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Abstract

The electrical and computational properties of neurons in our brains are determined by a
rich repertoire of membrane-spanning ion channels and elaborate dendritic trees. However,
the precise reason for this inherent complexity remains unknown, given that simpler models
with fewer ion channels are also able to functionally reproduce the behaviour of some neu-
rons. Here, we stochastically varied the ion channel densities of a biophysically detailed
dentate gyrus granule cell model to produce a large population of putative granule cells,
comparing those with all 15 original ion channels to their reduced but functional counterparts
containing only 5 ion channels. Strikingly, valid parameter combinations in the full models
were dramatically more frequent at ~6% vs. ~1% in the simpler model. The full models were
also more stable in the face of perturbations to channel expression levels. Scaling up the
numbers of ion channels artificially in the reduced models recovered these advantages con-
firming the key contribution of the actual number of ion channel types. We conclude that the
diversity of ion channels gives a neuron greater flexibility and robustness to achieve a target
excitability.

Author summary

Over the course of billions of years, evolution has led to a wide variety of biological sys-
tems. The emergence of the more complex among these seems surprising in the light of
the high demands of searching for viable solutions in a correspondingly high-dimensional
parameter space. In realistic neuron models with their inherently complex ion channel
composition, we find a surprisingly large number of viable solutions when selecting
parameters randomly. This effect is strongly reduced in models with fewer ion channel
types but is recovered when inserting additional artificial ion channels. Because concepts
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how such a multi-objective optimisation can be achieved in the corresponding high-dimen-

sional parameter space. Here we explore the counter-intuitive hypothesis that increasing the
number of mechanisms—i.e. increasing the biological complexity—potentially helps systems
to evolve more quickly, easily, and efficiently towards satisfying a large number of objectives.

Neurons are a good example of complex cells, typically exhibiting a great diversity in the
expression of ion channels. The channel parameters must be tuned to cooperatively generate
multiple features of neuronal spiking behaviour. A palette of such spiking features has been
successfully used in computational biophysical neuron models for multi-objective optimisa-
tion (MOO) using genetic algorithms [1]. Mammalian neurons contain a large variety of ion
channel types in their membrane [2] producing a wide range of possible spiking mechanisms
with varying temporal dynamics and excitabilities [3]. Interestingly, a number of these ion
channel variants exhibit overlapping functional properties [2, 4-9]. A large body of literature
has explored the reason for this high diversity and partial degeneracy [10-14]. However, it
remains unclear how the diversity of ion channel types is related to the tuning of their parame-
ters in the context of robust and flexible neuronal behaviour.

Neuronal computation relies on the morphology as well as on the diversity and distribution
of ion channels in the membrane of the dendritic tree, the soma, and the axon initial segment.
Even small changes in the distribution of ion channels can change the activity in neurons dras-
tically [15]. Large differences in experimental measurements have been observed from cell to
cell, day to day, and animal to animal in data from the same classes of cells [6, 10, 16-20]. The
expression levels of these ion channel types can vary several-fold across neurons of a defined
type [6, 10, 11, 16, 17, 19]. However, many detailed biophysical models of single cells ignore
this variability in electrophysiological data and search for a fixed set of parameters that repli-
cates an average behaviour of a particular cell type [10].

How can neurons manage to achieve a functional target activity with such a wide ion chan-
nel diversity? Using a spike-feature-based multi-objective approach, we generated large popu-
lation parameter sets of dentate granule cell (GC) models with different numbers of ion
channel types in order to investigate the potential advantages of ion channel diversity. We
then tested to which degree the different models could compensate for pathological channel
loss. Furthermore, we investigated differences in valid parameter sets, taking into account sto-
chastic fluctuations in channel-coding gene expression. Finally, we studied the stability of the
different models against ion channel alterations due to e.g. protein turnover. We found that in
all cases the complete GC model with all ion channel types was more robust, stable, and had
more valid parameter combinations than its reduced counterparts.

Results

We used a recently established multi-compartmental model comprising the 15 different volt-
age or calcium-dependent ion channels that were described in mouse GCs [23]. The model
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was specifically designed to reproduce the results not of a single experiment but of a large
series of experiments and was based on raw electrophysiology traces. Its parameters were fitted
to reproduce the experimental data for a number of different reconstructed (see example in
Fig 1A, Top, from [21]) and synthetic neuronal morphologies making the model robust within
the GC morphological space. Furthermore, the resulting model readily generalised to rat GCs
as well as to adult born mouse GCs (i.e. GCs from adult mouse neurogenesis) after incorporat-
ing the known changes in morphology and ion channel composition. The model can therefore
be considered to be robust and comprehensive. This makes it an experimentally validated tool
to study the impact of complex ion channel compositions on robustness of the spiking output.
To this end, we employed a population (also called “ensemble” or “database”) modelling
approach, which allowed us to explore the multidimensional parameter space with large popu-
lations of stochastically generated models [24-28].

The GC model cost function

First, we developed a cost function for an automated evaluation of the validity of diverse mod-
els, which differed in their ion channel combinations and densities. Since no quantitative data
exists on the particular expression of the various ion channels in individual GCs, some form of
fitting procedure of channel densities was required in the construction of the GC model. The
model consists of 27 conductance parameters, which precludes a comprehensive grid scan (as
in e.g. [29]) for parameter fitting due to the long computing time in a 27 dimensional parame-
ter space. The model has therefore previously been largely tuned manually with expert knowl-
edge from GC biology. To assess the quality of any individual set of parameters more
automatically, we designed a fitness function that quantified the distance to experimental spik-
ing data (see S1 Fig for experimental data, [30]) and was inspired by approaches used previ-
ously [1, 23, see Methods]. A number of different methods have been proposed to quantify the
quality of a set of parameters in relation to neuronal activity [15, 31-33]. While most studies
focus on reproducing an average electrophysiological activity pattern, we wanted to focus on
the distribution of valid parameter combinations in the GC model taking into account the var-
iability present in experimental data.

We therefore used a multi-objective fitness function based on spike features, which allowed
us to search for optimal trade-offs between different firing properties [1]. We extracted 9 differ-
ent spiking features from raw electrophysiology traces during a 200ms current clamp injection
with 50 and 90pA at the soma (Fig 1A, Bottom, see Methods). We then compared the values for
these features between the model and the experimental data. To generate a population of GC
model instances that reflected the full range of firing properties, we calculated the deviation
from the experimental mean in units of experimental standard deviation (SD) [1]. In order to
become a valid parameter combination in the GC model, the error value was required to be less
than two SDs away from the experimental average of each feature (Eq 4, see Methods).

