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Netherlands, 2 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society,

Frankfurt, Germany, 3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen,

Nijmegen, Netherlands

* boris.sotomayor@esi-frankfurt.de (BSG); martin.vinck@esi-frankfurt.de (MV)

Abstract

Neural coding and memory formation depend on temporal spiking sequences that span

high-dimensional neural ensembles. The unsupervised discovery and characterization of

these spiking sequences requires a suitable dissimilarity measure to spiking patterns, which

can then be used for clustering and decoding. Here, we present a new dissimilarity measure

based on optimal transport theory called SpikeShip, which compares multi-neuron spiking

patterns based on all the relative spike-timing relationships among neurons. SpikeShip com-

putes the optimal transport cost to make all the relative spike-timing relationships (across

neurons) identical between two spiking patterns. We show that this transport cost can be

decomposed into a temporal rigid translation term, which captures global latency shifts, and

a vector of neuron-specific transport flows, which reflect inter-neuronal spike timing differ-

ences. SpikeShip can be effectively computed for high-dimensional neuronal ensembles,

has a low (linear) computational cost that has the same order as the spike count, and is sen-

sitive to higher-order correlations. Furthermore, SpikeShip is binless, can handle any form

of spike time distributions, is not affected by firing rate fluctuations, can detect patterns with

a low signal-to-noise ratio, and can be effectively combined with a sliding window approach.

We compare the advantages and differences between SpikeShip and other measures like

SPIKE and Victor-Purpura distance. We applied SpikeShip to large-scale Neuropixel

recordings during spontaneous activity and visual encoding. We show that high-dimensional

spiking sequences detected via SpikeShip reliably distinguish between different natural

images and different behavioral states. These spiking sequences carried complementary

information to conventional firing rate codes. SpikeShip opens new avenues for studying

neural coding and memory consolidation by rapid and unsupervised detection of temporal

spiking patterns in high-dimensional neural ensembles.

Author summary

Neuronal coding and memory formation depend on temporal activation patterns span-

ning high-dimensional ensembles of neurons. With new recording technologies like
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Neuropixels, it has now become possible to measure from > 1000 neurons simulta-

neously. This raises the problem, how we can detect temporal sequences of spikes in these

high-dimensional ensembles in an unsupervised manner. Here, we present a new method

to solve this problem based on optimal transport theory, called SpikeShip. SpikeShip is a

fast method for the unsupervised discovery of spiking patterns in high-dimensional data,

and provides a principled measure of dissimilarity of multi-neuron spiking sequences.

SpikeShip can be effectively computed for high-dimensional neuronal ensembles, has a

low (linear) computational cost that has the same order as the spike count, and is sensitive

to higher-order correlations. We apply SpikeShip to high-dimensional neural data to

study the encoding of behavioral states and visual information by temporal spiking

sequences. SpikeShip opens new avenues for studying neural coding and memory consoli-

dation by rapid and unsupervised detection of temporal spiking patterns in high-dimen-

sional neural ensembles.

Introduction

Information in the brain is encoded by very high-dimensional “ensembles” of neurons, which

encode information with spikes. Populations of neurons can produce specific spike patterns

depending on sensory inputs or internal variables [1–8]. With new recording techniques like

Neuropixels [9], it has become possible to simultaneously record from thousands of single

neurons [10–12]. This offers new opportunities to uncover the relationship between multi-

neuron spiking patterns and sensory inputs or motor outputs, yet also poses unique mathe-

matical challenges for the unsupervised discovery of the “dictionary” of neuronal “code-

words”.

The notion of information encoding relies on the construction of a distance or dissimilarity

measure in an N-dimensional space. For example, the distance between binary strings can be

measured using the Hamming distance. In the brain, the distance between two multi-neuron

spiking patterns is conventionally based on differences in the firing rates (spike / sec). Using

this method, it has been shown for example that high-dimensional neural ensembles span a

low-dimensional manifold that relates to a stimulus or behavioral variables in a meaningful

way [13, 14]. However, firing rates do not capture the potentially rich information contained

by the precise temporal order in which spikes are fired, e.g. neuron i firing at time t and neu-

ron j firing at t + τ. For instance, we expect that any time-varying sensory stimulus or action

sequence may be encoded by a unique multi-neuron temporal pattern of spiking. Indeed,

multi-neuron temporal sequences can encode information about sensory stimuli and are

required for the generation of complex motor patterns like bird songs [1–7, 15, 16]. Temporal

sequences may also be critical for memory formation, because neural plasticity rules are highly

sensitive to the temporal order in which spikes are fired [17–21]. It is plausible that much of

the information contained in spiking sequences has thus far not been discovered, as temporal

correlations have typically been studied based on relatively small neural ensembles, whereas

the number of pairwise spike-time relationships scales with N2.

A major computational problem is thus to measure the dissimilarity of spiking patterns in

terms of the relative spike timing between neurons. Developing such a measure has several

challenges, including 1) Techniques that rely on binning spikes and require exact matches of

patterns (e.g. information theoretical measures) have several disadvantages: They require a rel-

atively large number of observations due to combinatorial explosion, lack robustness against

spike time jitter and reduce temporal resolution due to binning. 2) Computational cost
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becomes a major constraint for high-dimensional ensembles of neurons, and a measure should

ideally have a computational cost that is linear in the number of neurons and spikes.

Here, we develop a novel dissimilarity measure for multi-neuron spiking patterns called

SpikeShip, which has linear computational complexity of OðNÞ, and has the key advantage of

being sensitive to higher-order structures. SpikeShip can be interpreted as the optimal trans-

port cost to make all spike-timing relationships between two different multi-neuron spiking

patterns identical. That is, it solves the optimal transport problem for the entire spiking pat-

tern, and yields a unique decomposition of spike pattern dissimilarity in terms of neuron-spe-

cific flows (which controls similarities in terms of relative spike times) as well as a global flow

term (which controls the similarity in terms of absolute time). We demonstrated the power of

the SpikeShip measure by applying it to large scale, high-dimensional neural ensembles in

mice from [12] and [22], and demonstrating that temporal spiking sequences reliably distin-

guish between natural stimuli and different brain states. We discuss the properties of this mea-

sure compared to previous spike train measures like Victor-Purpura Distance (VP) [23, 24],

SPIKE [25], and Rate-Independent SPIKE (RI-SPIKE) [26]. Finally, we show that SpikeShip

carries orthogonal information compared with the traditional firing rates code.

Results

Our overall goal is to develop a dissimilarity measure between multi-neuron spiking patterns

that is exclusively based on the temporal order of spiking. Suppose that we have measured the

spikes from N neurons (“spike trains”), with an average of n spikes divided intoM epochs of

length T (measured in seconds or samples). Epochs could be defined by e.g. trials (e.g. stimulus

presentations) or sliding windows. The problem is to find a dissimilarity measure with the fol-

lowing properties:

1. The measure should depend on the temporal order of firing across neurons, but not on the

spike count. We note that this point does not imply that spike count differences do not mat-

ter, but rather that it is often desirable to have a measure that can be strictly interpreted in

terms of temporal sequences.

2. If two spike patterns are identical in terms of cross-neuron spike timing relationships (i.e.

they are a temporally translated version of one another), then the dissimilarity measure

should equal zero.

3. The measure does not require binning or smoothing and is based on the exact timing of the

spikes.

4. It should measure dissimilarity in a gradual way, and avoid the problem of “combinatorial

explosion” that occurs with methods that search for exact matches in spiking patterns.

Combinatorial explosion means that for a very large number of neurons, the probability of

an exact match in spiking patterns becomes extremely small.

Algorithm 1: SpikeShip distance computation of population spike time vectors between

two epochs.
Input: Spike times vectors of N neurons for epochs k and m (stk: array,
stm: array)
output: Pair of total neuron-specific distance and global shift (f:
double)
Function: SpikeShip(stk, stm) :
Initilize c, w, Akm (arrays), and n∗i (integer);
for i 2 {1, . . ., N} do
if LEN(stk[i])> 0 and LEN(stm[i])> 0 then
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Store costs (ci) and weights (wi) from EMD(stk[i], stm[i]);
Add i to Akm;
Increase n∗i by LEN(ci)

end
end
gmin = WEIGHTEDMEDIAN(c, w);

f ¼ 1

LENðAkmÞ

P
i2Akm

1

n∗i

Pn∗i
u wi;uðjci;u � g

minjÞ

return f
end

We introduce a measure that satisfies these constraints, called the SpikeShip measure (see

Methods). The idea of SpikeShip is to measure the dissimilarity between spike trains using the

mathematical framework of optimal transport, as shown in Figs 1 and S1. and pseudocode 1.

