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Figure 1: Typical image datasets have a low dynamic range (LDR), resulting in over- and underexposed pixels (a). We devise
a high-dynamic-range (HDR) generator trained only on in-the-wild LDR data. Our samples (b, tonemapped) exhibit details at
all brightness levels. Our model can be used for inverse tone mapping to recover details in large-scale saturated regions (c).

Abstract

Most in-the-wild images are stored in Low Dynamic
Range (LDR) form, serving as a partial observation of the
High Dynamic Range (HDR) visual world. Despite limited
dynamic range, these LDR images are often captured with
different exposures, implicitly containing information about
the underlying HDR image distribution. Inspired by this in-
tuition, in this work we present, to the best of our knowledge,
the first method for learning a generative model of HDR
images from in-the-wild LDR image collections in a fully
unsupervised manner. The key idea is to train a generative
adversarial network (GAN) to generate HDR images which,
when projected to LDR under various exposures, are indis-
tinguishable from real LDR images. The projection from
HDR to LDR is achieved via a camera model that captures
the stochasticity in exposure and camera response function.

Experiments show that our method GlowGAN can synthesize
photorealistic HDR images in many challenging cases such
as landscapes, lightning, or windows, where previous super-
vised generative models produce overexposed images. With
the assistance of GlowGAN, we showcase the novel applica-
tion of unsupervised inverse tone mapping (GlowGAN-ITM)
that sets a new paradigm in this field. Unlike previous meth-
ods that gradually complete information from LDR input,
GlowGAN-ITM searches the entire HDR image manifold
modeled by GlowGAN for the HDR images which can be
mapped back to the LDR input. GlowGAN-ITM achieves
more realistic reconstruction of overexposed regions com-
pared to state-of-the-art supervised learning models, despite
not requiring HDR images or paired multi-exposure images
for training.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
High Dynamic Range (HDR) images [57] are capable of

capturing and displaying much richer appearance informa-
tion than Low Dynamic Range (LDR) images, thus playing
an important role in image representation and visualization.
The most popular method to acquire HDR images is multiple
exposure blending, which requires capturing a set of LDR im-
ages of the same scene with different exposures [13, 52, 59].
However, this is time and effort intensive and only suitable
for static scenes. Due to this limitation, existing HDR image
datasets only cover limited scene categories and have much
fewer images than LDR datasets. Thus, supervised learning
methods [16, 47, 14, 41, 45, 43, 19, 71, 70, 28] that recon-
struct an HDR image from an LDR image are constrained
by the HDR datasets and cannot extend to cases where no
HDR training data is available, e.g., lightnings or campfires.

While HDR images are hard to collect, it is much easier
to collect a large number of LDR images from the Inter-
net. This motivates us to investigate a new unsupervised
learning problem: Can we learn to reconstruct HDR images
from in-the-wild LDR images? The LDR images do not
need to depict the same scene, it is enough if they contain a
roughly similar class of scenes (e.g., landscapes) with var-
ious exposures. This weak multi-exposure assumption is
often naturally satisfied for in-the-wild LDR datasets as im-
ages can come from different camera parameters or different
adjustments of the auto-exposure mode. This problem is
challenging as only a single exposure is available for each
scene; therefore, a way to merge the multi-exposure infor-
mation spread across different scenes is required.

In this work, we address this challenge via GlowGAN,
which, to our knowledge, is the first method to learn an HDR
generative model from in-the-wild LDR image collections
in a fully unsupervised manner. GlowGAN uses adversarial
training of an HDR generator with a discriminator that op-
erates merely in LDR. Specifically, the generator produces
an HDR image, which is projected to LDR via a camera
model and is then sent to the discriminator as a fake image
for adversarial training. The camera model consists of mul-
tiplying the HDR sample with an exposure value, clipping
the dynamic range, and applying a camera response func-
tion (CRF). Importantly, during training, we use a randomly
sampled exposure from a prior Gaussian distribution when
projecting HDR to LDR. This requires the generated HDR
images to be realistic under any possible exposure, thus only
valid HDR samples would satisfy this “multi-exposure con-
straint”. Furthermore, we also model the stochasticity in the
non-linear camera response by randomly sampling CRFs ac-
cording to a well-established parametric distribution [16, 21].
During inference, we can disable the camera model so that
the generator produces HDR imagery directly.