A manual search for parameter sets fulfilling this requirement was very time-consuming
and could never be exhaustive. There are various automated parameter search methods, such
as gradient descent methods, genetic algorithms, simulated annealing, and stochastic search
methods, which make the search for parameters more efficient [31, 34-36]. To find a baseline
model with a valid parameter combination that fulfills the cost function, we decided to use suc-
cessive line minimizations in conjugate directions [37] in combination with random parame-
ter space exploration (see Methods). The fact that some of the 9 spike features that we are
optimising are correlated (e.g. Firing rate and ISI) did not cause a problem for the optimisation
procedure as it always tries to optimise the spiking feature that shows the strongest deviation
from the experimental data. This method also led to good parameter combinations within a
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Fig 1. Simplified as well as realistic complex ion conductance-based models capture multiple spiking features of real granule cells (GCs). A, (Top) 3D-
reconstructed mouse GC morphology used for our simulations [21]. (Bottom) Spike features used to calculate the multi-objective fitness of the GC model. B,
Membrane potential during 200ms lasting current clamp of 90pA. The coloured curves show the relative contribution of all implemented ion channels to the
total inward and outward current at each time step (during the second and third spike) as a percentage of the total current. The black filled curves illustrate
the total inward and outward currents on a logarithmic scale. This plot was inspired by [22]. C, Contribution of currents to total inward and outward current

in reduced models and models that compensate for the knock out of the BK (Left) and Cav22 (Right) channel. Similar visualisation and current injection
procedure as in B.

https://doi.org/10.1371/journal.pchi.1011212.g001
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few iteration steps when starting from random parameter sets for which the model deviated
from the experimental results. By combining random parameter exploration with successive
line minimisations in conjugate directions, parameter combinations could even be found
when starting from initial parameter sets for which the models produced no spikes at all (S2
Fig). Note that the optimisation algorithm was only used to generate the baseline models. The
populations of valid GC models were all generated based on the baseline models by uniformly
random sampling of the channel densities and subsequent counting of valid models.

Reduction of channel diversity

Electrophysiological signatures of neurons of the same class are often unique allowing a
loose classification of cell types by their electrophysiology. However, the spiking mechanisms
often include multiple ion channels with overlapping functionality to achieve these specific
spiking behaviours [2, 7, 9, 12, 38-40]. Thus, an important question is, how many channels
are functionally necessary for a given cell type. We addressed this question in GCs whose
membrane contains a large palette of voltage- and calcium-dependent conductances [23].
The compact activity together with the multitude of ion channels in the corresponding GC
model (Fig 1C) suggests that a reduction of channels without losing accurate model perfor-
mance might be possible. Therefore, we explored this possibility by incremental simplifica-
tion of the GC model. First, we reduced the number of voltage-dependent conductances in
the highly detailed multi-compartmental model of GCs by 6 channels (removing Cav12,
Cavl3, Cav32, Kvl1, Kv14, SK, Fig 1C, Leftmost). This left a total of 13 parameters when
expression in the different regions of the neuron are taken into account. Thereupon, we
gradually reduced the number of remaining channels to a minimum of 5 ion channels (9
total parameters, leaving only the leak channels pas, as well as Kir21, Na8st, BK and Cav22);
finding parameter combinations that satisfied our cost function using the search algorithm
(Fig 1C, Center left).

To visualise the contribution of individual currents to neuronal model activity, we
employed a recently developed method of plotting the time course of the relative contribution
of each ionic current [22]. Overall, as expected, the electrophysiological activity of the different
valid models in Fig 1C was similar (for overview, see S3 Fig). Despite the large variations in the
number of ion channels, the course of the total inward and outward current flow displayed
only slight changes between the three different baseline models (Fig 1B and 1C). Since GCs
have a relatively simple electrophysiological repertoire (nevertheless responsible for sophisti-
cated integration of excitatory and inhibitory information), a small number of ion channel
time constants was sufficient to generate adequate firing patterns. The presence of K* and
Ca®" channels with overlapping physiological functionality ensured that many of the channels
were not crucial for the maintenance of functional activity. Only the composition of the
inward and outward currents differed. In the 5-channel model, the calcium-sensitive potas-
sium channel (BK) took over the role that 8 different K™ conductances had shared in the non-
reduced model (Fig 1C). BK thereby became the only remaining K* channel overall. In inter-
action with the Ca®* conductances (Cav22), the BK channel was responsible for repolarising
the membrane potential following an action potential in the 5—channel model.

Recent experimental and theoretical studies demonstrated that neurons can compensate for
pathological changes such as channel loss, genetic overexpression, morphological changes or
increased input activity by up- and downregulation of the remaining ion channels [41-47].
This ability should be impaired in the reduced model where less redundancy exists. Indeed, we
found that blocking the BK or N-type Cav22 channels in the full model was readily rescued by
contributions from other channels (Fig 1C, Right). It is noticeable that the loss of the BK
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channel was compensated by a strong upregulation of another calcium-sensitive channel (SK),
as well as of voltage-dependent potassium channels (Kv 7.2/3, Kv 1.1, Kv 2.1, S4 Fig, Left). Nei-
ther loss of BK nor Cav22 could be compensated for in the reduced 5—channel model since it
had only one active gating mechanism per ion type. Even the 9—channel model was not able to
compensate for the pathological loss of Cav22 or BK. As expected, therefore, the full GC mod-
el’s diversity contributed to the model’s robustness with respect to the loss of specific ion chan-
nels through existing ion channel redundancies.

Random parameter tuning as a viable approach to selecting GC model

Even though some small changes in the ion channel expression level can already lead to drastic
changes in neuronal activity, several experimental studies observed that intrinsic properties of
nerve cells can vary considerably across neurons of the same type [10, 16-20]. Moreover, theo-
retical investigations demonstrated that indistinguishable network and single neuron activity
can be obtained from a large variety of model parameter settings [10, 11]. This raises the ques-
tion of whether the diversity of voltage- and calcium-dependent conductances has an effect on
the variability of valid parameter sets in the GC model that lead to realistic spiking activity.

