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Robust encoding of natural stimuli by
neuronal response sequences in monkey
visual cortex

Yang Yiling1,2,3, Katharine Shapcott 1,4, Alina Peter1,2,3, Johanna Klon-Lipok5,
Huang Xuhui6,7, Andreea Lazar1 & Wolf Singer 1,4,5

Parallel multisite recordings in the visual cortex of trained monkeys revealed
that the responses of spatially distributed neurons to natural scenes are
ordered in sequences. The rank order of these sequences is stimulus-specific
and maintained even if the absolute timing of the responses is modified by
manipulating stimulus parameters. The stimulus specificity of these sequences
was highest when they were evoked by natural stimuli and deteriorated for
stimulus versions in which certain statistical regularities were removed. This
suggests that the response sequences result from a matching operation
between sensory evidence and priors stored in the cortical network. Decoders
trained on sequence order performed as well as decoders trained on rate
vectors but the former could decode stimulus identity from considerably
shorter response intervals than the latter. A simulated recurrent network
reproduced similarly structured stimulus-specific response sequences, parti-
cularly once it was familiarized with the stimuli through non-supervised
Hebbian learning. We propose that recurrent processing transforms signals
fromstationary visual scenes into sequential responseswhose rankorder is the
result of a Bayesianmatching operation. If this temporal codewere usedby the
visual system it would allow for ultrafast processing of visual scenes.

Neurons convey information through the frequency of their discharges
(rate code) and the fine temporal structure of their discharges (tem-
poral code).While there is consensus about the importanceof temporal
codes in auditory andmotor processing it is less clearwhether temporal
codes play a role in visual pattern recognition. Artificial pattern recog-
nition systems based on deep neural networks (DNN) share numerous
similarities with the organization and performance of visual processing
architectures of the mammalian visual system. The functional proper-
ties of nodes in deep DNNs trained to classify visual objects resemble
closely the response properties of neurons at corresponding levels of
the processing hierarchy in the mammalian visual system1–3. This

supports the notion that essential visual functions are realized by serial
processing in feedforward architectures. However, temporal codes play
no or only a very limited role in these artificial systems because their
predominantly feedforward connectivity is not well suited to support
temporal dynamics. Biological nervous systems, by contrast, exhibit
highly complex dynamics due to the abundant recurrent interactions
mediated by both recurrent connectivity within processing layers and
feedback loops from higher to lower processing levels (for review see
Singer4). Especially in supragranular but to some extent also in infra-
granular layers of cortical areas, neurons are coupled reciprocally by
recurrent connections that run tangentially to the cortical surface5–7.
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These intra-areal recurrent connections are complemented by equally
abundant recurrent connections from higher to lower areas8,9.

The dynamics of recurrent neural networks (RNNs) are exploited
for computations in artificial RNNs10–17 but it is less clear towhich extent
biological RNNs capitalize on their dynamics to achieve specific func-
tions (for review, see Singer4, Muller et al.18). One characteristic feature
of recurrent networks is that they respond to perturbations with
sequential activation of their nodes19–22. The sequence order of these
sequential responses depends on the functional architecture of the
RNNs13,23 and the structure of the perturbation. Developmental studies
have revealed that the recurrent connections in the mammalian visual
cortex that link feature selective nodes or columns are shaped by visual
experience. Connections between nodes responding to features that
frequently co-occur in natural environments get strengthened6,24–31.
Hence the functional architecture of the RNNs in the visual cortex
contains information about the statistical regularities of natural scenes;
and there is evidence that the information stored in the synaptic
weights of the recurrent connections serves as prior for the processing
of visual information (15,17; for review see Singer4). Taken together these
premises predict that stationary flashed visual stimuli should cause a
sequential activation of neurons in the visual cortex and that the
resulting sequences should reflect the match between sensory evi-
dence and the priors stored in the functional architecture of theRNN. If
the order of sequentially activated neurons carried stimulus-specific
information, this temporal code could complement the information
carried by rate codes. As pointed out by Thorpe et al. (2001) and van
Rullen et al. (2001) such a temporal code would be more compatible
with processing speed than a rate code because the rank order of
sequential responses can be decoded much faster than the amplitude
of discharge rates32,33.

In order to search for response sequences we recorded neuronal
activity with implanted microelectrode arrays from V4 and V1 of
monkeys trained on a fixation task and evoked responses with natural
scene stimuli. We reasoned that the hypothetical response sequences,
if they participated in coding, would have to occurwithin the very early
transient responsebecausemost of the stimulus-specific information is
contained in this response phase34–46. Aswe anticipated that itmight be
difficult to detect response sequences in this transient but information-
rich response segment, we therefore expanded the response transient
by slowly ramping up the intensity of the stimuli rather than flashing
them as is common in visual experiments. This approach revealed
stimulus-specific response sequences. Therefore, we examined in
addition to which extent the sequences reflected the quality of the
match between sensory evidence and priors by presenting in addition
to the natural scenesmanipulated versions inwhichwehad removed in
a graded way some of the regularities characterizing natural scenes.

In order to also assess the amount of rate-coded information we
investigated in a time-resolved manner how much stimulus-specific
information is contained in the rate vectors of the population dis-
charges and how the information retrievable from these rate vectors is
influenced by the match between sensory evidence and stored priors.
In most cortical neurons the initial transient response is followed by
sustained low-frequency discharges. We found that stimulus-specific
information was also contained in these sustained responses and
persisted over longer periods for natural than manipulated stimuli.
This further supports the notion that intracortical interactions medi-
ated by intra-areal recurrent connections15,47,48 and/or feedback from
higher cortical areas49–52 shape responses to sensory input and
enhance decodability.

Results
Ramping stimulus intensity unveils stimulus-specific response
sequences
Wedeveloped an experimental paradigm that allowed us to slowdown
the transient component of responses to visual stimuli and to resolve

the fine temporal structure of population responses. Rather than
presenting stimuli with sudden onset, we gradually ramped up sti-
mulus intensity (opacity, or alpha value, Fig. 1a) such that the stimulus
emerged slowly from the blank background (“Methods”). Stimuli
consisted of natural scenes and their manipulated versions, in which
certain features were eliminated (see “Methods” and sections below).
These stimuli were presented with different onset time courses: no
ramp (i.e., step increase to full intensity), fast ramp (500 or 600ms to
full intensity), and slow ramp (1000 or 1200ms to full intensity).
Subsequently, stimulus intensity was held constant for at least another
500ms.We used two levels formaximal intensity (alpha = 10% or 30%,
for low and high-intensity conditions, respectively). Four awake
macaque monkeys were presented with these stimuli in a passive
viewing task and multi-unit activity (MUA) was recorded from visual
area V4 with a 64-channel Utah array (Blackrock Microsystem, Salt
Lake City, Utah, USA. Supplementary Fig. 1) in twomonkeys and with a
32-channel Microdrive (Gray Matter Research, Bozeman, Montana,
USA) fromV1 in the other twomonkeys.Wedid not sort for singleunits
and analyzed onlyMUA in this study.We present the findings obtained
from area V4 in the main text and refer readers to the supplementary
information the results from area V1.

