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Dendritic spines are crucial for excitatory synaptic transmission as the size of
a spine head correlates with the strength of its synapse. The distribution
of spine head sizes follows a lognormal-like distribution with more small
spines than large ones. We analysed the impact of synaptic activity and
plasticity on the spine size distribution in adult-born hippocampal granule
cells from rats with induced homo- and heterosynaptic long-term plasticity
in vivo and CA1 pyramidal cells from Munc13–1/Munc13–2 knockout mice
with completely blocked synaptic transmission. Neither the induction of
extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades
the lognormal-like distribution but changes its mean, variance and skew-
ness. The skewed distribution develops early in the life of the neuron.
Our findings and their computational modelling support the idea that intrin-
sic synaptic plasticity is sufficient for the generation, while a combination
of intrinsic and extrinsic synaptic plasticity maintains lognormal-like
distribution of spines.
1. Introduction
A variety of features in the brain including dendritic spine size [1–3], synaptic
strength [4–7] and neuronal firing rate [8] are strongly positively skewed with a
heavy tail, displaying a lognormal-like distribution. Lognormal-like distributions
of synaptic and firing rate parameters are thought to play a fundamental role in
the structural and functional organization of the brain [9–11], and a number
of explanations for the emergence of such distributions in active and plastic
networks have been proposed.

Spines are plastic and motile structures of neuronal dendrites that function as
postsynaptic sites for excitatory inputs. The spine head contains the postsynaptic
density (PSD) with AMPA and NMDA glutamate receptors [12]. The size of the
PSD correlates with spine head size, the number of presynaptic vesicles [13,14]
and the density of postsynaptic receptors [15–18]. Therefore, spine head size
has been used as a morphological proxy for synaptic strength [19,20]. Spines
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change in size, shape and number depending on synaptic
activity (for reviews see [21–26]), which has been termed
extrinsic spine size dynamics [11].

Given the overwhelming evidence for activity-dependent,
extrinsic spine dynamics, the conventional view would
be to expect spine size distributions to depend heavily on
synaptic activity and associated synaptic plasticity [9] (see
also [27–29]). However, spines also display spontaneous,
activity-independent, intrinsic changes [30,31]. In keeping
with a major role of such intrinsic spine dynamics, recent
data from pharmacologically silenced cultured rat cortical
neurons challenged the conventional view, indicating that
skewed synapse weight distributions can emerge in an
activity-independent manner [32]. However, what remains
unclear are the important questions as to (i) what kind of
spine size distributions emerge during dendritic maturation
of adult newborn neurons,when andwhether these are affected
by homo- and heterosynaptic plasticity and (ii) whether such
skewed synapse weight distributions can emerge spon-
taneously in intact neuronal circuits. To address these issues,
we studied the distribution of spine sizes in adult-born dentate
granule cells (GCs) from rats with induced in vivo homo- and
heterosynaptic long-term plasticity. In addition, we studied
spine size distribution in Munc13 double-knockout (DKO)
mouse brain circuits with completely blocked presynaptic
activity. We found that homosynaptic long-term potentiation
(LTP), with associated spine growth, and heterosynaptic long-
term depression (LTD), with associated spine shrinkage, do
not disrupt the lognormal-like spine size distribution but
rather modulate its parameters. Moreover, we report that the
lognormal-like distribution of spine sizes emerges even with
entirely blocked synaptic activity.
2. Results
2.1. Independence of spine size distribution from

long-term homo- and heterosynaptic plasticity
in adult-born hippocampal granule cells

As the effects of nerve cell age and long-term synaptic
plasticity on the skewness of spine size distributions are
unknown, we characterized the spine size distribution and
its relationship to long-term synaptic plasticity in retrovirally
labelled adult-born hippocampal granule cells (abGCs) of
three different cell ages. These are characterized by gradual
onset and development of homo- and heterosynaptic plas-
ticity (21, 28 and 35 dpi; see Methods) [33], soon after start
of spinogenesis at 16–18 dpi [34,35]. In these cells, homosy-
naptic LTP associated with spine enlargement was induced
in the middle molecular layer (MML) following 2 h stimu-
lation of the medial perforant path (MPP) [33] in vivo. At
the same time, concurrent heterosynaptic LTD associated
with spine shrinkage was induced in dendrites in the adja-
cent unstimulated outer and inner molecular layers (OML,
IML). Those effects were restricted to the stimulated ipsilat-
eral hemisphere and therefore the unstimulated
contralateral site served as control. Here, we fitted a lognor-
mal function to the raw data (21 dpi, n = 3 animals; 28 dpi,
n = 6; and 35 dpi, n = 5) to test whether it provides a good
fit for the size distribution of mushroom spines. In the first
round of analyses, this was done collectively for all of the
cells of one condition (i.e. synaptic layer, cell age and hemi-
sphere) together (figure 1).

In all conditions—in ipsi- and contralateral dentate gyrus
(DG), at all cell ages and in all three layers—the lognormal-like
distribution matched the data exceptionally well with very high
goodness of fit (r2) values of 0.95–0.99 calculatedoverall cells and
animals in each condition. As expected, changes in the shape
(peak and width) of the distribution reflected the overall homo-
synaptic spine enlargement in the ipsilateral MML with respect
to the contralateral MML as well as the overall heterosynaptic
spine shrinkage in the ipsilateral OML and IML with respect to
the contralateralOMLand IML. This confirms that after plasticity
induction, the number of large spines increased and the number
of small spines decreased in the stimulated layer while opposite
changes occurred in the adjacent unstimulated layers [33].
However, the lognormal form of the distribution remained.

