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Neurodegenerative diseases of the brain pose a major and increasing global
health challenge, with only limited progress made in developing effective
therapies over the last decade. Interdisciplinary research is improving under-
standing of these diseases and this article reviews such approaches, with
particular emphasis on tools and techniques drawn from physics, chemistry,
artificial intelligence and psychology.
1. Introduction: the continuing challenge of neurodegenerative
disease

Neurodegenerative diseases are conditions that lead to progressive injury of
nerve cells, predominantly in the brain, and include Alzheimer’s disease
(AD), Parkinson’s disease, dementia with Lewy bodies, vascular dementia,
Huntington’s disease, frontotemporal dementia, progressive supranuclear
palsy, motor neurone disease and Creutzfeldt-Jakob disease. They are incurable
and difficult to treat. Together, the dementias are responsible for the greatest
societal and economic burden of all diseases in developed countries.

There are 850 000 people in the UK living with dementia, at a cost of over
£26 billion per year. This is predicted to double by 2040. The scale and urgency
of the problem has been recognized as a government national priority in the
‘Dementia Moonshot’ [1] and the 2021 Life Sciences Vision [2]. Despite this
commitment to improving our understanding and treatment of neurodegenera-
tive diseases of the brain, public funds for research in the area are limited and
neurodegenerative diseases remain a major challenge for medical science.
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Over the last 20 years, billions of pounds have been invested
by the private sector in clinical trials of possible treatments
for dementia but it remains challenging to demonstrate
clinically relevant disease modification; one recent drug,
Aducanumab was approved by the FDA but rejected by
the European Medicines Agency, whilst, more recently,
Lecanemab has demonstrated some benefit.

There are many causes and subtypes of late life dementia.
The four most common are Alzheimer’s disease, vascular
dementia, frontotemporal dementia and dementia with Lewy
bodies. This diversity is increased with clinical and pathological
heterogeneity within each disease, and complex interactions
between the genetic and environmental determinants. In
addition, the biochemical changes responsible for neurodegen-
erative disease may start in the brain decades before the
clinical expression of pathology which is observed as a decline
in thinking and memory. Understanding when this biochemical
stage begins and what triggers it, and then distinguishing those
primary causes from the cascade of secondary consequences in
the brain, is an important and difficult challenge to meet.

We identify several major scientific questions in dementia
research which need addressing and require interdisciplinary
approaches.

First, there is a need to discriminate between different forms
of dementia on the basis of underlying molecular pathology
and to do this early on in the disease course, so we
can ascertain a mechanistic distinction in their initial stages.
Second, following on from that, there is a fundamental gap in
knowledge about how brain circuits fail in neurodegenerative
disease and the different processes that lead to the expression
of symptoms. Third, there is a need to identify what cells are
involved at what points in disease progression and to character-
ize the earliest stages in pathogenesis. Fourth, it is important to
determine the rate-limiting steps in the spread and progression
of disease, whether within or between different brain regions.
There is also the challenge of developing diagnostic approaches
to discriminate between the types and subtypes of neurodegen-
erative disease, thereby ensuring that the therapeutic
interventions selected for each patient are themost appropriate.
Practical and experimental challenges arise because these ques-
tions cross multiple spatial scales, from molecular through to
whole-body interactions. How can we link treatable processes
occurring at the scale of chemical signals or misfolded proteins
that pass between different cells, through immune and meta-
bolic interactions between brain and peripheral organs, to
changes in complex human behaviours? How can we link mol-
ecular and vesicular processes at synaptic connections to
macroscopic properties of whole-brain networks in promoting
or responding to pathology?

Finally, there is a clear need for intermediate phenotypes,
which are discoverable with advanced technologies, to be
linked to clinically meaningful outcomes. There are three related
challenges for developing intermediate phenotypes as clinically
useful measures: the first is to establish an association between
the intermediate and the clinical phenotype in the context of
use. For example, to use brain hippocampal volume as an inter-
mediate phenotype for AD-mediated neurodegeneration, a
relation between hippocampal atrophy and current or future
AD needed to be established [3]. The specificity of the relation-
ship can be explored; for example, while mild-moderate brain
atrophy is associated with AD, reductions in total brain
volume also are associated with other neurodegenerative dis-
eases such as vascular dementia [4] and multiple sclerosis [5].
The specificity of the association can provide information on
the potential diagnostic utility of the measure.

The second challenge is to test for a causal (necessary) role
of the intermediate phenotype in determining the clinical
phenotype in the context of use. To extend the previous
example, this would involve testing whether the development
of AD in people at risk was necessarily associated with hippo-
campal brain volume loss [6] and, ideally, that, in the context of
use, hippocampal brain volume loss always was associated
with AD. This often may involve development of an under-
standing of the mechanistic relationship between intermediate
and clinical phenotypes, e.g. between brain volume loss and
neurodegeneration with AD in this case. In practice, this
may involve both defining the relationship under ideal circum-
stances and sources of deviation from these ideal circumstances,
e.g. with fluid shifts in the body [7].

A third and critical challenge is to establish a robust oper-
ational definition of the intermediate phenotype. In the case
of brain volume measurements based on magnetic resonance
imaging (MRI) scanning, this would be the demonstration
that brain volume measurements are highly reproducible
between scanners, operators and protocols for measurement
[8]. In practice, despite the mechanistic clarity of brain
volume loss as an intermediate phenotype for neurodegen-
eration, this, as well as specificity, has been difficult to
establish: the measures depend on all of the factors identified.
Validation of the robustness of measures is much more
advanced for soluble biomarker measurements, by contrast.

