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Modular architecture facilitates noise-driven control of
synchrony in neuronal networks
Hideaki Yamamoto1,2*†, F. Paul Spitzner3†, Taiki Takemuro1,4, Victor Buendía5,6,7,
Hakuba Murota1,2, Carla Morante8,9, Tomohiro Konno10, Shigeo Sato1,2,
Ayumi Hirano-Iwata1,2,4,11, Anna Levina5,6, Viola Priesemann3,12‡, Miguel A. Muñoz7,13‡,
Johannes Zierenberg3‡, Jordi Soriano8,9‡*

High-level information processing in the mammalian cortex requires both segregated processing in specialized
circuits and integration across multiple circuits. One possible way to implement these seemingly opposing
demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms
behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use pre-
cision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with
an in silico model of spiking neurons and amesoscopic model of stochastically coupledmodules to show that (i)
amodular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stim-
ulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlyingmech-
anism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks
of excitable units is determined by both its modular architecture and the properties of the external inputs.
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INTRODUCTION
The mammalian brain is in a state of perpetual ongoing activity
characterized by high levels of irregularity in single-neuron re-
sponse (1, 2) and correlated fluctuations across brain regions (3–
7). Understanding the origin and functional significance of such
neuronal activity has been challenging for both physics and neuro-
science, and diverse competing hypotheses have been proposed to
rationalize its nature. A compelling concept in statistical physics is
that cortical networks operate nearby a critical point, i.e., at the edge
of a nonequilibrium phase transition (8–15). One possibility is that
such a transition separates synchronous and asynchronous phases
(16, 17). Synchrony in this context refers to the collective activation
of neurons in a fast-cascading event, a phenomenon also referred to
as neuronal avalanches (8, 18). Such synchronous states can be
argued to enable coherent or robust information transfer integrated
across distance and time (19), while asynchronous states have been
argued to enable segregated processing in local circuits with
reduced redundancy (17). Flexible switching between states with
different levels of synchrony would enable networks to transiently

exploit diverse functional advantages, all the most in modular net-
works where the phase transition can be very broad, with a rich hi-
erarchy of intermediate states of partial synchronization (20).

Transitions between synchronized and desynchronized states are
well-known to occur in the mammalian brain and have mostly been
described in the context of dynamical properties of individual
neurons (21) and the dynamical consequences of the network archi-
tectures they form (20–27). Recent findings, however, suggest that
such transitions can also be induced depending on the nature of ex-
ternal inputs (28, 29). For instance, the thalamus projects asynchro-
nous background inputs to the cortex (30–32), which decreases the
level of synchrony. Consistent with this, anesthesia, which reduces
the thalamocortical input (33), enhances neuronal synchrony in the
rat somatosensory cortex (34). The deprivation of such inputs by
anatomical lesions has also been shown to increase cortical syn-
chrony and generate epileptic seizure-like activity in slice prepara-
tions (35). Meanwhile, theoretical studies reveal that the response of
a generic network to external perturbations strongly depends on
network architecture and on the strength of synaptic interactions
(36). Therefore, given that cortical networks are nonrandom (37)
and exhibit strong modularity (5, 38–43), it is reasonable to hypoth-
esize that cortical dynamics rely on the underlying network archi-
tecture in conjunction with the asynchronous input they constantly
receive from subcortical areas, such as the thalamus. However,
despite the accumulated evidence, the actual mechanisms that
allow cortical networks to transiently regulate their level of synchro-
nization remains elusive, both experimentally and theoretically.

To fill this gap, here, we use in vitro cortical networks grown on
engineered substrates (44). Three different types of modular net-
works with diverse degrees of modularity were grown, and their re-
sponses to asynchronous stimulation delivered via optogenetics
were assessed using fluorescence calcium imaging. The results
show that modularity, together with asynchronous external input,
enhances the dynamical repertoire by fostering desynchronization.
This effect weakens when inhibitory synapses are pharmacologically

1Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai,
Japan. 2Graduate School of Engineering, Tohoku University, Sendai, Japan. 3Max
Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
4Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
5Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
6Department of Computer Science, University of Tübingen, Tübingen, Germany.
7Departamento de Electromagnetismo y Física de la Materia, Universidad de
Granada, Granada, Spain. 8Departament de Física de la Matèria Condensada, Uni-
versitat de Barcelona, Barcelona, Spain. 9Universitat de Barcelona Institute of
Complex Systems (UBICS), Barcelona, Spain. 10Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan. 11Advanced Institute for Materials Re-
search (WPI-AIMR), Tohoku University, Sendai, Japan. 12Institute for the Dynamics
of Complex Systems, University of Göttingen, Göttingen, Germany. 13Instituto
Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada,
Spain.
*Corresponding author. Email: hideaki.yamamoto.e3@tohoku.ac.jp (H.Y.); jordi.
soriano@ub.edu (J.S.)
†These authors contributed equally to this work.
‡These authors contributed equally to this work.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Yamamoto et al., Sci. Adv. 9, eade1755 (2023) 25 August 2023 1 of 12

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on Septem

ber 25, 2023

http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.ade1755&domain=pdf&date_stamp=2023-08-25


blocked, i.e., when the network is purely excitatory driven. The
results are then compared with in silico analyses of a spiking
neural network model to show that a combination of sparser (sto-
chastic) intermodular interactions and decreased level of available
synaptic resources is the underlying mechanism behind the exper-
imentally observed desynchronization. Last, we derive a mesoscopic
model incorporating a state-dependent gating of intermodular in-
teractions that allows us to rationalize the previous results in a par-
simonious way. Together, our findings demonstrate a potential
network mechanism by which asynchronous input can serve as a
control parameter for tuning the dynamical state of structured neu-
ronal networks.