To see if a skewed, lognormal-like distribution also
appeared at the level of individual cells, we examined spines
in each cell separately. Both ipsilateral and contralateral (elec-
tronic supplementary material, figures S1 and S2) dentate
abGCs showed highly rightward skewed distributions at all
cell ages and in all layers with a variety in shapes, peaks and
widths, and a lognormal-like spine size distribution was
observed in all individual cells.

To quantify the comparison of spine size distributions
between ipsilateral (stimulated) DG with induced synaptic
plasticity and the contralateral (control) side, we calculated
the cell individual goodness of fit (r2) (figure 2) and skewness
(electronic supplementary material, figure S3). Overall, we
achieved a good fit, with the majority of r2 values for individ-
ual cells between 0.8 and 0.99. There was some variability in
the goodness of fit as fewer samples (up to 72) were available
for analysis compared to more mature cells (up to 105 spines),
and one outlier was as low as −0.5 (MML ipsilateral, at
21 dpi). The generally high r2 values indicate a lognormality
of the data at the individual cell level, independent of cell
age, cell layer or stimulation (hemisphere). Thus, the right-
ward skewness of the spine size distribution is a robust and
synaptic plasticity-independent phenomenon that is already
present at an early neuronal age.

Therewere no significant differences ( p < 0.05) in the good-
ness of fit between the two hemispheres; however, layer
and time comparisons show some significant differences
(figure 2). The goodness of fit decreased significantly ipsilater-
ally in the MML compared to the IML and OML at 28 and
35 dpi, suggesting that the plasticity induction weakens the
lognormal distribution. This suggests that the stimulation
slightly weakens the lognormality of the spines and thus the
goodness of fit decreases as well. Contralaterally, there was a
significant decrease in goodness of fit in both the MML and
OML compared to the IML. Both ipsilateral and contralateral
hemispheres showed significant differences from 21 to
35 dpi, in all three layers. This could be an effect of ongoing
maturation. Another way to quantify the lognormality of the
spine size data is to calculate the skewness (asymmetry
around the mean) of the data. All cells in every condition dis-
played a skewness above 0, confirming that the data were not
symmetrically distributed but skewed to the right (electronic
supplementary material, figure S3). Again, there were no sig-
nificant differences between the hemispheres. However, there
were significant differences when comparing layers and time
points, with skewness increasing over time both ipsi- and con-
tralaterally. Similar to the goodness of fit comparison, this
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Figure 1. Collected spine size data from anaesthetised rat abGCs reveal robust lognormal-like spine size distributions in all dentate layers and cell ages irrespective of
ipsilaterally induced homosynaptic or heterosynaptic plasticity. (a) Left: An example retrovirally labelled abGC imaged at 35 days post-injection (dpi; scale bar:
25 µm). The ipsilateral MML experienced 2 h high-frequency stimulation (HFS). Right: Top panel shows an enlarged dendritic segment located in the stimulated
ipsilateral MML. Middle, bottom panel depicts analysed spines (scale bar: 1 µm). (b) Spine size distributions and their average lognormal fits for all cells in one layer
(OML, MML, IML), time (21, 28 and 35 dpi = cell age) and hemisphere (ipsilateral stimulated = green and contralateral control = magenta), fitted to the spine data.
Note the high overall goodness of fit for all conditions (mean r2 over all cells in each condition). The lower ipsilateral versus contralateral (stimulated versus control)
distribution peak associated with reduced distribution width in the stimulated MML indicates homosynaptic spine expansion; the higher ipsilateral versus contra-
lateral distribution peak in the OML and IML indicates heterosynaptic spine shrinkage. At 21 dpi, the size distributions show more variance compared to the later
time points. This is likely due to spines still maturing and a more random spine growth and shrinkage, whereas at 28 dpi and 35 dpi, spine growth or shrinkage is
the result of homo- and heterosynaptic plasticity. This mirrors the findings of Jungenitz et al. [33]). OML, MML and IML: outer, middle and inner molecular layers,
respectively; GCL: granule cell layer of the DG. The dashed line represents the lognormal fit, the solid line the spine data binned into size categories.
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Figure 2. Individual cell level analysis of the spine size data from anaesthetized rat abGCs confirms robust lognormal-like distribution of spine sizes in all dentate layers
and cell ages. (a) Goodness of fit was similar in the ipsilateral (stimulated; green) and contralateral (control; magenta) DG layers. Significant differences can be observed
ipsilaterally; the MML has a significantly lower r2 compared to the other two layers at 28 and 35 dpi. On the contralateral side, the goodness of fit is significantly lower in
both the MML and the OML compared to the IML at 35 dpi. Left, middle, right panel: 21, 28 and 35 dpi, respectively. (b) The goodness of fit in each layer changes
significantly over time: in the IML, r2 increases contralaterally from 21 to 35 dpi, whereas in the MML and OML, it decreases ipsi- and contralaterally over the same time
period. Left, middle and right panel: IML, MML and OML, respectively. Each point represents a single cell: 21 dpi ipsilateral: n = 12 cells, 21 dpi contralateral: n = 9; 28 dpi
ipsilateral: n = 18, 28 dpi contralateral: n = 18; 35 dpi ipsilateral: n = 30, 35 dpi contralateral: n = 24. Error bars represent s.e.m. with mean. The y-axes are truncated at
0, with one outlier below this value in the ipsilateral MML at 21 dpi. OML, MML and IML: outer, middle and inner molecular layers, respectively.
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could be a result of cell maturation. At 28 and 35 dpi, the skew-
ness of the stimulatedMML is significantly lower compared to
both IML andOML, similar to the goodness of fit results above.
Overall, the skewness quantification supported the results
obtained by the r2 comparisons, showing that the lognormal-
like distribution of spine sizes is independent of stimulation-
induced homo- and heterosynaptic plasticity. Comparing the
standard deviations taken from the natural logarithms of the
spine data (in the following called sigma), which is an indicator
of thewidth of the distribution and in this case the range of the
spine sizes, some significant differences (p < 0.05) were
observed (electronic supplementary material, figure S4). The
sigma value for the stimulated ipsilateral MML at 28 dpi sig-
nificantly increased compared to the contralateral side. This
indicates that the shapewidened and that therewas an increase
in bigger spines due to the induction of homosynaptic LTP.
There was a significant decrease in the ipsilateral spine sizes
in the IML at 21 dpi and the OML at 35 dpi compared to the
contralateral side, indicating that the shape narrowed and the
number of smaller spines increased due to heterosynaptic
LTD. There were also significant differences when comparing
layers and time points. Sigma increased significantly ipsilater-
ally in theMML compared to the IML andOML at both 28 and
35 dpi, mirroring the skewness findings. The induction of plas-
ticity appeared to broaden the spine size distribution, thus
increasing sigma, by increasing the number of medium and
large spines, which in turn also decreased skewness. Sigma
also increased significantly over time in both the MML and
OML, again mirroring the previous parameter comparisons.