In order to check this, we first generated 20,000 random model instances for each of the
three baseline models by uniformly sampling the individual conductance densities within a
range between 0x and 2x the value in the baseline model (all channel densities beside pas and
Kir 2.1 in S1-S3 Tables were sampled). As the ohmic relations between current and voltage
were consistent with experimental results in all cases (see S3(B) Fig), we did not change the
densities of the leak channel or the inward-rectifying Kir21 channel, which primarily contrib-
ute to the passive properties of the neuron. The population of GC models with valid parameter
combinations enabled us to calculate the Pearson’s correlation coefficient r for all pairs of con-
ductance density parameters. We found weak pairwise correlations indicating low dependen-
cies between each pair of channels and thus increasing the robustness of the model (S5 Fig).
Any correlation in the parameter space restricts the space of valid solutions to the hyperspace
constrained by the channel correlations. This reduces robustness as perturbations from valid
solutions that don’t follow the constraints given by the channel correlations end up showing
non-valid electrophysiological properties. If channels are independent there is more volume in
the parameter space that could be occupied by valid solutions. We made similar observations
when adding correlations to the parameter space of our toy model (see Results section “Toy
model points to law of large numbers”). It is likely that higher-order correlations are more
prevalent in the higher-dimensional models, allowing for more different solutions that com-
pensate for fluctuations in the expression of a single channel. The strongest pairwise correla-
tion was observed between the expression levels of the Na™ channel in the soma and in the AIS
(r=-0.95). The sodium channel is essential for spike initiation and its presence in different
regions of the GC suggests that compensatory mechanisms could simply be instantiated by
maintaining a balance between the same currents in different regions, which results in a signif-
icant anticorrelation. Interestingly, the reduced models showed stronger and different pairwise
correlations between the channels than the full model. This is because there are fewer mecha-
nisms to compensate the up- or down-regulation of a specific channel, and so the mechanisms
that do compensate for it must do so more strongly.

In our selection of random parameter combinations, we found valid models covering the
entire sample range of the majority of parameters (Fig 2). In all cases, the most constrained
parameter was the density of the 8—state Na* channel. This channel models the behaviour of
all Na™ conductances using a single maximum conductance parameter [21], so it is unsurpris-
ing that the neuron’s behaviour is more sensitive to changes in this maximum. In addition, the
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Fig 2. Valid parameter combinations in the fully complex model are well spread. (Top) Activity traces of 4
randomly picked valid parameter combinations in each of the GC models of different complexity. (Bottom) Coloured
dots illustrate conductance densities of the four valid parameter combinations shown in top traces. The grey violin
plots delimit the entire range covered by the valid parameter combinations. Conductances are weighted by the surface
area of the corresponding membrane regions.

https://doi.org/10.1371/journal.pchi.1011212.g002

reduction of channel diversity in the 5—channel model limited the variability of the calcium-
dependent potassium channel BK (Fig 2, Right). Surprisingly, the overall percentage of ran-
domly selected parameter combinations that were valid increased with the number of ion
channels (Fig 3A and 3B, ~0.7% with 5 channels (for 9 total parameters), ~3.3% with 9 chan-
nels (13 parameters), and ~ 5.7% with 15 channels (27 parameters)).

The distribution of voltage- and calcium-activated channels in cell membranes is under
continuous regulation [48-50]. On the one hand, the cell is subject to homeostatic regulation
maintaining its electrical activity despite changes in its environment and input. On the other
hand, the proteins are constantly exchanged during the lifetime of a cell. In order to investigate
the stability of the valid parameter combinations in the different models in face of parameter
perturbations due to e.g. protein exchange during the lifetime of a cell, we performed random
walks in the parameter space. Starting from a valid parameter set that accurately reproduced
the experimentally derived behaviour, we iteratively changed each parameter by random steps
between —5% and + 5% of the current parameter values (counting changes in all parameters as
one step). The random walk stopped as soon as the parameter combination became invalid,
i.e. the cost function for the resulting model increased beyond 2 standard deviations away
from experimental results. Interestingly, the average number of possible random parameter
changes before model failure increased with the number of ion channels in the models (Fig
30).

Toy model points to law of large numbers

As shown in the previous sections, we observed an increase in valid random parameter sets
when biophysical models of neurons became more complex. One possible explanation could
be the fact that the more complex models included different ion channels of a similar type.
Since some of these ion channels show very similar gating dynamics (see for example Cav22,
Cal2 and Cavl13, see Fig 1) their functional contributions may be partially redundant. A theo-
rem from probability theory, namely the law of large numbers can play a role under such
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https://doi.org/10.1371/journal.pcbi.1011212.9g003

circumstances. The law of large numbers states that increasing the number of samples
described by random variables (in our case ion channels of a similar type) will move the aver-
age over the samples closer to the expected mean value. Since in our case we sample conduc-
tances of similar ion channels, the average conductance would therefore converge towards the
starting parameter set that we know is functional.

In order to illustrate this we designed a simple toy model using random variables for each
parameter. Here, we represented each open parameter of the model by one random variable
with a homogeneous probability of taking any number between 0 and 2 corresponding to the
parameter ranges used in the neuronal model between 0x and 2x the default value (Fig 3D,
Bottommost). To keep things simple for explanatory purposes, we set the model outcome to be
the mean of the values of all separate random variables. This choice means that averaging the
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parameters of a set of valid toy models would lead to another valid toy model, a situation that
does not hold for complex neuronal models in general [10, see Methods section “Toy model”].

The law of large numbers predicts a decreasing variance of the mean value with an increas-
ing number of independent random variables as illustrated in the sketch at the bottom of Fig
3D. The central limit theorem in turn predicts a Gaussian distribution for this mean over a
broad range of different probability distributions for each random variable separately. In anal-
ogy to our neuronal modelling, we then constrained valid parameter combinations by a cost
function allowing a maximal distance of 0.015 from the mean value, i.e. 1, averaged over all
random variables. The toy model illustrates how increasing numbers of parameters can move
a system relatively closer to its target if this target is its mean (Fig 3D).

Even though no strong correlations were observed in the full model’s parameters (S5 Fig),
they are not entirely independent, and many experimental studies have observed correlations
in channel expression [19, 39, 51]. To test whether the law of large numbers can explain our
observations in the case of correlated ion channel expression we added positive correlations to
the parameters of our toy model. Adding positive correlations to the parameter space in the
toy model did not qualitatively change the results, but stronger positive correlations decreased
the proportion of valid solutions for a given number of parameters (S6(A) Fig). An important
observation here is that the constraint on functionality implies negative correlations between
the values of the individual random variables that make up valid points in the parameter space,
despite these variables being generated independently or with positive correlations. In fact,
under the toy model framework, the pairwise correlations within variables that produce valid
models were almost completely independent of any correlations used to generate the overall
population from which valid models are drawn (S6(B) Fig). The output correlations were
instead dependent on the number of variables, with higher numbers of variables leading to
weaker pairwise correlations. This result agrees with the finding of stronger pairwise correla-
tions between channel densities in the 5-channel model compared to the full compartmental
model (S5 Fig), and the mechanism, where there are fewer possible ways to compensate for
changes in a given variable and so the compensations that are possible are stronger, is similar.