RESULTS
Disruption of synchrony by optogenetic stimulation
We first assessed how external perturbations influence synchro-
nized neuronal activity in networks of primary cortical neurons,
containing both excitatory and inhibitory neurons, grown in
vitro. We designed ring-modular micropatterns consisting of four
small squares (200 μm by 200 μm each) with connection lines that
allowed a fraction of the neurites to interconnect the squares
(Fig. 1A). The neuronal activity of the micropatterned networks
was recorded by fluorescence calcium imaging using the calcium
probe GCaMP6s (Fig. 1B and movies S1 and S2), which was
virally expressed under the Synapsin promoter that transduces
both excitatory and inhibitory neuronal populations in the cortex
(45). Neurons were perturbed either by irradiating patterned light
to individual neurons transfected with the photoactivatable cation
channel ChrimsonR (optogenetic stimulation; Fig. 1C) expressed in
both excitatory and inhibitory populations or by increasing the ex-
tracellular potassium concentration [K+]o (chemical stimulation).
The former induces spiking activity in targeted neurons (46),
whereas the latter increases the frequency of collective activity of
neurons in the entire culture, effectively raising the overall neuronal
excitability (47).

In the nonstimulated state (Fig. 1D), the activity of the cultures
was characterized by quasi-periodic episodes of network-wide
bursting activity with some variability in population rate amplitude
due to the modular architecture (44). External perturbation via op-
togenetic stimulation induced a qualitative change in network dy-
namics. This stimulation was delivered as alternating patterns of red
light illuminating the soma of up to 10 neurons selected from the
lower two of the four modules (Fig. 1A). Only the neurons express-
ing ChrimsonR were selected as potential targets, with no imposed
bias in excitatory/inhibitory cell types. The illumination pattern was
switched every 400 ms, and in each time window, each neuron was
targeted with a probability of 40%. During stimulation, the frequen-
cy of collective events as well as the variety of activity patterns in-
creased (Fig. 1, E and G). These enriched network dynamics were
observed during ongoing stimulation and diminished when it was
switched off (Fig. 1F). Representative snapshots of network behav-
ior before, during, and after stimulation are provided in Fig. 1G, il-
lustrating the shift in collective activity from a synchronized to a
desynchronized state upon optogenetic (asynchronous) stimula-
tion. Such a transient shift in the network state was also observed
when the asynchronous stimulation was delivered to all four
modules and when a uniform stimulation was delivered locally to
one of the modules (see section S1B and fig. S1 for details). In

contrast, chemical stimulation imposed a qualitatively different
change in network dynamics (Fig. 1, H and I, and movies S3 and
S4). Contrary to optogenetic stimulation, network-wide collective
activity remained dominant, even in the perturbed state. These
results indicate that a mere increase in excitability was insufficient
and that an asynchronous stimulation was necessary to break syn-
chrony and increase the dynamical repertoire of the cortical
cultures.

Changes in collective activity during stimulation were quantified
by measuring the distribution of event sizes, i.e., the fraction of
neurons entrained in each collective activity episode (Fig. 1J, left).
Optogenetic stimulation led to a significant decrease in event size
indicating a loss of synchrony. This change was accompanied by a
decreased median and a broadened distribution of pairwise corre-
lation coefficients (Fig. 1J, middle), the latter of whichmanifested in
an increased functional complexity (Fig. 1J, right), a signature of
enhanced integration-segregation balance (48). Chemical stimula-
tion, however, preserved synchrony in network dynamics and
showed the opposite trend in both the event size and functional
complexity.

The overall effect induced by optogenetic stimulation was abol-
ished in the presence of bicuculline (20 μM), a γ-aminobutyric acid
type A receptor antagonist that blocks inhibitory synapses, and the
effect was thus γ-aminobutyric acid (GABA) dependent (fig. S2 and
movies S5 and S6). This indicates that GABAergic balancing of ex-
citation and inhibition (49, 50) is required for external input to alter
the network dynamics. This observation suggests that when a
network is in an exceedingly excited state, neurons become
mostly depleted of neurotransmitters between collective activity
events (51, 52), leading to a state that is insensitive to perturbations.

Impact of modular architecture
Next, we assessed how the effect of asynchronous stimulation
depends on the network topology, specifically its modular architec-
ture. Hence, we prepared three types of networks with a constant
number of neurons and different degrees of modularity (Fig. 2,
top drawings, and fig. S3). The modular micropattern used in the
aforementioned experiments is hereafter referred to as the “single-
bond” (1-b) micropattern. Similarly, a “triple-bond” (3-b) micro-
pattern was designed by increasing the number of connection
lines to three. Last, the “merged” micropattern was a single square
of 400 μm by 400 μm. The modularity of the network, defined as the
fraction of intramodular connections within a network greater than
the expected fraction in a random network, decreased in the order
of 1-b, 3-b, and merged (44, 53).

A comparison of the distribution of event sizes and correlation
coefficients between these three cases revealed that noise perturba-
tions have stronger effects when modularity is higher. As shown in
Fig. 2A, the decrease in median event size via optogenetic stimula-
tion was 54% for the 1-b network, whereas the values were 21 and
25% for the 3-b and merged networks, respectively. A similar trend
in structure dependence was also observed for the correlation coef-
ficients (Fig. 2B), which decreased by 49, 13, and 19% for the 1-b, 3-
b, and merged networks, respectively. To understand the mecha-
nism of this structure dependence, we analyzed the shift in the cor-
relation coefficient between two generic neurons i-j, rij, during
perturbation (Fig. 2C). For the 1-b network, the decrease in corre-
lation largely stemmed from the neuron pairs that included at least
one stimulated neuron, in which case rij broadly scattered below the
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unit line in the pre-stim plane. The median rij strongly decreased
when either one or both neurons in a pair were located within the
stimulated modules, a feature that was not observed for neuron
pairs in unstimulated modules (Fig. 2D). The spatial dependence
was less pronounced when modularity was low (3-b) or
absent (merged).

The tendency for strongly modular networks (1-b pattern) to be
more sensitive to the optogenetic perturbation was also evident in
the realization-level estimates (Fig. 2, E to H). These changes were
independent of firing rate (Fig. 2E). In addition, the broadened dis-
tribution of correlation coefficients during stimulation increased
the value of functional complexity (Fig. 2H), which was largest in
the 1-b network under stimulation. Summarizing, modularity fos-
tered local and transient decorrelation from asynchronous

stimulation to dampen the collective activity events that propagate
globally throughout the entire network.