The ramping stimuli reduced the peak amplitudes of the transient
response components (no ramp 51.57 ± 0.44 spikes/s, s.e.m.; fast ramp
48.59 ± 0.45 spikes/s; slow ramp 45.11 ± 0.45 spikes/s, corresponding
to reductions of 5.8% and 12.5%, respectively; all stimulus and intensity
conditions combined, F2,927 = 52.79, p <0.01, one-way ANOVA; all pair-
wise comparisons p <0.01). Ramping also increased the peak latencies
of the population firing rates. When summed across electrodes and
averaged over repeated trials, themedian latencieswere 176ms for the
no ramp, 270ms for the fast ramp, and 358ms for the slow ramp,
corresponding to an increase of 53.4% and 100.3%, respectively
(Χ2 = 347.06, p <0.01, Mood’s median test; all pair-wise comparisons
p <0.01, Wilcoxon rank-sum test. Figure 1b). We then determined the
latency of the firing rate peak for each channel (“Methods”) in the slow
ramp condition and rank-ordered the channels according to the
latencies of responses for a given stimulus. As shown in Fig. 1c (and
Supplementary Fig. 2a), each stimulus evoked a characteristic
sequence of responses, the rank order of which was stimulus-specific.
To test whether the sequence order was preserved between ramp
conditions, we used the rank order of response latencies in the slow
ramp condition to sort the responses in the fast ramp condition. This
revealed that the stimulus-specific rank orders of response latencies
were by and large preserved for the fast ramp condition although the
absolute latencies had decreased (diagonal panels in Fig. 1d and Sup-
plementary Fig. 2b). In the no ramp condition, these response
sequences were no longer resolvable by visual inspection (Supple-
mentary Fig. 3). To quantify the similarity between sequence orders
induced by the same stimulus, we calculated the Spearman’s rank
order correlations between the sequences obtained from slowand fast
ramp conditions for each stimulus. These correlations were statisti-
cally significant (p < 0.05, diagonal panels in Fig. 1d andSupplementary
Fig. 2b), confirming that the rank order was independent of the time
course of stimulus presentation. The same results were obtainedwhen
the onset rather than the peak latencies of the responses were eval-
uated (Supplementary Fig. 4).

Importantly, there were no significant correlations between the
sequences evoked by different stimuli (off-diagonal panels in Fig. 1d
and Supplementary Fig. 2b). This was true even for sequences induced
at the same ramp conditions where stimulus onset kinetics were
identical for different stimuli (Supplementary Fig. 3b, d). This lack of
correlation confirms that the rank orders were stimulus-specific and
differed between stimuli. Using the rank orders derived from trial-
averaged response sequences as template, we could decode stimulus
identity from single-trial responses irrespective of the ramp and con-
trast condition (Fig. 1e and Supplementary Fig. 5a). The templates
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obtained from responses in the various ramp and intensity conditions
predicted correctly stimulus identity from the responses evoked in the
respective other conditions (Fig. 1e, pooled accuracy across condi-
tions: 53.36 ± 1.85% (s.e.m.), t35 = 28.54,p < 0.01). The same resultswere
obtained when the rank orders were derived from onset rather than
peak latencies of the responses (Supplementary Fig. 5b). In other
words, the “rank order decoders” generalized across conditions (ramp

duration and intensity) although the various conditions introduced
substantial differences in the absolute timing of onset and peak
latencies. Importantly, there was also no correlation between onset
latency and firing rate amplitude of the responses (Supplementary
Fig. 6). This argues against a trivial relation between onset latency and
strength of the responses. Taken together, these results indicate that
the stimulus-specific rank order of the sequential activation of network
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nodes exhibits a remarkable inter-trial consistency and is independent
of response kinetics. Thus, the rank order of response sequences could
in principle be used to encode stimulus identity.

To examine how the temporal structure of the sequences scales
with the duration of the ramps, we compared the span of the
sequences (Fig. 1f) between ramp conditions. As expected, the
sequence span increased with ramp duration and these differences
were highly significant (no ramp: 122.59 ± 10.86ms (s.e.m.), fast
ramp: 201.33 ± 8.70ms, slow ramp: 314.82 ± 28.54ms. No rampvs fast
ramp: t11 = −5.68, p = 0.00014; no ramp vs slow ramp: t11 = −6.70,
p = 0.000034; fast ramp vs slow ramp: t11 = −4.68, p = 0.00067;
paired t-test. Figure 1g). However, this comparison revealed that the
duration of the sequences does not scale proportionally with ramp
duration. The duration of the slow ramp was twice as long as that of
the fast ramp but the duration of the sequence increased only by a
factor of 1.56 ± 0.11, which was significantly less than doubling
(p = 0.00068, Wilcoxon signed-rank test). Thus, the time course of
sequences was not a direct reflection of the increase in stimulus
energy. The same was true for the dependence of peak latencies on
rampduration. As expected, increasing the duration of the ramp, i.e.,
slowingdown the rise in intensity, delayed theonset of the sequences
(Fig. 1g. no ramp: 155.69 ± 1.92ms; fast ramp: 240 ± 12.24ms; slow
ramp: 319.25 ± 27.24ms. No ramp vs fast ramp: t11 = −7.39,
p = 0.000014; no ramp vs slow ramp: t11 = −6.19, p = 0.000068; fast
ramp vs slow ramp: t11 = −5.11, p = 0.00034), but the changeswere not
proportional to the time course of the changes in stimulus energy.
Latencies for the slow ramp increased only by a factor of 1.3 ± 0.05
rather than a factor of 2 when compared to the fast ramp
(p = 0.00049, Wilcoxon signed-rank test). This disproportional scal-
ing of sequence span and latency suggests that the two variables are
not solely determined by stimulus parameters but depend also on
network interactions. Further control analyses (Supplementary
Notes, Supplementary Figs. 7 and 8) and simulation experiments (see
below) support the notion that the sequences do not simply reflect
the temporal structure of afferent signals or different sensitivities of
the nodes to stimulus energy but are also a consequence of the
dynamics emerging in cortical networks.

Sequential neuronal responses enable fast identification of
stimulus-specific information
After having characterized the stimulus specificity and the invar-
iance of the sequences with respect to stimulus contrast and
kinetics, we next investigated how stimulus-specific information is
distributed over the duration of the sequences, or in other words,

how many nodes need to be activated to collect sufficient evidence
for stimulus classification. To this end, we first verified that Bayesian
decoders trained on response onset latencies (Supplementary
Fig. 4c) could successfully predict stimulus identity (Fig. 2a and
Supplementary Fig. 9a). This analysis confirmed the stimulus spe-
cificity of the response sequences. It should be emphasized that
even the no ramp condition led to decodable response sequences.
This implies that there was sufficient information about the
sequence order of responses in the brief transient responses to
permit decoding of stimulus identity. We then determined how
early, on average, each channel (node) started to respond, and
systematically included more and more of the fastest responding
channels (“Methods”). The decoding accuracy exceeded chance
level as soon as more than 4 to 5 channels were included. For the
sudden onset stimulus, this required sampling over only 50 to 70ms
when the rank orders were derived from onset latencies (Fig. 2a and
Supplementary Fig. 9a). As more andmore channels were recruited,
the decoding accuracy continued to increase. In comparison, when
we used the firing rate vectors rather than the onset latencies of
equal numbers of channels to decode stimulus identity, the
decoding accuracy was much lower and required sampling over
more than 180ms to exceed chance level (Fig. 2b and Supplemen-
tary Fig. 9b). This comparison suggests that stimulus identity can be
read out from onset latencies faster than from firing rates in the
initial response phase.

We then used response peak times instead of onset latencies to
test decodability from sequence order (Supplementary Figs. 10 and
11). Decoding accuracy based on peak times still required fewer
channels to exceed chance level than that based on firing rates,
especially in the high-intensity conditions (Supplementary Figs. 10
and 11). However, because peak latency is longer than onset latency
by definition (minimum peak latency ~150ms), more time elapsed
until the minimal number of nodes were activated that allowed for
above-chance classification. This reduced the advantage that
decoding sequence order has over decoding rate vectors, as longer
time enabled better estimation of firing rates. Indeed, when more
channels were included and more time elapsed, decoding stimulus
identity based on firing rates saturated at higher levels than
decoding based on sequence order. In sum, these results indicate
that stimulus identification from sequence order of responses can
be achieved within very short intervals, even if only a small number
of nodes are sampled; identification accuracy can be further
improved by including information conveyed by firing rates if rate
estimation is performed over longer integration intervals.