We will consider each spike train as a collection of “masses” (i.e. the spikes). All spikes from

each active neuron, together, contribute a unit mass, i.e. the mass of each spike is normalized

to the total mass. This ensures the rate invariance of the method. The question now is what the

optimal way is of transporting the masses in time to make the two patterns identical in terms

of the relative spike times among neurons. In other words: The optimal transport problem is

stated as finding the minimum cost of shifting the (unit) mass of the spike train in each neuron

in epoch k, such that the cross-correlations (i.e. sequential firing) between all of the neurons

become identical to those in another epochm. Solving this problem yields a dissimilarity mea-

sure that is strictly defined based on relative timing among neurons, i.e. not on the absolute

timing of the spikes.

Intuitively, one would suspect that measuring the similarity of spike train patterns based on

the relative spike timing among N neurons has a computational complexity of at least order

N2, which would make the method impractical for larger data sets. However, we surprisingly

show that there is a fundamental solution that can be computed in order N.

We show that the global optimal transport problem can be solved in two steps:

1. We first compute the optimal transport flow to transform a spiking pattern in epoch k into

the spiking pattern in epochm, such that the patterns are identical in terms of absolute
timing.

2. Transport cost is now minimized by computing a global temporal translation term and sub-

tracting this term from all the individual spike shifts. This yields neuron-specific flows, and

allows us to compute the total transport cost needed to make two patterns identical in

terms of relative spike times.

Step 1: The algorithm starts by computing the Earth Mover Distance (see Methods, S1 Fig)

for each neuron separately in step 1, shifting mass from each spike in pattern k to the spikes in

patternm. For instance, if the neuron has 2 and 6 spikes in pattern k andm, the associated

masses would be (1/2, 1/2) and (1/6, � � �, 1/6) respectively. Thus, the EMD distributes the 2

masses into 6 clusters with minimum transport cost. This effectively means that each of the

two spikes is broken up into 3 parts which are then moved.

To make this more intuitive and simplify the analytical expression of SpikeShip, we note

that breaking each spike into 3 parts is identical to replicating each spike 3 times (note that in

the actual EMD algorithm, this replication is not performed). This amounts to finding the

smallest common multiple of the spike counts for each neuron, denoted n∗i (see Methods), and

replicating each spike
n∗i
ni;k

and
n∗j
ni;m

times. For instance, with spike counts ni,k = 2 and ni,m = 6

then the least common multiple equals 6, and spikes are replicated 3 and 1 times, respectively.

Each spike will now have a weight of wi �
1

n∗i
, such that the total mass is 1.
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The EMD yields flows ci,u (with unit time) for each i-th neuron and its u-th (replicated)

spike (1; � � � ; n∗i ). With flow we mean the temporal shift that is assigned to the spike. The

moved mass (associated with the spike) is wi,u, such that ∑uwi,u = 1.

Step 2: Importantly, the EMDs obtained from Step 1 only indicate the similarity of absolute
spike times between two epochs, i.e. are based on the alignment of the spikes relative to an

Fig 1. Illustration of SpikeShip. A) Example of two epochs with spike times tk = (10, 10, 10, 10, 10, 10) and tm = (25, 40, 45, 55, 60, 70) (note only one

spike per neuron in this example). B) Distances between spike times tk and tm. C) The vector~c contains the differences of spike times tk and tm. D)

Computation of the median of~c: gmin = 40. E) gmin is the optimal global shift such that fi = ci − gmin. The neuron-specific shifts~f ¼
ð� 25; � 10; � 5; 5; 10; 20Þ contain all the information about the structure of distances between tk and tm. SpikeShip equals Fkm ¼ 1

6

PN
i jfij ¼

75

6
.

https://doi.org/10.1371/journal.pcbi.1011335.g001
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event. Yet, we stated that our measure should reflect the relative timing of spikes between neu-

rons. We show that this can be achieved using the EMD flows computed in Step 1, by subtract-

ing a global rigid translation term. This uniquely yields the minimum transport cost to

transform the multi-neuron spiking pattern in epoch k such that its relative spike-timing rela-

tionships between neurons become identical to another patternm. In the Methods section, we

state our main theoretical result, namely that the optimal transport flows are given by

fi;u ¼ ci;u � gmin : ð1Þ

Here gmin is the weighted median across all the original flows ci,u with associated mass wi,u.
Thus, we can decompose the transport flow in two terms: (1) an optimal global shift between

two epochs, shared across all neurons; and (2) an optimal neuron-specific transport flow. We

then define SpikeShip (see Methods) as

Fkm �
1

jAkmj

X

i2Akm

wi;u

Xn
∗
i

u¼1

j fi;uj : ð2Þ

Here Akm is the set of all neurons that fired a spike both in epoch k andm. The weight

wi;u ¼
1

n∗i
, effectively assigns an equal weight to each neuron that contains at least one spike,

where n∗i is the (replicated) number of spikes.

The algorithm to compute SpikeShip has computational complexity OðNnÞ, because the

weighted median has complexity OðNnÞ (S2 Fig, and pseudocode 1). This means that Spike-

Ship performs much better in terms of computational complexity than previous measures like

SPOTDis (which is OðN2n2Þ) [27] and it thus becomes feasible to compute for large ensembles

of neurons, as we will show further below.

Having computed a dissimilarity measure between multi-neuron spike trains, we can use

embedding and clustering techniques to detect patterns in an unsupervised way. The rationale

of our approach is that unsupervised clustering can be performed based on the dissimilarity

matrices, rather than on the spike train data itself. To illustrate this, we generated 6 input pat-

terns defined by the instantaneous rate of inhomogeneous Poisson processes, as in [27]. Noise

was generated with random firing based on a homogenous Poisson process with a constant

rate (i.e., homogenous noise) (See Fig 2A). We computed the pairwise distances between pairs

of epochs using SpikeShip distance, yielding a dissimilarity matrix (Fig 2B). The patterns con-

tained in the data can be visualized using manifold learning algorithms such as t-SNE, using

the SpikeShip dissimilarity matrix as input [28–30] (Fig 2C). Furthermore, HDBSCAN [31]

automatically detected clusters on the basis of the SpikeShip dissimilarity matrix. These results

illustrate how SpikeShip can unveil multi-neuron spiking patterns and shows its efficiency in

simulated, high-dimensional data.

An important property of SpikeShip is that it can distinguish spiking patterns even when

they are multi-modal. To demonstrate this, we use multiple bimodal activation of Poisson pat-

terns with patterned noise and homogeneous noise (See S3A Fig). In addition, we simulated a

special case when neurons are “deactivated” in a certain segment of the epoch (See S3B Fig).

We observed that, in both cases, SpikeShip can detect the patterns successfully and each cluster

were well separated as shown in their dissimilarity matrices and 2D t-SNE embeddings.

Finally, compared to the SPOTDis measure, which is also based on optimal transport (SPOT-

Dis), we found that SpikeShip can detect patterns that are defined by lower signal-to-noise

ratios (See S4 Fig).
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Fig 2. Dissimilarity matrices and clustering comparison. A) Six multi-neuron spiking patterns that were generated according to different

inhomogenous Poisson processes, plus one noise pattern (homogeneous Poisson). We show the first 50 neurons from a total of N = 500 neurons. The

first 180 epochs correspond to homogenous noise (random firing), and the next 180 correspond to pattern that were generated based on an

inhomogenous Poisson process (6 different patterns with 30 epochs each). Each pattern was simulated with Tepoch = 300 samples, Tpulse = 30 samples.

The firing rates outside the pulse were λout = 0.02 spks/samples and during the pulse λin = 0.2 spks/samples, respectively. The homogenous noise pattern

had the same average firing rate as the inhomogeneous patterns. B) Sorted Dissimilarity matrix by pattern using SpikeShip dissimilarity measure (left),

and a 2-dimensional t-SNE embedding using SpikeShip dissimilarity matrix (right).

https://doi.org/10.1371/journal.pcbi.1011335.g002
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Properties of SpikeShip and comparison to other methods

Next, we show that, besides the properties discussed above, SpikeShip has several features that

make it well-suited as a dissimilarity measure for spike train patterns based on relative timing

relations, and that distinguish it from previous spike train metrics:

(1) SpikeShip measures the dissimilarity of spiking patterns between a pair of epochs based

on the relative spike timing between neurons. SpikeShip can therefore be used to detect pat-

terns that are spontaneously occurring or that are not locked to the onset of an event, using

e.g. sliding window approaches. By contrast, other measures like VP and SPIKE are not based

on the relative spike timing. VP and SPIKE can, however, be used to compare spike trains in

different epochs based on the absolute spike timing (Fig 3B). In this case, these measures are

computed for each neuron separately by directly comparing the spike trains in different

epochs, one neuron at a time.

To show that SpikeShip can be used in cases where the onset of the pattern was not known,

we performed two kinds of simulations.