We conduct extensive experiments on several datasets
collected from the Internet, including landscapes, windows,

lightning, fireplaces, and fireworks. By training on these
LDR images, GlowGAN successfully learns to generate
high-quality HDR images that capture rich appearance infor-
mation. These images can be presented on HDR displays, or
via suitable tone mapping to create appealing imagery. In
contrast, previous unconditional GANs tend to miss infor-
mation in over- or under-exposed regions.

By modeling a distribution of HDR images, GlowGAN
paves the way for new applications such as unsupervised
inverse tone mapping (GlowGAN-ITM). ITM aims to re-
construct an HDR image from a single-exposure LDR input,
where a key challenge is to restore the flat-white overex-
posed regions [16, 19]. We can use a pre-trained GlowGAN
as a prior and apply GAN inversion to optimize latent code
and exposure, making the model generate the corresponding
HDR image for the input LDR image. An exciting result
is that our method can, without using any HDR imagery or
paired multi-exposure data, reconstruct starkly more plau-
sible information for large overexposed regions than other
supervised learning approaches trained on such data. Our
contributions are summarized as follows:

• We are the first to present unsupervised learning of
HDR images from in-the-wild LDR images. This gets
rid of the reliance on ground truth HDR images that are
much harder to collect.

• To achieve this, we propose a novel GlowGAN, which
bridges HDR space and LDR space via a camera model.
GlowGAN can synthesize diverse high-quality images
with a much higher dynamic range than vanilla GANs,
opening up new avenues for getting cheap abundant
HDR data.

• Using GlowGAN as a prior, we design an unsuper-
vised inverse tone mapping method GlowGAN-ITM,
which reconstructs large overexposed regions signifi-
cantly better than the state-of-the-art fully-supervised
approaches.

Our code, pre-trained models, and datasets are publicly avail-
able under https://glowgan.mpi-inf.mpg.de.

2. Related Work
2.1. High Dynamic Range Imaging

HDR imaging [57] is crucial for creating immersive view-
ing experiences that portray the vast dynamic range of the
real world. While HDR capture is cumbersome and HDR
displays are not yet commonplace in most environments [64],
the representation of visual information free from the limita-
tions of typical LDR encodings has evolved significantly in
recent years [68]. Working with HDR content is crucial for
rendering [12] and has been shown to be beneficial for 3D
scene reconstruction: An HDR representation can naturally
handle multi-exposure [29, 27] and raw data [51]. Recon-
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Methods Training Dataset HDR1 Unsupervised 2 Generative3 Hallucination4

Vanilla GAN [20, 62, 36] Unstructured LDRs ✗ ✗ ✓ ✗
Direct ITM [16, 47, 19, 45, 71, 70, 10] Paired LDR-HDR images ✓ ✗ ✗ Weak
Indirect ITM [14, 41, 42, 43, 28] Paired LDR exposure stacks ✓ ✗ ✗ Weak
GlowGAN (Ours) Unstructured LDRs ✓ ✓ ✓ Strong
1 Capable of generating HDR images or performing inverse tone mapping.
2 Capable of learning to produce HDR images from unstructured and unpaired LDR data.
3 Capable of generating new images.
4 Capable of hallucinating overexposed areas with plausible content, which is one of the most challenging problems in ITM.

Table 1: Contributions of GlowGAN in comparison to other method classes.

structing HDR in conjunction with an explicit tone mapping
module can compensate for poorly calibrated cameras [61].

A particular interest has evolved around the conversion
between HDR and LDR content. Tone mapping, the trans-
formation from HDR to LDR with as little information loss
as possible, is a mature field with well-understood trade-
offs [57, 66]. In contrast, inverse tone mapping (ITM) [5, 58],
the recovery of HDR content from LDR imagery, remains
a challenging inverse problem. It typically involves multi-
ple steps, including linearization, dynamic range expansion,
reconstruction of over- and underexposed regions, artifact
reduction, and color correction [3]. Among these, the recon-
struction of saturated pixels is considered the most challeng-
ing [16, 19], as it requires the hallucination of content [67].