The scale and nature of these challenges require a deeply
interdisciplinary approach to coordinate and collate data and
share mechanistic insights. Interdisciplinary research can
bring tools, analytical strategies and viewpoints from
different areas to potentially reframe the problem of neurode-
generative disease of the brain and offer novel solutions. For
example, applying tools and techniques from statistical and
soft matter physics can provide a quantitative framework to
understand the underlying basic science of neurodegenerative
disease and capture themultiple scales at which it works. Simi-
larly, insights frommachine learning, artificial intelligence (AI)
and computational science can enable the development of scal-
able, practical, unobtrusive tools to stratify patients, inform
clinical trials and ultimately personalize medicine.

This reviewaims to survey some of themost innovative and
potentially impactful pieces of interdisciplinary researchwhich
draw on approaches and techniques involving the physical
sciences and mathematics. It is broad in scope and based on
material collated from a Rosetrees interdisciplinary workshop
on neurodegenerative disease of the brain (see Acknowledge-
ments). It starts by considering the clinical perspective in
order to ensure the review focuses on questions that are impor-
tant to patients and healthcare professionals. The paper then
reviews novel measurements (including biofluid and digital
biomarkers) and imaging before considering how to integrate
and interpret these different measurements with tools from
AI and machine learning, and other physics-based models.

2. Understanding disease mechanisms to identify
better phenotypes and biomarkers

2.1. Cohort studies
Meeting the challenge of measuring—with the aim of modi-
fying—the early course of neurodegenerative diseases is
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central to progress in the field. The analysis of large longitudi-
nal cohort studies (table 1 for examples) may provide insight
into the course of dementia and help to identify early signs
of disease that are vital to understanding what happens in
the period in the years before the observable clinical syndrome
manifests. This in turn can inform the design of clinical trials to
ensure interventions are tested in the right population, at the
right time and with the right measures of success.

Currently, regulators define success by clinical benefit and
measures of cognitive ability. However, in the early stages of dis-
ease these may not be affected to the extent where they can be
observed and measured. This silent period may only be silent
because the tools currently in use are not sensitive enough to
pick up changes in the brain and neuropsychological function.

It is important to note that the sensitivity and interpret-
ation of a test depends in large part on the neurocognitive
systems it requires, and the functional-anatomical specificity
of a disease. The four-mountains task, for example (see
below), relies heavily on hippocampal-mediated navigational
representations. This makes it especially sensitive to Alzhei-
mer’s disease and its early pathology in medial temporal
lobe. The test is not very sensitive to frontotemporal demen-
tias (including TDP43 pathologies), except in severe disease
where the behavioural disorder and lack of cognitive control
interferes with the performance of the task as a whole (irre-
spective of its memory demands). Other pathologies that
affect the medial temporal lobe are liable to affect perform-
ance on the four-mountains task, for example stroke of
encephalitis. In that respect, the task is not specific to the mol-
ecular pathology of AD, rather the functional anatomy of the
task’s critical cognitive processes. Other bedside tests are
preferentially sensitive to frontotemporal dementia: for
example, the frontal assessment battery (FAB), the INECO
screen, or Hayling test [9]. These tests require inhibition of
a standard response (and sometimes the substitution by a
novel answer) and depend on frontal cortical systems,
which are severely impaired by frontotemporal dementia
and related disorders like progressive supra-nuclear palsy.

Typically, cognitive tests lose their specificity in late stages
of disease, as ‘non-specific’ deficits increasingly interfere with
the performance of multiple tasks. For example, advanced
dementia may affect memory, attention, language, perception
and motor control, impairing performance of any task with
visual stimuli and written or spoken answers over a period
of several minutes. As such, neurocognitive profiles may con-
verge with time [10], even if the molecular basis of disease
is unchanged.

2.2. Alzheimer’s disease: clinical expression versus
neuropathology

When Alzheimer first described the disease that later took his
name, he defined it with two key post-mortem pathologies:
the amyloid plaque and the neurofibrillary tangle. In 1985,
it was shown that plaques mainly consist of 42 amino acid-
long amyloid beta [11]. Shortly thereafter, the main constitu-
ent of tangles was identified as hyper-phosphorylated tau
protein [12]. At the time, these pathologies could not be
detected in vivo and studies were based primarily on a clinical
phenotype which relied on measures of memory and
cognition.

It is now possible to use imaging and biofluid-based bio-
markers to observe the developing pathology of Alzheimer’s
(figure 1). Research has identified changes in the proteins
amyloid and tau as defining features of Alzheimer’s disease
in the brain, and these can be measured using scans and cer-
ebrospinal fluid (CSF) samples, and more recently blood
samples (see §3.1).

These measurements are being collected in several longi-
tudinal trials (table 1) and are increasingly used to support
the clinical diagnosis of Alzheimer’s disease. However, bio-
logical measures are still not considered the most relevant
outcomes in late-phase clinical trials, with the goal to deliver
clinically effective treatment, and none of them has been vali-
dated as surrogate biomarkers for clinical efficacy. This
creates a dilemma for disease-modifying drugs that aim to
prevent dementia by application in the pre-symptomatic
phase, because clinical endpoints are the norm for gaining
regulatory approval. Precise assessment of relationships
between pathology and clinical efficacy is also challenging
because cognitive outcomes may not map directly and con-
sistently to biological measures of disease. For Alzheimer’s
disease and other dementias, there is a need to develop
meaningful primary outcomes that reflect the pre-clinical bio-
logical processes, especially if there is an intention for clinical
trials to be conducted with people early in disease pro-
gression (including the very long pre-symptomatic or pre-
diagnostic stages of disease [13]. In the absence of outcomes
which reflect pre-clinical processes, such clinical trials would
have to be run for many years—perhaps decades—for clinical
efficacy to be assessed.