First, we studied a case where the onset of the patterns was not known, and the duration of

the pattern was also not known. In this case, a sliding approach could be used to optimize the

window length based on Silhouette score. We found that SpikeShip can be effectively used

with a sliding window approach, as shown in S5B Fig, in contrast to SPOTDis and Victor-

Purpura.

Second, we considered a scenario in which there were random global shifts superimposed

onto different patterns (See S6A Fig). Here, we added simulations in which there were differ-

ent patterns, plus global shifts of these patterns relative to the epoch onset. Importantly, the

global shifts were not systematically related to the different patterns. As shown in S6B Fig, VP

is influenced by these global shifts, which reflects the fact that it measures differences in abso-

lute timing. By contrast, SpikeShip still detects the original patterns based on relative spike

timing. In addition, SpikeShip yields the global flow term and thereby directly provides a

global measure of latency of the entire pattern.

(2) SpikeShip has a linear dependence on differences in relative spike-timing between

epochs (Fig 3B). Conversely, because VP has a hyperparameter (q), it can have a highly non-

linear dependence on spike timing. This is because as differences in timing become larger, VP

is exclusively driven by insertions, such that the total cost does not increase (Fig 3B).

We further observed that the two other measures, SPIKE and RI-SPIKE, were also influ-

enced by the distance of spiking patterns to the edge of the window (Fig 3B).

(3) By design, SpikeShip is only sensitive to timing relationships, and not to firing rates.

The reason is that all the spike trains due to normalization have the same mass. By contrast,

VP also reflects differences in spike counts because it also includes the insertion cost (See S7

Fig). In fact, VP will only reflect differences in spike counts when its hyperparameter q is very

small or very large, and exhibits temporal sensitivity only for intermediate values of q. While

SPIKE may have some rate sensitivity, RI-SPIKE is designed to have low rate sensitivity [26].

To illustrate these differences, we first examined an example previously shown in [32], with

three patterns that either differ by firing rate (1 and 2) or by timing (1 and 2 vs. 3) (Fig 3A). In

this example, the VP distance is primarily influenced by rate differences, irrespective of the

choice of q. For all q, VP does not assign the lowest between patterns 1 and 2 despite these two

patterns having a very close temporal relationship. By contrast, SpikeShip, SPIKE, and RI-S-

PIKE do assign a much lower cost between patterns 1 and 2 (See Fig 3A). Additionally, we

noted that several measures require temporal alignment. To demonstrate this point, we simu-

lated three Poisson patterns A, B, and C, as shown in Fig 3B. Here, the pattern A contains Pois-

son spikes in a specific interval of the window length. Also, we generated the same amount of
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patterns but after applying a linear shift for half of the neural population and the entire neural

population (pattern B and C, respectively) as illustrated in Fig 3B. We found that SPIKE and

RI-SPIKE are affected by the position of the stimulus onset. Additionally, VP assigns a maxi-

mum distance when the cost of shifting spikes is greater than the cost to insert them. Thus,

Fig 3. Comparison of metrics for example spike trains. A) Sensitivity to spike timing and spike count for different

measures for an example of three synthetic spike trains (as in [32] (Fig 5D)). Bottom: Computation of Victor-Purpura

metric for pairs of spike trains, varying the shift-cost q (left), and computation of distances for SPIKE, RI-SPIKE, and

SpikeShip (right) (see Methods). SpikeShip and RI-SPIKE dissimilarities reflect spike timing rather than spike count.

By contrast, VP reflects spike-count differences, which holds true for the entire range of q. B) Sensitivity of different

measures to global shifts of spiking patterns and changes in relative spike timing. Top: Example of three multi-neuron

spiking patterns. Onset of spike patterns B and C where shifted relative to pattern A. Colors correspond to the shift/

delay applied to half (blue) and the full neural population (green). Bottom: Comparison between spike train

dissimilarities between patterns (A, B) (blue) and pattern (A, C) (green).

https://doi.org/10.1371/journal.pcbi.1011335.g003
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these measures require a clear definition of the stimulus onset to cover as the definition of the

window length affects their distances.

Second, we studied different spiking sequences together with a local or global scaling of fir-

ing rates across epochs. As shown in S7 Fig, VP distance did not uniquely distinguish the pat-

terns based on temporal or rate structure, and is mainly influenced by differences in firing

rates for a large range of q. By contrast, SpikeShip was not influenced by the scaling of firing

rates between epochs (See S8 and S9 Figs). Finally, both SPIKE and RI-SPIKE were less effec-

tive than SpikeShip as they assign very high dissimilarities between the noise spike trains, such

that the overall clustering performance was worse than for SpikeShip (See S10 Fig).

We emphasize that the crux of SpikeShip is that it effectively measures dissimilarity in

terms of cross-neuron spike-timing relationships, rather than absolute time. Nevertheless, the

first step of the algorithm is to shift spikes only for the same neuron between epochs. However,

this is only a computational trick to arrive at the cost based on inter-neuronal spike-time rela-

tionships, which is obtained by subtracting the global weighted median. In the Methods sec-

tion, we show that this yields a measure that effectively measures the dissimilarity in terms of

inter-neuronal spike time relationships, rather than in absolute time.

Application to Allen Brain Institute’s neural datasets

Next, we applied SpikeShip to several high-dimensional neural datasets. Previous work has

shown that the visual system can very rapidly process natural images and extract categorical

information [33]. It has been proposed that this relies on a temporal coding strategy, whereby

visual information is encoded based on the temporal sequence of spikes relative to stimulus

onset [33].

Here, we used SpikeShip to determine whether temporal spiking sequences in six visual

areas can reliably distinguish natural images from each other. To this end, we analysed Neuro-

pixel data from 32 mice while they passively viewed natural images (dataset from the Allen

Institute for Brain Science; see Methods). A total of 20 natural scenes were selected with 10

repetitions each (i.e.M = 200 epochs). To create a high-dimensional vector of neurons, we

pooled together all recorded neurons (N = 8, 301) across the 32 mice (See Fig 4A). Note that

we pooled data across recording sessions to demonstrate that our method is computationally

scalable to very large number of neurons. In S11 Fig we also present an analysis of individual

sessions (i.e. without pooling data across mice).

The pairwise SpikeShip distance is presented in Fig 4B as a dissimilarity matrix sorted by

the presentations of each natural scene. The t-SNE embedding revealed clear clustering of

spiking patterns based on SpikeShip, such that different natural images could be reliably dis-

tinguished from each other (See Fig 4C). Hence, natural images yielded distinct temporal spik-

ing sequences that were time-locked to stimulus onset (so that they could be extracted from

combined data from multiple sessions), in support of the idea that the visual system may use a

temporal coding strategy. In sum, these findings demonstrate that SpikeShip can unveil multi-

neuron temporal spiking patterns from high-dimensional recordings.

Comparison of SpikeShip vs firing rates in visual stimuli

We wondered how the information in temporal spiking sequences compared to the informa-

tion carried by conventional firing rate codes. Our first question was, which one of these two

codes conveyed more information. To determine this, we computed a distance matrix for the

firing rates, by computing the Euclidean distance between the firing rate vectors. These dis-

tances were computed in the same time window as we used for SpikeShip (Fig 5A).

PLOS COMPUTATIONAL BIOLOGY SpikeShip

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011335 July 31, 2023 10 / 29

https://doi.org/10.1371/journal.pcbi.1011335


We then computed a measure of discriminability between natural images based on the dis-

tances within and between images (see Methods, Eq 29). We found that there was a higher

discriminability between natural images for SpikeShip as compared to firing rate vectors for all

the natural scenes (Fig 5B).

Next, we wondered to what extent the information in SpikeShip was independent of the fir-

ing rate information. To this end, we computed the Spearman correlation between the Spike-

Ship distance and firing rate dissimilarity matrices, which contained information from all

Fig 4. SpikeShip analysis of spike sequences for natural scenes presentations (Allen Brain Institute). A) Raster plot

of two epochs withN = 8, 301 neurons for each presentation. B) Sorted dissimilarity matrix by image ID for 20 natural

scenes presentations with 10 presentations each (M = 200). C) 2-dimensional t-SNE embedding for each presentation.

https://doi.org/10.1371/journal.pcbi.1011335.g004

PLOS COMPUTATIONAL BIOLOGY SpikeShip

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011335 July 31, 2023 11 / 29

https://doi.org/10.1371/journal.pcbi.1011335.g004
https://doi.org/10.1371/journal.pcbi.1011335


epochs across all natural images. We found that the dissimilarity matrices of SpikeShip and fir-

ing rates were only weakly correlated across epochs (Spearman correlation equals 0.1804).

Accordingly, the t-SNE visualization shows that the relative locations of the clusters show

major differences between both methods (S12 Fig).