Fig. 1 | Ramping stimulus intensity reveals scalable and stimulus-specific
response sequences. a Experimental paradigm. Stimulus intensity (alpha value)
increases linearly from 0 to maximal intensity (alpha = 10% or 30%). The rise times
vary from0ms (no ramp, i.e., step onset), to 500ms (fast ramp) and 1000ms (slow
ramp) for Monkey K (shown here). For the other monkey H see Supplementary
Fig. 2. b Average firing rates for different ramp conditions. Raster plots of single-
trial MUA responses to one of the three stimuli in the no ramp (left), fast ramp
(middle), and slow ramp (right) condition. The colored traces show the average
firing rate per channel for each ramp condition. Shaded areas denote 95% con-
fidence level. c, d Stimulus-specificity and ramp-invariance of response sequences.
c Firing rate responses (normalized to peak amplitude for better visualization) of
the different recording channels for three different stimuli (indicated on the left)
and rank-ordered according to peak latency for the slow ramp condition.
d Comparison of the rank orders of sequences evoked by different stimuli and
different ramp conditions. The responses shown in this 3-by-3 array of panels were
all evokedby the fast ramp and sorted according to the rank order derived from the
sequences evoked by the slow ramp in (c). The rows show how the sequences
evoked by different stimuli (indicated above the columns) appear when sorted
according to the rank order obtained in (c). The numbers in the panels and also the
color of the frames (color scale in c) indicate the rankorder correlation between the
sequences evoked by the respective slow and fast ramps. High correlation

(*p <0.05) implies high consistency of rank orders. White vertical lines in each
panel indicate ramp onset, ramp offset, and the end of the plateau period,
respectively. Dotted lines are the best linear fits to the sequences. e Accuracy and
generalization of decoding stimulus identity from templates of rank orders. Tem-
plates were obtained from a particular condition indicated on the ordinate (rows.
n.r. = no ramp; f.r. = fast ramp; s.r. = slow ramp) and for the two intensity conditions
(markedby light and dark gray bars). These templates were then used to categorize
the respective test stimuli from the sequence order of the responses evoked under
the respective conditions indicated on the abscissa). Decoding accuracy (%) is
color-coded. n.s.: not significant (p ≥0.05, two-sided t test). f, g Comparison of
sequence spans and sequence timings between ramp conditions. f Determination
of time span and center of sequences. To parameterize sequences, a line (red, also
shown as dotted lines in c and d) is fitted to the sorted latencies (ordinate) across
channels (abscissa). Hereblack dots denote theposition of peak response latencies.
Sequence center time is derived from the latency of the central point of the fitted
line. Sequence span is determined by the latency difference between the two end
points of the fitted line. gAverage sequence spans (left, n = 12 conditions per ramp)
and center time (right, n = 12 conditions per ramp) for different ramp conditions.
Error bars denote 95% confidence level. Asterisks denote p <0.05 in t test.Source
data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-38587-2

Nature Communications |         (2023) 14:3021 4



stimuli produce most informative response sequences
The observation that the temporal span of the stimulus-specific
response sequences was considerably shorter than expected from the
temporal evolution of the stimuli suggests that network interactions
contribute to the generation of sequences. Afferent and intrinsic
connections of the cortical networks are adapted through evolution
and postnatal experience to capture characteristic features of the
visual environment. Hence, priors required for the disambiguation of
sensory evidence are stored in the functional architecture of the visual
cortex (see “Introduction”). Therefore, we expected that the sequen-
ces might reflect not only the structure of the stimuli but also the
extent to which sensory evidence matched the priors stored in the
architecture of the cortical networks. To explore this possibility we
created from the original natural images two further categories of
manipulated stimuli: morphed images and phase-scrambled images
(Fig. 3a). The morphed images were generated by applying a diffeo-
morphic transformation on the original three natural scene images53,
such that higher-order regularities like object identity and/or semantic

information were removed, whereas some of the low-level features or
elementary Gestalt principles such as continuity, collinearity and clo-
sure of contours were preserved. Scrambled images were created by
adding random noise to the phases of the Fourier-transformed natural
images, such that both high- and low-level features were eliminated. In
the following we refer to stimuli as “natural” that conform to the sta-
tistical regularities of natural environments, irrespective of whether
they represent novel or familiar objects. Thus, the three image cate-
gories, i.e., natural, morphed, and scrambled, differed by the degree to
which the statistics of natural environments were preserved. Because
our animals were raised in a normal visual environment, the stimuli
were expected tomatch in a graded way the statistical priors stored in
the connection architecture of the visual cortex.

To investigate the extent to which the match between sensory
evidence andpriors influenced the response sequences, we performed
the same decoding analysis as above for the three stimulus categories
(“Methods”). For all stimulus categories, the decoding accuracy was
significantly (p <0.05) above chance level (Fig. 3b, Supplementary
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Fig. 2 | Rank order of response sequences enables fast decoding of stimulus
identity. a Accuracy of decoding stimulus identity based on sequence order of
onset latencies for low (left panel) and high (right panel) intensity conditions. Left
ordinate (for solid curves): decoding accuracy based on sequences consisting of an
increasing number of the fastest responding channels (abscissa). Shaded areas

indicate 95% confidence interval around the mean. Horizontal black dashed line
indicates chance level. Right ordinate (for dashed curves): average response
latencies of the participating channels. b Similar to a but for the decoding analysis
based on firing rates. Source data are provided as a Source data file.
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Fig. 12), confirming the stimulus specificity of the sequence order of
responses. However, the decoding accuracy differed between the sti-
mulus categories (Fig. 3c. F2,354 = 62.13, p <0.01, ANOVA). Accuracy
was highest for natural images (83.80±0.96%, s.e.m.), lowest for
scrambled images (68.63 ± 0.96%) and intermediate for morphed
images (76.14 ± 0.96%). All pair-wise comparisons were Bonferroni-
corrected for multiple comparisons and significant at the p <0.05
level. We replicated the decoding analysis using response onset rather
than peak latencies for the training of decoders and obtained quali-
tatively identical results (Supplementary Fig. 13). Thus, although the
sequenceorder of response latencieswas specific for individual stimuli
in each category, the degree of specificity depended on the statistical
structure of the stimuli. The better the stimuli matched natural image
statistics, the better was decoding accuracy. Furthermore, the
decoding accuracy was higher for the ramp than the no ramp condi-
tions (Fig. 3c. No ramp: 70.23 ± 0.96%; fast ramp: 81.49 ± 0.96%; slow
ramp: 76.85 ± 0.96%. ANOVA F2,354 = 34.64, p < 0.01). All post hoc pair-
wise comparisons were significant (p <0.05). Thus, the better

segregation of onset and peak latencies caused by the ramping pro-
cedure facilitated decoding. In this context it is noteworthy that the
decrease in decodability in the no ramp condition was minor for nat-
ural stimuli and somewhat more pronounced for the manipulated
stimuli, in particular for the scrambled stimuli. A likely interpretation is
that sequences evoked by unnatural stimuli are less precisely timed
than those induced by natural stimuli and therefore lead to more
ambiguities when compressed.

Because these results were obtained in a higher visual area (V4),
we considered it important to examine whether they also held true for
V1 and therefore repeated the analyses on a dataset obtained from V1
in two other monkeys. The results were similar (Supplemen-
tary Fig. 14).