2.3. New cognitive phenotypes linked to hippocampal
function

Linking brain to behaviour in early stages of Alzheimer’s dis-
ease requires more sensitive and reliable measures of both the
neural systems at fault and the cognitive deficit. A candidate
for a non-invasive biologically anchored measure of cognition
has been informed by imaging innovations with 3 T and 7 T
MRI that can quantify the hippocampal subfields (molecular
layers within the hippocampus) that subserve particular neu-
ropsychological functions, providing insight into the role of
hippocampal place cells in spatial memory [14]. These can
be associated with more sensitive cognitive tests such as the
four mountains test [15], which could provide a phenotypic
assay related to hippocampal degeneration.

Performance on the four mountains test correlates with the
CAIDE dementia risk score (cardiovascular risk factors, ageing
and incidence of dementia) in people around 50 years old with
a genetic risk for dementia and early symptoms [16]. There is a
strong correlation between ApoEe4 genotype and atrophy at
the molecular layer of the hippocampus [17]. As hippocampal
subfields have been shown to be an early area for accumu-
lation of neurofibrillary tangles, this cognitive measure could
potentially represent underlying biological processes in early
disease, indicating its potential as a scalable cognitive measure
that also measures changes in the hippocampal subfields.
Advances in virtual reality may enable cognitive tests with
increased sensitivity to early changes in hippocampus-
dependent spatial memory [18].

As a disease like Alzheimer’s dementia progresses, it is
not only severity that increases, but also the range (extent)
of neurocognitive systems involved. The deficits go beyond
spatial associative learning, to include non-spatial associative
learning and non-spatial perception. For example, following
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navigational deficits, pathology increasingly affects regions of
the brain involved in language or non-spatial visual object
processing, calling for tests of language and mnemonic discrimi-
nation [19]. Such phenotypic progression also occurs following
non-amnestic presentations of Alzheimer’s disease [20].

Interdisciplinary research is crucial to developing these
biologically underpinned phenotypes through contributions
to the advancement of structural and functional imaging,
mass spectrometry imaging of intracellular processes and
quantification of subtle neurocognitive states.

2.4. Trans-diagnostic approach to increase clinical
phenotype precision

Advances in identifying the molecular, genetic and cellular
level of pathology in neurodegenerative disease of the brain
are providing important insights, but these biological pro-
cesses still remain associated with a myriad of syndromes
(summarized in figure 1). Genetic pleiotropy means that
even a single mutation, leading to a single molecular root
cause of disease, may lead to widely divergent clinical dis-
orders [21]. While, in the reverse direction, the more
common presentations of neurodegenerative disease can
have very different molecular causes. For example, tau
versus TDP-43-associated behavioural variant frontotemporal
dementia can be clinically indistinguishable [22].

To get precision at the level of clinical phenotype and
remain strongly connected with what is happening for the
patient, it has been proposed that it is necessary to embrace
this variance and ask what this variability in relationships
between pathology and clinical expression indicates about
the cascade of pathogenic processes underlying neurodegen-
erative disease. This requires an approach that is not
governed by the diagnostic labelling (nosology) of different
forms of disease in isolation, but instead uses multi-dimen-
sional labels based on multi-variate analysis of data
concerning multiple dimensions (including biochemical,
pathological and clinical) of the actual disorders.

Trans-diagnostic approaches set aside traditional diagnos-
tic boundaries and focus on symptoms and mechanisms that
are present across multiple disorders. For example, this
approach is taken in the PIPPIN study (table 1) which looks
at the relationship between the presence of one symptom
and the presence of other symptoms across participants.
There is clustering of signs and symptoms, into phenotypic
dimensions, that are manifested with continuity rather than cat-
egorical differences across the population of patients. This
creates a high dimensional space, on which vertices represent
the classical syndromes, whereas patients can exist anywhere
within the space [10] (figure 2). The dimensions, rather than
the simple clinical diagnostic labels, can then be used to exam-
ine the brain structural or physiological basis of the disorders.

2.5. Better phenotypes for impulsivity: GABA and beta-
desynchronization

This trans-diagnostic approach can yield insight into the bio-
logical mechanisms that influence important behaviours that
traverse multiple diagnostic groups, and point to potential tar-
gets to treat behaviours. For example, the behaviours of apathy
and impulsivity in frontotemporal dementia are features of
diverse diagnostic groups and are central to the patient (and
carer) experience. They are a target for improving quality of

https://www.ppmi-info.org/
https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=TRACK%20HD
https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=TRACK%20HD
https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=TRACK%20HD


molecular pathology:

3R tauopathy

4R tauopathy

3/4 tauopathy plus amyloid
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frontotemporal dementia
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Parkinsonism (atypical)
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corticobasal syndrome
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Figure 1. Molecular versus phenotypic precision. The classical presentations of neurodegenerative disease led to identification of their underlying molecular path-
ology. However, those pathologies in turn have been associated with diverse clinical phenotypes. Although some clinico-pathological correlations are strong, none are
wholly exclusive. Even where autosomal dominant genetic disease gives molecular precision, pleiotropy leads to diverse clinical manifestations of the disease.
(Figure prepared by Rowe.)
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Figure 2. The left panel illustrates a classical approach to diagnosis, with each diagnostic group being distinct from the others, represented by a distinct colour.
However, detailed characterization of clinical cohorts ( for example, [10]) has shown that intermediate phenotypes are common, and syndromes are not discrete. The
right panel illustrates an alternative trans-diagnostic approach, with phenotypic precision along principal dimensions of disease expression. Classical phenotypes exist,
but an individual my lie at any point in a continuous ‘colour space’ of clinical phenotypes, and move across the ‘colour map’ as their disease progresses. The
anatomical, neurochemical or genetic determinants of the dimensions of disease can be identified, and symptomatic treatments applied according to presence
of a clinical feature rather than diagnostic label. Adapted with kind permission from figure published in Rowe [21].
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life, survival and health economic impact. By building pre-
cision into a model in terms of intermediate layers of causal
mechanisms from biology to expression of this important
phenotype it is possible to identify clinical trials’ tools that
are closer to the effect (behaviour) than the cause (biology).