For a lognormal distribution, the logarithm of the
individual values is normally distributed. As an additional
quantification method, we calculated the logarithm of the
data and fitted a Gaussian distribution to the transformed
data (figure 3). The distributions at the youngest cell age
(21 dpi) showed a well-fitted Gaussian distribution in all three
layers and both ipsi- and contralaterally, indicating the con-
dition for the lognormal distribution was met. In older cells
(both 28 and 35 dpi), the Gaussian distribution fit less well to
the logarithmic data. This was especially the case on the right
side of the peak, where the actual number of spine sizes was
higher than the estimated fit. There was an overabundance of
bigger spines at older cell ages, regardless of plasticity induc-
tion. However, this overabundance of bigger spines could
be observed especially in the MML, where homosynaptic plas-
ticity was induced. This indicates that spines do not follow a
strict lognormal distribution but a lognormal-like distribution.

We compared three skewed distributions, including the
lognormal distribution, to quantify whether the lognormal
distribution is the best fit of those three. To this end, we
used the Akaike Information Criterion (AIC). Our analyses
and comparisons revealed that of the three distributions
tested (lognormal, gamma and Weibull), the lognormal dis-
tribution had an advantage over the other two, indicating
that it was the best fit for the data (electronic supplementary
material, figures S5 and S6).
2.2. Independence of spine size distribution from
presynaptic transmitter release

Viewed together, the data from in vivo rat abGCs showed
a strong independence of the lognormal-like spine size
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distribution from homosynaptic and heterosynaptic plasticity.
This raises the question as towhether synaptic activity in general
affects spine sizedistributions. To assess this,we analysed spines
in nerve cells with blocked presynaptic transmitter release.

We used a dataset of CA1 pyramidal cell (CA1 PC) spines
from organotypic hippocampal cultures obtained from
Munc13-1/Munc13-2 DKOs [36]. In these mutants, presynaptic
glutamate and GABA release is almost entirely blocked [36,37].
The spine data comprised three developmental time points, at
which spine size was measured in organotypic slices (7, 14
and 21 days in vitro, div) and two further groups, one where
synaptic activity (presynaptic transmitter release) was blocked
(DKO group 0) and the corresponding control group (group 1).
CA1 PCs possess three different spine types: 22.85 ± 6.01%
mushroom spines (mean ± s.d.), 23.73 ± 4.83% thin spines and
51.16 ± 6.62% stubby spines. About 2.26 ± 2.53% were defined
as ‘other’ and not included in further analyses.

The data were analysed by different conditions, separated
by time in vitro (div) and group. In the first step, all cells and
spine types were analysed together in each condition. In the
second step, spine sizes were analysed at the single-cell level,
for all spine types together. Finally, the three different spine
types were analysed separately, first for all cells in one
condition, then at the individual cell level as well.

A lognormal distribution was fitted to the spine data. As
with the abGC data above, the goodness of fit (r2) showed
that the lognormal fit described the spine size distribution
very well, in all conditions and for all spines (figure 4).

Again, like with the abGC data, at the individual cell
level, spine sizes in every CA1 PC in both groups followed
a lognormal distribution, at each cell culture age (div) that
we studied (figure 5a). There were differences in the shape
and width of the distribution, but the rightward skewness
was preserved even at the individual cell level.

We compared the cell individual goodness of fit parameter
r2 between the groups and different time points (div), for all
spines together (figure 5b). There were no significant differ-
ences between the two groups, only a trend in the blocked
activity group towards a slightly reduced r2. Comparing the
time points, there was no significant difference (p < 0.05)
within the blocked activity group. In the control group there
was a significant increase ( p < 0.01) in the goodness of fit
from day 7 to day 21 in vitro, indicating that the lognormal
distribution described the data better for more mature slice
cultures. A similar trend was seen in the blocked activity
group, but without reaching statistical significance. This
shows that there is a lognormal-like distribution of spine
sizes irrespective of whether the presynaptic transmitter
release is blocked or not.

A closer analysis of the spine size data revealed that the
skewness values were typically above 0 (in some exceptional
cases for thin spines below 0, indicating a skewness to the
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goodness of fit (r2) values in both groups and at all time points (div). The dashed line shows the lognormal fit; the solid line represents the spine data.
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left), confirming that the spine sizes were not symmetrically
distributed. Comparing the different conditions revealed
no significant differences between different time points (cell
culture age in div) or between the groups (electronic sup-
plementary material, figure S7A). Within each group, the
skewness increased slightly but not significantly over time.
The sigma comparison revealed no significant differences in
the width of the distribution and the range of spine sizes (elec-
tronic supplementary material, figure S8). A trend was seen at
21 div,where the blockedpresynaptic transmitter release group
has a slightly increased sigma compared to the control group,
indicating that the range of spine sizes increases.