Microscopic spiking neural network model
To rationalize the underlying mechanisms behind the enhanced
sensitivity to external perturbations in modular networks, we next
constructed a spiking neural network (SNN) model based on leaky
integrate-and-fire (LIF) neurons (see Materials and Methods,
section S2, and movies S7 and S8 for details). The networks were
generated on the basis of the metric construction approach de-
scribed previously (18), and modularity was tuned by specifying
the number of axons k that crossed from one module to another
(Fig. 3, A and B). To control the modularity while retaining the
overall connectivity, the mean in-degree of neurons was fixed to

Fig. 1. Optogenetic stimulation on modular neuronal cultures increases the variability in collective network dynamics. (A) Phase-contrast image of a represen-
tative single-bond modular network. Neurons appear as dark round objects with a white contour. Ten neurons were selected from the bottommodule pair (orange box)
and optogenetically targeted in a randommanner. (B) Representative fluorescence traces and inferred spike events (dots) of three neurons along 1 min. (C) Sketch of the
experimental setup. Neuronal cultures were transfected with ChrimsonR for optogenetic stimulation (orange arrow) and GCaMP6s for simultaneous activity monitoring
(blue and green arrows). (D) Pre-stimulation raster plot (top panel) of network spontaneous activity, with neurons grouped according to their module, and the corre-
sponding population activity (bottom). (E) Corresponding data upon optogenetic stimulation, wherein population activity markedly increases in variability. Targeted
modules are marked as orange bands. (F) Spontaneous activity post-stimulation, with a return to strong network-wide bursting. (G) Representative snapshots of calcium
imaging recordings for the above data. All modules activate synchronously without stimulation. Upon stimulation, activity events extend over individual neurons, mul-
tiplemodules, or all modules. (H and I) Raster plot and population activity before and during chemical stimulation. Chemical stimulation increases the frequency of events
but maintains the network-wide activity. (J) Effect of optogenetic and chemical stimulation on bursting median event sizes, median correlation coefficients, and func-
tional complexity (paired-sample t test, two-sided). For chemical stimulation with N = 4, no test was performed.
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be the same in all topologies (fig. S4). Spontaneous activity was
driven by Poisson noise, representing the spontaneous release of
neurotransmitters in biological presynaptic terminals (18, 51).
Note that we focus on the optogenetic stimulation, as the change
in the extracellular potassium concentration induced in the chem-
ical stimulation does not simply translate to a single parameter in
the LIF model. With k = 3, we obtained dynamic behaviors compa-
rable to experiments in 1-b networks (Fig. 3, C and D). The model
accurately recapitulated the experimental observations made in the

optogenetic stimulation paradigm. In the pre-stimulated state
(Fig. 3C), activity patterns composed of sporadic activity with reoc-
curring network-wide events. Stimulation, introduced in the two
lower modules as an additional noise input (mimicking inward
current pulses from optogenetic inputs), led to a breakdown of syn-
chrony among modules and an increase of events localized to a frac-
tion of modules (Fig. 3D). As shown in the panels of Fig. 3E, the
median event size decreased from 0.81 to 0.27, and the median cor-
relation among neuron pairs decreased from 0.84 to 0.58 (cf. table

Fig. 2. Disruption of network-wide collective activity upon optogenetic stimulation is facilitated by modular architecture. (A) From left to right, event size dis-
tribution before, during, and after optogenetic stimulation for the 1-b, 3-b, andmerged networks. Violin plots (left side of distribution) represent smooth kernel estimates
of the events observed across all networks, while individual observations are shown in swarms (right side). Error bars (middle) are obtained via bootstrapping. White dots
indicate the median of the 500 bootstrap estimates, and bars represent the 95 percentiles. (B) Corresponding distribution of pairwise Pearson correlation coefficients
between neurons calculated from binned spike counts. A substantial drop is only observed for 1-b. Data are presented as in (A). (C) Change of correlation coefficients rij
between the pre-stimulated and stimulated conditions, grouped according to the regions in which neurons are located. Both neuronsmay either reside in regions that are
targeted by stimulation (yellow), both reside in nontargeted regions (blue), or the pair spans across a targeted and nontargeted regions (red). For modular networks, the
regions correspond directly to modules. Decorrelation is more pronouncedwhen one or both neurons are in regions that are targeted. Colored areas are fitted probability
density estimates for each data group. (D) Same as (C) but showing realization-level statistics. Bar heights represent the medians of independent estimates in each
realization, and error bars represent 95 percentiles. cf. table S7. (E to H) Estimates for each realization: mean firing rates (E), median event sizes (F), median correlation
coefficients (G), and functional complexity (H) for the three topologies. Thin lines, individual realizations (networks); white dots, means of 500 bootstrap samples; thick
bars, SEM; thin bars, extrema. P values are from paired-sample t test (two-sided), cf. tables S1 and S7.
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S6). Corroborating the experiments, a greater decrease in the corre-
lation coefficient was observed for cell pairs wherein one of the cells
belonged to the targeted modules (Fig. 3, E and J), whereas the
change was less pronounced for cell pairs in nontargeted modules.

For a systematic investigation of the effect of network modular-
ity, we explored topologies with different numbers of axons crossing
the modules: k = 1, 3, 5, and 10, corresponding to modularity Q =
0.71, 0.62, 0.53, and 0.32, respectively (cf. section S2B for analytical
details). The simulations showed that desynchronization caused by
stimulation strongly depends on the underlying network topology
(Fig. 3, F to I). As a general trend, the event sizes and pairwise cor-
relations increased with k due to increased coupling between
modules (44). In the absence of any intermodular connection (k
= 0) event sizes and correlation coefficients correspond to activity
that is confined to individual modules (synchronized only at chance
level) and, as expected, stimulation had little effect.

For k > 0, the presence of additional noise input (stim) decreased
the median event size (Fig. 3F), and at low coupling (k = 1 and 3),
event sizes consistently reached the single-module level. For higher
coupling (k = 5 and 10) and in the absence of stimulation, the system
was synchronous (with event sizes ~1), and stimulation caused a de-
crease to intermediate values. Note that the percentile bars (Fig. 3, F
to J) represent the variability between realizations, which stems
from the randomness in the amount of actual connections that
are formed by bridging axons. This stresses that the response to
noise stimulation, and thus the sensitivity of the network, is strongly
constrained by its topology.