Tools developed from interdisciplinary research are
highly instrumental in this search for intermediary pheno-
types. For example, the development of ultra-high field
MRI at 7 T has increased sensitivity sufficiently to detect
the reduced levels of GABA (the principal inhibitory neuro-
transmitter) in patients [23] and shown that levels of
cortical GABA correlate with the severity of syndromes
associated with frontotemporal lobe degeneration, particu-
larly their impulsivity [10].

Magnetoencephalography (MEG) is a safe and well-toler-
ated means to study neurophysiology in patients with
dementia, including Alzheimer’s disease [24], frontotemporal
dementia (FTD) and progressive supranuclear palsy (PSP).
This non-invasive neurophysiological method has shown
good agreement with intracranial recordings, making it
suited for experimental medicine [25]. Advances in MEG
have enabled the understanding of individual differences in
beta-desynchronization which are important determinants
of cognition and are impaired in frontal parts of the brain
with FTD and PSP. Such MEG can detect the restoration of
function through the use of medication that aims to increase
GABA-ergic transmission [26]
2.6. Appling physics-inspired local cortical function
models to predict efficacy of interventions in
dementia

Detailed biophysically informed models of cognitive physi-
ology are providing a way to interrogate the mechanisms
behind the effects of new therapeutics for dementia. In
doing so, they enable the effectiveness of a drug to be pre-
dicted, and which patients may benefit most.

The interdisciplinary approach uses detailed models of
local cortical function across different cortical layers
[16,27,28], known as canonical microcircuits. These enable
construction of a computational representation of neuronal
dynamics in brain areas of interest and a link between these
local microcircuits and brain-wide networks. The approach
has many forms of validation, including the accurate gener-
ation of MEG and electroencephalogram (EEG)
observations and individual differences in neurochemistry
[26,29].
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The modelled strength of frontal-temporal connectivity cor-
relates with clinical severity of dementia and confirms that the
drug tiagabine, as expected, increases the efficacy of local inhi-
bition. Use of MEG and application of local cortical modelling
can bring precision to an intermediary level that is close to
the clinical phenotype, potentially allowing predictions of
how possible interventions work and for which patients. Impor-
tantly, this approach provides phenotypic and pharmacological
specificity that applies across multiple diagnostic groups.

2.7. Imaging phenotype of locus coeruleus predicts
response to drugs

Many common dementias lead to degeneration of the locus
coeruleus which is the principal source of the brain’s nor-
adrenaline—a modulatory neurotransmitter that influences
arousal, attention, inhibition, memory and other cognitive
functions, in part by regulation of signal-to-noise in neural
networks [30].

Several drugs can be used to modulate the noradrenergic
system—for example, to restore behavioural control in impul-
sive brain disorders. There is a highly individualized
response to treatment and it is important to be able to predict
who will respond favourably. New neuromelanin-sensitive
sequences for ultrahigh field MRI enables the detailed spatial
structure of the locus coeruleus to be studied in vivo [31]. The
integrity of this small brainstem nucleus—its contrast-to-
noise—is greatly reduced in patients with several neurode-
generative diseases including Parkinson’s disease and PSP
[32]. Using ultra-high field MRI, it is possible to predict
how a patient will respond to noradrenergic drugs according
to the locus coeruleus contrast-to-noise ratio [33].

This is another example of how advances in technology
are allowing increased precision in characterizing phenotypes
and, through the modelling of intermediate phenotypes with
insights from physics, it is possible to make a clearer link
from root causes to symptoms and novel treatments.

3. Improving accuracy, accessibility and
continuity of biomarkers

3.1. Current state of fluid biomarkers for
neurodegenerative disease

Biomarkers had been used to classify patients with Alzhei-
mer’s disease for over a decade when it was proposed as a
means to standardize definition and differentiate true Alzhei-
mer’s disease from neurocognitive disorders that do not
display Alzheimer’s disease pathology. This became known
as the A/T/N system (table 2). However, there are still dis-
cussions as to what exactly the different biomarkers
represent. For example, it is generally understood that tau
is not a direct biomarker for neurofibrillary tangles but a bio-
marker for the neural response to amyloid [35]. The state of
biomarkers for neurodegenerative disease of the brain is con-
tinually progressing and interdisciplinary research is playing
an important role.

Traditionally, fluid biomarkers for Alzheimer’s have been
measured in cerebrospinal fluid (CSF), but technological pro-
gress has resulted in improved analytical sensitivity, making
it possible to measure biomarkers in standard blood samples
(figure 3), which is much more amenable to patients and
research participants and therefore enables more powerful
data. There are continuing challenges to blood biomarkers
in that the concentrations of the relevant CNS amyloid
signal are lower in blood than in CSF as there is also a back-
drop of non-relevant amyloid derived from blood platelets,
hepatocytes and muscle. New techniques are helping
overcome these.