Next, we tested whether a deeper analysis of spine
type subgroups (mushroom, stubby and thin) would show
inter- or intra-group differences (figure 5c). The thin spine
population showed lower r2 values than the mushroom and
stubby spine population. In line with this, thin spines also
showed the lowest score for skewness (electronic supple-
mentary material, figure S5B). At the individual cell level,
mushroom spines in each cell followed a lognormal distri-
bution (figure 6a). The group with blocked presynaptic
transmitter release showed a similar goodness of fit as the
control group. There was a significant increase of r2 over time
( p < 0.05) in the control group (figure 6b). Mushroom spines
had a slightly higher skewness in the control group, but the
difference was not significant (electronic supplementary
material, figure S7C), and they showed the lowest sigma
value in comparison to the other two spine types, indicating
a smaller range of sizes (electronic supplementary material,
figure S8). Analyses of thin and stubby spines at the individual
cell level are shown in electronic supplementary material,
figures S9 and S10.

As with the abGC dataset, we conducted the AIC analysis
and comparison for mushroom spines, to check whether the
lognormal distribution was the best fit out of three skewed
distributions. The lognormal distribution had an advantage
over the other two in both experimental groups and at all
cell ages (electronic supplementary material, figure S11).
These findings indicate that a lognormal-like spine size distri-
bution is preserved even when synaptic activity is blocked.
Intriguingly, the sizes of thin spines showed a less good fit
to a lognormal distribution.

Again, as with the abGC spine dataset, a final analysis of
spine data from Munc13 DKOs and control littermates
focused on the lognormal-like distributions of spine sizes in
more detail by employing the normal (Gaussian) fits of loga-
rithmically transformed data. The logarithm of lognormal-
like spine size data should lead to a normal-like distribution.
Taking the logarithm of the data and fitting a Gaussian distri-
bution to the transformed data revealed for all spine types
that the distribution had a bias towards the left side of the
peak, meaning there was an overabundance of small spines
in the samples (figure 7a), at all cell ages and in both exper-
imental groups. For mushroom spines, there was a clear
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Figure 5. Individual cell level analysis of the spine size data from CA1 PCs in Munc13 DKO (blocked presynaptic release) and WT (control) organotypic slice cultures
revealed a robust lognormal-like distribution independent of synaptic activity. (a) Lognormal fits in individual cells in both groups and at three time points (div). The
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cutoff to the left (figure 7b), whereas for thin spines, there
was a cutoff to the right of the peak (figure 7c). This was
due to the method by which spines were categorized by
size into thin or mushroom spines. Stubby spines showed
the best Gaussian fit, indicating that the stubby spines were
distributed strictly lognormally. The bias to the left might
be an artefact of the method used to detect and measure
the spines. Overall, the findings indicate, similar to the
abGC dataset, that spines were lognormal-like distributed
independently of synaptic activity.
2.3. A computational model implementing intrinsic and
extrinsic synaptic plasticity accounts for the
generation and preservation of skewed synaptic
weight distributions

Manycomputationalmodelsof synaptic dynamics presume that
the distribution of synapticweights arises predominantly due to
activity-dependent (extrinsic) synaptic plasticity [38–41]. There-
fore, our observation that synaptic activity is not necessary for
the emergence of skewed spine size distributions provides
an opportunity to assess the relative contribution of activity-
independent (intrinsic) plasticity in a model of synaptic
dynamics.We therefore used a computationalmodel of synaptic
dynamics that combines intrinsic plasticity [32] with classical
extrinsic plasticity mechanisms.

Lognormal distributions are typically preserved when
applying multiplicative stochastic operations. Combined
intrinsic and extrinsic synaptic plasticity might represent a
biological implementation of such multiplicative changes of
synaptic weights. Thus, to investigate the influence of intrinsic
and extrinsic plasticity on the lognormal distribution of spine
sizes, we developed a minimal computational model, that
was able to account for the experimental data. Extrinsic synap-
tic plasticity was modelled as Hebbian activity-dependent
spike-timing-dependent plasticity (STDP) consisting of addi-
tive LTP and multiplicative LTD. Intrinsic synaptic plasticity
was based on activity-independent fluctuations modelled as
a combination of additive [42] and multiplicative noise. The
model was inspired by van Rossum et al. [43]. The synaptic
weights, for which we assume spine sizes to be a reliable
proxy, were determined for each condition after the simulation



07 div
(a)

(b)

0
0.50 1.0 1.5 2.0 2.5 3.0

no
rm

al
iz

ed
 c

ou
nt

1
2
3
4
5
6

bl
oc

ke
d 

pr
es

yn
ap

tic
re

le
as

e

0 0.5 1.0 1.5 2.0

spine size (µm2)

2.5 3.0

no
rm

al
iz

ed
 c

ou
nt

1
0

2
3
4
5
6

14 div
lognormal fit for mushroom spines

0 0.5 1.0 1.5 2.0 2.5 3.0

1
0

2
3
4
5
6

0
0.50 1.0 1.5 2.0

spine size (µm2)

2.5 3.0

1
2
3
4
5
6

21 div

0 0.5 1.0 1.5 2.0 2.5 3.0

1
0

2
3
4
5
6

0 0.5 1.0 1.5 2.0
spine size (µm2)