Pairwise correlations (Fig. 3H) showed a similar trend, where
networks with low k were already quite desynchronized even
without stimulation. Networks with larger k also desynchronized
upon stimulation, but median values did not go as low as those
for low k. Since the functional complexity (Fig. 3I) is maximal for

Fig. 3. Microscopic-level simulations ofmodular networks using LIF neuronmodels. (A) Sketch of a singlemodule, where k axons connect to each adjacent neighbor
(shown for k = 1). (B) Sketch of a simulatedmodular network with k = 3. (C andD) Representative raster plots in the pre-stimulated (C) and stimulated (D) regimes. Modules
targeted with an increased noise are #0 and #2. (E1 and E2) Joint distributions of event size and pairwise correlation coefficients from data pooled from 50 independent
numerical realizations, comparing pre and stim conditions. Both distributions exhibit a substantial drop towards smaller values upon stimulation. White dots are the
median of 500 bootstrap estimates, and error bars representing the 95 percentiles are smaller than the symbol size. (E3) Change of correlation coefficients rij between the
pre-stimulated and stimulated conditions (yellow: neuronal pairs reside in target modules; blue: reside in nontargeted; red: span across a target and a nontargeted
module). The diagonal black line is the no-change reference condition. As in the experiments, decorrelation is more pronounced when one or both neurons are in
modules with increased noise. (F to I) Dependence of four descriptors (event size, firing rate, neuron correlation, and functional complexity) on k. The higher k, the
lower the modularity of the networks. Statistics are obtained across realizations where each realization yields a single scalar. White dots are the median of single-real-
ization estimates. Rounded bars are 68 percentiles, indicating the variability between realizations. Triangles on the right of each panel indicate the values from single-
bond experiments. (J) Correlation of neuron pairs grouped by the neurons’ respective modules (yellow, red, and blue). For each k, the pre- and post-conditions are
compared (faint versus dark colors). The strongest decorrelation is observed when both neurons are in noise-targeted modules (yellow) or modularity is high (k = 1
and 3).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Yamamoto et al., Sci. Adv. 9, eade1755 (2023) 25 August 2023 5 of 12

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on Septem

ber 25, 2023



a flat distribution of correlation coefficients (48), large values coin-
cide with a median correlation near 0.5. Consistently, the functional
complexity is maximal for k = 1 and 3. Correlation distributions at
those k are already broad without stimulation (Fig. 3E2), and there-
fore, the effect of stimulation on functional complexity is stronger at
higher k. We note that, for all k, these observations were indepen-
dent of the changes in firing rates, which were consistent across net-
works (Fig. 3G, see also fig. S7).

Overall, simulations confirmed that the coupling between
modules shapes the impact of the noise input, with the effect
most prominently visible in the regions that directly received stim-
ulation (Fig. 3J). The coupling between modules—which, besides
from k, depends on the particular network realization—forms the
substrate for dynamics that are then mediated by the noise level. For
instance, highly modular networks (k = 1 and 3) feature rich dy-
namics already at baseline (pre, Fig. 3, F and I), but less modular
networks (k = 5) may still be enriched through noisy input (stim,
Fig. 3, F and I). However, strong coupling between modules (k =
10) may lock the system in an integrated state where the additional
noise only mildly decreases the median event size and neuron cor-
relations. This can be explained by the heterogeneous degree distri-
butions (cf. fig. S5): The connectivity betweenmodules scales with k
and affects the probability of activity spreading between modules
(fig. S6), while the connectivity within modules is always high, so
that modules are effectively synchronized units.

Network mechanisms: The importance of synaptic
resources
To understand the network mechanisms that enable the increased
sensitivity to external noise input inmodular networks, we analyzed
the dynamics of synaptic resources in each simulated neuron. For
this purpose, we plotted the evolution of the mean synaptic resourc-
es in eachmodule as a function of themodule-averaged firing rate of
the neurons. The characteristic behaviors of the mean synaptic re-
sources R ∈ [0, 1] are depicted in Fig. 4 (A to C). Abrupt discharges
during bursting events are followed by gradual recharges between
the events. In the baseline condition (pre), R had a maximal value
of ~0.8 when charged but dropped to ~0.3 after network-wide
bursting events. When neurons were subjected to additional noise
input (stim), R of the targeted modules (Fig. 4B, orange trajectories)
only recovered to ~0.5, effectively reducing the synaptic efficacy.
While, in general, R of the nontargeted modules (blue trajectories)
was only indirectly affected by the stimulation, the precise cycles de-
pended on the individual realizations (cf. dark blue versus light
blue, Fig. 4, B and C). Independent of the network architecture, in-
creased noise decreased the overall size of the cycles in targeted
modules, but modularity still affected cycles of nontargeted
modules (fig. S4). This stresses that the combination of network to-
pology and asynchronous stimulation determines the charge-dis-
charge dynamics on the module level.

To complete these results, we investigated how the degree of syn-
chrony between modules changed with the strength of external
input, as parameterized here by its frequency (Fig. 4D). In
general, we observed that the correlation between module-level
firing rates of targeted modules (Fig. 4D, top) decreased with stim-
ulation but that stronger noise was required for larger k. For
example, in k = 1 networks, an increase of 10 Hz in external
input reduced correlation from 0.4 to 0.25, but to cause the same
drop in correlation for k = 10, an increase of about 25 Hz was

required. To further illustrate the effect of noise on modular net-
works, we revisited k = 3 and computed the fraction of events
that spanned a given number of modules, from 1 to 4 (Fig. 4D,
bottom; cf. zoom-ins in Fig. 4C). Without stimulation, about 50%
of the events encompassed the four modules, i.e., network-wide
bursting. The addition of noise of just 10 Hz provided a more ba-
lanced dynamics in which the occurrence of 1-module and 4-
module activations was both about 35%.