Correlations and relationships between input parameters do not necessarily reduce the pro-
portion of valid solutions, however. The toy model can also be adapted to produce parameters
that are more uniformly distributed in space than would be expected from an independent
random process (see Methods). The ‘distributed’ toy model outperforms even the independent
model for any multidimensional parameter space and displays a similar relationship in
increasing the proportion of solutions with the number of parameters (S6 Fig). It is therefore
possible that helpful relationships between input parameters could be used by an evolved sys-
tem to further optimise the process of finding valid solutions to biological problems, but it is
hard to distinguish evidence of this process from that of a finished optimisation that conse-
quently imposes constraints on the relationships between its parameters as seen above.

The analogy between the toy model and the granule cell is helpful but limited since, in
contrast to the channels in the GC model, all variables in our toy model are functionally the
same. Moreover, the GC compartmental model applies complex nonlinear and dynamic
transformations of the starting parameter space, including distinct jumps in the cost function
when the model no longer produces action potentials, to reach the cost (or function) space;
in the toy model the parameter and function spaces are effectively indistinguishable. How-
ever, despite its simplicity, our simple toy model was able to qualitatively reproduce all
results from our GC model in Fig 3A-3C (Fig 3D). To bridge the gap between the simplest
case of the toy system and the full compartmental neuron, we added attributes of a complex
system to the toy model [52]. In particular, nonlinearities and random interactions between
components were introduced and applied iteratively (see Methods, Eq 4). These phenomena
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strengthened the effect of increasing parameter numbers on the proportion of valid solu-
tions, with more and higher-order relationships leading to more satisfactory models (S6 Fig).
The law of large numbers therefore provides a plausible explanation why a larger number of
random instances, even in the more complex neuron model, would more readily linger
around their target functionality.

Additional model robustness through artificial ion channel isoforms

We have shown that the electrophysiological behaviour of GCs can be maintained despite a
reduction of ion channel diversity from 15 channels to 5 channels. However, our results also
suggest that this loss of ion channels goes along with a decrease in stability, a loss of compensa-
tory opportunities, and a significant decrease in the valid model percentage within a rando-
mised sample. From our toy model based on probability theory we postulated that it might be
the mere number of ion channels that contribute to the increased robustness observed in the
full model rather than the particular ion channel composition present there. In order to vali-
date this hypothesis, we started from the reduced model and increased the number of ion
channels in an artificial way to check whether we could recover the robustness present in the
realistic full model.

In order to establish a quantitative relation between channel diversity and model stability in
such a way, we scaled up the 5—channel model’s diversity by adding more instances of the cal-
cium (Cav22) and potassium channels (BK) remaining in that model. These artificial isoforms
of the existing ion channels distinguished themselves from the original Cav22 and BK by ran-
domised time constants (within a two-fold range of the original parameters) to allow for differ-
ent dynamics through the new ion channel isoforms.

To examine the proportion of valid parameter combinations with increasing number of ion
channels, we created a multitude of functional GC models with up to 20 additional ion channel
isoforms (for 35 distinct channels in total). For each given number of ion channel isoforms, we
randomly sampled all conductance values in a two-fold range. Thereupon we selected the
three parameter combinations with the best fitness value for each number of ion channel iso-
forms and improved their performance by applying our search algorithm. We then followed
the same procedure as in Fig 3. Using this approach, the percentage of valid parameter combi-
nations steadily increased with the number of additional ion channel isoforms until reaching a
plateau between 15 and 20 additional ion channel isoforms, for a total of 105 to 140 additional
parameters (Fig 4A). To further generalise our findings in Fig 4A we have applied the same
procedure to a different neuronal model type, one simulating a CA1 pyramidal neuron [53, 54,
Fig 4B]. Viewed together, these results show the major contribution of ion channel diversity by
demonstrating that scaling up the numbers of ion channels artificially in the reduced models
leads to more frequent valid parameter combinations. This is in line with the law of large
numbers.

Discussion

We explored the complex landscape of valid parameter combinations in the parameter spaces
of a detailed multi-compartmental model of dentate GCs and its simplified versions with
reduced numbers of ion channels (Fig 1). We used a population modelling approach [12, 24-
26] to find multiple ion channel parameter combinations for models that successfully repro-
duced the electrophysiological data (Fig 2 and S1 Fig). We showed that the biologically realistic
GC model (full model) with many redundant ion channel types is more robust to ion channel
perturbations than valid models with reduced ion channel diversity.
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Fig 4. Artificial expansion of ion channel diversity recovers and enhances the proportion of valid parameter combinations in
the reduced 5-channel model. A, Populations of expanded dentate GC models with 0-20 added artificial ion channel isoforms. Left
panel, The plot shows the percentage of valid parameter combinations in a population of randomly sampled channel densities. Black
dots show the populations where all ion channels (including the 8-state Markov chain modelled Na+ channel) were sampled in a 0—
2 x range. Blue dots show the populations where only potassium and calcium channels were sampled in a 0—2 x range. Right panel,
Similar plot as in Fig 3B for the black models from the left panel. B, Similar overall analysis as in A but for a CA1 pyramidal cell

model [53].

https://doi.org/10.1371/journal.pcbi.1011212.9g004

Robustness through ion channel degeneracy in complex GC models

Most neurons contain more than a dozen different ion channels. While early computational
models implemented considerably fewer channels than known in biology, more and more
models exist that contain a realistic number of mechanisms e.g. [23, 55]. Although the different
potassium channels in mammalian cortical neurons differ genetically, some are remarkably
similar in their functional contribution to the electrophysiological activity of neurons [2, 40].
This functional similarity is often referred to as degeneracy [9] and is not a phenomenon
restricted to neurobiology [56, 57]. Depending on the computations a neuron should imple-
ment, its dynamics only need to cover certain relevant time scales, e.g. in the form of different
time constants of its gating variables [58]. Since five channels were sufficient to support realis-
tic voltage dynamics at relevant time scales, we were able to reduce the original variety of ion
channels without observing a significant loss in the performance of the model. In our study,
GCs with their compact electrophysiological repertoire did not require a large variety of ion
channels to reproduce their characteristic activity patterns. To replicate the 9 experimentally
derived spiking properties, the models required only one active channel of each of the different
subgroups of ion channels (one Na*-, one K*- and one Ca**-channel, as well as the leak chan-
nels; Fig 1C).