Early ITM works considered expansion curves using
either global [40, 48, 2, 49] or content-driven opera-
tors [50, 5, 4, 6, 58, 58], without explicitly reconstruct-
ing saturated regions. More recent learning-based solu-
tions can be categorized into two streams: A neural net-
work either predicts the HDR image directly (Direct ITM)
[16, 47, 19, 45, 71, 70, 10], or it predicts multiple LDR im-
ages with different exposures [14, 41, 42, 43, 28], which
are subsequently merged into an HDR image (Indirect ITM)
[13, 52, 59]. ITM and exposure fusion can be combined with
adversarial training [71, 42, 54]. Also, the extension to video
ITM has been explored extensively, leveraging inter-frame
consistency [30, 37, 38, 7, 23, 24].

The majority of learning-based techniques discussed
above require supervision from paired LDR–HDR training
data or exposure stacks. A notable exception is the work of
Banterle et al. [7], which recovers details from non-saturated
frames in a video sequence and applies them to saturated
frames. The need for training data constitutes a fundamental
problem: HDR image data is hard to obtain and therefore
naturally scarce. Further, most HDR capture techniques
require static content, which significantly restricts the appli-
cability of learning-based methods to arbitrary scenes. In
contrast, we are the first to train an unsupervised HDR image
generator from a fully unstructured set of LDR images. We
believe this is an important step towards solving two main
problems in HDR imaging: First, our generator can synthe-
size an abundance of HDR samples, alleviating the scarcity

of HDR content. Second, our system allows to perform ITM
with a significant improvement in the reconstruction of over-
exposed regions. We summarize the difference between our
method and previous methods in Table 1 and Fig. 2.

SeedVanilla GAN

Direct ITM

Indirect ITM

Ours

Gen. Func.

Data Output

Superv.LDR LDR

LDR

HDR

Seed Gen. HDR

LDR I2I HDR

LDR I2I LDR
Stack

LDR
StackFusion HDR

Stoch.
Camera LDR

Figure 2: Vanilla GANs are trained on unstructured LDR
data and can only generate LDR. Direct ITM methods per-
form image-to-image (I2I) translation, but need to be trained
on paired LDR–HDR data. Indirect ITM methods use I2I
to produce an LDR exposure stack to be fused into an HDR
result and require supervision in the form of LDR exposure
stacks. In contrast, our approach allows to generate HDR
images (left to right), using a stochastic camera model to al-
low supervision via unpaired in-the-wild LDR images. ITM
(right to left) is performed using GAN inversion. Only our
method yields HDR from unstructured LDR training data.

2.2. Lossy Generative Adversarial Networks (GAN)

GANs [20] are very successful in modelling distributions
of images with high visual fidelity. The StyleGAN fam-
ily [35, 36, 33, 34] marks the current state of the art, scaling
to high resolutions, while the recent extension StyleGAN-
XL [62] allows for unprecedented diversity in the generated
content. To this date, (unconditional) GANs operate in LDR,
since high-quality HDR data at the scale required for suc-
cessful training is difficult to obtain. We propose a simple
modification to the GAN training pipeline, which allows to
train an HDR generator from available LDR data only.

AmbientGAN [15] has demonstrated that it is feasible
to train a generative model from lossy measurements, i.e.,
a GAN can be trained from degraded samples, as long as
the stochastic properties of the degradation are known. This
concept has been used to learn a generator for clean images
from noisy data [32], or for all-in-focus images from data
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that contains shallow depth of field [31]. Most prominently,
the idea has been applied to learn 3D generators from 2D
images by explicitly modeling the projection from 3D to
2D using a distribution of extrinsic camera parameters [25,
17, 44, 53, 63, 65]. We follow the paradigm of injecting
a degradation model into the GAN pipeline, by devising
a novel model of the processing steps in a digital camera,
converting HDR radiance into LDR pixel intensities.

3. Method
We train a GAN [20] to capture the distribution of HDR

images in a domain (e.g., landscapes) by combining it with a
stochastic camera model that transforms the generated HDR
images into their LDR counterparts. The discriminator is
only fed LDR images, which allows the system to be trained
on an easily accessible in-the-wild LDR image dataset. Our
camera model can be inserted into any GAN model to yield
HDR outputs as long as the LDR training dataset consists of
images exhibiting different exposures across samples. We
consider this a mild assumption, which in particular in-the-
wild photo datasets easily satisfy. See Fig. 3 for an overview
of our system. In the following, we describe our pipeline in
detail (Sec. 3.1), before turning to our main application of un-
supervised inverse tone mapping GlowGAN-ITM (Sec. 3.2).