Mesoscopic description
As illustrated in the raster plots for both the pre and stim cases
(Fig. 4C, insets), in which neurons activate in a quasi-synchronous
manner within each module, much of the noise-induced changes in
network dynamics occurred between modules. This implies that, to
study global effects, some microscopic details can be neglected and
that modules can be reduced to an effective dynamical unit. Thus, to
extrapolate the microscopic behavior of individual neurons to the
macroscopic dynamics, we built a mesoscopic module-level
model that captures the key empirical results. Here, the dynamics
of each module were described by a rate model with resource deple-
tion (12), where two coupled differential equations represent the
evolution of firing rate ρ and synaptic resources R, respectively
(see Materials and Methods and section S3A for details).

As a first exploration of the model, we considered the case in
which each module received input through a nonlinear activation
function that depended on the rate and resources of the connected
modules and an external input that captured the main (average)
effect of stimulation. In such a case, increasing the amplitude of ex-
ternal input (which reflects enhanced stimulation frequency in both
the experiments and the microscopic model) decreased the size of
the resource-rate cycles of each module but did not affect synchro-
nization (fig. S10). Thus, we introduced nondeterministic inter-
modular interactions as “gates” that stochastically disconnect
when synaptic resources are depleted and reconnect after a charac-
teristic time (Fig. 4E and section S3C). The stochastic gating reflects
the following neuron-level dynamics which we embedded into the
underlying module-level equations (figs. S11 and S12): When a
module starts bursting, resources of all involved neurons are
rapidly consumed, so that also those connecting to other modules
will not transmit activity. Accordingly, outgoing gates will deacti-
vate with a short time constant and remain disconnected for a rel-
atively long time while neuron resources recharge. In this period,
should the module bursts again, the propagation of activity to
other modules hinges on the few intermodular connections and is
less probable to spread. This probability is reflected by the gate
being already reconnected or not. If still disconnected, activity
cannot spread to the neighboring modules. Hence, if modules
tend to burst with a time scale faster than the gate recovery, the
mutual entrainment of activity between modules is hindered,
because the crucial initiating inputs cannot pass through the dis-
connected gates, and, therefore, the system cannot synchronize.
Thus, these gates capture the essence of the microscopic dynam-
ics—wherein intermodular coupling only operates when the syn-
apses projecting from one module to another are not fully
depleted—on the mesoscopic level.

Numerical simulations revealed that the addition of the gating
mechanism was indeed sufficient to recapitulate the noise-depen-
dent breakdown of synchrony observed in the experiments and
SNN model (Fig. 4, B and C versus Fig. 4, F and G). Network-
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wide events were decreased under stimulation (Fig. 4, G and H),
despite stimulated modules remaining in a more oscillatory
regime than in the SNN (stim condition in Fig. 4G). Yet, the meso-
scopic model successfully captured the noise-dependent reduction
of intermodular correlation with external input and its dependence
on the coupling strength (here denoted by w; Fig. 4H, top). Weakly
coupled networks (low w) exhibited a systematic lower correlation
than strongly coupled ones (high w). Similarly to the SNN model,
the fraction of events that spanned a given number of modules for
medium w = 0.1 quickly changed from a 4-module dominated
regime in the absence of stimulation to a richer repertoire of activa-
tion patterns for increased external input (Fig. 4H, bottom).

Furthermore, the simplicity of the mesoscopic model allows for
an analytic understanding of the input-dependent change in the size
of resource-rate cycles (fig. S10). In the resource-rate plane, the
fixed point corresponding to a charging, nonfiring module i that
receives no input is at (ρi, Ri) = (0,1). Spontaneous fluctuations (de-
pending on external input and noise) may push the module out of
its (slow, ρ = 0) path toward the fixed point and ignite a burst along
the flow field in the resource-rate plane (fig. S10). As the external
input to a module effectively reduces the activation threshold, it de-
termines how easily a burst can be ignited. During a burst, the tra-
jectorymoves fast at high rates in the negative R direction, due to the
small-time constants of the rate equation (τρ) and of the discharge
term (τd). However, the trajectory is slow in the positive R direction

due to the large time constant in the resource charge term (τc).
Thus, at large external inputs (low threshold), a module may start
a burst before completing its slow return to the fixed point, which
explains the reduced cycle size. Further details and the mechanisms
linking resource cycles to the synchronization between modules are
provided in section S3B. In summary, the simple mesoscopic ap-
proach elucidates the critical role of stochastic intermodular inter-
action in determining the network dynamics of modular networks
and provides an intuitive understanding of the noise-induced
breakdown of synchrony in modular neuronal networks.

DISCUSSION
Taking advantage of in vitro experiments using cultured neuronal
networks as a model biological system, we showed that modular ar-
chitecture enhances the sensitivity of the network to external asyn-
chronous perturbation. In particular, network-wide collective
bursts are much reduced in the presence of modular structures
driven by noise. This occurs only when noise is asynchronous (op-
togenetic stimulation of targeted neurons) and not homogeneous
across the network (chemical stimulation) and happens only in ba-
lanced networks, while when inhibition is blocked, bursty events
persist even in the presence of noise. Furthermore, computational
in silico modeling enabled us to identify themechanisms behind the
noise-driven decrease of synchrony reported in experiments.

