian indicated (dotted blue curves). 
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ighest excitability from cycles to time (radian to millisecond). 23 of

he 38 participants in this subgroup also satisfy the phase homogeneity

nd regression fit significance thresholds used for the analysis above and

he distribution of the offset to the negative peak is shown for this group

 Fig. 8 ). Excluding 1 outlier, the resulting distribution of 22 participants

ad a circular mean of 43° (circular deviation: 23°) and 10 ms (standard

eviation: 6 ms) after converting the individual offsets relative to the

egative peak from cycles to time. 

. Discussion 

.1. Summary 

This post-hoc analysis of open-loop high-density EEG and TMS

atasets from 52 healthy participants enabled the data-driven investi-

ation into the relationship between the phase of sensorimotor 9–13 Hz

-rhythm and corticospinal excitability. Individual significance testing

or a sinusoidal fit yielded a p -value < 0.05 in 14/49 (29%) of study

articipants. The median phase of highest excitability according to the

esult of the regression (whether significant or not) was at − 134° (in co-

ine convention, relative to positive peak). This result provides strong

vidence ( p < 0.001) that the phase of highest excitability does not coin-

ide precisely with the negative peak of the μ-rhythm, but instead occurs

ater by approx. ⅛ of a cycle, or about 10 ms. 
8 
.2. Neurophysiology 

This offset from the negative peak is meaningful as it breaks the

quivalence between phase and signal magnitude as predictors of ex-

itability ( Schalk, 2015 ) (during the early rising phase and during the

ate falling phase the absolute voltage value is the same, but excitabil-

ty is different), demonstrating the relative timing within the activ-

ty cycle is decisive. The negative peak in a surface Laplacian mon-

age corresponds to inward currents (scalp to brain) and maximal cur-

ents were thought to correspond to maximal excitability because ex-

itatory postsynaptic potentials (EPSPs) at the apical dendrites of radi-

lly oriented pyramidal cells are a major contributor to such currents

 Zschocke and Hansen, 2011 ) and also reduce the additional excitatory

nput required to reach the action potential threshold. A similar relation-

hip between the phase of local field potential oscillations and spike rate

f neurons in sensorimotor cortex was found experimentally in primates

 Haegens et al., 2011 ). 

However, the EEG montage used in this study is most sensitive to ra-

ially oriented dipoles underlying sensor C3, which is typically located

ver the postcentral gyrus (somatosensory cortex). Whereas the crown

f post-central gyrus is a strong generator of sensorimotor μ-rhythm, the

ventual target cells of stimulation with TMS are the upper motoneurons

n the hand knob area of primary motor cortex. These cells are located

n the anterior wall of the central sulcus ( Geyer et al., 1996 ). They are

riented tangentially to the scalp and a surface Laplacian EEG montage
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s not sensitive to their activity. Therefore, we may be measuring activ-

ty originating predominantly from primary sensory cortex (S1) while

timulating primary motor cortex (M1) transsynaptically through vari-

us interneuron pathways including through S1 and premotor areas (for

eviews: ( Amassian et al., 1987 ; Di Lazzaro et al., 2008 ; Siebner et al.,

022 ; Ziemann, 2020 )). This suggests that the relationship between μ-

hythm phase and MEP amplitude is influenced by the functional con-

ectivity between S1 and M1, a pathway that has been characterized

natomically ( DeFelipe et al., 1986 ) and with paired associative stimu-

ation ( Wolters et al., 2005 ), and the estimated S1-M1 pathway conduc-

ion time of ∼7 ms ( Wolters et al., 2005 ) may be a partial explanation

or the observed phase offset from the negative peak ( Zrenner et al.,

022 ). 

Biophysical modeling studies may also shed some light on the re-

ationship between oscillatory phase and spiking activity, especially

he combination of models using detailed electrical field modelling

 Alekseichuk et al., 2019 ) which determines the effective electrical field

or each spatial position in a detailed 3D human head model, with

unctional network models of cortical responses to transcranial stim-

lation ( Rusu et al., 2014 ; Schaworonkow and Triesch, 2018 ). Different

ell types may have a different TMS activation threshold due to their

ize, morphology and laminar position, as well a different preferred

piking activity window relative to the phase of an ongoing oscillation

 Shirinpour et al., 2021 ; Zhang and Frohlich, 2022 ). 