Recurrent network model with Hebbian synapses recapitulates
prior-dependent sequence refinement and stabilization
Recurrent networks respond to perturbations with sequential activa-
tion of their nodes but in the presence of background activity
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Fig. 3 | Response sequences evoked by natural stimuli are most informative
about stimulus identity. a Stimulus categories. b Accuracy of decoding stimulus
identity from sequences derived from peak response latencies. Left and right
panels show the results for low and high-intensity conditions, respectively. Hor-
izontal dashed linesmark chance level. c Average decoding accuracy marginalized

over stimulus structure (left), ramp (middle), and intensity (right) conditions.
Asterisks denote statistical significance (p <0.05, two-sided t-test) of pair-wise
comparisons. All error bars denote 95% confidence interval. Source data are pro-
vided as a Source data file.
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consistent and robust reproduction of particular sequences is not
trivial. The network connections must be anisotropic in order to per-
mit propagation of activity along a constant path. Such anisotropy can
be generated either by design or by learning mechanisms that change
the gain of the recurrent connections. To explore the possibility that
learning stabilizes temporal sequences in a stimulus-specific way, we

trained a spiking neural network in a non-supervised way to acquire
information about the shape of a digit (Fig. 4. “Methods”). The
synapses of the recurrent connections were made susceptible to
activity-dependentmodifications by endowing themwith spike timing-
dependent plasticity (STDP)54–56. Thus, repeated stimulation is expec-
ted to strengthen and weaken connections between neurons
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Fig. 4 | Spiking neural network model replicates stimulus-evoked response
sequences. a Schematic of the model. The network consists of excitatory (blue,
N = 200) and inhibitory (red, N = 50) neuron groups that are interconnected both
between and within groups. External input is mapped to a subset of excitatory
neurons (dark blue, N = 49). b The effect of exposure on the precision of sequen-
ces. The raster plots showmultiple single-trial population spiking responses at the
beginning (upper row) and end of the training (middle row, 200 training trials in
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directly (N = 151). For clarity, only 40 of them are shown. c Simulation of ramping
conditions. The image pixel intensities are mapped to the input current of indivi-
dual neurons. d Network responses to ramping stimuli. With ramping stimuli,
response transients unfold into sequences, as in the experiment. The responses are
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(enclosed by gray box). Correlations between peak response latencies and neuron
indices (as quantification of the steepness of the lines fitted to the response
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p <0.01). Source data are provided as a Source data file.
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depending on the temporal order of their activation. For training we
used only sudden onset stimulus. Already at the beginning of the
training, the networks produced sequences but these were highly
variable. With training the sequences evoked by a particular stimulus
became more robust, precise, and reproducible. For further compar-
ison with the experimental results we examined whether sequence
order was maintained when the sequences were expanded in time by
presenting ramping stimuli. We simulated the ramping stimuli as lin-
early increasing input current to the neurons. As in the experiments,
the span of the sequences increased without changes in sequence
order. When networks trained on a particular stimulus were presented
with a different, novel stimulus, the sequences evoked by the new
stimulus were more spread out in time and showed more inter-trial
variability than the sequences evoked by the “familiar” stimulus. This
simple and by no means comprehensive proof-of-concept simulation
suggests the possibility that the robust temporal sequences observed
in the experiments resulted from interactions in a recurrent network in
which the strengths of the coupling connections had been shaped by
experience (see above).

Natural stimuli enhance persistence of stimulus information
So farwe have focused exclusively on the sequence order of responses
in the initial phase of evoked activity, but this initial transient is fol-
lowed by sustained, slowly decaying activity. This persistent activity is
to a large extent due to continuing sensory drive but likely reflects also
activity contributed by intracortical interactions. It is to be expected,
therefore, that the sustained activity, and the information it carries, is
also influenced by the degree towhich the stimulusmatches the priors
stored in the synaptic weights of the cortical network. To test this
possibility we trained independent decoders at successive time points
(sliding window width 100ms, step size 100ms) to predict stimulus
identity from the firing rate vectors of the population responses
(“Methods”). This analysis was performed again separately for natural,
morphed, and scrambled stimuli.

For all stimulus conditions (different onset time courses and sti-
mulus categories), decoding performance was maximal for the
response transient (Fig. 5a, b, Supplementary Fig. 15), confirming that
the bulk of stimulus-specific information can be retrieved from a short
stretch of the initial response phase. Notably, in the ramp conditions,
the decoding performance peaked well before the ramp reached its
maximal intensity, suggesting that sufficient sensory information had
already accumulated to produce a ceiling effect before the stimuli
reached full contrast. In this transient response phase decodability of
the three stimulus categories was similarly high and showed no sig-
nificant difference between the three stimulus categories. Stimulus-
specific information reached its maximum at the same time as the
firing rate (average per channel, Fig. 5a, b). This was the case even
though stimulus intensity kept increasing beyond the peak of firing
rates in the ramp conditions. During the sustained response phase
decodability of stimulus identity decreased with elapsing time from
stimulus onset for all stimulus conditions. However, now differences
became apparent between natural andmanipulated stimuli. The decay
of decoding accuracy was slowest for natural images, fastest for
scrambled images, and intermediate for morphed images, leading to
significantly different decoding accuracies for the three stimulus
categories (Fig. 5a, b, Supplementary Fig. 15). To quantify the time
course of the fading of stimulus-specific information, we fitted a linear
function to thedescendingphaseof eachdecoding accuracy curve and
took its slope as indicator of the decay speed of stimulus information
(insets in Fig. 5a, b). This decay was significantly influenced by the
stimulus structure (F2,354 = 38.99, p <0.01, ANOVA) and ramp condi-
tion (F2,354 = 112.86, p <0.01) but not by stimulus intensity (F1,354 = 2.17,
p =0.14). The decay of stimulus-specific information was slowest for
natural images (−34.69 ± 2.66%/s, s.e.m.), fastest for scrambled images
(−66.96 ± 2.66%/s), and intermediate for morphed images

(−43.76 ± 2.66%/s). All post hoc pair-wise comparisons were statisti-
cally significant at the p < 0.05 level (Fig. 5c). These differences in
decodability were not simply due to differences in sustained firing
rates, becausefiring rateswere consistently highest formorphed images
across all ramp and intensity conditions (lower panels in Fig. 5a, b). This
implies that there is no straightforwardcorrelationbetween information
content and the firing rate of the population response. Both findings,
the prolonged persistence of information about natural stimuli and the
lack of correlations between decodability and average firing rate, have
been reproduced in area V1 (Supplementary Fig. 16).

Temporal evolution of population responses
In order to obtain an intuition for the decoding results based on rate
vectors, we projected the high-dimensional vector of population
activity into the low-dimensional space spanned by the three largest
principal components (Supplementary Fig. 17) and plotted the trajec-
tories that represent the temporal evolution of the population activity
(Fig. 6 and Supplementary Fig. 18. “Methods”). To calculate firing rates
with high temporal resolution, we used short slidingwindows of 30ms
duration that were moved in steps of 1ms. The plots represent tra-
jectories averaged across trials. After stimulus onset, the trajectories of
population activity diverted rapidly from a common baseline region,
followed stimulus-specific paths (Fig. 6a) and settled at different
endpoint regions. Measurements of the Euclidian distances between
population activity vectors evoked by different stimuli and the dis-
tances of the respective vectors from baseline revealed that the tra-
jectories for the natural stimuli remained well separated from each
other throughout the whole stimulation period (Fig. 6a). By contrast,
for scrambled images the trajectorieswere less separated and returned
more rapidly to the regions close to baseline.

