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Abstract
Interpolation-based data-driven methods, such as the Loewner framework or
the Adaptive Antoulas-Anderson (AAA) algorithm, are established and effective
approaches to find a realization of a dynamical system from frequency response
data (measurements of the system’s transfer function). If a system-theoretic
representation of the originalmodel is not available or unfeasible to evaluate effi-
ciently, such reduced realizations enable effective analysis and simulation. This
is especially relevant for models of interconnected dynamical systems, which
typically have a high number of inputs and outputs to model their coupling
conditions correctly.
Tangential interpolation is an established strategy to construct accurate reduced-
order models while ensuring a reasonably small size even if many inputs and/or
outputs have to be considered. In this contribution, we evaluate the applicability
and effectiveness of data-driven interpolation methods to compute reduced-
order models of dynamical systems with many inputs and outputs. Additionally,
we extend AAA to a tangential interpolation setting and thus enable the use of
AAA-like methods in the context of transfer function interpolation for systems
with many inputs and outputs.

1 INTRODUCTION

Simulation, control, and optimization of complex dynamical systems are required for many engineering applications.
In the following, we consider a multiple-input multiple-output (MIMO) linear time-invariant (LTI) system Σ of order 𝑛
described by the following system of differential equations:

Σ ∶
{
𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡), 𝒚(𝑡) = 𝑪𝒙(𝑡), (1)

with states 𝒙(𝑡) ∈ ℝ𝑛, control inputs 𝒖(𝑡) ∈ ℝ𝑚, observed outputs 𝒚(𝑡) ∈ ℝ𝑝, state matrix 𝑨 ∈ ℂ𝑛×𝑛, and input and out-
put mappings 𝑩 ∈ ℂ𝑛×𝑚 and 𝑪 ∈ ℂ𝑝×𝑛. The (matrix-valued) transfer function of the LTI system in frequency (Laplace)
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domain is given by𝑯(𝑠) ∈ ℂ𝑝×𝑛, with 𝑠 ∈ ℂ, as

𝑯(𝑠) = 𝑪(𝑠𝑰𝑛 − 𝑨)
−1
𝑩, (2)

where 𝑰𝑛 is an identitymatrix of size𝑛. Inmany applications, 𝑛 is very large, hindering an efficient evaluation of Equation 1
or Equation 2. Model order reduction methods seek approximations to the original dynamical system, whose output 𝒚̂(𝑡)
matches the original output up to a specified tolerance 𝜏 in an appropriate norm:

‖𝒚(𝑡) − 𝒚̂(𝑡)‖ ≤ 𝜏 ⋅ ‖𝒖(𝑡)‖.
A similar relation can be formulated for the transfer function Equation 2.
If the dynamical systemof interest is not given in state-space formEquation 1 or the state-space formcannot be evaluated

conveniently, data-driven reduction or identification methods can be employed to obtain a reduced-order (surrogate)
model which approximates data obtained from the original system. Some of these methods are based on interpolation [1,
2] or optimization [3, 4].
The Adaptive Antoulas-Anderson (AAA) algorithm [5] has emerged as a versatile tool for data-driven interpolation,

combining ideas from interpolation and least-squares optimization. Originally a method for the interpolation of scalar
functions, it has been extended to matrix functions in [6] by incorporating a block-wise approach. In the context of model
order reduction and system inference, that is, when thematrix transfer function Equation 2 is to be interpolated from data
samples, the block approach is limiting the effectiveness of the resulting surrogate model. Especially if systems withmany
inputs and outputs (𝑚,𝑝 ≥ 50) are considered, the resulting realizations quickly grow too large to be an efficient repre-
sentation of the original system. In this contribution, we therefore modify AAA with ideas from tangential interpolation
to be able to compute compact surrogates of the provided data. Tangential interpolation is widely used in projection-based
model order reduction [7].
The remainder of the paper is structured as follows. We shortly review data-driven interpolation in the Loewner frame-

work in Section 2, as it is the foundation of the proposed method. The theoretical foundation for the method is laid out in
Section 3 and the resulting algorithm is presented in Section 4.We show the performance of the newmethod in numerical
experiments in Section 5, and conclude the paper in Section 6.