Insights from modelling studies are especially relevant in future de-

elopment of effective neuromodulatory repetitive stimulation proto-

ols, since the parameter space of all possible intervention protocols is

oo large to be explored empirically, with conventional parameters of

arget location, stimulation intensity, pulse frequency and pattern, and

umber of pulses now additionally multiplexed with features related to

he ongoing activity, such as oscillatory phase and amplitude. 

.3. Personalization of the EEG montage 

Whereas this study was performed as a post-hoc trial sorting anal-

sis of “open-loop ” stimulation, we nevertheless purposefully did not

reprocess the data with traditional cleaning methods such as ICA, in

rder for the findings to be directly applicable to a “closed-loop ” setting.

nstead, we compared the standard 5-channel surface Laplacian to three

ifferent spatial filter transformations that depended on the individual

hannel noise and covariance (accounting for all 64 channels). These

ransformations are designed to optimize signal quality using different

echniques and they can also be applied in real-time in principle. The

ndividualized transformations did not affect the resulting phase of max-

mum excitability. The question remains why these transformation did

ot improve the predictive power compared to the standard 5-channel

ontage. 

One explanation may be that the sensorimotor μ-rhythm (recorded

t rest with eyes open) is already a prominent oscillation without fur-

her signal conditioning. A standard 5-channel surface Laplacian may

hen extract a signal with a sufficient SNR in most participants and ad-

itional optimizations of the spatial filter only have a marginal benefit.

here may also be advantages to sparse spatial filters that make use

f only a small number of informative channels, and are unaffected by

uctuating noise levels in the other channels. Since we did not pre-clean

he data and used short epochs between TMS pulses that were affected

y slow decay artifacts and eye blinks, our covariance matrix estimate

as likely noisy, which would negatively impact the resulting SOUND

nd beamforming filters. In summary, the personalized optimizations

f the spatial EEG filter, that we tested in this study, did not appear

o yield relevant benefit in extracting sensorimotor μ-rhythm, however,

hey may have a role in extracting less prominent oscillations in other

ortical networks. 
9 
.4. Generalizability of the result 

Given that the EEG caps are all placed slightly differently in rela-

ion to the individual anatomy, and the coil position was also not tar-

eted anatomically, the high degree of consistency of the phase angle

f the μ-rhythm corresponding to the highest corticospinal excitability

etween different subjects and the invariance to data transformations is

otable. However, it remains to be explored whether the phase of high-

st excitability is also offset from the negative peak in other brain os-

illations, that are relevant for EEG-triggered TMS, such as dorsomedial

refrontal theta ( Gordon et al., 2021 ) or dorsolateral prefrontal alpha

 Zrenner et al., 2020a ). 

Another question is whether the − 135° phase angle also corresponds

o a state of high cortical excitability in those study participants, where

 relationship to MEP amplitude cannot be demonstrated. This would

e the case if the contribution of spinal circuits to the variability of MEP

mplitudes dominates so that the influence of cortical excitability fluc-

uations is masked. For example, the phase of ongoing beta oscillations

as been found to influence MEP amplitude at a spinal, but not cortical

evel in a study with a similar design to this experiment, but investigat-

ng beta oscillations ( van Elswijk et al., 2010 ). This scenario could also

xplain why some participants don’t show a μ-oscillation phase effect on

EP amplitude, even though a high SNR oscillation can be extracted. An

lternative possibility is that spatial mixing with unrelated oscillations

uch as occipital alpha prevents accurate μ-rhythm phase estimation in

ome persons. Finally, even if the measured μ-rhythm is generated by

ost-synaptic potentials in postcentral gyrus, this somatosensory activ-

ty is not necessarily reliably related to the excitability of primary motor

ortex. 

.5. Implications for neuromodulation and therapeutic applications 

The findings herein have implications for how high-frequency TMS

ursts should be aligned with the phase of highest excitability if the goal

s to maximize induced plasticity. Retrospectively, the 100 Hz triplet

timulation used in previous studies ( Desideri et al., 2018 ; Zrenner et al.,

018 ) that was triggered by the trough of the oscillation was in fact, and

erhaps fortuitously, centered around the phase of highest excitability

see Figs. 5 and 6 ). On the other hand, the repetitive single pulse stim-

lation used previously in a trough-triggered 1 Hz protocol ( Baur et al.,

020 ) was in fact applied about 10 ms before the instant of average

ighest excitability. It remains an open question which stimulus param-

ters (number of pulses, frequency, intensity) at which phase optimally

esult in the desired neuromodulatory outcome. 