3.1. GlowGAN

We seek to capture the unknown true distribution of HDR
images pHDR from samples of the distribution of LDR im-
ages pLDR. Similar to the standard GAN setup, we achieve
this by training a generator G which turns a random latent
vector z ∈ Rk into an HDR sample r ∈ RH×W×3

≥0 , an
RGB image with H × W pixels and no upper restriction
on the value range. To train G, we inject a camera model
C ∈ RH×W×3

≥0 → [0, 1]H×W×3 into the adversarial train-
ing pipeline, turning the unbounded HDR image into an
LDR image with values between 0 and 1. C captures the dis-
tribution pcam of pixel-wise image transformations typically
applied in a digital camera to convert incoming radiance
to pixel intensities, including varying exposures, clipping,
and varying non-linearities arising from the camera response
function (CRF). The result of this process is an LDR image
l = C(r) = C(G(z)). The discriminator D is tasked with
differentiating the fake samples l from samples from the
distribution of true LDR images pLDR. Since the samples
r undergo stochastic projections from HDR to LDR, G is
forced to produce valid HDR images, resulting in the distri-
bution pGHDR of generated HDR images approaching the true
distribution pHDR [15].

As our generator and discriminator backbone, we choose
the current state-of-the-art model StyleGAN-XL [62]. This
model has been demonstrated to yield excellent image qual-
ity on diverse datasets. The generator model consists of
two stages (left block in Fig. 3): First, a mapping network

MθM in the form of an MLP with parameters θM turns the
initial random vector z ∈ Rk into a more disentangled latent
feature representation w ∈ W ⊂ Rk. Second, w is fed
into a synthesis CNN SθS with parameters θS to yield the
final HDR output r = SθS (MθM (z)). Notice that the partic-
ular choice of the generator and discriminator networks is
orthogonal to our approach. Except for the camera model
introduced in the next paragraphs, we use StyleGAN-XL
without any modifications in architecture or training hyper-
parameters. We verify this in Sec. 4.2.

At the core of our method is the stochastic camera model
C (central block in Fig. 3) which projects the HDR image
r onto an LDR counterpart l. It is designed to model the
distribution of typical processing steps in a digital camera:

C(r) = CRFβ,γ

(
min(2

e
2 · r, 1)

)
. (1)

In the first step, we multiply each pixel of r with a sin-
gle global exposure value. The exposure is parameterized
by the random variable e, capturing the exposure distribu-
tion of typical cameras arising from the combined effect
of aperture, shutter speed, and sensor sensitivity (ISO). We
do not have access to the true distribution of exposure pa-
rameters e, as images from in-the-wild image collections
frequently do not have EXIF headers that would contain
this information. Since the exposure is a combined ef-
fect of multiple factors (aperture, shutter, ISO, time of day,
etc.), we choose to model e using a normal distribution,
i.e., e ∼ N (0, σ2

e). The exposure variance σ2
e is the only

hyper-parameter in our system and is analyzed in Sec. 4.2.

Radiance

Pi
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l I
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Figure 4: CRF Distribution.

After applying a ran-
dom exposure, the min op-
erator in Eq. 1 clips large
radiance values to 1, ef-
fectively removing all con-
trast in overexposed re-
gions. Notice that this loss
of information is precisely
the reason why C is not invertible for individual images: By
selecting an exposure, we only observe a bracket of radiance
values. In contrast, our method seeks to invert C over the
distribution of images and camera models [15].

The final component of our model in Eq. 1 is the non-
linear sensor response. The CRF describes the mapping
from radiance values arriving at the sensor to pixel inten-
sities stored in the final image. We follow the established
distribution of Eilertsen et al. [16]:

CRFβ,γ(x) =
(1 + β)xγ

β + xγ
,

with β ∼ N (0.6, 0.1) and γ ∼ N (0.9, 0.1) as obtained from
the analysis of a large dataset [21]. We visualize the distri-
bution of CRFs arising from this model in Fig. 4.
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Figure 3: Overview. The generator generates an HDR image r from a random noise z. Then a camera model C projects r to
an LDR image l with a random exposure and CRF. The model is trained on in-the-wild LDR images in an adversarial manner.