These techniques include immuno-precipitation, which
uses antibodies to extract amyloid from the blood combined
with magnetic beads to measure the 40/42 ratio by mass
spectrometry (table 2). Measurement of P-tau in blood has
been enabled by modifying commercially available single
molecular array (Simoa) assays using antibodies previously
employed in enzyme-linked immunosorbent assays for CSF
testing, as well as through the generation of novel immuno-
assays, and mass spectrometry-based methods are showing
encouraging results in comparison with positron emission
tomography (PET) measurements in applications with a
range of different patient groups. For example measurements
of P-tau in the blood can identify those with familial Alzhei-
mer’s disease, those with pre-clinical amyloid, those
individuals with Down’s syndrome who start to develop
Alzheimer’s disease, and distinguish between Alzheimer’s
and other neurodegenerative diseases such as frontotemporal
dementia and Parkinsonian disorders [36–38].

There is also progress on neuro-filament light as a blood-
based biomarker for neurodegeneration, which can be
measured using Simoa assays and mass spectrometry. This
allows identification of neurodegenerative diseases in gen-
eral, including early onset genetic forms of Alzheimer’s [39]
and Down’s syndrome dementia [40]. With the increasingly
recognized value of longitudinal, population-based cohort
studies in studying disease progression over time, these
blood-based biomarkers offer a valuable way to integrate
fluid biomarkers into data collection initiatives such as
those of the UK Biobank.

3.2. Continuing role of interdisciplinary research in
development of fluid biomarkers

On the horizon there is a need to continue work on other bio-
markers that may reveal more insight into pathology, e.g. CSF
biomarkers for lyosomal dysfunction, blood–brain barrier
dysfunction, astrocyte activation, microglial activation and
alpha-synuclein pathology [41]. Further work is also needed
on the elusive TDP-43 pathology that underlies dementia
and cognitive decline but for which imaging or fluid bio-
markers have not been developed. Recent work shows
promise in the early detection of seeds of misfolded TDP-
43 [42].

Interdisciplinary research is key to develop and improve
techniques to measure and assess fluid biomarkers, and to
establish their use in clinical work through comparing
them with MRI, PET, genetics and clinical phenotypes.
Work on the development of clinical chemistry tests on
fully automated instruments could produce results in Alz-
heimer’s disease biomarkers in less than 20 min that are
both of high precision and amenable to high throughput
[43]. This bodes well for full implementation of these bio-
markers in clinical laboratory practice with uniform
reference limits that are used globally.

In many European countries, CSF biomarkers are already
in use in clinical laboratory practice in accordance with
country-specific regulations. Similar work is now happening
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Figure 3. Timeline for blood biomarker developments during the last decade (figure reproduced from from [34] by kind permission of the publishers under Creative
Commons licence https://creativecommons.org/licenses/by/4.0/). Abbreviations: Simoa, single molecule array; Aβ42, the 42 amino acid form of amyloid β; T-tau,
total-tau; IP-LC/MS, immunoprecipitation liquid chromatography-mass spectrometry; IP-MALDI, immunoprecipitation matrix-assisted laser desorption/ionization;
Aβ40, the 40 amino acid form of amyloid β; NfL, neurofilament light; P-tau181, tau phosphorylated at amino acid 181; P-tau217, tau phosphorylated at
amino acid 217; ECL, electrochemiluminescence [34].

Table 2. General description of the most important measurement technologies for Alzheimer’s disease biofluid-based biomarkers [34]. The table includes
technologies that may be useful for both blood- and CSF-based biomarkers but some of the biomarkers are present at very low concentrations in blood, which
may require ultrasensitive assays (more sensitive than ELISA).

technology explanation

sandwich enzyme-linked immunosorbent

assay (ELISA)

The target analyte is captured between two antibodies (capture and detection). The capture antibody

is immobilized onto a surface (often the plastic surface of a well, e.g. in a 96-well plate). The

detection antibody is labelled with an enzyme that produces a measurable signal (fluorescence or

colour) by converting a substrate to a product. The lower limit of quantification of an ELISA

depends on the antibodies and the target analyte but is often in the nano- to pico-molar range.

immunoassay with electrochemiluminescence

detection (ECL)

A variant of ELISA but instead of an enzyme, the detection antibody is labelled with a molecule that

directly produces luminescence during an electrochemical reaction. This detection principle is often

a little bit more sensitive than ELISA.

single molecule array (Simoa) This is a classical sandwich ELISA, but the capture antibody is conjugated to magnetic beads instead

of the bottom of a 96-well plate, and the sandwich complexes (bead, capture antibody, target

analyte and enzyme-labelled detection antibody) are pulled down in microwells (one bead per

well), where the detection reaction is allowed to occur. This compartmentalized detection reaction

in a very small volume allows for the detection of the biomarker at the single molecule level. In

biofluids, the Simoa assays can be 100 to 1000 times as sensitive as a regular ELISA (sub-

femtomolar analytical sensitivity).
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for the new blood biomarkers. For example, plasma neurofila-
ment light chain (NfL) is available as a test in clinical
laboratory practice in Sweden, The Netherlands and France,
and plasma Aβ42/Aβ40 ratio is clinically available from a
lab in St. Louis, MO. If this is proving successful,
interdisciplinary research will be necessary to establish the
requirement for biomarkers to translate more widely into the
clinic, to combine their measurement with other data, and to
develop appropriate use criteria and interpretation guidelines
(see §4.3)

https://creativecommons.org/licenses/by/4.0/


Table 3. Models to implement and use digital data.

type description examples

volunteer Registry large scale and consent to be re-contacted Join Dementia Research (https://joindementiaresearch.

nihr.ac.uk)

stratified recruitment

registry

explicit consent for re-contact on the basis of dementia risk in

cognitively healthy volunteers

Dementias Platform UK Clinical Studies and Great

Minds Register [50]

trial ready cohort explicit consent to re-contact and at-risk groups with extensive

phenotyping

EPAD (see table 1)
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3.3. Digital technologies for continual and widespread
pre-clinical detection

The field of digital health has seen significant progress both
in terms of its technological development and its implemen-
tation in healthcare settings. It has a particular value for fields
like neurodegenerative disease where researchers are aiming
to capture data before the clinical syndrome is observable and
in large samples. In this context, digital technologies offer a
scalable, practical and unobtrusive solution to monitoring
and enabling better reach of research with implications for
democratization and inclusivity.