A positive implication of this study for therapeutic brain-state depen-

ent stimulation is that, at least in the motor system, a fixed 5-channel

EG montage and a fixed target phase are sufficient to target a state of

igh corticospinal excitability, with little or no detriment as compared to

 64-channel individually optimized montage and phase. This is of con-

iderable practical significance, as it makes personalized EEG-triggered

MS protocols feasible in a clinical context. 

.6. Limitations 

This study has some limitations: Firstly, our circular to linear re-

ression analysis assumes a sinusoidal relationship between sensori-

otor rhythm phase and corticospinal excitability, i.e., a single region

f highest excitability and a corresponding symmetric single region of

owest excitability at the opposite phase angle. The advantage of this

odel is its simplicity, enabling a robust fit of 800 trials in spite of

he high variability of MEP amplitude as an index of cortical excitabil-

ty. Nevertheless, a further investigation of the actual relationship be-

ween phase and excitability, which may well not be symmetric, seems

arranted (e.g., using gaussian process regression) and could yield a

etter model fit. Specifically, there is evidence that the period of high-

xcitability is relatively shorter, as proposed by a pulsed facilitation
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odel ( Bergmann et al., 2019 ). Note also that the circular regression

pproach simultaneously fits the high-excitability and low-excitability

facilitation and inhibition) portion of the cycle and assumes a constant

elationship, even though these may due to separable underlying neu-

ophysiological mechanisms and may differ from trial to trial. 

Secondly, we did not try to optimize the spatial filter used to ex-

ract the oscillation of interest, but only tested some transformations de-

igned to clean the data. Whereas the result is robust for the chosen EEG

ontage, it is possible that a different result could be derived from an

EG montage other than a C3-centered surface Laplacian ( Madsen et al.,

019 ), and this warranted further investigation. We also only considered

he alpha frequency band from 9–13 Hz and we included study partici-

ants that did not have a clear spectral peak in this range, as we did not

ish to pre-select study participants. 

Our analysis is also limited to a relationship between phase of an

lpha-band oscillation and excitability. Other predictors (such as differ-

nt frequency bands, oscillatory amplitude, network connectivity, etc.

 Hussain et al., 2019 ; Metsomaa et al., 2021 ; Thies et al., 2018 )) are not

ncluded in our model. We also did not compensate for slow drifts in

verage MEP amplitude during the experiment ( Metsomaa et al., 2021 )

hich was seen in many of the participants. Finally, causal phase estima-

ion may be possible with a higher accuracy using estimation algorithms

hat incorporate a state space model ( Wodeyar et al., 2021 ), which may

nable detection of a phase relationship in a larger proportion of partic-

pants. 

.7. Outlook 

The neurophysiology of the relationship between μ-rhythm phase

nd high vs. low corticospinal excitability is not as simple (negative

eak vs. positive peak) as we and others previously assumed. On the

ther hand, the finding that a 5-channel EEG recording at standard sen-

or locations can detect a specific brain-state using a fixed phase tar-

et and without the need for individual calibration and sophisticated

ata-preprocessing is an encouraging finding for future clinical appli-

ations. Detecting the excitability of cortical areas targeted by TMS

ased on the phase of a single oscillation is an important foundation

or future applications that incorporate the relationship between mul-

iple oscillations to enable personalized pathway-specific neuromodu-

ation ( Stefanou et al., 2018 ) and a benchmark for brain-state estima-

ion methods that go beyond phase ( Metsomaa et al., 2021 ). Beyond

he neurophysiological findings, we hope that this dataset will be use-

ul to facilitate addressing some of the remaining methodological op-

imizations (e.g., online data cleaning, signal extraction by spatial fil-

er personalization, including statistical models for the interpretation of

voked responses, as well as improved phase estimation algorithms) for

ersonalized brain stimulation to become a standard method. 
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