Fig. 4. Desynchronization can be understood through charge-discharge cycles in the resource-rate plane, which is captured by a minimal mesoscopic model.
(Top row) Microscopic model using LIF neurons. (Bottom row) Mesoscopic model, where modules are the smallest functional unit. (A) Top: Sketch of the microscopic
model, in which orange modules are those targeted by an increased noise. Bottom: Conceptual representation of the resource-rate cycles and the contrasting timescales
involved. (B) Resource-rate cycles in a representative simulation with k = 3. Orange trajectories correspond to targeted modules, and blue trajectories correspond to
nontargeted ones. Under stimulation, resources are more depleted on average (smaller excursions), and discharge events start at lower resources (colored triangles). (C)
Module-level firing rates, raster plot, and average module-level resources under pre and stim conditions. Insets show a detail of neuronal activity during a network-wide
activity event. (D) Top: Correlation between module-level firing rates of targeted modules as a function of the external input (added noise). Curves from bottom to top
correspond to gradually higher k values. Triangles indicate the the values of external input for the pre and stim conditions, from which the cycles and raster plots of (B)
and (C) are built. Bottom: Average fraction of modules that participate in an event for k = 3 as a function of external input. (E) Top: Sketch of the mesoscopic model with
probabilistic gates betweenmodules. Bottom: Gates have a high probability to disconnect when resources of the source module are low. (F) Resource-rate cycles and the
effect of stimulation for themesoscopicmodel. (G) Module rate, gate state (solid when connected), andmodule resources as a function of time. Note the disconnection of
gates after high-rate discharge events. (H) Top: Correlation of the firing rates of targetedmodules as a function of the external input. Bottom: Average fraction of modules
involved in events (w = 0.1). a.u., arbitrary units.
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Focusing on the modular architecture that entrains burst-like activ-
ity within modules and stochastically propagated activity across
modules (44, 54, 55), we showed that asynchronous input reduces
the average level of synaptic resources, which only weakly affects ac-
tivity propagation within modules but decreases the probability to
propagate activity across modules. This can be understood at the
neuron level, where the probability of a neuron to spike depends
on the strength and number of incoming synaptic connections.
Whereas the reduction of average synaptic resources affects the syn-
aptic strengths in all neurons, themodular architecture only reduces
the expected number of connections between neurons of different
modules, which together results in the reduction of activity propa-
gation across modules (fig. S6). Hence, our results extend previous
theoretical studies that identified the strength of external noise as
control parameter to interpolate between bursting and reverberat-
ing dynamics in neural networks (29).

To demonstrate the robustness of our results, we coarse-grained
our microscopic simulations of spiking neurons into a mesoscopic
model (12), where the depletion of resources is expressed in a min-
imalistic way. In both micro and meso approaches, stochastic inter-
modular connections were essential and were grounded on the
heterogeneous degree distribution in the spiking neuron model
and the gating mechanism in the mesoscopic one.

Our mesoscopic description opens an intriguing perspective: As
we have shown, a coarse description of neuron populations through
scalar variables can suffice to capture those dynamics that are most
relevant on large scales, which was also explored recently in hippo-
campal networks (56). This is implicitly often assumed, for instance,
whenever measures such as local-field potentials are used. In such
cases, single-neuron dynamics cannot be inferred, raising valid crit-
icism about the gained understanding of population dynamics (57).
Our comparison between microscopic and mesoscopic dynamics
supports that—if the applied coarse scale is correct—such popula-
tion-level measures are indeed sufficient to study the large-scale dy-
namics. As a related remark, we note that an ensemble of quadratic
LIF neurons, such as those used in here as the spiking neuron
model, could, in principle, be represented in the mean field (58–
60), even with limited stochastic noise (61). While not applicable
for our small and noise-driven modules, the mean-field approach
can provide a complementary theoretical description in cases
where the assumption of near infinite size and low noise are
justified.

In a more general scope, noise is a ubiquitous property of brain
networks. For example, while the fundamental role of the thalamus
is to relay peripheral sensory information to the cortex (62), thalam-
ic neurons are also known to deliver asynchronous, weakly correlat-
ed inputs to the cortex in the spontaneous state (30). Intracellular
recordings in the barrel cortex also show that the temporal correla-
tion of membrane potential fluctuations is close to zero when the
cortex is driven solely by the thalamus (31). Such input from sub-
cortical areas could act merely as a source of noise, but it could also
change the dynamical state of the targeted cortical region to mod-
ulate its stimulus sensitivity, dynamical repertoires, and computa-
tional capabilities (9, 13, 14, 63). By adapting a ubiquitous property
of brain networks (in vivo) to well-controlled cultures of cortical
neurons (in vitro), our work provides an understanding of how
asynchronous inputs modulate the ongoing activity of cortical
networks.

In previous studies, electrical stimulation with multielectrode
arrays (64–66) and more recently optogenetic stimulation (67)
have been used to show that multisite stimulation effectively
reduces the occurrence of collective activity events in cortical cul-
tures on uniform substrates. These experimental investigations cor-
respond to the merged topology of our study, wherein a similar
suppression of collective events has been confirmed, even if at a
smaller degree than in highly modular preparations. A number of
works (64, 66, 67) also suggested a plastic change induced in
network dynamics, an effect that was not observed in the present
study. The difference could originate not only from the culture
age or the duration of stimulation but also from extracellular
calcium condition (68), opening future applications of in vitro cor-
tical networks to the understanding of the cellular mechanisms un-
derlying learning and memory. Besides the precision
micropatterning approach used in the present work, the overall
extent of network modularity can also be controlled through the
modulation of cell affinity of the scaffold (54, 55) or through phar-
macological manipulation of neurite outgrowth (69, 70), which
could be beneficial in tuning network structures at a larger scale.

We note that twenty percent of neurons in the mammalian
cortex are inhibitory, with some variation across species and areas
(71, 72), and this presence of inhibition is believed to be crucial for
computational purposes (17). Our experiments revealed that GA-
BAergic inhibition is necessary for the neuronal network to modu-
late its level of synchrony, because when inhibition was blocked,
synchronous epileptic-like activity prevailed (fig. S2). The same
trend was also observed in the computational model of spiking
neurons (fig. S8). The fundamental role of inhibition in shaping
asynchronous states has been explored both experimentally and the-
oretically, revealing that networks of purely excitatory neurons are
not able to generate stable asynchronous states (17). The critical role
of inhibition in stabilizing system dynamics (50) and in increasing
input-dependent flexibility (figs. S2 and S8) highlights the evolu-
tionary significance of preserving the balance of electrical-chemical
signal transduction in the nervous system.

It has been conjectured that the function of neural networks re-
quires the segregated processing of diverse inputs in specialized cir-
cuits as well as the integration of all of them to generate high-level
information processing and response (73). This demands a flexible
balance of segregation and integration, the loss of whichmay induce
dysfunction (74). In dynamical terms, such an optimal balance is
necessarily associated with high diversity and variability of under-
lying synchronization patterns of neuronal activity to be sustained
(75). Therefore, understanding how network structural features and
dynamical aspects collectively shape complex synchronization pat-
terns is crucial for advances in the field. Our findings might also be
relevant to understand other networked systems that have modular
architectures and are subjected to noise, such as gene, epidemic, and
social networks.