2.5 3.0

1
0

2
3
4
5
6

co
nt

ro
l

07 div 14 div 21 div
0

go
od

ne
ss

 o
f 

fi
t

0.2

0.4

0.6

0.8

1.0

control

*
*

blocked presyn.
release

Figure 6. Analysis of mushroom spines from CA1 PCs in Munc13 DKO and WT (control) organotypic slice cultures showed a high goodness of fit to a lognormal
distribution. (a) Individual fits for mushroom spines in each cell. The single blue (above) and red (below) fit shows the average distribution. (b) Goodness of fit
(left panel) analysis revealed no significant differences between the groups (blocked presynaptic release versus control) and a significant increase in r2 over time
( p < 0.05) (7, 14 and 21 div) for control. Each dot represents a single cell; error bar represents s.e.m. with mean.

royalsocietypublishing.org/journal/rsob
Open

Biol.13:230063

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 S

ep
te

m
be

r 
20

23
 

was run, and a lognormal distribution was fitted over the
weight data. In a first simulation, we wanted to see if intrinsic
plasticity alone (modelled as multiplicative noise) can generate
a lognormal distribution. To this end, we fed a uniform distri-
bution as initial weights into the model and tracked the
synaptic weights over the time course of the simulation to
see how it developed (figure 8a). The distribution became
lognormal over time, showing that multiplicative noise is
indeed sufficient to generate lognormal distributions [32].

Next, we explored in silico how different modelling
parameters could contribute to the range of different
lognormal-like distributions produced by different experi-
mental protocols. To do this, we combined our model with
simulation-based inference [44,45], which uses simulated out-
puts to infer the distributions of parameters that could have
given rise to the observed experimental outputs. We used the
model to reproduce the plasticity processes in the Jungenitz
et al. [33]) dataset and infer the possible underlying parameters.
We compared a high-frequency stimulation (HFS) (periodic
spiking input at 200 Hz) with a control simulation (Poisson
input at 10 Hz) andwith silenced tissue. Figure 8bplots themar-
ginal single and pairwise distributions of parameters associated
with intrinsic (top right) and extrinsic (bottom left) synaptic
plasticity. Interestingly, the parameters did not typically show
strong pairwise dependencies. There were two exceptions to
this: the proportion of spines receiving external stimulation
was positively correlated with the strength of multiplicative
noise and the strengths of potentiation and depression under
STDP were negatively correlated. Running simulations with
the maximum a posteriori parameters produced lognormal-
like distributions of spine sizes that closely matched the
experimental data (dashed versus solid lines in figure 8c).

As shown by Rossum et al. [43], additive STDP can con-
tribute to a skewed distribution of synaptic weights as
already strong synapses are more likely to trigger a postsyn-
aptic response and therefore potentiate again. Interestingly,
however, additive intrinsic noise can lead to relatively large
changes in the strengths of small synapses and limit the skew-
ness of the resulting weight distributions. We found that
additive noise should be relatively weak (if at all present) in
order to maintain lognormal-like distributions of spine sizes.

In sum, and in agreement with the abGC spine data, com-
bined extrinsic and intrinsic plasticity can maintain the
skewed distributions in the presence of correlated LTP-indu-
cing synaptic activation. Furthermore, in line with Munc13
DKO spine size data, our modelling shows that extrinsic plas-
ticity is not necessary for the generation of skewed spine size
distributions and that intrinsic plasticity alone is sufficient.
3. Discussion
Excitatory postsynaptic potential sizes and spine head sizes
have lognormal-like distributions [1–3,5–7,46,47]. Here,we con-
firm that spine size distributions follow a lognormal shape in
both hippocampal dentate abGCs in vivo and in organotypically
cultured CA1 PCs. In dentate abGCs, a lognormal-like distri-
bution of spine sizes was present at all studied cell ages,
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irrespective of homo- or heterosynaptic long-term plasticity
induction. Most strikingly, in CA1 PCs, spine size distributions
were skewed and lognormal-like even in Munc13 DKOs, in
which presynaptic transmitter release is entirely blocked.
These data show that the lognormal-like distribution of spine
sizes is activity and plasticity independent. The skewness of
spine size distributions develops early in cell age without
extrinsic influences related to presynaptic transmitter release
and therefore seems to be determined intrinsically. However,
we cannot exclude potential extrinsic influences that are not
related to presynaptic transmitter release, such as trophic factors
or adhesion proteins.
3.1. Independence of spine size distributions from
extrinsic plasticity

Intriguingly, we detected robust lognormal-like distributions
of spine sizes in young newborn GCs that had experienced
homo- and heterosynaptic plasticity. This is in agreement
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with previous studies showing unchanged spine size, spine
type distribution and spine numbers at 30 min and 2 h after
homosynaptic LTP in dentate GCs and CA1 PCs, respectively
[20,48]. Together with our previous work [33,49], these data
indicate that high-frequency activation of synapses evokes
their homo- and heterosynaptic plastic changes leading to a
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redistribution rather than an overall increase (or decrease) in
spine size and synaptic strength. Consistent with this, we
observed significant changes in the width of the distributions:
induction of plasticity broadened the spine size distribution
in the MML by increasing the number of medium and
large spines. At 35 dpi, the onset of both homo- and hetero-
synaptic plasticity [33], a concurrent narrowing of the
distribution in the surrounding OML and IML can be
observed. This is likely due to heterosynaptic plastic changes
in these layers that reduce the size of medium and large
spines, further pointing towards a redistribution of synap-
tic resources. The plasticity-related redistribution of synaptic
weights with a homeostatic maintenance of the total synap-
tic area per micrometer of dendrite length [20,50] may be a
result of activity-dependent competitive redistribution of
synaptic building resources [51]. In addition to the plas-
ticity-independence, the skewed spine size distribution
in abGCs was detected at the earliest studied time point
(21 dpi), shortly after onset of spinogenesis between 16 and
18 dpi [34,35]. This indicates that it develops in early stages
of a nerve cell’s life. Extending long-term time lapse imaging
of abGCs [35] to include their initial developmental stages
with the time of rapid spinogenesis should clarify whether
the first spines already display skewed size distributions.