With the full stochastic camera model in place, our system
can be trained in an adversarial fashion from scratch without
further modifications to the standard GAN pipeline to yield
an HDR generator trained only on an LDR image dataset.

3.2. GlowGAN-ITM

In addition to producing HDR image samples, a trained
GlowGAN can be used to perform unsupervised inverse
tone mapping. While existing approaches typically rely
on supervision from LDR–HDR image pairs or exposure
stacks, our method enables the recovery of HDR imagery
from LDR inputs without HDR data using GAN inversion
[72, 69]. This allows us to hallucinate plausible content
in over-exposed image regions, which is one of the most
challenging problems in ITM and, hence, a particular focus
of our approach.

To obtain high-quality ITM results and to facilitate multi-
modality, we choose a per-image optimization-based ap-
proach to perform the inversion [11, 1]. Given an LDR
image l̂, we consider the following optimization objective:

[e∗,w∗, θ∗S ] = argmin
e,w,θS

Φ
(
C(SθS (w)), l̂

)
. (2)

Here, we jointly optimize over exposure e and the latent
code w while fine-tuning the synthesis network parameters
θS to obtain a faithful match between the target LDR image
l̂ and its reconstruction. Φ denotes the discrepancy measure
between the two images. Using the Adam optimizer [39]
with standard parameters, we proceed in two stages: In the
first stage, we exclude the generator weights θS from the
optimization and measure image discrepancy Φ using the
LPIPS perceptual distance [18]. In the second stage, we only
optimize (fine-tune) θS using the pivotal tuning technique
of Roich et al. [60], with Φ being the sum of a pixel-wise
ℓ2 loss and the LPIPS perceptual distance. We relax w to
explore the extended latent space W+ [1]. We did not find
it necessary to optimize over the CRF parameters β, γ for
high-quality results and consequently fix them to their mean
values. More details on the optimization can be found in
the supplemental. Upon completion of the optimization, we
obtain the HDR version of l̂ via r∗ = Sθ∗

S
(w∗).

Following the lossy projection in Eq. 1, the mapping from
LDR to HDR images is not unique: Overexposed regions

in the LDR image can be explained by many different HDR
images. Our system allows capturing this multi-modality by
running the optimization of Eq. 2 multiple times with differ-
ent parameter initializations for w and e. Specifically, we
initialize each optimization run with w = MθM (z), where
z is a normally distributed random vector. This allows us
to obtain multiple plausible HDR solutions, which almost
exclusively differ in the overexposed regions.

Obtaining accurate GAN inversion results is challeng-
ing [9, 1]. Fortunately, in most cases, we are only interested
in hallucinating content in saturated regions, while well-
exposed pixels can be re-used after linearization. Therefore,
optionally, we diminish potential distortions arising from the
inversion by blending the linearized original LDR image l̂
with the reconstructed HDR result r∗ [16, 19]. Referring to
the camera model in Fig. 3, this blending happens in HDR
space between Mult. and Clip. and is computed as follows:

r∗blend = e∗ · (m⊙ r∗) + (1−m)⊙ CRF−1(̂l).

Here, ⊙ denotes the Hadamard product and m is a soft mask,
indicating saturated pixels in l̂, which we compute for each
pixel i following Eilertsen et al. [16]:

mi =
max

(
0,maxc l̂i,c − τ

)
1− τ

,

where l̂i,c denotes the LDR image with pixel index i and
color channel c. We set the threshold τ = 0.97 in all our
experiments, resulting in a short ramp toward saturation.

4. Experiments
We have conducted the following experiments to demon-

strate the effectiveness of our approach. Sec. 4.1 shows the
generated HDR data and compares it with an LDR equiva-
lent; Sec. 4.2 explores the influences of the exposure distribu-
tion, model backbone, and sampled camera response curve;
and Sec. 4.3 presents the results of our GlowGAN-ITM. We
use the tone mapper of Mantiuk et al. [46] to display HDR
content in this paper. We refer readers to the supplemental
for more results and full HDR data.
Implementation details. We implement our method on top
of the official StyleGAN-XL [62] implementation under the
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Figure 5: (a) Dynamic range comparison between our GlowGAN (top) and a vanilla GAN (bottom) when varying the exposure
values (EV) of the image. (b) HDR samples generated by our GlowGAN for the five tested datasets (please see Fig. 1 for more
samples). Our method generates high-quality images with much higher dynamic range and without overexposure.