Altogether, these results show that SpikeShip and firing rates contain different and to a

large extent independent information about natural stimuli. Furthermore, SpikeShip allowed

for a better separation of the different natural stimuli in comparison to firing rates. We further

observed that both SPIKE and RI-SPIKE were less effective in separating the different patterns

than SpikeShip, and showed a stronger correlation with firing rates (S13 Fig).

Finally, we performed analyses across single sessions. For the clustering analysis of natural

scenes across single sessions, SpikeShip outperforms Rate-independent SPIKE measure (RI-S-

PIKE), as shown in S11 Fig. However, differences in clustering performance for SpikeShip vs.

Firing rates did not reach significance, which may be due to a floor effect due to the lower ARI

scores related to the smaller number of neurons.

These findings support the idea that the visual system may use spiking sequences to encode

information about natural scenes, as proposed by e.g. [33].

Fig 5. Comparison of pairwise distances between Firing rates and SpikeShip. A) Dissimilarity matrices for Allen Brain Institute data (sorted by

natural scenes). Colormaps were changed to show more variability in distances. B) Discriminability index for dissimilarity matrices shown in A) by

using firing rates (dFR) and SpikeShip (dSS).

https://doi.org/10.1371/journal.pcbi.1011335.g005
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Application to spontaneous activity

Next, we applied SpikeShip to high-dimensional neural recordings from multiple brain areas

while mice spontaneously transitioned between different behavioral states. Previous works

have shown that behavioral states have major effects on the firing rates of neurons across mul-

tiple brain areas [10, 34]. Recent work has shown that different facial motion components out-

perform the prediction of firing rates as compared to running speed and pupil diameter (a

measure of arousal). Hence, we wondered whether different behavioral states are accompanied

and distinguished by specific spiking sequences.

To investigate this, we analysed the data set of [22], which contains multi-areal recordings

from >1000 neurons in three mice. Similar to [10], we distinguished between different states

based on the facial motion components using the SVD (singular value decomposition), and

identified low, medium, and high-motion epochs (Fig 6A–6C). We randomly selected one

hundred epochs for both low-, medium and high-motion states and computed the SpikeShip

dissimilarity matrix (M = 200, See Fig 6D).

In Fig 6E, we show the dissimilarity matrix for one mouse (“Waksman”; N = 2, 688, for the

other two mice see S14 Fig). The first 100 epochs represent low-motion states, and the remain-

ing 100 are the middle- and high-motion epochs. The dissimilarity matrix reveals that the spik-

ing sequences during medium and high motion are relatively similar to each other, whereas

there is a relatively high variability among sequences during low-motion epochs (See Figs 6E

and 6F and S15). Furthermore, both the t-SNE embedding and the spectral embedding show a

separate state-space region for the spiking sequences during medium and high motion.

We further wondered if SpikeShip contains orthogonal information compared to firing

rates, similar to what we had observed for natural images. Again, we computed the Spearman

correlations between the SpikeShip and the firing rate dissimilarity matrices. We found rela-

tively weak correlations between the firing rate and SpikeShip dissimilarity matrices for the

three mice: (0.189, 0.024, −0.064) for N = (1462, 2296, 2688) neurons, respectively (See Fig

6G).

Altogether, these findings indicate that different brain states give rise to specific temporal

correlation patterns across neurons, with relatively homogeneous spiking sequences during

active behavior as compared to quiescence.

Discussion

We studied the problem of measuring the dissimilarity between two multi-neuron spiking pat-

terns based on the relative spike-timing relationships across neurons (i.e. firing order). We

developed a new measure called SpikeShip. SpikeShip solves the problem of optimally trans-

porting the spikes of individual neurons, such that the global pattern of spike-timing relation-

ships becomes identical between two epochs. Intuitively, one would think that such a measure

has a computational complexity of at least OðN2Þ, but we show that it can be computed with

OðNÞ computational complexity; this is a major improvement over our previous work [27].

We show that a dissimilarity between two spiking patterns can be decomposed into neuron-

specific flows and a temporal rigid translation term. Importantly, SpikeShip is not restricted to

the 2nd order correlations, but is based on the higher-order structure in the spike train.

Comparison to previous measures

We note that there are various other approaches to quantify multi-neuron patterns, which

allow for different applications compared to SpikeShip. Some recent methods use dimension-

ality reduction and the identification of latent factors via non-negative matrix factorization or
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Fig 6. Analyses of multi-areal recordings during spontaneous activity. A) First 4 SVD dimensions of the face

motion from the [22] data. B) Absolute sum of SVD dimensions shown in A) minus the median across such

dimensions (denoising). C) Normalized SVD motion computed via a sliding window to smooth the whisker’s motion

trace. We detected low- and middle- & high-motion states using HMM (See Methods). D) Raster plot for N = 2, 296

neurons for different epochs. E) Multi-spike sequence analyses. Left: Dissimilarity Matrices. Middle: 2D t-SNE

embedding. Right: 2D Spectral Embedding (Laplacian Eigenmaps). F) Mean SpikeShip distance from [10]

experiments. Error bars represent the standard deviation of SpikeShip distances. G) Spearman correlation between

firing rates and SpikeShip per experiment.

https://doi.org/10.1371/journal.pcbi.1011335.g006
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sparse convolutional coding, e.g. [35–38]. Although the dissimilarity matrices obtained via Spi-

keShip may in principle be used to identify latent factors, this remains to be explored in future

work. Another approach is frequent-item-set mining, which looks for exact matches in spiking

patterns across neurons (for an overview, see [39]). Finally, there are classic techniques based

on statistical approaches that detect pairwise correlations between neurons at certain lags [39–

41]. The idea of SpikeShip is not to examine whether neural data contains significant pairwise

correlations. However, its fast computational time may make it useful to detect higher-order

correlations by comparing observed spiking patterns with a surrogate distribution obtained

via permutation (e.g. neuron identities across epochs).

Multi-neuron extensions of VP-distance [23, 42] and van Rossum distance [43] have been

previously proposed. For instance, in case of [44], there is a hyperparameter k that quantifies

the cost of exchanging the labels of a spike (i.e. which neuron it belongs to). In case k = 0, the

multi-neuron metric amounts to (1) pooling all the spike trains into one spike train, and then

(2) computing the VP distance. In this case, the precise inter-neuronal time-relationships are

not considered, in contrast to SpikeShip. In case k� 2, the multi-neuron distance amounts to

computing the VP distance per neuron separately, and then averaging. We note that this is

exactly how we computed the multi-neuron distance in case of VP. In case k 2 (0, 2), it is

expected that the multi-neuron VP distance has sensitivity both to inter-neuronal timing rela-

tionships and to single-neuron absolute timing. Given the nature of the multi-neuron VP,

there are major differences with SpikeShip and the measures have essentially different applica-

tions. Most importantly, the multi-neuron VP metric is influenced by the absolute timing of

individual neurons and global shifts of spike patterns, whereas SpikeShip is designed to mea-

sure dissimilarity in terms of inter-neuronal spike time relationships. SpikeShip also has some

computational advantages compared to the multi-neuron VP extension: For the multi-neuron

VP measure, the optimization problem is rather complex given two hyperparameters q and k.

Finally, the multi-neuron algorithm has a computational cost that scale exponentially with the

neural population size (i.e. OðnNþ1Þ, where n is the average number of spikes and N the

amount of neurons.

SpikeShip has several distinct properties as compared to other measures: 1) It is useful to

note that there are different measures that are designed for distinct computational problems.

SpikeShip is explicitly designed to measure the similarity between patterns in terms of relative

spike time relationships. This distinguishes it from e.g. the VP distance, which measures simi-

larity in terms of absolute spike times. We note that while SpikeShip is designed to measure

similarity based on relative spike timing, it can also be used to measure similarity in terms of

the absolute timing of spikes. In doing so, it has the advantage of extracting separately a global

translation term, indicating shared latency shifts, and inter-neuronal timing differences. We

furthermore showed that SpikeShip can be used in combination with a sliding window

approach. Here the computational cost offers a great advantage as many different window

lengths can be compared based on e.g. Silhouette score, as we show here. 2) SpikeShip is by

design not sensitive to global or local scaling of firing rates, as opposed to VP. We also note that

RI-SPIKE is designed to be insensitive to a scaling of firing rates. We note however that Spike-

Ship dissimilarity between any two epochs is based on the spike trains of those neurons that fire

at least one spike. Thus, although the value of SpikeShip is not biased by firing rate, the firing

rate can influence which neurons the measure is computed over, in particular when neurons

have very low (baseline) firing rates. 3) SpikeShip finds sequences based on higher-order tem-

poral structure based on relative spike timing, with a computational cost of OðNnÞ. By contrast,

the previous SPOTDis measure [27] has computational cost of OðN2n2Þ and is strictly based on

second-order correlations. 4) As shown here, SpikeShip is highly noise robust, and outperforms

our previous method SPOTDis. 5) SpikeShip can be used for the detection of multi-modal
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patterns, which e.g. distinguishes it from methods that detect sequences based on the latency of

firing. 6) SpikeShip is a bin-less measure, i.e. it is based on exact spike timings. 7) SpikeShip

does not require exact matches between patterns, but is based on a metric distance (earth

mover distance) that reflects the magnitude of differences in relative spike timings. This is an

important difference relative to measures that e.g. require exact matches in patterns. Yet it also

distinguishes it from e.g. VP, which shows a non-linear dependence on timing differences, and

SPIKE and RI-SPIKE, which show a non-monotonic dependence on timing differences.