A recent study on cultured primary cortical neurons [32]
provided results in line with our observation that spine size
distribution is independent of presynaptic glutamate release.
In this study on dissociated neurons in culture with pharma-
cologically blocked spiking and synaptic activity during the
plating procedure, synapses showed physiological diversity
with a full range of synaptic sizes [32]. The synapse size
distributions in these silenced networks in culture were right-
ward skewed, broad and stable, showing characteristics
of a lognormal-like distribution. Interestingly, networks
with chronic activity suppression showed an increase in aver-
age spine size, and synaptic size distributions broadened,
indicating that activity-dependent processes constrain synap-
tic growth [31,52,53]. Our analysis of spines upon blockage of
presynaptic transmitter release documents a similar shift
in spine sizes. The blocked transmitter release group shows
a broader distribution with a lower peak, indicating a shift
towards an increased number of bigger spines, possibly regu-
lated by intrinsic mechanisms. Similar results were reported
by Yasumatsu et al. [54] who observed individual spines of
CA1 PCs from rat hippocampal slices in culture after blocking
synaptic transmission and plasticity mediated by NMDA
receptors. They reported that spontaneous, intrinsic spine
volume fluctuations were independent of activity-dependent
plasticity processes. In the presence of NMDAR inhibition,
the rate at which spines were eliminated was decreased and
spine generation was unaffected. Spine elimination of
mostly small spines was reduced but new, small spines still
emerged, affecting the skewness of the distribution.

An important finding of Yasumatsu et al. [54] was that
small spines were the most plastic ones, changing in size,
being eliminated, or newly generated even within one day.
Large spines, in contrast, were more persistent. This supports
the idea that small, more plastic spines are more involved in
learning processes, whereas stable, large spines are respon-
sible for memory traces [50,55,56]. This might hint at a
potential advantage of lognormal size distributions, with a
large pool of small spines with higher plasticity potential
and a minority of big and less plastic spines that can hold
long-term memory traces [57]. However, our present study
and previously published data [32,36,58,59] show clearly
that synaptic activity is not necessary for the emergence of
large spines [31]. In line with this, the diversity of spine
types—in terms of fractions of mushroom, stubby and thin
spines—is not affected in mice with a complete suppression
of synaptic transmitter release from glutamatergic neurons
upon Cre-inducible expression of tetanus toxin [58,60]. Con-
sistently, spinogenesis in CA1 PCs has been shown to be
independent of the activation of ionotropic glutamate recep-
tors [61], although their numbers might be modulated by
the lack of activity [32,36]. Even the complete knockout of
Ca2+ channels in synapses in cultured hippocampal neurons
did not impair synapse structure [62]. All these observations
are congruent with early investigations showing that in vivo-
like synapse diversity emerges in neurons in chronically
silenced organotypic cultures [63–65] (but see [29]).

3.2. Computational model accounts for the generation
and maintenance of lognormal-like weight
distributions

The finding that synaptic activity is not necessary for the
skewed spine size and synapse weight distribution is unex-
pected in the context of several prominent theoretical
models. Many computational models of synaptic weight
dynamics assume that realistic weight distributions emerge
due to a combination of Hebbian and non-Hebbian activity-
dependent synaptic plasticity. For example, spiking network
simulations led to the suggestion that a highly skewed
distribution of synaptic weights appears due to network
self-organization [39], by the combined effects of (i) excitatory
and (ii) inhibitory spike-timing-dependent plasticity (STDP
and iSTDP), (iii) synaptic normalization (preserving the
total input weight of a neuron), (iv) intrinsic plasticity of
neuronal excitability (for firing rate homeostasis) and (v)
structural plasticity (in the form of synaptogenesis).

Similarly, other computational studies [43] used an STDP
rule with a homeostatic component (diminished potentiation
for strengthened synapses; see also [40]) or log-STDP [38] to
reproduce the experimentally observed positively skewed
weight distribution. Further, a more recent mathematical
study argued that Hebbian learning is needed to produce
and maintain skewed synapse size distributions [41]. How-
ever, the studies including our work and work of others
[32] clearly show that activity-dependent synaptic plasticity
is not essential for the lognormal-like weight distributions
to occur. This means that the synaptic plasticity rules pro-
posed in these computational studies are not necessary for
the generation of heavy-tailed synaptic weight distributions,
but that they may still be involved in the maintenance of
the skewed distributions once neuronal networks become
exposed to prolonged synaptic activity and plasticity.

Indeed, our plasticity model, using a Kesten process as
multiplicative noise for implementing intrinsic synaptic fluc-
tuations [32], generated a lognormal-like distribution without
any influence of an extrinsic plasticity mechanism. The multi-
plicative noise (i.e. intrinsic synaptic plasticity mechanisms)
also generated a lognormal distribution that is slightly
broader than a control simulation with noise and activity-
dependent plasticity (i.e. both intrinsic and extrinsic mechan-
isms). This is in accordance with our results obtained with the
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Munc13 DKO dataset. When we added additive STDP and
simulated the network model with periodic high-frequency
input (mimicking LTP-inducing activity), the skewed, lognor-
mal-like distribution was maintained, but changed in width
and shape compared to a control simulation that received
10 Hz input. The maintenance of the lognormal-like distri-
bution is in agreement with the abGC LTP/LTD dataset.
The insight of this model, as previously shown by van
Rossum [43], is that even additive potentiation can generate
and preserve skewed synaptic weight distributions as stron-
ger synapses are more likely to trigger postsynaptic spikes
and therefore more likely to undergo potentiation. The
presence of skewed distributions even without STDP in
our data is evidence that intrinsic noise is likely to be multi-
plicative and this is confirmed by our inference over the
modelling parameters.