Stimulus discriminability likely depends not only on the distances
between trial-averaged trajectories but also on their trial-to-trial
variability. Therefore, we calculated a discriminability index (“Meth-
ods”) by taking the ratio between inter-trajectory distance and trajec-
tory variability at each time point to assess the stimulus specificity of
the trajectories. This measure reproduced the results of the decoding
analysis (c.f. Fig. 5): the discriminability index was highest for natural,
lowest for scrambled, and intermediate for morphed stimuli (Fig. 6b).
The discriminability index started to risewithin 100ms to 200ms after
stimulus onset and reached a maximum within 200 to 400ms,
depending on stimulus intensity and ramp duration (Fig. 6b). These
intervals reflect the fast segregation of the response trajectories
(Fig. 6a) and they also correspond to the duration of the response
sequences (c.f. Fig. 1f). In agreement with the time course of decod-
ability from sequence order (c.f. Fig. 2) this suggests that stimulus-
specific information is readily available and decodable long before the
trajectories of the rate vectors reach a stable endpoint. Comparison of
the rising phases of the discriminability indices showed that dis-
criminability increased consistently faster for the natural than the
manipulated stimuli (Fig. 6b). This suggests that the priors stored in
the functional architectureof cortical circuits contribute already to the
shaping of the very early transient response components; and this is in
agreement with the finding that natural stimuli evoked response
sequences whose decodability was better than that of sequences
evoked by manipulated stimuli. Taken together, both the decoding
results from sequence order and from rate vectors support the con-
clusion that decodable stimulus-specific information results from an
interaction between sensory evidence and stored priors and reaches a
maximum already during an early phase of the transient response.

Discussion
The present results indicate that the peak and onset latencies of the
early transient responses of cortical neurons are organized in
sequences whose order is stimulus-specific and preserved even when
the absolute latencies of the responses and the duration of the
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sequences are changed by manipulating the intensity and the time
course of the stimuli. The duration of the sequences increased with
ramp duration and decreasing stimulus intensity but sequences
remained compact. Their dilation did not scale proportionally with
ramp duration and the response time of neurons in the sequences was
neither locked to stimulus intensity nor to the temporal integral of
input drive. This suggests that the sequences are not solely due to

differences in the feature selectivity and contrast sensitivity of the
recorded neurons. The finding that decodability of stimulus-specific
information from sequenceorder rose faster and reached higher levels
for natural than for morphed and scrambled stimuli suggests that the
time course and rank order of the sequences were not solely deter-
mined by the physical structure of the stimuli but in addition reflect
the degree to which sensory evidence matches priors about the
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statistical properties of natural scenes. This suggests that the shaping
of the sequences that increased their decodability occurred at the
cortical rather than the subcortical level of the processing stream.
Several arguments suggest recurrent interactions as a likely substrate
for this matching process: (i) the network of recurrent, “patchy” con-
nections in the visual cortex is shaped by experience and hence con-
tains priors about the statistics of natural images; (ii) recurrent
networks respond to perturbationswith a sequential activation of their
nodes; and (iii) our simulations of a simple recurrent network with
spiking neurons and recurrent connections endowed with Hebbian
synapses reproduced the beneficial effect of experience on the
decodability of sequences. As expected, the untrained, “naive” net-
work already generated sequences upon stimulation but the precision
and reproducibility of the sequences increased when the network was
familiarized with the stimulus through non-supervised learning.
Moreover, the rank order of the sequences was preserved when they
were expanded or compressed in time. The hypothesis that responses
were shaped by intracortical interactions that aremost likelymediated
by recurrent networks is further supported by the finding that the
persistence of stimulus-specific information in the firing rate vectors
was longer for responses to natural stimuli than their manipulated
counterparts. The underlying assumption is that stimulus-specific
dynamic states resonate better and reverberate for longer intervals if
induced by stimuli whose statistical regularities match stored priors
rather than if induced by stimuli that correspond less to the statistical
regularities of natural scenes (see below). Taken together these
observations suggest that the sequences were generated by recurrent
interactions at the cortical level. However, as detailed in the next
paragraph, we cannot exclude other mechanism.

The response latencies were assessed from stimulus locked
increases in firing rates and therefore may not reflect the exact timing
of the very first evoked spikes. However, similar methods are com-
monly used to estimate response latencies in electrophysiological41,57,58

and optical recordings59,60. We derived response latencies both from
measurements of response peak latencies and from threshold crossing
time of firing rates. Both methods gave very similar and highly con-
sistent results. Thus, if the rank order of sequenceswereused as a code
for stimulus identity, putative readouts could rely on both variables.

Another critical point is the interpretation of the decoding results.
The implicit assumption is that the stimulus-specific information
retrieved by the decoders from sequence order and rate vectors does
actually support perception. The current experimentswere performed
under passive viewing conditions and the monkeys were rewarded to
keep fixation rather than identifying the stimuli. Thus, we had no
possibility to establish correlations between perceptual decisions and
the performance of the decoders. The finding that decoders per-
formed less well on manipulated than natural stimuli suggests, how-
ever, that they extracted behaviorally relevant information. Evidence
from psychophysical studies indicates that natural stimuli are recog-
nized faster and better than their manipulated counterparts61–64.

Our results do not allow us to unequivocally determine the
mechanism responsible for the generation of sequences and to
determine the extent to which they were generated by cascades of
feedforwardprocessing and by recurrent interactions, respectively. To

resolve this question, experiments will have to be performed on a
larger sample of natural and manipulated stimuli and responses need
to be obtained along the whole processing stream, including retinal,
geniculate and cortical responses, the latter being assessed with
laminar resolution. It would then be possible to identify at which
processing level sequences emerge that comply with our results; i.e.,
sequences that (i) remain invariant to temporal compression and
dilations causedby stimulus kinetics and contrast, (ii) are insensitive to
the small eye movements which occur even under fixation conditions
and (iii) are sensitive to the statistics of natural scenes.

Visual perception is fast. Humans canparse clutteredvisual scenes
and recognize objects within about 150ms46. If this process involves
sequential computations across a hierarchy of brain areas in the visual
pathway, as is commonly assumed65,66, it leaves only tens of milli-
seconds for computation at each processing stage46. Given the sparse
activity of cortical pyramidal cells, individual neurons can only con-
tribute a few spikes in these short intervals. As pointed out by several
authors32–34,42,67–71, this raises a problem if information were solely
encoded in the discharge rate of neurons. Spikes would have to be
summedover long intervals to distinguishdifferences indischarge rate
which is in conflict with processing speed. Alternatively, discharges of
a large number of neurons would have to be evaluated jointly to per-
form a maximum likelihood estimation72. However, this strategy is
hampered by the fact that the discharge rate variabilities of neurons
are not independent but exhibit correlations, so called “noise
correlation”73. Thus, averaging would also increase the noise
component.

An alternative strategy is to encode information in the relative
timing of responses because such codes can be read out rapidly by
neurons that are either sensitive to coincident74–77 or sequential
input78–82. Evidence that the timing of discharges matters in neuronal
processing is available from studies in various systems: vision57,67,83–88,
audition74,76, olfaction41,58–60,89–92, somatosensation93–96, spatial
navigation97–100, and motor control101–105. According to our results,
decoders capable of evaluating sequence order can correctly classify
natural stimuli with sudden onset within 70ms after stimulus onset.
Even for the low-intensity slow-ramp stimuli, stimulus-specific infor-
mation emergedwithin 100ms andplateauedwithin200ms.Thus, the
time required for correct identification was extremely short and less
than the duration of the whole sequences. A decoding mechanism
based on response timing can therefore trade between processing
speed and accuracy by successively sampling over sequentially acti-
vated nodes. As our data suggest, decoding of response timing ismore
efficient than decoding of rate vectors both with respect to speed and
required number of nodes. The trajectories derived from rate vectors
induced by different stimuli began to diverge only at times when
sequence order could already be decoded from the fastest responding
nodes; and maximal separation of trajectories occurred only at times
at which most neurons in a sequence have already responded.