Research is showing that the rapid escalation in tau protein
and decline in amyloid indicates when individuals enter the
more aggressive phase of Alzheimer’s disease [44] and pro-
vides a potential opportunity for medical treatments to have
the most benefit. However, a major challenge is in trying to
identify this phase before it happens in pre-clinical cognitively
healthy people where the amyloid level is often not detectable.
Digital technologies allow remote, continuous and affordable
monitoring in a participant’s own environment, potentially
detecting small changes in cognition before clinical symptoms
are identified; this may be particularly valuable in people
known to be at high risk of dementia [45].

There are two main approaches to capturing data: active
and passive cognitive monitoring. In active monitoring, cog-
nitive tests are completed using remote devices, which
endow particular benefits in terms of assessment at multiple
times. Implemented in the PREVENT study (table 1), analysis
of active cognitive monitoring has demonstrated the ability to
detect accelerated memory extinction as an early indicator of
cognitive decline risk [46]. Assessment of engagement with
the app showed a promising geographical spread across the
UK. Tests are also using virtual reality to enable people to
hide and find a virtual object, providing insightful data on
the likelihood of later cognitive decline [47].
3.4. Harnessing digital developments in active and
passive cognitive monitoring

Passive cognitive monitoring can include speech monitoring
and the use of modified browsers to assess the speed of
typing and reading or to measure performance in interactions
with smartphones such as finding names or spelling or out-
door navigation using the global positioning system (GPS).
There are also developments in the use of big data approaches
on people’s Internet searches and social media engagement
related to neurodegenerative disease. Wearable devices and
Bluetooth beacons are being used to record signals to triangu-
late and monitor movement to assess navigation and speed as
measures of spatial performance. Wrist-worn actigraphy is a
relatively mature method that can be used to evaluate levels
of physical activity and sleep quality, both consistently
linkedwith dementia risk [48,49].Work is ongoing to optimize
wearable technology to extract reliable variables.

The field of active cognitive monitoring is also developing
quickly and witnessing more collaborations between soft-
ware developers and academia allowing apps to be rooted
in good science for more meaningful data for clinical practice.
There are many interdisciplinary research opportunities in
this area, particularly using approaches from physics, to
work on the densely sampled time series that are emerging
from these projects and the application of machine learning
to reduce data complexity, which is typically high—for
example, virtual reality data approaches can yield 700
individual variables (table 3).

Looking to the future, there is a need for data linkage work
especially when using clinical data alongside better data
mining techniques to extract insight from digital interaction
data and make it accessible and valuable (see §4). Further
work is also needed on risk stratification algorithms to include
these variables into some form of prediction model that can
also include data from fluid biomarkers and genotypes, and
potentially polygenic risk scores. All thesewill require interdis-
ciplinary working and potential insight from statistical physics
and AI. Early examples of multi-modal, cross-cohort data inte-
gration resources dedicated to accelerating dementia research
are Dementias Platform UK (https://www.dementiasplat-
form.uk/) [51] and the Alzheimer’s Disease Workbench
(https://www.alzheimersdata.org/ad-workbench).

It should be noted that the advances in the capability of
digital technology to capture data relevant to Alzheimer’s dis-
ease risk needs to be matched by analytical methods that can
limit resource-intensive investigations and treatments to those
that need them. Machine learning methods can be used for
this purpose and in a recent analysis on routinely collected
cohort data, this was shown to outperform logistic regression
in the identification of both Alzheimer’s and non-Alzheimer’s
disease pathology [52]. This approach has particular merit in
low socio-economic settings and is likely to be an important
element of the broader drive to address the challenge of achiev-
ing equity in the diagnosis and treatment of neurodegenerative
disease of the brain.
4. Imaging for neurodegenerative disease and
role of interdisciplinary research

There are multiple types of measurements derived from ima-
ging that can inform research on brain structure, brain

https://www.dementiasplatform.uk/
https://www.dementiasplatform.uk/
https://www.alzheimersdata.org/ad-workbench
https://joindementiaresearch.nihr.ac.uk
https://joindementiaresearch.nihr.ac.uk
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function and brain chemistry. Methods include functional
magnetic resonance imaging (MRI) and positron emission
tomography (PET) alongside the more neurophysiological
techniques from electroencephalogram (EEG) and magne-
toencephalography (MEG) that can give temporally precise
measurements of brain activity. There are numerous review
articles on the development and use of imaging biomarkers
in neurodegenerative disease of the brain—see, for example,
[53]—and this review is not intended to provide a compre-
hensive overview of all such imaging techniques.

Each method yields a variety of different quantitative
metrics reflecting different aspects of brain anatomy, chemistry
and function. These have been powerful in research settings
and generated important insight into disease progression, out-
comes for clinical trials (see §1) and ways to predict and
stratify patients (see §5). However, similar to fluid biomarkers,
they may have more potential in clinical applications than is
currently in place and interdisciplinary research could be key
to enabling this to happen. Furthermore, there is an active
MRI physics community continually developing novel
measurements sensitive to new aspects of physiology, along
with chemists and biologists developing new PET tracers.