Activity-independent computational models based on
stochastic multiplicative shrinkage and additive growth of
synapses (mathematically well approximated by stochastic
Kesten or nonlinear Langevin processes) successfully account
for the emergence of lognormal-like synaptic strength distri-
butions [32] (see also [1,54]). Similarly, a mechanistic model
based on activity-independent cooperative stochastic binding
and unbinding of synaptic scaffold molecules can explain the
rightward skewed, distributions of synaptic sizes [32,66]. Our
new model of intrinsic and extrinsic plasticity shows how
activity-independent and activity-dependent synaptic
dynamics may cooperate to maintain lognormal-like distri-
bution of synaptic efficacies.

An open question that remains is as to whether long-
tailed distributions of synaptic weights have functional
relevance. Their computational role is still not fully under-
stood but several studies indicate that they may support
optimal network dynamics in the form of sparse, fast,
broad and stable responses [4,5,67–69] and facilitate network
burst propagation [70]. Sparse and strong synapses connect
together to a so-called ‘rich club’ of rare but highly connected
neurons [71,72]. The rich club neuron organization can
generate bistable low-firing and high-firing network states,
whereas biologically unrealistic random networks only
display mono-stable, low-firing states [73]. The rare and
strong synaptic connections participate to a disproportionate
degree in information processing [72], such as feature prefer-
ence and selectivity in visual cortex [4]. They may also
contribute to memory recall in associative memory networks
[74]. Network simulations also indicated that lognormal-
like synaptic distributions are important in the context of
criticality since they support continuous transitions to chaos
associated with the generation of scale-free avalanches [75].
In addition, a recent computational study showed that
strong synaptic inputs from the heavy tail of the lognormal
synaptic efficacy distribution play a crucial role in triggering
local dendritic spikes [76] which are known to enhance
nonlinear single-cell computations.

3.3. Conclusion
In sum, our work highlights the importance of a skewed,
lognormal-like distribution of brain parameters. It persists
through HFS and plasticity processes, and emerges even
when presynaptic transmitter release is blocked. Given its
importance and widespread presence in the brain, compu-
tational plasticity models should strive to maintain a
skewed, lognormal-like distribution of spine sizes and
synaptic weights.
4. Methods
4.1. Spine data from dentate adult-born granule cells in

rats with induced homo- and heterosynaptic
plasticity

We analysed the distribution of spines in GC data in the DG,
from Jungenitz et al. [33]). In this dataset, structural homo-
and heterosynaptic plasticity of spines was induced in abGCs
using 2 h HFS of the MPP in anaesthetized rats. AbGCs were
stimulated at different time points after the injection of retro-
viral vectors (days post-injection, or dpi). The cell ages used
in the analysis were 21, 28 and 35 dpi. The HFS induced LTP
associated with spine expansion in the MML of the DG [33].
Concurrently, it induced heterosynaptic LTD associated with
spine shrinkage in the IML/OML.

The dataset comprised spine data for individual cells in
(i) the three different layers (IML, MML and OML), (ii) at the
three different cell ages (21, 28 and 35 dpi) and (iii) from both
the contra- and ipsilateral hemisphere. The contralateral side
without the induction of synaptic plasticity [33] was included
as a control. All analysed spines were mushroom spines
(spines with a large head in relation to the neck [77,78]). Analy-
sis was done at the level of individual cells or dentate
molecular layers, separately for each layer, hemisphere and
cell age. Therewere 12 cells available for analysis at 21 dpi ipsi-
laterally and 9 cells for the contralateral side. At 28 days,
both ipsi- and contralateral sides consisted of 18 cells, and at
35 dpi, the ipsilateral hemisphere consisted of 30 cells and the
contralateral side included 24 cells.

4.2. Spine data from CA1 pyramidal cells in Munc13
double-knockouts

The blocked presynaptic activity dataset contained spine
data from CA1 PCs in hippocampal organotypic slices
from Munc13 DKO mice [36]. In these DKOs, the elimination
of synaptic protein Munc13 causes a complete loss of spon-
taneous and evoked transmitter release [37]. The dataset
comprised spine data from M13-DKOs and their controls,
from three different time points of measurement (7, 14 and
21 days in vitro, div). The dataset was split into apical and
basal dendrites, and in three spine subgroups (mushroom,
stubby and thin).

4.3. Fitting a lognormal distribution to the data
The spine head area was used to analyse the distribution of
spine sizes. All analyses were done with Matlab software
using a custom-written script. We analysed cells individually
as well as collectively by combining and averaging all cells
for one condition.

From the raw data, the mean (µ) and standard deviation
(σ) of the spine sizes’ natural logarithms were calculated.
They functioned as a starting point for the algorithm
implemented to fit the lognormal distribution over the
spine data. Because the data spans multiple scales, the raw
size data was normalized. For the normalization, the integral
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of the spine size distribution was calculated, and the
absolute number of spines in each size bin was divided by
that integral.

The next step in the analysis was to build the lognormal
function that would be fitted to the normalized data. For
this, a customized fitting procedure had to be derived for
which the probability density function of the lognormal
distribution was used:

f(x) ¼ 1
x

1

s
ffiffiffiffiffiffi
2p

p exp �ðln(x)� mÞ2
2s2

 !

µ and σ are defined as parameters, f (x) as the dependent and
x as the independent variable. The lognormal distribution
was then fitted to the normalized data. With the fit function,
plots and respective goodness of fit statistics for each of the
fits were generated. The goodness-of-fit statistics give an indi-
cation of how well the respective fit or model fitted the data.
The r-square (r2) value was used in all further analysis.