Experimental as well as theoretical studies from the last decades revealed that pharmacolog-
ical manipulations like the blockage or upregulation of intrinsic or synaptic mechanisms,
resulting in a pathological cellular activity on a short timescale, can be compensated by up-
and downregulation of the remaining conductances on a long timescale [17, 18, 39, 40, 43, 44,
47, 59]. Interestingly, not all manipulations can be compensated by mechanisms of homeo-
static regulation [60, 61], indicating differences in the capability of homeostatic compensation
between ion channels as well as types of neurons. As opposed to other studies using biophysi-
cally realistic mechanisms of homeostatic intrinsic plasticity based on calcium signals (13, 39,
62-65; see also 61), we decided to use a successive line minimisation in conjugated directions
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approach to investigate the large and complex parameter space of possible intrinsic compensa-
tions. A homeostatic mechanism based on a single feedback signal [13, 39] that has been sug-
gested to play a role in model robustness was not compatible with our model in our hands
since it consistently led to decreased ion channel degeneracy. This is in agreement with a
recent study [61] that provided new insights into the complex relationship between ion chan-
nel diversity and homeostatic co-regulation of ion channel densities. The study by [61] sug-
gested the necessity of more than one master feedback regulator (i.e. more regulators than just
global calcium) for homeostatic feedback loops, which must co-tune numerous degenerate
and pleiotropic ion channels to achieve multiple regulated functions or objectives (cf. 28, 66).
Viewed together, we believe that diversity and (multi-signal) feedback can act as independent
mechanisms to ensure viable and robust solutions to the multi-objective optimisation prob-
lems of neurons.

We demonstrated that the full GC model was capable of compensating the loss of any potas-
sium and calcium channels by up- and downregulation of the remaining ion channels (Fig
1C). In contrast, the different reduced models relied on the presence of certain indispensable
ion channels, without which they could not capture the main electrophysiological characteris-
tics of GCs. S4 Fig shows that there can be as much as a 20—fold variability in the density of
voltage-dependent ion channels. Experimental studies have observed variations of a similar
order of magnitude as a result of compensatory mechanisms [17]. The ability of these models
to compensate for losses of ion channels can be attributed to the overlapping or degenerate
physiological function of the present potassium and calcium channels [67].

The reduction of the diversity of gating mechanisms goes along with a loss of space to
manoeuvre in the process of achieving functional target activity [13, 40]. In case of a loss of the
BK channel, several potassium channels (see S4 Fig) were upregulated, and thus maintained
the functional behaviour of the cell. In line with the concept of degeneracy [1, 42], the overlap-
ping functionality of different channels enabled the neuron, depending on the given condi-
tions, to achieve a target spiking behaviour in a number of different ways.

In addition, we tested the stability of the differently reduced models against random param-
eter perturbations, in order to simulate putative protein exchange during the lifetime of a cell.
The ongoing protein replacement is one of the reasons for the continuous regulation of volt-
age- and calcium-dependent channels in cell membranes [39, 48, 49]. Although no homeo-
static tuning mechanism with dynamic feedback was implemented, valid parameter
combinations in the complete model were able to endure far more random parameter pertur-
bations while maintaining realistic activity than the ones in the reduced models (Fig 3C). This
is in agreement with experimental studies, which have shown that, although homeostatic tun-
ing rules can compensate for many perturbations and knock-outs of ion channels, not all
channel deletions and perturbations can be compensated for [60]. A challenge for future
experimental work will be to uncover the long-term effects of ion channel knock-outs in GCs
in order to find out whether our theoretical results of the outstanding robustness of GCs
against channel deletions can be observed in biology.

Random parameter selection as a viable fitting strategy for neurons

Like many biological processes, gene expression is a largely stochastic process resulting in con-
siderable heterogeneity of mRNA and protein levels [48, 49, 68]. This noise in gene expression
is one reason for the cell-to-cell variability. However, noise in gene expression could be harm-
ful for achieving valid parameter sets of ion channel expression during developmental matura-
tion or during pathological perturbations. Neurons are thought to target certain desired
subspaces in the output space (i.e. function space, e.g. defined by firing properties)
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corresponding to valid subspaces in the high-dimensional parameter space of ion channel
properties [28]. Our simulations show that the subspace around these target values in parame-
ter space tends to be more densely filled with valid model parameters than non-valid parame-
ters (Fig 3B), particularly in higher dimensions. Accordingly, despite fluctuations, high-
dimensional models are more likely to end up in functional subspaces. Even without the
implementation of homeostatic regulation processes, the chance of obtaining a valid ion chan-
nel expression level is relatively high. This implies that the degeneracy between ion channel
types and isoforms supports robust excitability profiles in neurons despite random fluctuations
in the expression of ion channels. Our computational analysis indicates that a complex high-
dimensional parameter space supports the stability of neuronal excitability against perturba-
tions that would push neurons into non-functional subspaces. The reason for this is that the
volume of valid solutions in the parameter space around a valid parameter set is larger in
higher-dimensional parameter spaces than in lower-dimensional ones. This in turn increases
the likelihood of neurons returning into functional subspaces by random ion channel parame-
ter adjustment.

An interesting extension would be to compare the efficiency of activity-dependent regula-
tion [39, 61, 65] implemented with single or multiple homeostatic error signals [61], with the
multi-objective optimisation [1, 28, 66, 69] that arises naturally from stochastically exploring
high-dimensional parameter spaces.

Due to the diversity of electrophysiological mechanisms, the cell is able to generate valid
electrophysiological activity by random selection of parameters with a high chance of success
despite stochastic fluctuations in the expression of channel-coding genes. We showed that
there was a clear relation between the number of intrinsic mechanisms and the chance to
obtain a valid set of parameters from a random sample around a valid point in parameter space
that produces functional activity in output space (Figs 3A, 3B and 4). Furthermore, we showed
that many other parameter combinations existed around such a functional point in the param-
eter space that fulfilled our criteria for functional activity. While in a random 0 — 2-fold sample
of the initial model, about ~ 5.7% of the parameter combinations showed valid GC activity,
this proportion decreased steadily to ~0.7% with a reduction of the model (Fig 3A). In the
closer surrounding of the baseline models this difference was even more obvious. While in the
unreduced model in the close neighbourhood of £20% of the initial parameter sets over 80% of
the models showed characteristic GC activity, in the heavily reduced model it was only about
30% (Fig 3B).

Similar to [15] and [7] we showed that near each functional point in the parameter space
many other parameter sets exist whose activity matches the activity of the original parameter set
(S7-S9 Figs). Instead of talking about parameter sets, one might rather speak about subspaces
that show functional behaviour. These subspaces can have different densities of parameter sets
showing characteristic electrophysiological activity. This depends to a great extent on the diver-
sity of the channels (Figs 3A, 3B and 4A, Left panel). Furthermore, different valid subspaces
with the same diversity differ in their density of valid solutions located in this subspace. In
order to be as robust as possible against perturbations and to simplify the process of parameter
fitting, it seems reasonable for a neuron to target as densely populated a subspace as possible.