We note that SpikeShip has an efficient computation time of order Nn (number of neurons

times number of spikes), which is comparable to the computational cost of the spike count.

This is remarkable given that SpikeShip quantifies the dissimilarity based on all the relative

spike-time relations. SpikeShip achieves this computation time by computing the Earth Mover

Distance (EMD) first for each spike train separately, and obtaining individual flows by com-

puting a global flow. We note that EMD was also applied to cross-correlations (in [27]) and to

individual spike trains [45]. In [45] the EMD is quantified one neuron at a time, i.e. without

considering inter-neuronal spike-time relationships, and the dissimilarity of spiking pattern is

thus based on the absolute timing relative to a stimulus onset. Crucially, SpikeShip aims to

quantify the dissimilarity of spiking patterns (between two epochs) in terms of the spike-tim-

ing relationships among all recorded neurons (i.e. inter-neuronal spike time relationships).

This means that SpikeShip is based on relative spike-time relationships, which makes it invari-

ant to e.g. the onset of a sequence relative to the beginning of an epoch, and allows for the

quantification of spontaneously occurring sequences that are not locked to a stimulus onset.

Thus, SpikeShip allows for a wide variety of applications (including sequences time-locked to a

stimulus onset) and is thus more generic than EMD computed per neuron separately.

Finally, it is interesting to note that the SpikeShip algorithm can in principle also be used to

align temporal sequences in an unsupervised way if there is a global jitter between spike pat-

terns. The reason is that SpikeShip decomposes the transport cost between any two trials in

terms of a global translation term (which is a non-linear computation) and neuron-specific

shifts. Thus, SpikeShip can be used to achieve something similar as in a recent study [46],

described as “time warping”.

Application to neural data

We applied SpikeShip to large, real neuronal datasets of experiments in mice. We found that

SpikeShip can be used for the unsupervised decoding of different natural images from a high-

dimensional temporal spiking pattern across N> 8000 neurons. We note that for the main

analyses we pooled data across mice, which therefore does not include shared trial-by-trial var-

iability across neurons and only examines spike-timing patterns that are time-locked to stimu-

lus onset. We found that the clustering performance of Spikeship outperforms the clustering

based on firing-rate dissimilarity matrices, and that the spike timing information was only

weakly redundant with the information in the firing rate vector. Note that although we mea-

sured clustering performance to the ground-truth, we did not directly compare classifiers

based on SpikeShip vs. rate distances.

This suggests that spike timing information carries additional information relative to the

firing rate, as has been hypothesized by [33]. Interestingly, the SpikeShip technique does not

require the explicit identifications of spike latencies, and is able to extract higher-order correla-

tions from spiking patterns and also distinguish multimodal patterns from each other [27].

Furthermore, as we showed here, the computation is extremely efficient.

In another application, we analysed large-scale recordings from the visual cortex, retrosple-

nial, sensorimotor, frontal, striatum, hippocampus, thalamus, and midbrain. We showed that

PLOS COMPUTATIONAL BIOLOGY SpikeShip

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011335 July 31, 2023 16 / 29

https://doi.org/10.1371/journal.pcbi.1011335


the temporal structure of spike trains distinguished between low- and high-motion epochs,

and again provided orthogonal information to the firing rate code. Spiking patterns become

more homogeneous during high-motion epochs, which is consistent with the notion that

arousal improves the reliability of signal transmission in the cortex [34].

Outlook

Looking forward, SpikeShip opens new avenues to study temporal sequences in high-dimen-

sional neural ensembles. Recent technological developments now allow for recordings of thou-

sands of neurons simultaneously, either using electrical recordings or two-photon imaging [9].

The technique developed here is applicable to both kinds of data, due to linear computation

time. Application of SpikeShip to such kind of data might generate important insights into the

role of temporal sequences in sensory coding and memory consolidation.

Materials and methods

Derivation of SpikeShip

Here we derive a new dissimilarity measure, called SpikeShip, which has computational com-

plexity OðNÞ for one pair of epochs. In SpikeShip, we use a cost on the absolute rather than

quadratic differences in spike timing, which has two principal reasons: First, using absolute

difference allows for an efficient computation of SpikeShip with computational complexity

OðNnÞ (number of neurons time number of spikes). Second, using the absolute instead of qua-

dratic distance avoids over-weighing large spike time shifts (i.e. a shift from e.g. 0 to 0.1 s is

weighted similarly as a shift from 1 to 1.1).

In SpikeShip, we assign a unit mass to the spike train in a given trial. For each neuron j in

epoch k for which the number of spikes nk,j> 0, we define the point process with unit energy

rk;jðtÞ ¼
1

nk;j

Xnk;j

u¼1

dðt � tk;j;uÞ : ð3Þ

This defines for each pair of neurons (i, j) in epoch k the cross-correlation function

si;j;kðtÞ ¼
XT

t¼0

rk;iðtÞrk;jðt þ tÞ ; ð4Þ

Consider two epochs (k,m). We wish to find for each neuron (in epoch k) a transport of

mass from t to t0, [M]j,t,t0, such that si,j,k(τ) = si,j,m(τ) for all (i, j, τ). The mass here consists of the

spikes, which have a sum of 1. The objective is then to find a matrix of flows M that minimizes

the total mover cost, i.e.

arg min
M

X

j;t;t0
Mk;t;t0dðt; t

0Þ ð5Þ

where d(t,t0) = |t − t0|.
Note that the crucial difference to a previous measure SPOTDis [27] is the following: In

SPOTDis, we had a similar goal, but we computed dissimilarity via EMD for each neuron pair

(i, j) separately, on the normalized cross-correlation functions si,j,k(τ) and si,j,m(τ) (that is, the

minimum mover cost to equate one pair of cross-correlations). However, this is computation-

ally very expensive (order N2 for N neurons) and only considers second-order correlations.

With SpikeShip, we wish to solve the general transport problem, by shifting the spike mass for

each neuron separately, such that si,j,k(τ) = si,j,m(τ) for all (i, j, τ). This, by definition, amounts
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to a dissimilarity measure over the entire multi-neuron spiking pattern, rather than consider-

ing all the pairwise correlations separately (as in case of SPOTDis). Yet, similar to SPOTDis,

SpikeShip is exclusively based on relative spike-timing relations between neurons rather than

absolute spike timing. We show that, surprisingly, the transport objective stated in Eq 5 can be

achieved elegantly with order N neurons computational complexity, rather than order N2.

SpikeShip for a single spike per epoch. To derive the SpikeShip measure, we first

consider the simplified case where each ith neuron fires one spike for allM epochs. Let

~f km ¼ ðf1;km; . . . ; fN;kmÞ be a vector of flows for each of N neurons in epochm. In other words,

f1,km is the shift of the spike fired by the first neuron in themth epoch. The total moving cost

equals

Fkm �
1

N

XN

i¼1

jfi;kmj : ð6Þ

The problem statement is to find a flow vector~f km such that after moving the spikes, the result-

ing spike train patterns are identical between epoch k and epochm, in terms of the full matrix

of spike timing relationships. We wish to find the flow vector that satisfies this constraint with

minimum cost Fkm.

Example: Suppose there are two epochs for N = 6 neurons with spike times~tk ¼
ð10; 10; 10; 10; 10; 10Þ and~tm ¼ ð20; 30; 35; 45; 50; 60Þ. We will show that the flow vector

with minimum cost, such that spike patterns have identical temporal structure, equals

~f km ¼ ð� 20; � 10; � 5; 5; 10; 20Þ (Fig 1).

More formally, let tm,i be the timing of the spike for the ith neuron in themth epoch. We

denote the spike times after (post) moving them in epochm as

tpostm;i � tm;i � fi ð7Þ

8i, where we omitted the subscripts k,m from the variable fi,km for simplicity. The constraint

that all the across-neuron spike timing relationships should be identical after moving implies

that

tpostm;i � t
post
m;j ¼ tk;i � tk;j 8i; j 2 N : ð8Þ

In other words, the delay between two spikes from two different neurons (i, j) should be identi-

cal between pattern k andm after moving the spikes. Substituting based on Eq 7, this can be

expressed as

ðtm;i � fiÞ � ðtm;j � fjÞ ¼ tk;i � tk;j : ð9Þ

Let ci be the shift in spike timing for each neuron in epochm, such that the spike train patterns

become identical,

ci � tm;i � tk;i : ð10Þ

Note that with this definition of ci, the equation

ðtm;i � ciÞ � ðtm;j � cjÞ ¼ tk;i � tk;j ð11Þ

holds for all (i, j). For all i, we can express fi as a function of the shift ci, such that

fi � ci � gi : ð12Þ
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We wish to solve

~gmin � arg min
~g

Fkm ¼ arg min
~g

XN

i

jci � gij ð13Þ

under the constraint of Eq 9.