4.1. Challenges and opportunities of using imaging
methods in context of neurodegenerative disease

Imaging can provide valuable insight into processes of disease
progression, particularly in combination with biophysical
models, such as those that describe the propagation of activity
in brain networks and provide a quantitative framework to
understand measurements (see §6.1). This mechanistic insight
can inform the design of interventions to target the disease
process. Imaging biomarkers may also provide important inter-
mediate outcome measures in clinical trials that are closer to
the underlying pathological processes than cognitive measures
(see §1.1), potentially providing earlier and more sensitive mar-
kers of the efficacy of an intervention. If intermediate outcomes
become accepted as primary outcomes, then this may allow
trials to be quicker and smaller, enabling more rapid progress.

Imaging also plays a role in prediction and stratification to
inform decisions about patients—for example, stratifying patients
into subgroups that could benefit the most from an intervention
and predicting those who will go on to develop chronic demen-
tia. Imaging combined with machine learning is now being used
to perform these types of classification (see §5).

The value of imaging in prediction has been known for
some time. For example, it has been shown that pooling
multi-modal imaging data with CSF measures has greater
predictive power in assessing whether an individual attend-
ing a memory clinic would be diagnosed with Alzheimer’s
two years later than using the CSF measures alone [54]. Look-
ing to the future, the use of data from studies such as the
European Prevention of Alzheimer’s Disease (EPAD)
(table 1) can improve the understanding of what combi-
nations of measures can accurately predict the future course
of disease. Key to this is the ability to quantify the success
of these predictors for the asymptomatic individual patient
and studying how to combine different measures optimally.

4.2. Scanning data from at-risk groups
Scanning data from at-risk groups is valuable in the identifi-
cation of functional differences, for example fMRI research
has shown those who carry the APOE ϵ4 allele but who are
asymptomatic already show observable differences in brain
activity in the hippocampus [55] (see §2.3).

The UK Biobank has provided a step-change for this type
of research through its inclusion of brain, body and heart MRI
scanning in its data collection for 100 000 individuals, which
allows eventual retrospective insight from the data of those
participants who go on to develop neurodegenerative dis-
ease. By analysing scanning data collected before disease
onset it is possible to identify early markers. Even from the
data of the first 1000 UK Biobank participants (1% of the pro-
jected cohort size) researchers have developed a powerful
protocol for collecting multi-modal measures, which can be
acquired rapidly in 34 min, demonstrating the statistical
benefits conferred by large numbers [56].

The objective is to take the rich multi-modal brain ima-
ging dataset in combination with information on lifestyle,
genetics and environment, and then use AI and machine
learning to identify which combination of these measures
can predict long-term health outcomes (see §5).

4.3. Overcoming barriers to translation from research to
clinical practice

Researchers and clinicians currently work with brain scans in
very different ways. Researchers consider scans as collections
of data fed in a quantitative image ‘matrix’ while clinicians
typically view scans as pictures illustrating macroscopic fea-
tures and signs to inform a diagnosis.

Work is being done to develop routine image analysis pipe-
lines that can produce imaging-derived phenotypes where the
numbers extracted from the brain scans also reflect clinically
meaningful entities. For example, the work that has been
done on hippocampal subfields (see §1.2) where quantitative
readouts of healthcare-basedMRI scans are providing meaning-
ful insight into a particular brain feature and its clinical
relevance. These phenotypes could potentially be generated at
the time of scanning but would then need to be compared
with relevant population norms to be translated into clinically
meaningful information. Work is being done with UK Biobank
data on solutions to derive population norms that resemble
growth curves (FD3) so an individual’s brain scan measures
can be considered in relation to those of the population.

To accelerate translation, closer integration is needed
between clinical services and the research community.
‘Brain Health Clinics’ are increasingly common—one
example of this is in Oxford (https://oxfordhealthbrc.nihr.
ac.uk/our-work/brain-health-centre/), where patients are
referred for assessment, including a brain scan using
research-level scans that have been optimized to provide
standard clinical information and harmonized to UK Biobank
data to generate population norms.

Interdisciplinary research has an important role to play in
overcoming translational barriers by providing techniques and
approaches for standardization and harmonization that can
enable the development for robust, accurate and clinically feas-
ible methods for quantification of image-driven phenotypes

4.4. Scanning for microvasculature dysfunction as a
valuable avenue into neurodegenerative disease
research

Clinical work around neurodegenerative research is often
informed by the details of vascular lesions in the brain,

https://oxfordhealthbrc.nihr.ac.uk/our-work/brain-health-centre/
https://oxfordhealthbrc.nihr.ac.uk/our-work/brain-health-centre/


Table 4. Measures of microvascular dysfunction.

brain feature measurement reference

blood–brain barrier

dysfunction

MRI of water exchange rate across the blood-brain barrier; dynamic contrast-enhanced MRI of

gadolinium-based contrast agent leakage—improvements to sensitivity.

[61–63]

cerebral blood flow arterial spin labelling MRI to measure cerebral blood flow and arterial transit time (time it takes for

blood to reach the capillary bed)

[64,65]

tortuosity (or twistiness)

of vessels

capillary segment length using diffusion-weighted MRI—validation against micro CT [66]

brain oxygenation quantitative susceptibility mapping MRI to estimate concentration of deoxyhaemoglobin in the veins

and associated oxygen extraction fraction

[67–69]
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such as infarcts and white matter hyper-intensities. Advances

in MRI technology are now enabling better and more detailed
measurements of neurophysiology of the normal-appearing
tissue that can help capture dysfunction of the small blood
vessels in the brain to better characterize neurodegenerative
disease [57]. Vascular changes are relevant to all types of
dementia, not just vascular dementia. For example, hypo-
perfusion occurs early in Alzheimer’s disease and the disease
processes may interact mechanistically, exacerbating the
progression of both [58].