MATERIALS AND METHODS
Micropatterned substrate
Microcontact printing was used to pattern protein ink onto glass
coverslips. First, glass coverslips (C018001, Matsunami Glass Ind.)
were cleaned by sonication in 100% ethanol, rinsed inMilli-Qwater,
and treated with air plasma for 60 s (PM-100, Yamato). The cleaned
coverslips were then treated with a 0.2% solution of poly(2-
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methacryloyloxyethyl phosphorylcholine-co-3-methacryloxyprop-
yl triethoxysilane) (76) in ethanol for 10 s, dried in an ethanol en-
vironment for 20 min, baked in an oven at 70°C for 4 hours, and
dried under vacuum overnight. The coverslips were then sterilized
by immersion in ethanol, rinsed inMilli-Qwater, and dried. Protein
ink [extracellular matrix gel (E1270, Sigma-Aldrich; 1:100 dilution)
+ poly-D-lysine (50 μg ml−1; P0899, Sigma-Aldrich)] was patterned
using a polydimethylsiloxane (PDMS) stamp. The fabrication of the
PDMS stamp has been detailed previously (44). Four pieces of thin
PDMS films (approximately 2 mm by 2 mm and 0.5-mm thickness)
were then attached to the periphery of the coverslip, which served as
spacers. Last, the coverslips were dried overnight in a fume hood
and immersed in neuronal plating medium [minimum essential
medium (MEM; 11095-080, Gibco) + 5% fetal bovine serum
+0.6% D-glucose].

Cell culture
The culture protocol of primary rat cortical neurons has been de-
scribed previously (44, 77). Briefly, primary neurons were obtained
from the cortices of embryonic day 18 pups, plated on a microfab-
ricated coverslip at a density of 360 to 480 cells mm−2, and cocul-
tured with astrocyte feeder cells in N2 medium containing MEM +
N2 supplement + ovalbumin (0.5 mgml−1) + 10 mMHepes. Half of
the medium was changed at day in vitro (DIV) 4 and DIV 8 with a
conditioned neurobasal medium containing neurobasal (21103-
049, Gibco) + 2% B-27 supplement (17504-044, Gibco) + 1% Glu-
taMAX-I (35050-061, Gibco). In some experiments, neurons were
cultured in the neuron culture medium (FujiFilm Wako Pure
Chemical Corp. 148-09671), a glia-conditioned medium. The astro-
cyte feeder layer was not used when culturing the neurons in the
latter medium.

During cultivation, neurons were transfected with adeno-associ-
ated virus (AAV) vectors encoding the fluorescent calcium probe
GCaMP6s (Addgene viral prep #100843-AAV9) and a red-shifted
channelrhodopsin ChrimsonR (Addgene viral prep #59171-
AAV9) under the Synapsin promotor. The as-received viral prepa-
rations were aliquoted and added at concentrations of 1 μl ml−1
(GCaMP6s) and 0.7 μl ml−1 (ChrimsonR) at DIV 4. The AAVs
were diluted during medium exchange but remained in the
growth medium until the end of the culture. All procedures were
approved by the Tohoku University Center for Laboratory
Animal Research, Tohoku University (approval number:
2020AmA-001) and Tohoku University Center for Gene Research
(2019AmLMO-001).

Calcium imaging
At DIV 10 to 11, the coverslips with micropatterned neurons were
rinsed in Hepes-buffered saline (HBS) containing 128 mM NaCl, 4
mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM D-glucose, 10 mM
Hepes, and 45 mM sucrose and transferred to a glass-bottom dish
(3960-035, Iwaki) filled with HBS (44, 77). GCaMP6s fluorescence
was imaged using an inverted microscope (Olympus IX83)
equipped with a 20× objective lens (numerical aperture, 0.75), a
white-light light-emitting diode (LED) (Sutter Lambda HPX), a sci-
entific complementary metal-oxide-semiconductor camera (Andor
Zyla 4.2P), and a stage-top incubator (Tokai Hit). All recordings
were performed at 37°C, inside the stage-top incubator that kept
the temperature constant and humidified the sample. All recordings
were performed approximately 10 min after transferring the sample

from the cell culture incubator to the stage-top incubator, to elim-
inate the potential effect of environmental temperature on neuronal
activity (78). Two networks were selected from a coverslip for the
recording. A recording session of a network consisted of three
phases: Phase 1 was a spontaneous activity recording, phase 2 a re-
cording with optogenetic stimulation (see below), and phase 3 a
spontaneous activity recording. Each phase lasted for 10 min, and
time-lapse images were taken at 20 frames s−1 using Solis soft-
ware (Andor).

Stimulation
For the optogenetic stimulation, patterned light illumination for ac-
tivating ChrimsonR was delivered using a digital micromirror
device (DMD) (Mightex Polygon400G) coupled to a high-power
LED (Thorlabs Solis 623C; nominal wavelength, 623 nm) via a
liquid light guide. The DMD was mounted on the inverted micro-
scope, and patterned light was reflected onto the sample stage using
a short-pass dichroic mirror with an edge frequency of 556 nm
(Semrock FF556-SDi01). The spatiotemporal pattern of light illumi-
nation was designed in customMATLAB script and programmed to
the DMD using PolyScan2 software (Mightex). In the MATLAB
script, somas of 10 neurons expressing ChrimsonR were randomly
selected from the lower half of the cultured neuronal network. Sub-
sequently, a circular illumination area centered around the soma
(diameter, 25 μm) was generated randomly with a probability of
40% for each position. Last, 750 black-and-white bitmap files with
the illumination pattern were generated and imported into Poly-
Scan2. The duration of each frame was set to 400 ms, which was
sufficiently long to initiate one or more spiking activities in the il-
luminated neuron. Identical spatiotemporal patterns were repeated
in the first and second halves of the 10-min session. Chemical stim-
ulation was realized by increasing the extracellular potassium con-
centration from 4 to 6 mM.