From Eqs 9, 11 and 12 it follows that

ðtm;i � ci þ giÞ � ðtm;j � cj þ gjÞ ¼ ðtm;i � ciÞ � ðtm;j � cjÞ ð14Þ

Hence the equation gi = gj holds for all (i, j). Thus, we can rewrite Eq 13 to

gmin � arg min
g

XN

i

jci � gj ð15Þ

to find a global shift that minimizes the L1-norm of the residuals. The solution to this equation

is

gmin ¼ Medianf~cg : ð16Þ

Thus, our main result is that the original shifts between the two spiking patterns can be written

as the decomposition

ci ¼ gmin þ fi ; ð17Þ

for all i, i.e. the optimal transport in terms of neuron-specific shifts and a global temporal rigid

translation term. Thus, the optimal transport between two spiking patterns (e.g. after stimulus

onset) can be decomposed into the optimal transport in terms of neuron-specific shifts and a

global temporal rigid translation term.

Global shift definition for multiple spikes. We now consider the case where in each

epoch, every neuron fires a variable number of spikes. We will show that a similar derivation

for SpikeShip can be made based on the weighted median. Let ni,k and ni,m be the number of

spikes for the i-th neuron in epoch k and m. We will also assign a weight to each spike, such

that the total weight per neuron in the computation of SpikeShip is equal. In order to do so,

we first find the smallest common multiple of the spike counts for each neuron, denoted n∗i .
For instance, if ni,k = 2 and ni,m = 6 then the Least common multiple equals 6. We now repli-

cate each spike
n∗i
ni;k

and
n∗j
ni;m

times. Each spike will now have a weight of wi �
1

n∗i
. (Note that in

the actual computation, we do not replicate the spikes in practice, but use an algorithm simi-

lar to the one detailed in [27]). Then, based on the optimal transport cost (EMD), we obtain

shifts ci,u for the u-th spike of the i-th neuron, u ¼ ð1; . . . ; n∗i Þ. Note that we have shown

EMD for spike trains can be efficiently computed by first shifting the mass from the most left-

ward spike (i.e. first spike) out of n∗i spikes in epochm to the most left-ward spike in epoch k
[27], and then proceeding with the second spike, etc.

We use a similar derivation as the one above. Let tm,i,u be the timing of the u − th replicated

spike for neuron i in themth epoch, for all (i,m, u), u ¼ ð1; . . . ; n∗i Þ. We denote the spike

times after (post) moving them in epochm as

tpostm;i;u � tm;i;u � fi;u ð18Þ

8(i, u), where we omitted the subscripts k,m from the variable fi,km,u for simplicity. The con-

straint that all the across-neuron spike timing relationships should be identical after moving
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implies that

tpostm;i;u � t
post
m;j;u ¼ tk;i;u � tk;j;u ð19Þ

In other words, the delay between two spikes from two different neurons (i, j) should be identi-

cal between pattern k andm after moving the spikes. Substituting based on Eq 18, this can be

expressed as

ðtm;i;u � fi;uÞ � ðtm;j;u � fj;uÞ ¼ tk;i;u � tk;j;u : ð20Þ

There is one additional constraint, namely

ðtm;i;u � fi;uÞ � ðtm;i;v � fi;vÞ ¼ tk;i;u � tk;i;v : ð21Þ

In other words, all the pairwise relationships after moving within the same neuron should be

identical.

Let ci,u be the shift in spike timing for each neuron in epochm, such that the spiking pat-

terns in the window become identical,

ci;u � tm;i;u � tk;i;u : ð22Þ

Note that with this definition of ci,u, the equation

ðtm;i;u � ci;uÞ � ðtm;j;u � cj;uÞ ¼ tk;i;u � tk;j;u ð23Þ

holds for all (i, j, u). For all i, u, we can express fi,u as a function of the shift ci,u, such that

fi;u � ci;u � gi;u : ð24Þ

Define~g � ððgi;1; . . . ; gi;n∗i Þ; . . . ; ðgN;1; . . . ; gN;n∗N ÞÞ.
We wish to solve

~gmin � arg min
~g

XN

i

Xn
∗
i

u

wi;ujci;u � gi;uj ð25Þ

under the constraints of Eqs 20, 21 and 23.

Given these two constraints, the equation gi,u = gj,u holds for all (i, j, u). Thus, we can rewrite

Eq 25 to

gmin � arg min
g

XN

i

Xn
∗
i

u

wi;ujci;u � gj ð26Þ

to find a global translation term that minimizes the L1-norm of the residuals. The solution to

this equation is the weighted median g,

gmin ¼WeightedMedianððc1;1;wi;u; . . . ; c1;n∗
1
;w1;n∗

1
Þ; . . . ; ðcN;1;wN;1; . . . ; cN;n∗N ;wN;n∗N

ÞÞ :

Now average mover cost, SpikeShip, equals

Fkm �
1

jAkmj

X

i2Akm

1

n∗i

Xn
∗
i

u

jfi;uj : ð27Þ

where Akm � fi : ni;m > 0 ^ ni;k > 0g is the set of neurons that are active in both epochs k and

m. Thus, we derive the result that the original shifts between the two spiking patterns can be
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written as the decomposition

ci;u ¼ gmin þ fi;u ; ð28Þ

for all (i, u), i.e. the optimal transport in terms of neuron-specific shifts and a global translation

term. Thus, the optimal transport between two spiking patterns (e.g. after stimulus onset) can

be decomposed into the optimal transport in terms of neuron-specific shifts and a global tem-

poral rigid translation term. This computation has linear complexity OðNÞ. We base the com-

putation of the weighted median on [47, 48] and an adaptation of the Robustats [49] Python

library. In practice, the computation of ci,u (optimal transport per neuron) can be efficiently

performed not by replicating the spikes to the common multiple integer (used in the deriva-

tion above), but by using a similar algorithm as in [27].

Comparison with other spike train metrics

Victor-Purpura distance. Victor-Purpura metric (VP) combines both rate and temporal

information by defining a hyper-parameter q related with the cost of shift between spikes.

Thus, VP extracts rate information for small values of q, converging to the absolute difference

of spike counts for two spike trains with ni and nj spikes when q = 0 (i.e., VP(q = 0) = |ni − nj|).
On the other hand, for high values of q, VP distance maximizes the contribution of timing cod-

ing, converging to the sum of the total spike of both spike trains (i.e., VP(q!1) = ni + nj)).
We used Elephant (Electrophysiology Analysis Toolkit) [50] to compute VP distance.

Finally, we note that there is some relation between VP distance and EMD (Earth Mover

Distance), as VP also contains a transport term (in the sense of shifting spikes). In case that

two spike trains have an identical value of n, the VP becomes equal to the n/T � EMD as

q! 1/T from below. In this case VP will ignore the insertion costs and only contain shift

cost (as the maximum shift cost equals Tq! 1). We have added some simulations to show

indeed that VP and the scaled (by N/T) EMD are identical in this case of equal spike counts.

However, if the spike count is different between two spike trains, then VP and EMD will

diverge. We furthermore note that the crux of SpikeShip is of course to consider inter-neu-

ronal timing relationships, which is achieved by decomposing the total moving cost into a

global flow and a neuron-specific flow costs. This means that VP and SpikeShip remain

fundamentally different measures. We have illustrated this results in S16 Fig.

SPIKE and RI-SPIKE distances. Both SPIKE and RI-SPIKE measure the similarity of two

spike trains in terms of the absolute spike timing. RI-SPIKE was developed to avoid a rate bias

in the computation of the dissimilarity. To perform the analyses for SPIKE and RI-SPIKE met-

rics, we used a python library for spike train similarity analysis called PySpike [51].

SPOTDis. Previously, we have developed a dissimilarity measure between multi-neuron

temporal spiking patterns called SPOTDis (Spike Pattern Optimal Transport Dissimilarity)

[27]. SPOTDis is defined as the minimum energy (optimal transport) that is needed to trans-

form all pairwise cross-correlations of one epoch k into the pairwise cross-correlations of

another epochm. This optimal transport is given by EMD. SPOTDis only measures pairwise

correlations and has computational cost of order N2. We used SPOTDis python module [27]

to perform the analyses.