2 DATA-DRIVEN INTERPOLATION IN THE LOEWNER FRAMEWORK

TheLoewner framework [1] is an effective and establishedmethodology that uses only input and output data, that is, trans-
fer function measurements or evaluations, to find a surrogate model, which interpolates the transfer function of the
original system Equation 2, and provides a realization of this interpolant as a state-space system. The general procedure
is summarized, following [8].
Given 𝑁 measurements 𝐇𝑘 ∈ ℂ𝑝×𝑚, 𝑘 = 1,… ,𝑁, of the transfer function at some locations 𝑠𝑘 ∈ ℂ, the data are

partitioned into two disjoint sets:{
(𝜆𝑖, 𝐫𝑖,𝐰𝑖), where 𝜆𝑖 = 𝑠𝑖, 𝐰𝑖 = 𝐇𝑖𝐫𝑖, 𝑖 = {1, … , 𝜌},(
𝜇𝑗, 𝓵𝑗, 𝐯𝑗

)
, where 𝜇𝑗 = 𝑠𝜌+𝑗, 𝐯

𝖧
𝑗
= 𝓵

𝖧
𝑗 𝐇𝜌+𝑗, 𝑗 = {1, … , 𝜈},

with 𝑁 = 𝜌 + 𝜈 and right and left tangential directions 𝐫𝑖, 𝓵𝑗 . For numerical reasons, it is often beneficial to partition the
data in an alternating way. The partitioned data are now arranged in the Loewner and shifted Loewner matrices 𝕃 and 𝕃𝜎
given by

𝕃(𝑖,𝑗) =
𝒗𝑖𝒓𝑗 − 𝓵𝑖𝒘𝑗

𝜇𝑖 − 𝜆𝑗
, 𝕃

(𝑖,𝑗)
𝜎 =

𝜇𝑖𝒗𝑖𝒓𝑗 − 𝜆𝑗𝓵𝑖𝒘𝑗

𝜇𝑖 − 𝜆𝑗
. (3)

If the matrix pencil (𝕃𝜎, 𝕃) is regular, 𝐇𝑟(𝑧) = 𝕎(𝕃𝜎 − 𝑧𝕃)−1𝕍 tangentially interpolates the given data, such that
𝐇𝑟(𝜆𝑖)𝐫𝑖 = 𝐰𝑖, 𝐥

𝖧
𝑗
𝐇𝑟(𝜇𝑗) = 𝐯𝖧

𝑗
. A state-space realization of the surrogate is then given by

𝐄𝕃 = −𝕃, 𝐀𝕃 = −𝕃𝜎, 𝐁𝕃 = 𝕍 =
[
𝐯𝖧
1
, … , 𝐯𝖧𝜈

]𝖧
, 𝐂𝕃 = 𝕎 =

[
𝐰1,… ,𝐰𝜌

]
. (4)
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In practical applications (when processing a fairly large number of measurements), the pencil (𝕃𝜎, 𝕃) is typically singular
or simply too large, so a post-processing step is required for the Loewner model Equation 4. Performing a singular value
decomposition (SVD) of the pencil extracts the dominant features and removes inherent redundancies in the data. The
left (𝒀) and right (𝑿) projection matrices are taken from the truncated SVDs

[𝕃 𝕃𝑠] ≈ 𝒀𝑺
(1)
𝑟 𝑿̃𝖧,

[
𝕃

𝕃𝑠

]
≈ 𝒀̃𝑺

(2)
𝑟 𝑿𝖧, (5)

where 𝑺(1)𝑟 , 𝑺(2)𝑟 ∈ ℝ𝑟×𝑟, 𝒀 ∈ ℂ𝜌×𝑟, 𝑿 ∈ ℂ𝜈×𝑟, 𝒀̃ ∈ ℂ2𝜈×𝑟, 𝑿̃ ∈ ℂ𝑟×2𝜌. The truncation index 𝑟 can, for example, be chosen
as the numerical rank (based on a tolerance value 𝜏 > 0). The projected Loewner system is then given by

𝑬𝕃 = 𝒀𝖧𝑬𝕃𝑿, 𝑨𝕃 = 𝒀𝖧𝑨𝕃𝑿, 𝑩𝕃 = 𝒀𝖧𝑩𝕃, 𝑪𝕃 = 𝑪𝕃𝑿. (6)