Our data are not only in agreement with a temporal code in form
of staggered response latencies, but also demonstrate in addition that
stimulus identity can be decoded from the rank order of sequentially
activated nodes that is independent of absolute timing. Using rank
order as template we could decode stimulus identity irrespective of

Fig. 6 | Visualization of the time course of stimulus-specific trajectories of
neuralpopulationactivity. a 3Drepresentation of populationfiring rate vectors in
principal component space (calibration scales in thefirst panel: length = 100 in each
PC axis, dimension = “spikes/sec”). Trajectories (one trace per stimulus, averaged
across trials) are separated into panels referring to different ramp (columns) and
intensity (rows) conditions. The colors of the trajectories refer to the three stimulus
categories. Oval meshes show the covariance (scaled for visualization) of the
baseline (black, sampled over 200ms before stimulus onset) and of the end points
(in the respective colors, sampled over the last 200ms of the plateau period) of the
stimulus-specific trajectories. Color dots on the trajectories mark the time points

between 100 and300ms in stepsof 50ms. Tracesbelow the 3Dplots showthe time
course of the distance between the trajectories and the baseline (upper) and the
separation between different trajectories (lower), both calculated separately for
each stimulus category and represented in the respective colors. Vertical calibra-
tion barsmark the length of 200 in thedimensionof “spikes/sec”.bDiscriminability
index for the trajectories in each stimulus category. Arrangement of the six panels
is the same as in (a) (columns for ramp conditions, rows for intensity conditions).
Insets zoom onto a segment (range indicated on the frames) of the rising phase of
the discriminability curves.
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the overall time course of the sequences and the intervals between the
nodes’ activation. If rank order rather than staggering of absolute
response latencies were used as code for stimulus identity, this would
allow readout without requiring an independent reference signal that
defines stimulus onset33. Such a reference signal could be provided
during active vision by the corollary activity associated with saccadic
eye movements because the arrival of new sensory evidence is pre-
dicted by the time of fixation onset. Evidence indicates that this cor-
ollary activity reaches primary visual cortex and is precisely time-
locked with the saccades106–108. However, there are many instances
when the time of arrival of new sensory evidence cannot be predicted,
rendering readout of codes difficult that rely only on stimulus locked
absolute latencies. This problem could be overcome if the readout
layer consisted again of a recurrent network as such networks are
ideally suited to decode and process sequential input signals and/or
time series17.

Coding information in the rank order of sequentially activated
nodes is also an economical strategy because the code is permutable.
As our data indicate, the very same nodes can participate in different
stimulus-specific sequences which economizes the number of nodes
required for the representation of different input patterns. Moreover,
it exploits not only space, the spatial distribution of activated nodes,
but also time, the sequence order of activated nodes, as coding
dimension which further expands coding space.

Recurrent networks sustain reverberating activity and traveling
waves18,20,22 and therefore respond to stimuli with sequential activation
of their nodes. However, further analysis of recurrent dynamics is
required to identify the mechanism that can generate sequences at
widely different timescales while preserving the rank order of
sequentially activated nodes. This question is of general interest since
similar observations have been made in other brain areas. During rip-
ple oscillations,firing sequences of hippocampalplace cells, generated
by previous navigation at behavioral timescales, are replayed in the
same or reversed order but much compressed in time99,109,110. Similar
observations have been made in the medial frontal cortex; the tem-
poral profile of population responses can be stretched or compressed
to span different time intervals111.

Networks operate at variable timescales112,113, and these timescales
are determined by a number of extrinsic and intrinsic variables. Some
of the intrinsic variables are unlikely to change at the short timescales
required to account for the expansion and contraction of sequences.
These comprise the connectivity114 and cell-intrinsic properties115 such
as synaptic kinetics116 and ion channel and receptor compositions117–120.
However, the highly non-linear interactions in recurrent networks
enable changes in their dynamics to occur at short timescales when
perturbed by external input121 or when the E/I balance is modified122,123.
Furthermore, in recurrent networks whose nodes have a propensity to
oscillate, additional mechanisms can determine the pace of sequential
activation. In delay-coupled oscillator networks, resonance and inter-
ference phenomena, phase shifts, and traveling waves as well as
changes in oscillation frequency are in principle capable of maintain-
ing fixed orders in the sequential activation of the units at variable
timescales124–128. The highly non-linear dynamics of delay-coupled
oscillator networks may thus actually contribute to the stabilization of
sequences despite compression or expansion of their overall duration.
How the information contained in sequence order can be encoded and
decodeddespite variations in the sequences’duration is a fundamental
problem, e.g., in the production and perception of speech129,130, and
requires further investigation. We suggest that recurrent networks in
down-stream cortical areas should be able to extract the information
conveyed by rank order codes once they are trained to detect their
invariant properties.

The accuracy of decoding stimulus identity from sequence order
was highest for natural images, suggesting that the sequences pro-
duced by natural stimuli are more informative than those induced by

morphed or phase-scrambled stimuli. Moreover, the decay of
stimulus-specific information in the rate vectors of the sustained
response phase was slower for the natural than the manipulated sti-
muli. We propose that the better decodability of responses evoked by
natural stimuli is the result of a goodmatch between sensory evidence
and the priors stored in the functional architecture of the cortical
network. As detailed above, the reciprocal connections between col-
umns responding to features which have a high probability of being
correlated in natural environments get strengthened through a Heb-
bian mechanism6,24,27,31,131,132. Thus, the coupling strengths of the
recurrent connections constitute a physical embodiment of natural
scene statistics and could serve as priors in perceptual inference17.
These priors are likely to stabilize reverberating responses evoked by
stimuli whose statistics match the stored model of the visual world.
The reason is that such stimuli drive nodes or columns that are
strongly coupled and hence can sustain reverberating activity. Our
simulations seem to support this notion. Because of “experience”-
dependent Hebbian modifications the recurrent network connections
adapted to the “statistics” of the repeatedly presented stimulus. The
consequence was, that this stimulus evoked more precise and con-
sistent sequences than new stimuli, towhich the network hadnot been
adapted previously. However, due to the small size of the network and
the restricted set of training and test stimuli it was difficult to distin-
guish between “learning about the general statistics of stimuli” and
“learning to represent a particular stimulus”.

It has been proposed that sensory evidence that matches priors
induces a rapid change in network dynamics towards low-dimensional
sub-states133 and it has been shown that these sub-states exhibit
stimulus-specific correlation structures and reduced variability of
discharge patterns134. Our analysis of response trajectories indicated a
rapid divergence from the baseline. The time course of this divergence
corresponded to the duration of the response sequences. Thus, the
generation of the sequences could be a reflection of the network’s
descent from high-dimensional resting activity towards a lower
dimensional and stimulus-specific dynamic sub-state. Such a fast and
early interaction between sensory evidence and storedpriors is further
supported by the fact that decoding performance based on sequence
order depended on stimulus structure already during the very early
transient response phase; the rise time of stimulus discriminability was
faster for natural stimuli than for stimuli likely to match less well with
stored priors. Taken together, these considerations suggest that both
the short response sequences and the subsequent sustained responses
are shaped by a Bayesian matching operation that compares sensory
evidence with the priors stored in the cortical networks, and this
matching operation seems to set in right at the beginning of the
responses.