Application in high-dimensional neural data

Allen Brain Institute datasets. We used the free, publicly available datasets of Allen Brain

Institute through AllenSDK (For more details, see http://help.brain-map.org/display/

observatory/Documentation). Neuropixels silicon probes [9] were used to record neurons

with precise spatial and temporal resolution [12].
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We selected the cells of 32 mice during natural scene presentations. The cells were selected

considering a signal-noise ratio (SNR) such that SNR> 0. The neural activity from a total of

N = 8, 301 cells was selected from the Primary visual area (VISp), Lateral visual area (VISl),

Anterolateral visual area (VISal), Posteromedial visual area (VISpm), Rostrolateral visual area

(VISrl), and Anteromedial visual area (VISam).

The computation time for SpikeShip to compute one dissimilarity matrix of Fig 4C was on

average 58.8 secs (see Methods), thus indicating a highly effective computation time for N = 8,

301 neurons. In contrast, we estimate the computation time for the previous SPOTDis mea-

sure [27] to be approximately 175.71 hours (1 week and 7.7 hours; based on n� 3.33 spikes

per neuron).

Spontaneous activity. For the spontaneous activity dataset, we used free, publicly avail-

able datasets [22]. It contains data from three mice: “Krebs” (N = 1, 462), “Robbins”(N = 2,

296), and “Waksman” (N = 2, 688). Probes were located in distinct cortical areas (visual, senso-

rimotor, frontal, and retrosplenial), hippocampus, thalamus, striatum, and midbrain [10]. In

this study, Singular Value Decomposition (SVD) was applied to the recordings of the pixel dif-

ference between consecutive frames of a mouse face movie. Thus, each experiment contains

information about the recorded spike times, cells, and the processed SVD components of whis-

ker’s motion.

For our analyses, we sum the first four SVD components (Fig 6A) and then we subtracted

the median across dimensions (denoising, see Fig 6B). A sliding window was used to sum the

whisker’s motion across the interval [t, t + 0.5] second (Fig 6C and 6D). We used Hidden Mar-

kov Model (HMM) to automatically detect states of low- and middle- & high-motion epochs.

Then, we selected one hundred epochs for both low- and high-motion states based on the SVD

motion value, and ran SpikeShip across different amounts of cells, depending on the experi-

ment. We used the implementations of HMM, t-SNE, and Spectral Embedding from the

python library Scikit Learn v0.22.1.

For these experiments, SpikeShip took 25.5 secs in creating a dissimilarity matrix. Consid-

ering N� 2, 500, n� 5, based on Fig 6D, the computation time of SPOTDis can be estimated

as 34.06 hours (1 day and 10.06 hours; SU� 4, 808).

Computation of Euclidean distance between two firing rate vectors. For a population

of N neurons, we computed the firing rate vectors ( FR�!) for each epoch of our analyses as the

count of spikes per neuron divided by a window length T. For example, for two neurons with

spikes N0 = (0.0, 0.1, 0.5) and N1 = (0.0, 0.2, 0.4, 1.0) and T = 1, the firing rate vectors corre-

spond to FR�! ¼ jN0 j

T ;
jN1 j

T

� �
¼ ð3; 4Þ.

Additionally, we normalized the firing rate vectors across epochs (z-score). For example,

for two epochs k and m and normalized firing rate vectors of FRk
�!
¼ ð3; 4; 5Þ and

FRm
��!
¼ ð2; 5; 3Þ, mean and standard deviation of firing rates across epochs correspond to

~m ¼ ð2:5; 4:5; 4Þ and~s ¼ ð0:5; 0:5; 1Þ, respectively. Then, z-scored firing rate vectors are

FR∗k
�!
¼ 3� 2:5

0:5
; 4� 4:5

0:5
; 5� 4

1

� �
¼ ð1; � 1; 1Þ and FR∗m

��!
¼ 2� 2:5

0:5
; 5� 4:5

0:5
; 3� 4

1

� �
¼ ð� 1; 1; � 1Þ.

Finally, we computed the Euclidean distance between both normalized vectors is

dEuc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i ðFR
∗
m;i

��!
� FR∗k;i
��!
Þ

2

q

¼
ffiffiffiffiffi
12
p

� 3:46.

Discriminability index. Since the information in temporal spiking sequences compared

to the information from traditional firing rate codes could differ, we wanted to quantify to

what extent the degree of discriminability within and between different visual stimuli differ in

a dissimilarity matrix diss (i.e. within and between natural images) per stimulus id.

To this end, we computed a “Discriminability index” (d), defined as the difference between

the average distance within and between stimulus id, divided by the squared sum of their
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variances to the power of two.

ddiss;id ¼
mdiss;between;id � mdiss;within;id
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2diss;between þ s2diss;within

p ð29Þ

Therefore, this index indicates how many standard deviations are two sets of distances

away from each other.

Supporting information

S1 Fig. Illustration of SpikeShip for multiple spikes. (Top) Example of two epochs with

spike times for two active neurons N0 and N1 (i.e., Akm = 2): tk = ((10, 15), (10)) and tm = ((35,

40, 45), (35, 40)). Spike counts per epoch m and k correspond to (|tN1,k| = 2, |tN1,m| = 1) and

(|tN0,k| = 3, |tN1,k| = 2), respectively. (Middle) The difference of spike times is computed by

normalizing the mass across neurons and between epochs. Such spike time difference is~c ¼
ð15; 10; 30; 30; 25; 30; 25; 25Þ with mass (i.e., weights) W ¼ 1

2
; 1

2
; 1

6
; 1

6
; 1

6
; 1

6
; 1

6
; 1

6

� �
. Then, the

global shift (i.e., gmin) equals 20. (Bottom) Neuron-specific shifts correspond to

~f ¼W � ð~c � ~gÞ ¼ � 5

2
; � 10

2
; 10

6
; 10

6
; 5

6
; 10

6
; 5

6
; 5

6

� �
. Thus, Fkm ¼ 1

Akm

P
i2Akm

1

n∗i

Pn∗i
u jfi;uj ¼

15

2
¼ 7:5.

(PDF)

S2 Fig. Accuracy and Speed-up comparison for single- and multi-spike patterns. A) Exam-

ple of single spike trains for two epochs for 10 neurons. Patterns were generated as uniform

sequences with n = 1 spike per neuron per epoch. B) Computational speed-up (log-scale) for

SpikeShip vs. SPOTDis (serial execution) for increasing amount of neurons N. Speed-up is

approximately N when there is 1 spike per neuron, and it increases when n> 1 (i.e. the multi-

spike pattern case). C) Example of three single-spike patterns: (−20, 0, 0, +20), (0, 0, 0, 0), and

(−15, −15, +15, +15), from left to right. SpikeShip assigns a geometrically more appropriate

transport cost between pattern 1 and 2 (F1,2 = 10) than SPOTDis (D1,2 = 12.5), considering

their distance with pattern 0.

(PDF)

S3 Fig. Multimodal activation and deactivation patterns can be detected using SpikeShip.

(A) Multiple bimodal activation patterns and examples of realizations for each pattern

(N = 50 neurons). Simulation parameters were pulse rate λin = 0.35 spks/sample, baseline

rate λout = 0.05 spks/sample, epoch window length Tepoch = 300 samples and pulse length

Tpulse = 20 samples. Bottom figures show sorted dissimilarity matrix and t-SNE for simula-

tion with patterned noise (left) and homogeneous noise (right). (B) Multiple bimodal activa-

tion patterns and examples of realizations for each pattern (N = 50 neurons). Simulation

parameters were λout = 0.02 spks/sample (i.e. the deactivation period), λin = 0.3 spks/sample,

Tepoch = 300 and Tdeactivation = 150 samples. Bottom figures show sorted dissimilarity matrix

and t-SNE for simulation with patterned noise (left) and homogeneous noise (right).

(PDF)

S4 Fig. Performance of SpikeShip depends on the SNR but it outperforms SPOTDis. (A)

Performance of clustering on 2D t-SNE embeddings for SPOTDis (left) and SpikeShip (right)

measured with ARI score. Clusters detection was performed using K-Means algorithm. Firing

rate inside pulse period is varied, while firing rate outside pulse was varied: λin and λout corre-

spond to the pulse rate and the baseline rate, respectively. Thus, Pulse rate / Baseline rate corre-

sponds to the signal-to-noise ratio (SNR). Additionally, Tpulse correponds to the period of time

during the pulse rate and Tepoch to the window length. We simulated 5 patterns with 30 repeti-

tions each, with λout = 0.05 spks/sample, and λin attaining values of 0.15, 0.2, 0.25, 0.35, 0.45 or
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0.5 spks/sample, Tpulse = 30 and Tepoch = 1000 samples. The number of neurons was 25, 50 or

100, and 150 epochs of homogeneous noise. We show the mean and the standard deviation

across 10 repetitions of the same simulation. Performance relative to ground truth increases

with SNR. Lower SNRs are needed for achieving the same performance when the number of

neurons is larger. (B) as (A), but now varying the pulse duration. Simulation parameters were

λout = 0.05 spks/sample, and λin = 0.5, 0.4, 0.3, 0.2, 0.1 spks/sample, and Tpulse of 100, 200, 300,

400 or 500 samples, with Tepoch = 1000 samples; note that the product of λin. Tpulse remained

constant.