PyTorch [56] environment. Training takes six days with four
RTX 8000 GPUs for 256×256 resolution dataset – roughly
the same time as training a vanilla StyleGAN-XL model.
Datasets. We collect five datasets of LDR images from the
Internet: Landscapes (∼7700 images), Lightning (∼7000
images), Windows (∼4200 images), Fireplaces (∼2600 im-
ages), and Fireworks (∼5600 images). We randomly crop
and resize each image to the target resolution. Please refer
to Fig. 1 and Fig. 5 for examples of generated images from
models trained on these datasets. We collect our datasets
from several websites: Flickr, Pexels, Instagram, and 500PX.
We provide more dataset statistics in the supplemental.

4.1. Generation of HDR Images

We show in Fig. 5 a variety of samples generated with
GlowGAN and a comparison with a vanilla StyleGAN-XL.
Generated samples from the vanilla GAN often bear overex-
posed regions similar to those in the LDR training images.
In contrast, samples from GlowGAN preserve detailed ap-
pearance information even for bright objects such as the sun,
as they have more extensive dynamic ranges than those from
the vanilla GAN.

To analyze dynamic range, we plot the image brightness
histogram of the two models in Fig. 6, where each histogram
is computed from 500 randomly sampled images. It can
be seen that the histogram of the vanilla GAN exhibits an
early cutoff, while GlowGAN clearly avoids pixel intensity
clamping (Fig. 6a) and has a much wider histogram, also in
the dark regions (Fig. 6b). These results satisfy our expec-
tation of learning HDR information from LDR data. In the
supplemental, we compare LDR samples of our model with
their nearest neighbors in the training dataset. Our samples
are clearly different, strongly indicating that our model does
not memorize the dataset. GlowGAN thus opens up a new
avenue for getting cheap abundant HDR data that can be
used in several applications, e.g., for augmenting training
data for ITM methods or for creating environment maps
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Figure 6: Distribution of pixel values from our model and
a vanilla GAN. The linear-scale histogram (a) shows that
we significantly extend the dynamic range for high pixel val-
ues. To demonstrate our extension also in the low-intensity
regime, we provide a truncated log-scale histogram (b),
where only values up to 1 are shown.

Model σ2
e FID↓ KID(×104)↓ DR50 DR90

SG-XL1 – 3.48 2.69 11.9 12.3
Ours 0.1 3.54 3.03 15.3 19.9
Ours 1.0 3.61 3.07 15.4 20.2
Ours 3.0 3.87 4.04 16.2 20.7
Ours 5.0 4.00 4.78 16.5 20.8

SG22 – 9.2 23.37 12.9 16.9
Ours w/ SG23 1.0 10.02 28.41 16.3 22.9
1 Refers to a vanilla StyleGAN-XL model.
2 Refers to a vanilla StyleGAN2-ADA model.
3 Refers to our approach with a StyleGAN2-ADA backbone.

Table 2: The effect of generator backbone and exposure
variance σ2

e on image quality and dynamic range.

for image-based lighting (IBL) [12], as demonstrated in the
supplemental.

4.2. Ablation Study

Exposure Distribution. Our method assumes the exposure
e follows a Gaussian distribution with variance σ2

e . Here we
study how σ2

e impacts the generated image quality and the
dynamic range. We employ the commonly used FID [26]
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Figure 7: Results for the ITM application and comparisons to six state-of-the-art methods for different datasets. Given a single
LDR image as input, our method can produce an HDR image that contains plausible and realistic content in the previously
overexposed regions, while previous methods tend to produce blurred results or even noticeable artifacts in such regions. In the
first row (Landscapes dataset), it can be seen that recovering the ground truth content present in the original HDR scene is not
possible in fully saturated regions, however, our method is able to produce plausible results that are consistent with the scene.