Ion channel correlations and random expression

When analysing the conductance values of the different types of ion channels in the valid mod-
els, we observed that some pairs of ion channels shared significant correlations (S5 Fig, Red
squares). This is in line with experimental studies of cell-to-cell variations in ion channels
showing that some ion channels are co-expressed and might be co-regulated [19, 20, 51, 70-
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73]. Future large-scale analysis of channel expression in real populations of GCs might validate
the diversity of and correlations between expression levels in our population models.

In our simulations, the ion channel correlations arose from constraints on the resultant
functionality because our model-generating strategy sampled the ion conductance levels inde-
pendently. Although our population modelling was inspired by random noise in gene expres-
sion, it does not imply that random noise is the only or predominant source of cell-to-cell
variability in ion channel expression. Since the above mentioned experimental studies found
ion channel co-expression, it is likely that a great amount of the cell-to-cell variability in ion
channel expression is due to transcription regulatory mechanisms, and only to some extent to
the unreliable and noisy nature of gene expression mechanisms. Indeed, our toy model hinted
at ways in which relationships between levels of expression could further enhance the propor-
tion of functional neurons. Widespread ion channel co-variations might also potentially arise
from homeostatic feedback mechanisms (13, 39, 61, 65; see above). These observations and
models do not undermine our modelling strategy, but complement and extend our assump-
tion that some of the variability in ion channel expression is due to intrinsic noise in the
expression machinery.

Probabilistic toy model and law of large numbers

We have put forward the law of large numbers as a possible explanation for our observations
in the GC model. As a consequence of the law of large numbers, a model containing more ion
channels tends to exhibit a behaviour that is closer to its expected target behaviour (Fig 3).
This effect was not qualitatively affected by either positive or negative correlations between
components, or by the imposition of interactions and nonlinearities that would be expected in
a complex system such as a biological neuron [52]. Accordingly, we were able to recover the
amount of robustness observed in our full compartmental model when adding artificial ion
channel isoforms to the reduced model (Fig 4). This is a strong indicator that indeed the num-
ber of ion channels and not their specific composition or spanning of function space leads to
the effect that we observed.

However, this interpretation is not mutually exclusive to the complementary insight from
biophysical modelling that the 15-channel model is more robust than the 5-channel one due to
the increasing timescale and voltage coverage with the increasing number of ion channels (due
to the partial, but not complete, redundancy between similar ion channels). The abstract toy
model does not account for these two (time and voltage-related) mechanistic aspects but offers
an intuition for the impact of the number of ion channel instances and their stochastic varia-
tion. The increase in the number of random variables or their interactions in the toy model is
analogous to the increase in the number of random instances of different ion channels. The
main biological insight from the toy model is that if a neuron samples conductances of similar
ion channels around a valid point in parameter space, with the increasing number of channels
the average conductance will converge towards the valid parameter set that produces func-
tional behaviour despite the complexity of the interactions between channels or their
correlations.

In summary, both biophysical and toy models indicate that the large number of ion channel
subtypes and isoforms expressed by a neuronal type supports the tuning and robustness of the
electrophysiological phenotype.

Conclusions and outlook

Overall, our results suggest that the diversity of ion channels allows for increased robustness
and higher flexibility in finding a functionally valid solution in the complex parameter space of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011212  July 3, 2023 14/24


https://doi.org/10.1371/journal.pcbi.1011212

PLOS COMPUTATIONAL BIOLOGY Biological complexity facilitates tuning of the neuronal parameter space

aneuron’s conductances. It will be interesting to investigate whether our findings here trans-
late to other biologically complex systems, in which case they will most likely affect our general
understanding of how evolution deals with complex dynamics [74].

Materials and methods

All simulations were performed in Matlab 2017b (Mathworks, Natick, MA, USA). Single neu-
ron simulations were performed using T2N [23, www.treestoolbox.org/T2N], a Matlab inter-
face between the open source package TREES toolbox [75, 76, www.treestoolbox.org] and the
NEURON simulation environment [77, www.neuron.yale.edu]. Predefined functions from
TREES toolbox, T2N as well as additional custom Matlab code were used to generate and ana-
lyse the models.

The granule cell (GC) model

The GC model used in this study has been fully described in [23]. Briefly, the model was
designed to reproduce passive and active GC properties as determined by voltage and current
clamp experiments, dendritic patch recordings of bAPs, and intracellular calcium imaging. In
order to reduce the number of parameters and to speed up simulations we simplified the mor-
phology by deleting the artificially added axon. The loss of the axon was compensated by slight
changes of the maximum conductances in the axon initial segment (AIS). Since the HCN
channel in its original form had no influence on control GC activity, we did not take it into
account. The compartment-specific distributions of ion channels are shown in S1 Table.
Detailed descriptions of the individual ion channels can be found in [23]. We used a realistic
three-dimensional granule cell morphology from [21].

Stimulation protocols and cost function

Instead of using a single optimal error function, we decided to adopt a strategy that allows to
take into account several potentially important properties of GC activity. To get a first impres-
sion of the “goodness of a model”, we compared the experimental [30] and the model spiking-
properties following a 200ms current injection of 50 or 90pA. The stimulation protocol was as
follows: 50ms prerun without stimulation, followed by 200ms somatic current injection of 50
or 90pA followed by a 50ms long period without current injection.

We extracted the following 9 spiking properties (Fig 1A) from the raw traces of current
injections with 50 and 90pA:

1. Numbers of spikes fired within 200ms under current clamp.
2. Latency of first spike after stimulus onset in ms.

3. The voltage threshold was defined as the voltage at which the rate of change of membrane
potential exceeded 15,

4. Average amplitude of spikes.

5. The fast after hyperpolarisation (fAHP) amplitude was calculated as the voltage difference
between the spiking threshold and the minimum potential within 5ms after a spike.

6. Absolute value of fast after hyperpolarisation (FAHP) amplitude.
7. The action potential width was measured at half the height of the spike amplitude.

8. Interspike interval (ISI) in ms between the first and second spike during current clamp.
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9. The adaptation index AI was calculated in the following manner: Al = 1 — %’ where ISI;
is the first and ISI,,,; the last ISI.