Spike detection
To extract the neuronal activity, regions of interest (ROIs) were
manually set around the neuronal somas using the CellMagicWand
plugin in ImageJ2, and the mean intensity within the ROIs was ex-
tracted for each time step. ROIs with no activity were not used, and
an equal number of neurons were selected from each of the four
modules. Spikes were detected from calcium fluorescence traces
using the MLSpike algorithm (79). The first 1 min of each 10-min
recording was removed to eliminate artifacts originating from the
session onset. The algorithm occasionally detected pulse signals
originating in the residual stimulation light as spikes, which were
manually inspected and removed based on their shape and
duration.

SNN model
The neurons were modeled using as LIF neurons, as described pre-
viously (18, 80). In short, the single-neuron dynamics are described
by the coupled differential equations

τv _v ¼ aðv � vrefÞðv � vthrÞ � uþ IAMPA � IGABA
τu _u ¼ bðv � vrefÞ � u

where v and u are variables representing the membrane potential
and membrane recovery, respectively (with time constants τx).
Neurons interact through excitatory and inhibitory currents
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(IAMPA and IGABA), which are described by a relaxation τx _Ix ¼ � Ix
and are increased instantaneously at the postsynaptic neuron upon
presynaptic firing by Ix,post → Ix,post + jx,preRpre, where jx,pre is a cons-
tant to describe the current strength, and R is the presynaptic re-
source variable that decreases upon firing by R → βR and
recovers as τR _R ¼ 1 � R. In addition, all neurons are spontaneously
driven by a Poisson shot noise added to IAMPA, which accounts for
spontaneous synaptic release and, depending on the noise rate, the
optogenetic stimulation.

Amodular network was constructed by considering four squares
(200 μm by 200 μm) separated by 200 μm, locating 40 neurons ran-
domly within each square, and simulating axon growth. Of these,
80% were excitatory neurons and 20% were inhibitory neurons, re-
sembling the ratio reported for both in vivo and in vitro networks of
the mammalian cortex (49, 81, 82). To create a model with k inter-
modular connections, the corresponding number of axons was
forced to grow between each pair of modules. Binary adjacency ma-
trices were then generated by forming synaptic connections when
the axon of a presynaptic neuron intersected a circular region
around a postsynaptic neuron within a radius of 150 ± 20 μm
(mean ± SD). The corresponding connection probability was ad-
justed for each topology, so that the average in-degree per neuron
was fixed to kin ~ 30. Full details of themodel are provided in section
S2 (figs. S4 to S9).

Mesoscopic model
Each node i in the mesoscopic model corresponds to a module, and
its dynamics were modeled using a coupled rate model with re-
source depletion (12)

_ρiðtÞ ¼ �
1
τρ
ρiðtÞ þ F½IiðtÞ� þ σξiðtÞ

_RiðtÞ ¼ �
1
τd

ρiðtÞRiðtÞ þ
1
τc
½R0 � RiðtÞ�

where ρ and R are firing rate and synaptic resource variables, respec-
tively, R0 is the baseline resource level, and τx are time constants.
F(Ii) is a nonlinear function mapping the total input to module i,
Ii, to a rate change (section S3A). Modules were spontaneously
driven by Gaussian noise ξ with an amplitude σ, which was associ-
ated with internal biological variability.

Network models were constructed by coupling four modules to-
gether in a grid-like pattern (as in the 1-b and 3-b topologies),
encoded by the adjacency matrix A = [Aij]. Then, Ii was the sum
of external input h, activity propagation within the module, and ac-
tivity propagation from connected neighbors

IiðtÞ ¼ hþ ρiðtÞRiðtÞ þ w
X

j=i
AijgijðtÞρjðtÞRjðtÞ

where w is the coupling strength, and gij is the gating variable that
describes whether modules i-j are connected or disconnected. hwas
varied to simulate perturbed conditions. The merged topology in
the experiments corresponded to the behavior of a single module
unit. Further details of the model are provided in section S3 (figs.
S10 to S12).

Data analysis
For the analysis of collective activity events in the experimental data,
the spike trains were first summed across all neurons and convolved

with a normalized Gaussian kernel (SD = 200 ms), yielding a con-
tinuous time series that resembles a network-wide firing rate (aver-
aged either per module or the whole population). The start and end
times of the events were then obtained by thresholding the popula-
tion rate at 10% of the maximum observed for any recording. An
event thus begins whenever the population rate exceeds the thresh-
old and ends when the rate drops below the threshold. To account
for fluctuations during an event, we also merged consecutive events
if a start time was separated by less than 100 ms from a previous end
time. Event size was then defined as the number of unique neurons
that contributed to the event normalized by the total number of
neurons in the network. Events in SNN models were defined anal-
ogously to experiments with the following parameters: SD of the
Gaussian kernel = 20 ms and threshold = 2.5%. The adjustments
were motivated by designing a kernel that scaled with the shortest
observed interspike interval and were necessary to account for the
different sampling rates in simulations (5 ms) and experiments
(50 ms).

To measure neuron correlation, Pearson correlation coefficients
rijwere calculated to quantify the synchronicity between a given pair
of neurons i-j. For this analysis, the spike train was binned at 500
ms, and the number of spikes in each time bin was counted for
each neuron. From here, rij was calculated by

rij ¼
P
t½xiðtÞ � xi�½xjðtÞ � xj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
t ½xiðtÞ � xi�

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t ½xjðtÞ � xj�
2

q

where xi(t) is the time-binned spike train of neuron i, and xi is the
time average of xi(t). When comparing to themesoscopic model, we
further calculated the module correlation as the Pearson correlation
coefficient between the time series of module-averaged firing rates
(calculated as described above).

The functional complexity χ (48) was evaluated as

χ ¼ 1 �
m

2ðm � 1Þ

Xm

μ¼1
pμðrijÞ �

1
m

�
�
�
�

�
�
�
�

where pμ(rij) is the probability distribution of rij in bin μ, m = 20 is
the number of bins for rij used to estimate the distribution, and |.|
denotes the absolute value. The definition of the error bars is de-
scribed in the captions of the corresponding figures. Note that the
choice of bin size (500 ms) affects the absolute value of correlation
coefficients and functional complexity, and we confirmed that the
reported results remain consistent with bin sizes of 250, 500, and
1000 ms.
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This PDF file includes:
Supplementary Text
Figs. S1 to S12
Tables S1 to S7
Legends for movies S1 to S8
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