As discussed above, encoding information in neuronal response
sequences enables fast readout of stimulus-specific information even
when only few nodes have been activated. By directly comparing
decodability based on sequence order vs firing rate vectors in the
transient response phase, we showed in addition that as time elapses
decodability based on firing rates saturates at higher levels than that
based on sequence order. Firing rate decoders benefit from longer
integration time and allow formore accurate identificationof stimulus-
specific information. Thus, rate and temporal codes could comple-
ment one another, trading speed against accuracy.

The time-resolved decoding results also indicate that the
stimulus-specific information contained in the rate vectors is maximal
during the transient response component and decays during the sus-
tained responsephase. Thefinding that this informationpersistedover
longer intervals for responses evoked by natural thandegraded stimuli
highlights another aspect of the dynamics reflecting the interaction
between sensory evidence and priors. The persistence of stimulus-
specific information in the sustained response component is of course
to a large extent due to the continuous presence of the stimulus, but is
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also influenced by the intrinsic dynamics of the recurrent network12,135.
As shown by Berkes et al.136 and Fiser et al.137, the correlation structure
of intrinsic cortical activity shares features with the activity patterns
evoked by natural stimuli. The longer persistence of stimulus-specific
information in the rate vectors evoked by natural rather than
manipulated stimuli is thus likely due to a good match between sen-
sory signals and intrinsic network dynamics. Interestingly, however,
there was no direct correlation between stimulus information and the
amplitude of the rate responses. In general, decodability of response
vectors increases with discharge rate135. However, in the present case
morphed stimuli produced the highest firing rates and their trajec-
tories traveled the longest distances, but their decodability was lower
than that of natural stimuli and decayed faster. For the phase-
scrambled stimuli, by contrast, the relations between decodability,
amplitude, and persistence of rate responses were as expected. They
evoked the lowest firing rates and their trajectories returned rapidly
towards the baseline. Thus, further analysis is required to determine
which features of the decaying discharge rates contributed to the
decodability of stimulus-specific information.

Taken together, the results of the present study suggest the
possibility that the cerebral cortex complements the feedforward
processing of rate-coded information by exploiting the dynamics of
recurrent networks to generate a temporal code that represents
stimulus-specific information in the rank order of sequentially acti-
vated nodes. The properties of this temporal code comply with the
criteria for an efficient and sparse code. First, it compresses relevant
information in short time intervals and therefore could allow for
ultrafast readout. Second, it is permutable and allows the same neu-
rons to participate in the encoding of different stimuli, which econo-
mizes hardware. Third, it is invariant and robust with respect to
stimulus properties such as intensity, time course, and exact retinal
position. The latter follows from the fact that even under conditions of
visual fixation small eye movements (microsaccades) persist. Forth, it
captures the match between sensory evidence and priors. Hence,
information encoded in sequences could be exploited in parallel to
rate modulations to convey complementary information. In order to
ascertain that this temporal code is actually used by the brain, causal
evidence has to be obtained for the behavioral relevance of this
putative coding strategy. This is a challenge for future studies because
it requires interference with the timing of the nodes’ responses with-
out at the same time altering their discharge rate and to correlate the
effects of such manipulations with the animal’s ability to distinguish
between stimuli.

Methods
Electrophysiology
The experiments were conducted on four rhesus monkeys (Macaca
mulatta): one female (Monkey I, 9 kg, 17 years old) and three males
(Monkey K, 12 kg, 10 years old; Monkey H, 17 kg, 11 years old; Monkey
A, 12 kg, 13 years old). All experimental procedures were in compliance
with the German and European regulations for laboratory animal
protection and welfare, and were approved by the local authority
(Regierungspräsidium Darmstadt). Monkeys H and K were implanted
in the left hemisphere with two CerePort Utah Arrays (Blackrock
Microsystems, Salt Lake City, Utah, USA), one in area V1 and the other
in area V4. Each array had 64 microelectrodes. Only the V4 electrodes
were considered in the main experiment. Monkeys A and I were
implanted over V1 with a Microdrive system (Gray Matter Research,
Bozeman, Montana, USA) that contained 32 individually adjustable
microelectrodes and provided the data for the measurements in
area V1.

Behavioral paradigm
The monkey was seated in a custom-made primate chair inside a dark
experimental booth. The distance between the eyes and the stimulus

monitor (Samsung SyncMaster 2233RZ; 120Hz refresh rate)was 80 cm
formonkeys H and K, and 60 cm formonkeys A and I. The eye position
was monitored using the EyeLink tracker (SR Research, Ottawa,
Ontario, Canada). During recording, the monkey performed a passive
viewing fixation task. The monkey initiated a trial by fixating a white
fixation point presented at the center of the screen. During the entire
trial, the monkey had to maintain fixation within a window of about 1
degree of visual angle. During this fixation period a visual stimulus was
presented on the screen. Successful maintenance of fixation
throughout the trial was rewarded with a drop of juice or water at the
end of the trial.

In the main experiment, the structure of a trial was as follows.
After a minimal interval of 500ms from the beginning of fixation (pre-
stimulus baseline period), the stimulus was presented and remained
on the screen until the end of the trial, when both the stimulus and the
fixation point disappeared simultaneously. At stimulus onset, we
ramped the stimulus intensity gradually such that the stimulus
appeared slowly on the blank gray background until it reached its
maximal intensity. This was achieved by linearly increasing the
blending ratio (transparency or alpha value) between the stimulus and
the gray background. We used three ramp conditions: slow ramp, fast
ramp, andno ramp, the latter corresponding to sudden stimulus onset.
The respective ramp durations were: 1000ms and 500ms for monkey
K, and 1200ms and600ms formonkeyH.Weused twodifferent levels
for maximal intensity corresponding to alpha values of 10% (low
intensity) and 30% (high intensity), respectively. Once maximal inten-
sity was reached, the stimulus remained at the respective level for at
least 500ms (plateau time). The durations of the pre-stimulus baseline
and the plateau phases were semi-randomized to reduce predictability
of the trial time course. The total trial length varied between 2200ms
to 3000ms. The end of a trial was signaled by the disappearance of the
fixation point.

In addition to the three ramp and two intensity conditions, three
different categories of stimuli were presented, amounting to 18 con-
ditions in total. All experimental paradigms were implemented using
the MATLAB-based in-house software ARCADE138. In total, monkey H
performed 2955 trials in 6 sessions/days (492.5 ± 113.3 (s.d.) trials
per session, or 159.8 ± 25.1 trials per condition); monkey K performed
4679 trials in 6 sessions (779.8 ± 209.9 trials per session, or 253.3 ± 48.4
trials per condition).

In the V1 experiments, we simplified the experimental conditions,
and used only one ramp duration (2000 ms) and one intensity level
(50%), and kept only three conditions of stimulus category. Because
monkeys I and A have been previously trained for a different task that
required behavioral response with a mechanical lever, our experi-
mental paradigm had to be adapted as follows. The appearance of the
white fixation point signaled the beginning of the trial. After a baseline
of 1000ms, the stimulus was presented in linearly increasing intensity
from 0 to 50% over the interval of 2000 ms. Then the fixation point
changed color to either green or blue, and the monkey needed to
respond to the color change by moving a two-way mechanical lever
forward or backward, respectively. The monkey was required to
maintain fixation until giving the correct lever response in order to get
a reward. In total, monkey A performed 3133 trials in 3 sessions
(1044.3 ± 52.7 trials per session, or 1044.3 ± 1.1 trials per condition);
monkey I performed 2418 trials in 3 sessions (806.0 ± 391.6 trials
per session, or 806.0 ± 2.0 trials per condition).