Dataset CRF FID↓ KID(×104)↓

Landscapes Fixed 3.89 3.80
Stochastic 3.61 3.07

Lightning Fixed 3.40 4.77
Stochastic 3.29 4.57

Table 3: Comparing quality with fixed and stochastic CRFs.

Figure 8: Our method can generate different but plausible
HDR images from a single overexposed LDR input image.

and KID [8] scores to evaluate image quality on the Land-
scapes dataset. As we do not have ground truth HDR images,

the scores are computed between the generated LDR images
(i.e., the output of the camera model) and the LDR training
images. We also compute the dynamic range (DR) for each
generated HDR image r as DR = log2 (rmax/rmin) , where rmax
and rmin are the max and min values of the image, respec-
tively. We report the median and the 90th percentile of DR
computed over 50k images, referred to as DR50 and DR90,
respectively. From Table 2, we can observe a trade-off be-
tween image quality and the dynamic range, i.e., increasing
σ2
e leads to a higher dynamic range (with diminishing re-

turns for high σ2
e ) but slightly worse FID and KID scores.

To understand the positive correlation between σ2
e and DR,

suppose that r has a low dynamic range, then with a very
small or large exposure e (which is more likely to happen
for large σ2

e ), it would produce an out-of-distribution LDR
image l that is overly dark or bright. In other words, only
a valid high dynamic range r can yield realistic LDR im-
ages when processed with different exposures. On the other
hand, as σ2

e increases, the camera model interferes more
with the image generation process, which may increase the
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training difficulty as the Gaussian distribution is only an
approximation to the underlying exposure distribution. In
practice, users can choose a suitable σ2

e depending on their
goal. In most of our experiments, we use σ2

e = 1 as it already
removes overexposure while featuring good quality, and it
also obtains better scores in the inverse tone mapping appli-
cation. We provide more results on the effect of σ2

e in the
supplemental. From Table 2, we can further see that a vanilla
StyleGAN-XL exhibits slightly higher image quality, but a
substantially smaller (log-scale) dynamic range. Numerical
results on other datasets are provided in the supplemental.
Generator backbone. We further test our method based on
StyleGAN2-ADA [33]. As Table 2 shows, our method also
successfully synthesizes images with high dynamic range,
albeit the final image quality directly depends on the baseline
generative model.
Stochastic CRF. We further study the effects of the stochas-
tic CRF sampling process in our model. Table 3 com-
pares our stochastic CRF sampling with a fixed CRF, using
β = 0.6 and γ = 0.9. Modelling the stochasticity leads to a
clear improvement in FID and KID scores. This is because
the in-the-wild LDR images used for training are captured
with different cameras with diverse CRFs, which can be
better modelled via stochastic CRF sampling.

4.3. Application: Inverse Tone Mapping

A potential application of our approach is GlowGAN-
ITM. We show both quantitatively and through a user study
that our method outperforms previous approaches in hallu-
cinating content in large overexposed regions, effectively
recovering HDR content from a single LDR image.

Objective comparisons. We compare our GlowGAN-ITM
to six state-of-the-art fully-supervised ITM methods, which
we abbreviate as HDRCNN [16], MaskHDR [19], Single-
HDR [45], ExpandNet [47], ReHDR [41], and LANet [70].
Following the work of Hanji et al. on quality assessment
of single image HDR reconstruction methods [22], we se-
lect their three recommended full-reference metrics (PU21-
PSNR, PU21-VSI, and HDR-VDP3) and their recommended
non-reference metric (PU21-PIQE). As test set for the refer-
ence metrics we use as HDR ground truth a set of 62 images
collected from existing datasets [22, 55] and generate the
corresponding LDR input images following the pipeline pro-
posed by Eilertsen et al. [16]. For the non-reference metric,
we use an extended set of 100 LDR images obtained from
the Internet which we use directly as input with 15% to 45%
of the pixels saturated. For fairness in these comparisons,
both sets are composed of landscape images, since fully-
supervised approaches are typically trained with datasets
mainly containing this type of content. We show in Table 4
the results of these metrics and in Fig. 7 visual comparisons
for our five datasets. Note that, since our method focuses
on hallucinating content in completely saturated regions, it