3 ONE-SIDED TANGENTIAL INTERPOLATION AND ITS BARYCENTRIC FORMS

Assume, we want to interpolate the transfer function at 𝑘 interpolation points, that is, 𝜆1, … , 𝜆𝑘 . In what follows, the
tangential directional vectors 𝒓𝑖 ∈ ℂ𝑚 for 1 ≤ 𝑖 ≤ 𝑘 are included explicitly—this will be used to lower the dimension
of the computed realizations. As opposed to full-matrix element-wise interpolation, we employ tangential interpola-
tion. Note that the approach is equivalent to the full-matrix case, if the tangential directions are chosen as identity
matrices.
We introduce the generalized reachability matrix with tangential directions, as

 =
[
(𝜆1𝑰 − 𝑨)−1𝑩𝒓1 (𝜆2𝑰 − 𝑨)

−1
𝑩𝒓2 ⋯ (𝜆𝑘𝑰 − 𝑨)

−1
𝑩𝒓𝑘

]
∈ ℂ𝑛×𝑘, (7)

corresponding to enforcing explicit interpolation, that is, matching of the following measurements:

𝑯(𝜆1)𝒓1, 𝑯(𝜆2)𝒓2, … ,𝑯(𝜆𝑘)𝒓𝑘. (8)

Here, the tangential vectors 𝒓𝑖 ∈ ℂ𝑚×1 are the so-called “tangential directions.” The matrix  ∈ ℂ𝑛×𝑘 solves a lin-
ear Sylvester equation 𝑨 + 𝑩𝑹 = 𝚲, where the matrix pair (𝚲, 𝑹) explicitly determines the interpolation conditions
enforced, that is, they are written as follows: 𝚲 = diag(𝜆1, … , 𝜆𝑘) ∈ ℂ𝑘×𝑘, 𝑹 =

[
𝒓1 ⋯ 𝒓𝑘

]
∈ ℂ𝑚×𝑘.

Additionally, we consider so-called weight vectors 𝒘𝑖 ∈ ℂ𝑚 for all 1 ≤ 𝑖 ≤ 𝑘. For the moment, their entries will be
considered as free parameters. As it will become evident in the subsequent sections, fixing themwill be done in accordance
with accommodating additional tangential interpolation conditions.
One-sided parametric realization: we show that an LTI parameterizedmodel of dimension 𝑟 = 𝑘 can be constructed,

having 𝑘𝑚 degrees of freedom, to enforce one-sided interpolation in a realization-free manner. This means that no access
to matrices 𝑨,𝑩, and 𝑪 is required. The free parameters are given by the entries of matrix 𝑩̂ stored in the weight vectors
𝒘̂𝑖 ’s.

Lemma 3.1. The transfer function of the reduced-order model (ROM) described by matrices above:

𝑨̂ = 𝚲 − 𝑩̂𝑹 ∈ ℝ𝑘×𝑘, 𝑩̂ =
⎡⎢⎢⎣
𝒘̂𝑇
1

⋮

𝒘̂𝑇
𝑘

⎤⎥⎥⎦ ∈ ℝ𝑘×𝑚, 𝑪̂ = 𝑪 =
[
𝑯(𝜆1)𝒓1 ⋯ 𝑯(𝜆𝑘)𝒓𝑘

]
∈ ℝ𝑝×𝑘, (9)

given by:

𝑯̂(𝑠) = 𝑪̂(𝑠𝑰 − 𝑨̂)
−1
𝑩̂ = 𝑪̂(𝑠𝑰 − 𝚲 + 𝑩̂𝑹)

−1
𝑩̂, (10)
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satisfies the following tangential interpolation conditions, with respect to the data in Equation 8, corresponding to the original
system:

𝑯̂(𝜆1)𝒓1 = 𝑯(𝜆1)𝒓1, 𝑯̂(𝜆2)𝒓2 = 𝑯(𝜆2)𝒓2, … , 𝑯̂(𝜆𝑘)𝒓𝑘 = 𝑯(𝜆𝑘)𝒓𝑘. (11)

Proof. The proof is quite straightforward, and it is based on a simple result. Let 1 ≤ 𝑖 ≤ 𝑘. Then, by substituting 𝑠 with 𝜆𝑖 ,
and by multiplying the resolvent 𝑠𝑰 − 𝑨̂ with the 𝑖th unit vector 𝒆𝑖 from the right, we can write that:

(𝜆𝑖𝑰 − 𝚲 + 𝑩̂𝑹)𝒆𝑖 = 𝑩̂𝒓𝑖 ⇒ (𝜆𝑖𝑰 − 𝚲 + 𝑩̂𝑹)
−1
𝑩̂𝒓𝑖 = 𝒆𝑖. (12)