Stimulus design
In the V4 experiments, the stimuli were presented on gray blank
background, had a circular shape, were 500 × 500 pixels (10° visual
angle) in size, and were positioned such that both the fixation point
and the classical receptive fields of the recorded neurons were cov-
ered. In the V1 experiments, the stimulus was 160 × 160 pixels (4.5°
visual angle) in size for monkey A, and 250 × 250 pixels (6.9° visual
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angle) for monkey I, also covered all receptive fields but did not
overlap with the central fixation point.

The three stimulus categories comprised images of natural
scenes, morphed images, and scrambled images. Each category con-
sisted of three image samples. The original stimulus images cannot be
presented in the paper due to the journal’s license policy. The natural
images were corrected to have the same average pixel intensity as the
gray background and equal contrast. These images served as basis for
the morphed and the scrambled images, respectively. The morphed
images were created with the diffeomorphic transformations devel-
oped by Stojanoski and Cusack53. Using the MATLAB function pub-
lished by the authors, the following parameters were selected:
maxdistortion = 80 and nsteps = 20. The outcome at the end stage of
the transformation (corresponding to maximally deformed images)
was taken as the morphed stimuli in this experiment. This manipula-
tion destroys higher-order semantic information and preserves basic
perceptual Gestalt criteria. Scrambled images were created by adding
uniform random noise to the phase spectrum of the original natural
images while preserving the amplitude spectrum.

Data processing
Data acquisition was performed using the TDT system (Tucker-Davis
Technologies, Alachua, Florida, USA). Signals were amplified and
digitized at about 24.4 kHz (TDT PZ2/PZ5 Preamplifier). In the V4
experiments, the original raw signal was passed through a zero-phase
4th order Butterworth filter with passbands between 500 to 3000Hz
to extract activity in spiking frequency band. From this filtered time
series, any event crossing the negative threshold of four times the
estimated noise level was identified as multi-unit spiking activity
(MUA). The noise level was estimated using the method described in
Quiroga et al.139. This was done for each channel separately. For the V1
experiments, MUA was detected using the online spike detection
algorithm provided by the OpenEx software (Tucker-Davis Technolo-
gies, Alachua, Florida, USA). The spike threshold was set at four times
the standard deviation of the filtered spiking band activity
(400–3000Hz). Only MUA was analyzed in this study. The trials of all
conditions were aligned to stimulus onset (time zero). Data were
analyzed within a time window ranging from −500 ms to 1800 ms in
the V4 experiments, and from −1000 ms to 2000 ms in the V1
experiments.

To estimate the single trial peak response latency, we used a
binning window of 30ms andmoved the window in steps of 1ms. This
window size was selected to slightly “smooth” the rate estimation at
the single-trial level. Using smaller step sizes would increase the
accuracy of peak time estimation but also increase the scatter. For the
decoding analysis based on firing rate (spike count), we used a binning
window of 100ms and a step size of 100ms. This longer counting
window was selected to allow for longer integration time and better
classification performance.

All decoding analyses (except rank order decoding, see below)
were based on naive Bayes classifiers, provided by the MATLAB Sta-
tistics and Machine Learning Toolbox. To test for stimulus-specificity,
measurements from each channel were treated as independent vari-
ables, i.e., predictors, with repeatedmeasurements across trials. Image
identity was used as class label. For response time decoding, the pre-
dictorswere vectorsofmulti-channel responseonset or peak latencies;
for firing rate decoding, the predictors were vectors of multi-channel
firing rates, and independent decoders were trained at successive time
windows. To examine how fast stimulus-specific information can be
read out from the earliest responding units, or how many fastest
responding units were needed to decode stimulus identity, we first
determined the average response latency for each channel (over trials
and stimuli), gradually includedmore andmore channels with shortest
latencies as predictors, andused the response latencies of the included
channels to decode stimulus identity. This allowed us to evaluate the

changes in decoding accuracy as we increased the number of fastest
responding channels. To compare these results based on response
latencies to the decoding performance based on firing rates, we
changed the input to the classifiers from latency values across chan-
nels to firing rates summed in the interval between stimulus onset and
the previously determined latencies that were used in the latency
decoding analysis. Channels and latency intervals were kept the same.
In all cases, a 10-fold cross validation was used, and the variation of
classification accuracy over the 10-fold repetitions was used to esti-
mate the confidence interval of the classifier.

For decoding stimulus identity based on response rank order
across channels, we adopted a template matching procedure. Speci-
fically, during “training”, we obtained a template rank order for each
stimulus based on the trial-averaged responses. During “testing”, we
compared the rank order obtained from single-trial responses with all
the templates, and used the stimulus label associated with the most
similar template as predicted outcome for each trial. As measurement
of similarity, we used Spearman’s rank order correlation.

Principal component analysis was applied to visualize the high-
dimensional trajectories of the firing rate vectors (window size 30ms,
step size 1ms). Specifically, calculations were based on the assumption
that the native space was spanned by themulti-dimensional firing rate,
each channel being treated as an independent dimension. The single-
trial firing rate time series across ramp, intensity, and stimulus cate-
gory conditions were concatenated to form a channel-by-(time×
condition) matrix. PCA performed on the covariance matrix of this
data matrix yielded the eigenvectors, among which the ones asso-
ciated with the top three largest eigenvalues were kept. The resulting
channel-by-3 matrix was used to project all firing rate data points into
the 3-dimensional principal component space. Single-trial projections
in the same condition were averaged for visualization of the trajec-
tories. Also shown in the figures were the meshes representing cov-
ariance structures.Thesewereproducedby transforming aunit sphere
by a square-rooted (in matrix sense) covariance matrix scaled by a
factor of 0.5, and translated to the designated locations, e.g., baseline
or endpoint. All calculations of distances were performed in the native
space without PC projection or dimensionality reduction, assuming
Euclidian geometry.

Network simulation
We simulated a recurrent spiking neural network of N = 250 neurons
where the ratio between excitatory and inhibitory neurons was 4:1
(Ne = 200, Ni = 50, custom-written simulation in MATLAB). We used
the Izhikevich model to simulate single neurons, whose parameters
were the same as in ref. 140. The excitatory cells were modeled as
regular spiking cells (RS. (a, b) = (0.02, 0.2). (c, d) = (−65, 8) + (15, −6)*r2

where r is random variable of standard uniform distribution) and
inhibitory neurons as fast spiking cells (FS. (a, b) = (0.02, 0.25) + (0.08,
−0.05)*r2. (c, d) = (−65, 2)), each with random heterogeneity. All neu-
rons were randomly connected with a connection probability of 40%.
The connection strength was initialized to be uniformly distributed
between [0, 1]. To simulate external input current, we usedMNISTdigit
images scaled to the size of 7-by-7, and mapped to a subset of 49
excitatory neurons. In addition, all neurons received random back-
ground noise as external input.

During training, the connection strengths of the recurrent con-
nections were modified through a multiplicative spike timing-
dependent plasticity (STDP) rule as implemented in refs. 55,56,141.
The time constants for potentiation and depression were both set to
20ms, and the learning rates to 0.02. Connection strengths were
allowed to change between (0, 2]. Only excitatory connections were
subject to plastic modification. Each simulated training trial consisted
of a 100ms baseline period and 50ms stimulation period when the
stimulus was turned on (without ramp in training). The network
weights would stabilize after roughly 200 trials.
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During testing, the connection strengths were fixed, and various
ramp conditions were simulated. In all conditions, the simulated trials
consisted of a 100ms baseline period, various ramp periods of 0ms
(no ramp), 50ms (fast ramp) or 100ms (slow ramp), and a plateau
period of 50ms, all conditions being qualitatively similar to the
experimental trial structures. Spikes from excitatory neurons were
recorded and later analyzed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request. Source data are pro-
vided with this paper.
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