Figure 9: Preference rankings for ITM methods aggregated
across participants and scenes. Different colors indicate the
rankings. Methods marked in the same set (gray underline)
are statistically indistinguishable, while all others present
statistically significant differences in their distributions.

is highly unlikely that this content fully matches that of the
original ground truth image, therefore full-reference metrics
are not well suited for assessing the quality of our recon-
structions. Nevertheless, GlowGAN-ITM is on par with
fully-supervised approaches for the reference metrics, while
it excels in the non-reference metric, showing that our hal-
lucinated content is more plausible in terms of naturalness.
Additionally, previous methods can generate only one po-
tential reconstruction given an input LDR image, while our
approach allows the generation of multiple results with dif-
ferent but plausible semantic information, as Fig. 8 shows.
User Study. We perform a subjective study to further as-
sess the quality of our generated results for the ITM applica-
tion. We include 20 scenes (four for each of our five datasets).
For each scene, HDR results obtained with each of the seven
methods were shown on a single screen, and participants
were asked to rank the seven images from 1 (most preferred)
to 7 (least preferred). The presentation order of the scenes
and methods was randomized. The images were displayed
in an HDR display Dell UP3221Q (3840×2160 resolution)
in a standard office room with natural illumination, and par-
ticipants sat at a distance of 0.5 meters from the display. A
total of 24 participants (38% female, aged 22 to 37 years
old with normal or corrected-to-normal vision) participated
in the study. We show in Fig. 9 the preference rankings for
each method, aggregated for all scenes and participants. For
the analysis, we use pairwise Kruskal-Wallis tests adjusted
by Bonferroni correction for multiple comparisons since the
rankings do not follow a normal distribution. Results reveal
that our method was ranked significantly higher than all oth-
ers (p < 0.001), and it was selected as the top performing
method in over 80% of the trials.

5. Conclusion & Discussion
We have introduced GlowGAN, a novel paradigm for

learning HDR imagery from LDR data. Our method
is orthogonal to other advances in generative adversarial
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Method Unsupervised Reference Non-Reference
HDR-VDP3 ↑ PU21-VSI ↑ PU21-PSNR ↑ PU21-PIQE ↓

HDRCNN [16] ✗ 7.42 ± 1.02 0.961 ± 0.034 32.1 ± 5.1 36.1 ± 5.3
MaskHDR [19] ✗ 7.60 ± 0.93 0.962 ± 0.032 32.4 ± 5.1 33.3 ± 6.5
SingleHDR [45] ✗ 7.01 ± 1.17 0.956 ± 0.031 30.1 ± 4.5 40.3 ± 6.2
ExpandNet [47] ✗ 6.66 ± 1.61 0.957 ± 0.033 30.7 ± 4.2 43.2 ± 6.6
ReHDR [42] ✗ 7.06 ± 1.31 0.953 ± 0.035 30.3 ± 4.2 39.7 ± 4.7
LANet [70] ✗ 6.94 ± 0.98 0.956 ± 0.031 29.0 ± 3.6 40.6 ± 6.5
Ours ✓ 7.44 ± 0.94 0.961 ± 0.032 31.8 ± 4.4 31.8 ± 5.1

Table 4: Evaluation of the ITM application. We achieve on-par quality with the best-performing supervised methods in
reference metrics while outperforming other approaches in the non-reference metric that evaluates the naturalness and quality
of the image. Note that reference metrics are not best suited for this evaluation, since the strength of our method lies in the
reconstruction of overexposed regions in which the hallucinated content does not match that of the original HDR scene.

learning and can be easily incorporated into any GAN-
based pipeline. A trained GlowGAN acts as a strong
prior, producing starkly more plausible inverse tone map-
ping results than previous approaches. Our inverse tone
mapping method builds on GAN inversion via optimiza-
tion, which can suffer from low-quality results, especially

HDRLDR

Figure 10: Failure case.

for high-frequency content
(Fig. 10, further analysis in the
supplemental) – a problem that
is orthogonal to our approach.
We rely on training data with
a diverse exposure distribution.
While this assumption is nat-
urally satisfied for in-the-wild
photo datasets, the dynamic range we can obtain is tightly
linked to the exposure variance in the dataset. We hope that
our approach inspires future work on learning rich models
from casually captured images.
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