The spiking features for any given parameter combination in the model were then com-
pared with the same experimentally derived spiking features [30] and expressed in units of
standard deviation. This approach allowed us to take into account the intrinsic variability of
each feature separately. The overall fitness F; of spike feature i was defined as:

|SFi_S_Fi‘ex|
=" g

iexp

where SF, , refers to the average value of the spike feature i and SD; ., to the standard devia-
tion of the spike feature i across all recorded GCs. The value of the spike feature of the corre-
sponding model for a given parameter combination was SF;. For a parameter combination to
be accepted as a valid combination, it was required to fulfil the following condition:

|SFi_§iexp| .
P = max T <2, fori=1,2,...,9 (2)

iexp
The value of the Pareto efficiency P corresponded to the fitness F; of the spiking feature SF;
that deviated most from the experimental average.

The search algorithm

To search for parameter sets that match our criteria for valid GC activity we combined random
sampling with successive line minimizations in conjugate directions [37]. Starting from a ran-
dom or given point in the parameter space, we evaluate the change of the cost function for
each dimension with two sample points to smooth the slopes. The algorithm evaluates the fit-
ness function in each dimension and moves in the direction of the steepest descent with
respect to the cost function. The sample points where calculated in steps of £5% of the corre-
sponding parameter value. This procedure was then repeated until the method converged to a
local minimum of the corresponding Pareto efficiency P (Eq 2). The successive line minimisa-
tion was done in conjugated directions, so that the successive minimisations were as indepen-
dent as possible. Theoretically, this ensured that the parameter search found a local minimum
of the target function P. For some initial parameter combinations, large areas of the parameter
space were completely flat (i.e. the gradient was zero). This was especially the case when the
initial models showed no spiking activity (S2 Fig). In this case, we increased the size of the iter-
ation steps consecutively by +5%. If still (after increasing the step size to +50%) no gradients
other than zero were found or the local minima did not fulfil the criteria of functional GC
excitability, we randomised the parameters in the next step in an iteratively increasing range
(from £10% of the corresponding parameter values in steps of £10% up to £50%). This
approach also helps us with the fact that some spiking features that we optimise have discrete
integer values (whose gradients are not smooth and finite). The search algorithm was used to
find the parameter settings of the reduced models. Starting from the full model (Fig 1C and
S1-S3 Tables), we gradually reduced the number of ion channels, starting with the channels
that influenced the cost function the least.

Diversity expansion

In order to generate models with controllable amounts of ion channels we used the reduced
5-channel model as a basis. We then produced multiple instances of each of the remaining
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potassium (BK) and calcium (Cav22) channels. Each artificial channel form obtained in this
way was assigned a randomised time constant, which was uniformly sampled between 0 x and
2 x the value in the original GC model, in order to obtain altered dynamics. Furthermore, we
randomised the conductances and applied the search algorithm to reproduce characteristic
GC activity to derive all base models with different complexities in Fig 4.

Toy model

We created a toy model to test whether the law of large numbers is a plausible explanation for
the phenomena we observed in the GC model. In order to mimic the distribution of function-
ally overlapping ion channel expressions in a population of GC models around a genetically
targeted functional set point we used randomly uniformly sampled variables between zero and
two (Fig 3D). A valid toy model is defined as having a smaller average deviation from the
mean (targeted value) than 0.015. By decreasing the sample range around the mean in steps of
0.1 down to a sample range between 0.9 and 1.1 we changed the intensity of fluctuations
around the target point (Fig 3D).

Golowasch et al., 2002 [10] showed that taking average parameter values over a set of valid
conductance-based neuronal models would typically produce invalid ‘average’ models, as the
valid models were constrained to a concave region of parameter space that did not contain the
mean. There is no direct discrepancy between this paper and our toy model, where averaging
is successful, as the toy model is constructed in such a way that the ‘average’ model would lie
within (and at the very centre of) the space of valid models. Averaging over valid solutions for
the full and reduced models (Fig 2) would, similarly to what Golowasch et al., 2002 [10] found,
not necessarily lead to valid solutions.

To expand the toy model to account for possible intrinsic correlations in the expression of
ion channels (S6 Fig), we used a Gaussian copula to impose a correlation structure on the ran-
dom variables with uniform marginals and specified pairwise correlations. For a desired posi-
tive pairwise correlation p in a system of » variables we generated an n x n correlation matrix
R with elements R;; = p if i # jand R;; = 1. If a random variable u = (uy, u, . . ., u,) and each
u; is independently uniformly distributed in the range [0, 1], then the correlated random vari-
able v with uniform marginals on [0, 1] is given by

V=0 (07 (1), @ (1), ..., 0 (1) (3)

where @y is the cumulative distribution function of a multivariate Gaussian distribution in n-
dimensions with mean 0 and covariance matrix R and @' is the inverse cumulative distribu-
tion function of a standard univariate Gaussian. Multiplying v by 2 maps it back to the same
space as the uncorrelated toy model.

As it is not possible to specify an arbitrary pairwise negative correlation for elements of a
high-dimensional vector, a different approach was necessary to generate ‘distributed’ systems
of variables. The algorithm used increases the mean distance between each variable and its
nearest neighbours. To begin, a random variable x; is chosen uniformly on the interval [0, 2].
If x;, > 2 — x;, then the next variable x, is chosen uniformly randomly from [0, x,), otherwise it
is chosen uniformly randomly from (x;, 2]. The next random variable is chosen uniformly ran-
domly from the largest interval between the (ordered) existing random variables and so on
until n variables have been chosen. The sum of a vector generated in this manner is typically
closer to n than for an uncorrelated vector of the same size (S6(C) Fig, dashed line).

To simply model interactions between components of the model and nonlinearities, as are
found in a complex system such as a biological cell, vectors of random variables are multiplied
by an interaction matrix and passed through a sigmoidal activation function. Concretely, let u
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be an 7 x 1 uniform random vector with elements drawn from the interval [0, 2], M and M be

n x n random matrices each with elements drawn uniformly from the interval [-1, 1] and nor-

2

e be an element-

malised columnwise to make M and M left-stochastic, and S(x) = —1 +

. . . . 1]
wise sigmoid function on a vector x. Then an 0 h_ order vector Vo, a 15 order vector vy, and a
2™ order vector v, are given respectively by

vo=Smu) , v,=SM.S) , v,= s(M.s(M.S(u))) (4)

Increasing the order of the interactions and the number of nonlinearities can lead to a
higher proportion of valid models (S6(D) Fig).