The key characteristic of a lognormal distribution is that
the logarithm of the random variable will be normally dis-
tributed. Thus, taking the logarithm of the spine data is
another good method to check if the data is distributed log-
normally like. A similar fitting procedure as above was
applied. The data was first transformed by taking the logar-
ithm of the spine sizes, then a Gaussian distribution was
fitted to the logarithmic data:

f(x) ¼ aexp � x� b
c

� �� �2

,

where a, b and c are the parameters, f(x) the dependent and x
the independent variable. With the fit function fitting a Gauss-
ian distribution to the logarithm of the data, new plots were
generated that compared the logarithmic data with the fit.

To determine differences between the different layers,
cell ages or experimental and control groups, the given r2

for each condition was compared, using statistical non-
parametric tests. r2, or the coefficient of determination, is
used to determine how well the variation in f(x) (the depen-
dent variable) can be explained by x (the independent
variable(s)). Essentially, it provides a measure of how well
the observed outcomes can be replicated by a model. In our
case, how well the applied fits describe the spine size data.
The value is less than or equal to 1, with 1 being a perfect
fit of the model. The coefficient of determination is calculated
as follows:

r2 ¼ explained variation
total variation

:

To support the findings of the goodness of fit compari-
sons, we also looked at the skewness (asymmetry around
the mean) of the data and the width of the distribution (stan-
dard deviation of the data’s natural logarithm, in the
following called sigma). More information about these com-
parisons can be found in the electronic supplementary
material, methods. Additionally, we conducted a model fit
comparison for which we fit two additional skewed distri-
butions (gamma and Weibull) to the data and then used
the AIC to compare all three distribution fits. This was
done to see whether or not the lognormal distribution was
the best fit for the data. More information about the AIC cal-
culations and comparisons can be found in the electronic
supplementary material, Methods.
4.4. Statistical analysis
Several statistical tests were applied to test for statistical
differences of r2 for a lognormal and the skewness between
the different conditions in both datasets. The distribution
analysis showed a lognormal distribution in the spine data,
so only non-parametric tests were applied.

For the hemisphere (ipsilateral / stimulated versus con-
tralateral / non-stimulated) comparison in the rat dentate
abGC spine data and the group comparison (Munc13 DKO
group with blocked presynaptic release versus control
group) in the mouse CA1 PC spine data, we used a Mann–
Whitney U-test or rank-sum test. To compare between the
three different dentate layers (IML/MML/OML), we used
Friedman’s test. Since all three layer-samples in one cell
come from the same cell, it was a repeated measurement of
multiple variables. The Kruskal–Wallis test was used for the
comparison between different cell ages or cell culture ages.
If significant differences ( p < 0.05) were found in one
sample, both for the time comparison and the layer com-
parison, post hoc paired rank sum tests were conducted.
A Bonferroni-Holm correction for multiple tests was applied
to test for specific significant differences in the sample.
4.5. Multiplicative spike-timing-dependent plasticity
model to investigate lognormal distributions

To further investigate the influence of plasticity on the log-
normal-like distribution of synaptic weights, we developed
a simple model based on van Rossum et al. [43]. The model
includes heterosynaptic scaling, intrinsic multiplicative
(Kesten) and additive noise processes, and an STDP learning
rule with additive potentiation and multiplicative depression.
The times between a presynaptic event and a postsynaptic
event are written as Δt. Negative values of Δt, where the pre-
synaptic event precedes the postsynaptic event, lead to
potentiation w→wp and positive values lead to depression
w→wd.

wp ¼ wþ cpexp
�Dt

tSTDP

� �

and

wd ¼ w� wcd exp
Dt

tSTDP

� �
,

w is the synaptic weight, cp is the weight of potentiation (cp =
0.007 pS), cd is the weight of depression (cd = 0.003) and t is
the time constant for STDP (tSTDP ¼ 0:5 ms). In addition,
the synapses are affected by continuous-time multiplicative
and additive Gaussian noise processes. The strength of multi-
plicative noise is given in proportion of spine size per second,
and the strength of additive noise is given in absolute units
per second. The postsynaptic neurons are modelled as
leaky integrate-and-fire cells receiving 100 inputs each and
uniform heterosynaptic scaling maintains a constant total
conductance. Only a proportion of the inputs receive a
given stimulation protocol. The membrane time constant is
10 ms and the firing threshold is 10 mV above rest.

The model consists of a population of 1000 neurons, and
the synapses that receive inputs are stimulated either in a
Poisson manner or with periodic spiking, at different input
frequencies depending on the simulation condition.
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To see whether or not multiplicative noise (i.e. intrinsic
mechanisms) is enough to generate a lognormal distribution,
a uniform distribution was fed into the model as an initial
distribution and the synaptic weights were measured
throughout the simulation. The model was then used to repli-
cate the three experimental datasets. First, the HFS that
induced LTP in the stimulated spines was recreated with
the model, using periodic spiking as input at a 200 Hz fre-
quency. This was compared with a control simulation that
received 10 Hz Poisson input. Finally, a silent simulation
without inputs was considered. A lognormal distribution
was fitted to the synaptic weight data in the same way as
previously described. Additionally, the logarithm was taken
of the data and a Gaussian distribution was fitted to the
transformed data.

4.6. Simulation-based inference of spine-size data
Simulation-based inference with sequential neural posterior
estimation [44,79] was used to infer the modelling parameters
that could have produced the experimentally observed spine-
size distributions. The model was run with the three input
protocols described above and the lognormal parameters
mu and sigma were fitted to the resultant spine distributions.
This gave a set of six summary features that the inference
could be fitted to. To convert from simulated synaptic
weights to measured spine sizes, the simulated results were
normalized to have the same mean as the experimental
data in each case. Simulations were carried out sequentially
in five rounds of 3200 starting with a uniform prior. The
posterior was sampled 10 000 times to produce the marginal
distributions shown in figure 8.
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