Finally, by multiplying the above equality with 𝑪̂ to the left, we obtain that:

𝑪̂(𝜆𝑖𝑰 − 𝚲 + 𝑩̂𝑹)
−1
𝑩̂𝒓𝑖 = 𝑪̂𝒆𝑖 = 𝑯(𝜆𝑖)𝒓𝑖 ⇒ 𝑯̂(𝜆𝑖)𝒓𝑖 = 𝑯(𝜆𝑖)𝒓𝑖. (13)

□

Next, we show how to express the transfer function of the parameterized model that satisfies the 𝑘 right interpola-
tion conditions above, in a barycentric format. This is a necessary step for extending the classical AAA algorithm, to the
tangential directions format, that is, in developing our tangential AAA algorithm.

Lemma 3.2. With 𝚲𝑠 = 𝑠𝑰𝑘 − 𝚲, the transfer function Equation 10 of the one-sided interpolatory ROM in Equation 9, can
be written in barycentric form as:

𝑯̂(𝑠) = 𝑪̂𝚲−1
𝑠 𝑩̂

(
𝑰𝑚 + 𝑹𝚲−1

𝑠 𝑩̂
)−1

=

(
𝑘∑
𝑖=1

𝑯(𝜆𝑖)𝒓𝑖𝒘̂
𝑇
𝑖

𝑠 − 𝜆𝑖

)(
𝑰𝑚 +

𝑘∑
𝑖=1

𝒓𝑖𝒘̂
𝑇
𝑖

𝑠 − 𝜆𝑖

)−1

. (14)

Proof. To formally prove this result, we will make use of the Sherman–Morrison–Woodbury matrix inversion formula
(e.g., [9])

(
𝑴̂ + 𝑼̂𝑽̂

)−1
= 𝑴̂−1 − 𝑴̂−1𝑼̂

(
𝑰𝑘 + 𝑽̂𝑴̂−1𝑼̂

)−1
𝑽̂𝑴̂−1. (15)

The particular structure of the ROM allows the resolvent 𝑠𝑰𝑘 − 𝑨̂ to be rewritten as follows:

𝑨̂ = 𝚲 − 𝑩̂𝑹 ⇒ 𝑠𝑰𝑘 − 𝑨̂ = 𝑠𝑰𝑘 − 𝚲 + 𝑩̂𝑹 = 𝑠𝑰𝑘 − 𝚲 + 𝑩̂𝑹. (16)

Using Equation 15, the transfer function 𝑯̂(𝑠) is rewritten as:

𝑯̂(𝑠) = 𝑪̂
(
𝑠𝑰𝑘 − 𝑨̂

)−1
𝑩̂ = 𝑪̂

(
𝚲𝑠 + 𝑩̂𝑹

)−1
𝑩̂

= 𝑪̂𝚲−1
𝑠 𝑩̂ − 𝑪̂𝚲−1

𝑠 𝑩̂
(
𝑰𝑚 + 𝑹𝚲−1

𝑠 𝑩̂
)−1

𝑹𝚲−1
𝑠 𝑩̂

= 𝑪̂𝚲−1
𝑠 𝑩̂ − 𝑪̂𝚲−1

𝑠 𝑩̂
(
𝑰𝑚 + 𝑿̂

)−1
𝑿̂

= 𝑪̂𝚲−1
𝑠 𝑩̂

[
𝑰𝑚 −

(
𝑰𝑚 + 𝑿̂

)−1
𝑿̂
]
= 𝑪̂𝚲−1

𝑠 𝑩̂
(
𝑰𝑚 + 𝑿̂

)−1
,

(17)

where 𝑿̂ = 𝑹𝚲−1
𝑠 𝑩̂. Hence, the transfer function 𝑯̂(𝑠) is explicitly written in the required format, that is:

𝑯̂(𝑠) = 𝑪̂𝚲−1
𝑠 𝑩̂

(
𝑰𝑚 + 𝑹𝚲−1

𝑠 𝑩̂
)−1

. (18)
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It follows that

𝑪̂𝚲−1
𝑠 𝑩̂ =

[
𝑯(𝜆1)𝒓1(𝑠 − 𝜆1)

−1
⋯ 𝑯(𝜆𝑘)𝒓𝑘(𝑠 − 𝜆𝑘)