Hyperplanes

To learn more about the relationship of the set of valid models, we created linear combinations
of our best solutions. This method was adopted from [15] and allowed us to better estimate
whether the solutions lie on a common low-dimensional manifold within the high-dimen-
sional parameter space of the GC model variants (S7-S9 Figs). As a first step, we created linear
combinations out of weighted sums of a pair of solutions. We weighted the parameters of the
respective model between 0.1 and 0.9 with a step size of 0.1. The weighting of the second solu-
tion was chosen such that the sum of the weights was equal to 1. As soon as the Pareto effi-
ciency of all evaluated linear combinations fulfilled the criteria for characteristic GC spiking,
we assumed that the respective models were connected. In the next step, we created linear
combinations of three different valid solutions to visualise the hyperplanes in two dimensions.
We used several triplets of valid parameter sets and weighted two of them with values between
—1.5 and 2.5 using a step size of 0.04. The corresponding grid of combinations was visualised
in a two-dimensional plot. The weighting of the third selected parameter set was chosen in a
way that the sum of all weights was equal to 1. The hyperplanes consisted of several thousand
points, whereby the parameter sets with negative values were removed. As a result, each hyper-
plane had different boundaries and thus a different size. Finally, for each of these points we ran
simulations and calculated their Pareto efficiency. The Pareto efficiency of the models without
spiking behaviour was set to 6, which explains the abrupt change of colour on the right side of
S7 Fig. The colour selection of the plots allowed a clear distinction between the valid (green)
and the nonvalid (blue) models.

Supporting information

S1 Fig. Electrophysiological properties of mouse GCs. Experimental data from [30]. A, Volt-
age traces of eight different GCs during 200ms current clamp injection of 90pA. B, Frequency
of action potentials elicited by 200ms lasting current injections (mean and standard deviation
from raw traces, experimental standard deviation is shown as grey patches). C, Current-volt-
age (I-V) relationships (mean and standard deviation from raw traces, experimental standard
deviation is shown as grey patches). D, Phase plots of the first action potential during 90pA
current clamp. Modified from Fig 2 in [23].

(PDF)

S2 Fig. Gradient descent using multi-objective optimisation. A, Temporal evolution of
Pareto optimality (fop, see Eq 4) using the gradient descent method. Solutions are considered
valid once their Pareto optimality drops below 2 (dashed line). Initial parameter combinations
are random non-valid parameter combinations within a range between 0x and 2x the value in
the reference parameter set. (bottom) Voltage traces of the model with initial parameter
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combinations (grey) and optimised parameters (green). B, Same as in A, but all initial parame-
ter combinations were in a similar order of magnitude of Pareto optimality with correspond-
ing models that did not even produce spikes.

(PDF)

S3 Fig. Comparison of the different GC models in Fig 1C. A-D, Similar panels as in S1 Fig
for the different models and respective parameter combinations as in Fig 2A.
(PDF)

$4 Fig. Valid parameter combinations in models that compensate for the knock-out of the
BK (Left) and Cav22 (Right) channel. Valid parameter combinations in the fully complex
model are well spread and more stable as compared to reduced models. Activity traces of 4
randomly picked valid parameter combinations in models successfully compensating the cor-
responding knock-out (Top). Coloured dots illustrate conductance densities of the four valid
parameter combinations shown in top traces (Bottom). Violin plots show the probability dis-
tribution of valid parameter combinations. Conductances are weighted by the surface area of
the corresponding membrane regions.

(PDF)

S5 Fig. Correlations between pairs of channel conductances in the different populations.
Significant correlations are highlighted by red boxes (p-value <0.01). Pairwise correlations in
population of A, 15—channel models, B, 9—channel models, C, 5-channel models.

(PDF)

S6 Fig. Correlations and complexity in the toy model. A, Effects of pairwise correlations on
the proportion of valid models for different numbers of variables. The 1 variable model is not
plotted as it is not affected by correlations. All models converge to the same point as their ele-
ments become perfectly correlated and the effective number of dimensions is reduced to 1. B,
Observed output correlations in valid models as a function of the pairwise correlation used to
generate the population from which valid models are drawn. For almost all input correlations
the observed correlation depends only on the number of variables. C, Distributing parameters
more evenly in space (dashed line) led to even more solutions than in the independent model
(solid line) and the positively correlated model (dotted line). D, Adding hierarchical interac-
tions and nonlinearities improved the validity of the models (Eq 4). v, (solid), v; (dashed), and
v, (dotted).

(PNG)

S7 Fig. 2D illustrations of hyperplanes in the parameter space. Hyperplane analysis inspired
by [15] for the 15—channel model. A, The hyperplane of B is shown in red as projection onto
INasst,Als VS- Zsk2,a1s Plane. 25 randomly chosen valid parameter combinations are represented
by dots. The blue hyperplane is parallel to the red and is defined by the addition of 10% of the
SD of all solutions (in every dimension). B, Hyperplane defined by the three individuals on the
red line in A. The Fitness of all points is colour scaled. The three original individuals are
highlighted as red dots. C, The red dots mark the places parallel to the 3 originally selected
individuals.

(PDF)

S8 Fig. 2D illustrations of hyperplanes in the parameter space. Hyperplane analysis inspired
by [15] for the 9—channel model. A, The hyperplane of B is shown in red as projection onto
£rv3a.Als VS §cavaa.als plane. 25 randomly chosen valid parameter combinations are represented
by dots. The blue hyperplane is parallel to the red and is defined by the addition of 10% of the
SD of all solutions (in every dimension). B, Hyperplane defined by the three individuals on the
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red line in A. The Fitness of all points is colour scaled. The three original individuals are
highlighted as red dots. C, The red dots mark the places parallel to the 3 originally selected
individuals.

(PDF)

S9 Fig. 2D illustrations of hyperplanes in the parameter space. Hyperplane analysis inspired
by [15] for the 5-channel model. A, The hyperplane of B is shown in red as projection onto
Gnasst.Als VS §cavaa.ats Plane. 25 randomly chosen valid parameter combinations are repre-
sented by dots. The blue hyperplane is parallel to the red and is defined by the addition of 10%
of the SD of all solutions (in every dimension). B, Hyperplane defined by the three individuals
on the red line in A. The Fitness of all points is colour scaled. The three original individuals
are highlighted as red dots. C, The red dots mark the places parallel to the 3 originally selected
individuals.

(PDF)

S1 Table. Summary of ion channel densities and models implemented in the 15-channel
model. Ion channels and their expression profiles in the corresponding morphological com-
partments. Conductance densities are given in units of ™/ _ .

(PDF)

$2 Table. Summary of ion channel densities and models implemented in the 9-channel
model. Ion channels and their expression profiles in the corresponding morphological com-
partments. Conductance densities are given in units of ™/
(PDF)

cm?*

$3 Table. Summary of ion channel densities and models implemented in the 5-channel
model. Ion channels and their expression profiles in the corresponding morphological com-
partments. Conductance densities are given in units of ™/
(PDF)

cm?*
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