(PDF)

S5 Fig. Dependence of clustering performance on chosen window length and temporal jit-

ter of spike pattern onset. (A) Each pattern has a length of 300 samples, and is embedded in a

larger window starting from -300 samples to +300 samples, with homogeneous noise sur-

rounding the pattern on the left and right. The onset of the pattern is -150 samples plus some

random offset Δtw. For each epoch realization, the value of Δtw was randomly chosen with uni-

form probability from an interval determined by the maximum window offset (max offset of

100 meant that Δtw 2 [-100,100]). We select a window ranging from −Tw/2 to +Tw/2 samples

of length Tw. (B) Clustering performance of 2D t-SNE embeddings was measured relative to

ground-truth (ARI, compared with k-Means labels) and with an unsupervised performance

measure, Silhouette Score. Clustering performance decreased as the maximum window offset

increased, due to the inclusion of noise spikes around the spike pattern. SpikeShip has a small

but consistent performance advantage relative to SPOTDis. Furthermore, SpikeShip strongly

outperformed VP results in clustering performance, which as expected was severely distorted

by global shifts in spiking patterns. ARI and Silhouette scores correspond to the mean value

obtained across 10 repetitions for each combination of window length (Tw) and max window

offset (Δtw).

(PDF)

S6 Fig. Comparison of VP and SpikeShip for simulations with multiple patterns and global

shifts. We simulated 6 patterns with Poisson noise surrounding the pattern on the left and

right. The onset of the pattern (i.e., Δtw) was randomly assigned between 0 and 0.8 with a

window length of Tw = 0.2s for the patterns. The analysis window used here is 1 s, i.e. the

entire period. SpikeShip correctly detects the 6 different patterns, but also SpikeShip can

decompose the spike patterns to make it invariant to changes in global shifts. VP distance

drastically depends on the global shift applied to the spikes. SpikeShip can retrieve the global

shift from the spike sequences and reconstruct the random global shifts applied to the spike

trains.

(PDF)

S7 Fig. Performance of VP distance is affected by changes in both local and global scaling

rates. A) Global scaling. Same simulations as in S8 Fig. Victor-Purpura distance (VP) was

used with different values of q. When q = 0, VP = |ni − nj|, with ni and nj the spike count of

spike sequences i and j, respectively. Epochs are clustered based on rates. B) Local scaling.

Same simulations as in S9 Fig. VP distance was used with different values of q. When q!1,

VP = ni + nj. Besides high values of q aim to extract temporal information from spike trains,

these 2D embeddings demonstrate that the contribution between rate and timing using VP is

difficult to interpret and very sensitive to noise.

(PDF)

S8 Fig. Performance of SpikeShip is not affected by a global scaling rate. Two different tem-

poral patterns with different firing rates. Each temporal pattern can occur in a low (λin = 0.2
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and λout = 0.02 spks/sample), medium (λin = 0.4 and λout = 0.04 spks/sample) or high rate

(λin = 0.7 and λout 0.07 spks/sample) state, with a constant ratio of λin/λout. In addition, the

noise pattern can also occur in one of three rate states. The pulse duration was 30 samples.

Shown at the bottom the sorted dissimilarity matrix with SpikeShip values, the t-SNE embed-

ding with the ground-truth cluster labels and the t-SNE embedding with the HDBSCAN

cluster labels.

(PDF)

S9 Fig. Performance of SpikeShip is not affected by a local scaling rate. Two different tem-

poral patterns with different firing rates. Each temporal pattern could occur in one of two rates

states: In the first rate state, the first 25 neurons are firing at a low rate (λin = 0.3 and λout = 0.03

spks/sample), and the other 25 are firing at a high rate (λin = 0.7 and λout = 0.07 spks/sample).

In the second rate state, the rate scaling is reversed. The pulse duration was 30 samples. Shown

at the bottom the sorted dissimilarity matrix with SpikeShip values, the t-SNE embedding with

the ground-truth cluster labels and the t-SNE embedding with the HDBSCAN cluster labels.

(PDF)

S10 Fig. Performance of SPIKE and RI-SPIKE are affected by both global and local scaling.

A) Global scaling. SPIKE and RI-SPIKE computations for globally scaled sequences. Top: dis-

similarity matrices sorted by pattern id and scaling factor. Bottom: 2D t-SNE embeddings of

epochs. B) Local scaling. SPIKE and RI-SPIKE computations for locally scaled sequences. Both

A and B were computed using the same simulations as in S8 Fig. Top: dissimilarity matrices

sorted by pattern id and scaling factor. Bottom: 2D t-SNE embeddings of epochs. The first 180

epochs correspond to noise.

(PDF)

S11 Fig. Comparison of spike train metrics across single sessions during Natural Scene

presentations. A) Pairwise comparison of epochs and clustering performance of metrics (one

session). Top: Dissimilarity matrices sorted by Natural scene ID. Bottom: 2D t-SNE embed-

dings. Clustering performance was computed via Adjusted Rank Index (ARI). We used Gauss-

ian Mixture (GM) to assign labels to each cluster. B) Distribution of clustering performances

(ARIGM) across sessions. For VP distances, the average number of spike times (n) was com-

puted for every session. The mean and standard deviation of n and N across all the sessions

were (μn = 2.1, σn = 0.26) and (μN = 570.4, σN = 190.6), respectively. Median values of ARIGM
for Firing rates, RI-SPIKE, and SpikeShip are 0.1848, 0.075, and 0.1865, respectively. We per-

formed the Welch’s t-test across epochs. The obtained p-values from comparison of SpikeShip

and all the other metrics were: (Firing Rates, SpikeShip) = 6.71 × 10−2, (RI-SPIKE, SpikeShip)

= 5.49 × 10−9.

(PDF)

S12 Fig. Comparison between clusters from SpikeShip and Firing rates embeddings of Nat-

ural scenes. A) 2D t-SNE embeddings from SpikeShip and Firing rates’ dissimilarity matrices.

The allocation of natural scenes’ clusters are different between the two embeddings. Natural

scenes are represented by their ID. B) Scaled Euclidean pairwise distance between centroids of

each cluster for both SpikeShip (Left) and firing rates (Middle), and their difference (Right).

(PDF)

S13 Fig. Analysis of large scale neural recordings during visual stimuli presentations with

SPIKE and RI-SPIKE. Top: Dissimilarity matrices sorted by Natural Scene ID. Middle: 2D t-

SNE embeddings from dissimilarity matrices colored by Natural Scene ID. Bottom: The clus-

tering performance through ARI score and Spearman correlation between dissimilarity
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matrices computed via SPIKE, RI-SPIKE, Firing rates, and SpikeShip. The clustering perfor-

mance of SPIKE and RI-SPIKE is lower than the clustering performance by using the tradi-

tional firing rates and SpikeShip. SPIKE and RI-SPIKE are highly correlated while Firing Rates

and SpikeShip are highly uncorrelated.

(PDF)

S14 Fig. Spontaneous activity analyses for 3 mice. Multi-spike sequence analyses for three

mice (rows). Left: dissimilarity matrices. Middle: 2D t-SNE embedding. Right: 2D Spectral

Embedding (Laplacian Eigenmaps).

(PDF)

S15 Fig. Variability of epochs allows distinction between low-motion and middle- & high-

motion epochs. Normalized distribution of L2-distances between each epoch to the centroid

for t-SNE and Spectral embedding (SE). We performed the Welch’s t-test between low-motion

and middle- & high-motion epochs (variances between two groups were smaller than

5 × 10−4). Thus, (*) if p-value< 0.005, (**) if p-value< 0.05, and (***) if p-value< 0.5 (i.e., evi-

dence against null hypothesis of equal population means).

(PDF)

S16 Fig. Relation between VP and EMD distances for spike trains with same spike counts.

Simulations of spike trains with same number of spikes (i.e., n = 20). Top: Comparison of dis-

tances between VP and EMD. Spike trains were defined as tm = (0, . . ., 0) and tk = (T, . . ., T),

where T is the window length. Left: VP(q = 1/n) reaches a maximum value until T = 2n = 40.

After that threshold, VP(q = 1/n) assign insertion costs rather than shifts. Right: (T/n) VP

(q = 1/T) equals EMD. Bottom: Comparison of the average distances between VP and EMD

across 100 simulations. Spike times for tm and tk (with same spike count) were randomly gen-

erated from a uniform distribution U(0, T).

(PDF)
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