−1
] ⎡⎢⎢⎣
𝒘̂𝑇
1

⋮

𝒘̂𝑇
𝑘

⎤⎥⎥⎦ =
𝑘∑
𝑖=1

𝑯(𝜆𝑖)𝒓𝑖𝒘̂
𝑇
𝑖

𝑠 − 𝜆𝑖
. (19)

Next, we have that

(
𝑰𝑚 + 𝑹𝚲−1

𝑠 𝑩̂
)−1

=

⎛⎜⎜⎜⎝𝑰𝑚 +
[
𝒓1 ⋯ 𝒓𝑘

] ⎡⎢⎢⎣
𝑠 − 𝜆1 0 0

0 ⋱ 0

0 0 𝑠 − 𝜆𝑘

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

𝒘̂𝑇
1

⋮

𝒘̂𝑇
𝑘

⎤⎥⎥⎦
⎞⎟⎟⎟⎠
−1

=

(
𝑰𝑚 +

𝑘∑
𝑖=1

𝒓𝑖𝒘̂
𝑇
𝑖

𝑠 − 𝜆𝑖

)−1

. (20)

Putting together the last three identities proves Equation 14. □

4 THE TANGENTIAL AAA ALGORITHM: tAAA

The steps depicted in what follows go along the lines of the classical AAA algorithm and its block variant. Therefore, the
proposed algorithm inherits the greedy structure of AAA, but we modify the least-squares problem, such that the new
barycentric form and the vector-valued weights𝒘𝑖 are used. In this direction, assume we want to (approximately) enforce
ℎ extra left tangential interpolation conditions given by:

𝓵
𝖳
1𝑯̂(𝜇1) = 𝓵

𝖳
1𝑯(𝜇1), 𝓵

𝖳
2𝑯̂(𝜇2) = 𝓵

𝖳
2𝑯(𝜇2), … , 𝓵

𝖳
ℎ𝑯̂(𝜇ℎ) = 𝓵

𝖳
ℎ𝑯(𝜇ℎ). (21)

For any value of 𝑗, so that 1 ≤ 𝑗 ≤ ℎ, we will use the barycentric formula of 𝑯̂(𝑠) in Equation 14, in order to formulate
equality constraints that will lead to solving a least-squares problem. Hence, we can write:

𝓵
𝖳
𝑗𝑯̂(𝜇𝑗) = 𝓵

𝖳
𝑗𝑯(𝜇𝑗) ⇒ 𝓵

𝖳
𝑗

(
𝑘∑
𝑖=1

𝑯(𝜆𝑖)𝒓𝑖𝒘̂
𝖳
𝑖

𝜇𝑗 − 𝜆𝑖

)(
𝑰𝑚 +

𝑘∑
𝑖=1

𝒓𝑖𝒘̂
𝖳
𝑖

𝜇𝑗 − 𝜆𝑖

)−1

= 𝓵
𝖳
𝑗𝑯(𝜇𝑗)

⇒ 𝓵
𝖳
𝑗

(
𝑘∑
𝑖=1

𝑯(𝜆𝑖)𝒓𝑖𝒘̂
𝖳
𝑖

𝜇𝑗 − 𝜆𝑖

)
= 𝓵

𝖳
𝑗𝑯(𝜇𝑗)

(
𝑰𝑚 +

𝑘∑
𝑖=1

𝒓𝑖𝒘̂
𝖳
𝑖

𝜇𝑗 − 𝜆𝑖

)

⇒

(
𝑘∑
𝑖=1

𝓵
𝖳
𝑗(𝑯(𝜇𝑗) − 𝑯(𝜆𝑖))𝒓𝑖

𝜇𝑗 − 𝜆𝑖

)
𝒘̂𝖳
𝑖
= −𝓵

𝖳
𝑗𝑯(𝜇𝑗).

(22)

Next, introduce the following (quasi) Loewner matrix 𝕃 ∈ ℂℎ×𝑘, and also the data matrix 𝒁̂ ∈ ℂℎ×𝑚 containing the left
tangentially interpolated data, and the matrix of variables 𝑩̂ ∈ ℂ𝑘×𝑚 (previously defined above):

(𝕃)𝑗,𝑖 =
𝓵
𝖳
𝑗(𝑯(𝜇𝑗) − 𝑯(𝜆𝑖))𝒓𝑖

𝜇𝑗 − 𝜆𝑖
, 𝑭̂ =

⎡⎢⎢⎢⎣
𝓵
𝖳
1𝑯(𝜇1)

⋮

𝓵
𝖳
ℎ𝑯(𝜇ℎ)

⎤⎥⎥⎥⎦ ∈ ℂℎ×𝑚, 𝑩̂ =
⎡⎢⎢⎣
𝒘̂𝖳
1

⋮

𝒘̂𝖳
𝑘

⎤⎥⎥⎦ ∈ ℂ𝑘×𝑚. (23)

Lemma 4.1. By imposing the extra ℎ interpolation conditions in Equation (22), we need to solve the following linear system
of ℎ equations in 𝑘𝑚 variables written in matrix format, that is, 𝕃𝑩̂ = −𝑭̂.

Remark 4.2. After solving the system of equations above, for matrix 𝑩̂, we put together the realization of the ratio-
nal interpolant as in Equation 9. As in the single-input single-output (SISO) case, we need to impose that ℎ ≫ 𝑘𝑚, so
that the Loewner matrix in Equation 23 has more rows than columns. Hence, the system of equations will be solved
only approximately.
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ALGORITHM 1 The tangential AAA algorithm, tAAA.

Require: A (discrete) set of sample points Γ ⊂ ℂ with𝑁 points, function𝑯(𝑠) (or the evaluations of𝑯(𝑠) on the set Γ, i.e., the sample values),
left and right tangential directions {𝓵𝑖}

𝑁

𝑖=1 ∈ ℂ𝑝 and {𝒓𝑖}
𝑁

𝑖=1 ∈ ℂ𝑚, and an error tolerance 𝜖 > 0.
Ensure: A rational approximant 𝑹(𝑠) of order (𝑛 − 1, 𝑛) displayed in a barycentric form, and an equivalent dynamical system Σ in state space
form.
1: Initialize 𝑗 = 1, Γ(1) ← Γ, and 𝑹0(𝑠) ← 𝑁−1

∑𝑁

𝑖=1
𝑯(𝛾𝑖).

2: while ‖𝑯(𝑠) − 𝑹𝑗−1(𝑠)‖ > 𝜖 do
3: Select a point 𝑧𝑗 ∈ Γ(𝑗) for which ‖𝒉(𝑠) − 𝑹𝑗−1(𝑠)‖ attains a maximal value, given:

𝑹𝑗−1(𝑠) ∶=
⎛⎜⎜⎝
𝑗−1∑
𝑘=0

𝑯𝑘𝒓𝑘𝒘
(𝑗−1)

𝑘

𝖳

𝑠 − 𝑧𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝𝑰 +

𝑗−1∑
𝑘=0

𝒓𝑘𝒘
(𝑗−1)

𝑘

𝖳

𝑠 − 𝑧𝑘

⎞⎟⎟⎠
−1

.

4: if ‖𝑯(𝑧𝑗) − 𝑹𝑗−1(𝑧𝑗)‖ ≤ 𝜀 then
5: Return 𝑹𝑗−1.
6: else
7: 𝑯𝑗 ← 𝑯(𝑧𝑗) and Γ(𝑗+1) ← Γ(𝑗) ⧵ {𝑧𝑗}.
8: end if
9: Find the weights𝑾(𝑗) = [𝒘

(𝑗)

1 , … ,𝒘
(𝑗)

𝑗
] by solving a least squares problem over 𝑧 ∈ Γ(𝑗+1)

𝑗∑
𝑘=0

𝓵
𝖳
𝑘𝑯(𝑠)

𝒓𝑘𝒘
(𝑗)

𝑘

𝖳

𝑠 − 𝑧𝑘
≈

𝑗∑
𝑘=0

𝓵
𝖳
𝑘𝑯𝑘

𝒓𝑘𝒘
(𝑗)

𝑘

𝖳

𝑠 − 𝑧𝑘
⇔

( 𝑗∑
𝑘=0

𝓵
𝖳
𝑘𝑯(𝑠)𝒓𝑘 − 𝓵

𝖳
𝑘𝑯𝑘𝒓𝑘

𝑠 − 𝑧𝑘

)
𝒘

(𝑗)

𝑘

𝖳

≈ 0 ⇔ 𝕃(𝑗)𝑾(𝑗) = ℍ,

where ℍ = [𝑯1, … ,𝑯𝑗]
𝖳. The weights are obtained by solving𝑾(𝑗) = 𝕃†ℍ, where ⋅† denotes the pseudo-inverse.

10: 𝑗 ← 𝑗 + 1.
11: end while

The resulting method in algorithm form is summarized in1.

5 NUMERICAL EXPERIMENTS

In the following, we demonstrate the methods discussed above by applying them on two benchmark examples available
from the MOR-Wiki.1 We first consider a MIMO system with a moderate amount of inputs and outputs to be able to com-
pare tAAA to bAAA, the block variant of AAA from [6]. We also compute surrogate models using the Loewner framework
in combination with an SVD (SVD-LF), as outlined in Section 2. The full potential of the tangential approach is after-
ward shown by applying it to compute a surrogate model for a dynamical system with 𝑚 = 𝑝 = 89 inputs and outputs.
The numerical experiments have been conducted on a laptop equipped with an AMD Ryzen 7 PRO 5850U and 12 GB
RAM running Linux Mint 21 as operating system. All algorithms have been implemented and run with MATLAB R2021b
Update 2 (9.11.0.1837725).

5.1 International Space Station

This system models the structural response of the Russian Service Module of the International Space Station (ISS) [10].
The model has 𝑛 = 270 states,𝑚 = 3 inputs, and 𝑝 = 3 outputs. The dataset used for the computations contains transfer
function measurements at 400 logarithmically distributed points in the range 𝜔 = [10−1, 102] ⋅ 𝔦. We employ tAAA, bAAA,
and SVD-LF to compute real-valued surrogate models with order 𝑟 = 60 each. The transfer functions of the original model
and its surrogates are given in Figure 1a, the corresponding point-wise relative errors are plotted in Figure 1b.

1 http://modelreduction.org
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(A) (B)

F IGURE 1 Sigma plots of the transfer functions and relative errors of reduced-order models of the ISS model. ISS, International Space
Station.

(A) (B)

F IGURE 2 Time responses and corresponding relative errors of surrogate models approximating the machine tool model.

All methods yield models with comparable accuracy, while the model obtained from SVD-LF has the lowest error and
the model obtained from bAAA is least accurate. The slightly better accuracy of SVD-LF could be expected, as the SVD step
considers all available data at once, while for the AAA variants, the iterative nature adds individual data points one by
one.

5.2 Machine tool model

We now consider the model of a generic 3-axis machine tool with time-varying coupling conditions. Using a technique
from [11], the coupling can be reformulated to a superposition of precomputed input and output mappings and therefore
the model can be formulated as an LTI dynamical system. The model consists of two components (𝑛1 = 91181,𝑚1 = 89,
𝑝1 = 89; 𝑛2 = 74392,𝑚2 = 8, 𝑝2 = 8), which move relative to each other. More details about the system and the modeling
process can be found in [12]. Due to the high number of inputs and outputs in the first subsystem, bAAA cannot be applied
here. The dataset used as input for tAAA and SVD-LF consists of the sampled transfer function at 200 logarithmically
distributed frequencies in 𝜔 = [1 × 10−6, 1 × 10−2] ⋅ 𝔦. We set the tolerance for tAAA to 𝜖 = 1 × 10−6 and truncate all states
of the system obtained from the Loewner framework that correspond to singular values 𝜎 < 𝜎max ⋅ 10

−14. The surrogate
model is investigated in the time domain, so all unstable poles have to be truncated in a post-processing step [12, 13].
The resulting models are of orders 𝑟tAAA

1
= 157, 𝑟tAAA

2
= 117 for tAAA, and 𝑟SVD-LF

1
= 112, 𝑟SVD-LF

2
= 69 for SVD-LF. The time

responses of the original system and the two reduced-order models are given in Figure 2a, the corresponding relative
errors are plotted in Figure 2b.
Both surrogate models approximate the original system with acceptable accuracy. The model computed with tAAA

approximates the cooling phase of the system (starting after 600 s) slightly better than SVD-LF.
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6 CONCLUSIONS

In this paper, we proposed tAAA, a modification of the AAA algorithm that incorporates ideas from tangential interpo-
lation. This extends the capabilities of AAA-like methods to the interpolation of matrix functions of relatively large size.
In the context of this work, we used this property to compute surrogate models of multi-input, multi-output (MIMO)
dynamical systems with many inputs and outputs. We demonstrated the versatility and effectiveness of the new method
by comparing it to the classic Loewner framework and to a block variant of AAA. tAAA shows similar and in some cases
even superior accuracy and can be applied in cases where a block-based strategy is not applicable.
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