There is now a wealth of evidence that dysfunctional vas-
culature is a contributing factor in dementia and the
eponymous ‘Jack model’ [59] of disease progression has
been updated to include an early vascular component [60].
Importantly vasculature’s role in disease appears to happen
in the period just preceding cognitive impairment, therefore
imaging of the microvasculature, allows the study of biologi-
cal processes in the human brain that may trigger the onset of
cognitive decline and potentially provide biomarkers that
could be used to test new therapeutics.

Physicists and biologists are working together to develop
biophysical models on which to base new measures that can
be detected by MRI scans and then validating these measures
in animal models. Some of these measures are listed in table 4.

In order to assess the value of microvasculature measures,
a study has used simultaneous PET-MR in 13 people with
mild cognitive impairment and 16 age-matched controls to
assess the sensitivity of these new vascular measurements
to cognitive ability and vascular disease risk and to assess
their repeatability.

Analysis indicates that measures of arterial transit time
and brain oxygenation appear to be both repeatable and sen-
sitive to cognitive impairment and vascular disease risk [70].
Further work is needed, but a combination of these measures
of microvasculature dysfunction using precision scanning
and biophysics models could ultimately become a tool to
detect and study disease early on, prior to dementia onset.
5. Systems for collecting and holding multi-
modal data

The increasing quantity, quality and variety of data provide
an exciting landscape in which to build interdisciplinary
approaches to neurodegenerative disease. Within this land-
scape, flexible and secure informatics infrastructures enable
smart and safe integration of data from multiple sources,
including linkage to electronic health records.

The challenge of bringing these data into one place tomake
them accessible, usable and secure is being tackled by the
Dementias Platform UK (DPUK) (Welcome—DPUK, demen-
tiasplatform.uk). The DPUK Data Portal Home—DPUK Data
Portal (dementiasplatform.uk) brings multiple data assets
into a single virtual location for curation, access and analysis.
On the ground, this involves pre-processing raw data to make
them research-ready (typically by applying a common data
model), brokering access with data controllers using standard
governance solutions, and providing a suite of tools for data
discovery and analysis.Within the platform, there are different
pipelines for each data modality including genomics, digital
devices, imaging, research surveys and electronic health
records (figure 4). For example, survey data using diverse
data models are curated to the C-Surv data model [71] to
enable rapid discovery and analysis. For genetics, specialist
variable call format data are converted to genotype and poly-
genic risk scores, as these data are more accessible to non-
geneticists. Although some of these pipelines are in develop-
ment, projects or pilot-projects are running in each of them.

This approach offers a generic solution for high trust sys-
tems that are transparent, secure and fully auditable. The aim
of these systems is to support interdisciplinary research by
enabling specialist and non-specialist scientists to access mul-
tiple multi-modal data assets. The approach is being adopted
by several international counterparts (https://www.demen-
tiasplatform.com.au; Alzheimer’s Disease AD Workbench
(ADWB)—ADDI (alzheimersdata.org)).

As more data are integrated into the DPUK Data Portal and
other resources in this field develop (UK Biobank, Genomics
England and the UK data archive), the overarching model of
data management becomes a national network of interoperable,
trusted research environments, accessible through a single login,
maximizing opportunities for interdisciplinary research.
6. Moving from data to projections with
statistical physics, artificial intelligence,
machine learning and computational
approaches

The value that statistical physics brings to understanding
collective neuronal behaviour is becoming increasingly

https://www.dementiasplatform.com.au
https://www.dementiasplatform.com.au


digital device
data dump

variant call
files

electronic
health
records

core digital
phenotypes

C-surv
survey data

native survey
data

DICOM /
NIfTI files

image
derived

phenotypes

omics
phenotypes

transcriptome
proteome

metabolome

virtual
laboratory

(analytical environment)
genotype

disease
outcomes

processed multi-modal data

raw uploaded data

Figure 4. Multi-modal data analysis pipelines (DPUK Spring Academy 2022).
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recognized. As a discipline that is used to modelling billions
of atoms, it can offer much in terms of information theory but
also in terms of models of phase transitions, pattern
formation and collective dynamics.

There are fundamental challenges to bridging statistical
physics and neuroscience, particularly as neuronal inter-
actions are unlike the traditional interactions studied in
physics. Neuronal interactions are pulse-like, directional,
time delayed and plastic, which means the classical laws of
physics are not applicable. In addition, the highly dimen-
sional topology of the brain networks makes it difficult to
characterize collective properties. However, interdisciplinary
research is finding ways to overcome these challenges and
to enable physics to bring important insight into neuroscience
and neurodegenerative diseases.

Alongside this insight from pure statistical physics, AI,
machine learning and computational approaches are
making huge advances in enabling predictive modelling
from multi-modal data and bringing together data-driven
approaches and clinical observation.

6.1. Using statistical physics to understand information
flow and stabilities in cortical brain network

By moving between statistical physics models and data from
neuronal recordings from mammals, it has become possible
to quantify the spreading dynamics of neural activity in the
neocortex using the mathematical framework of branching
processes [72–75]. Experimental results suggest that both
information transfer and task performance depend on the
relations between external input strength and recurrent
activity within the network [76].

Through estimating the branching parameter, which rep-
resents how activity propagates through neural networks,
networks appear to work in a regime that is close to—but
not precisely at—a critical point at which maximum infor-
mation transfer would occur [75,77,78]. For many cortical
areas, from visual cortex in cat to temporal lobe in humans,
we find that cortical dynamics do not precisely operate at
the critical point but about 2% away from it. Across all species,
a branching parameter of 0.98 provides a match to the
recorded data [72,75]. By working in this near-critical
regime, the network may not transfer the maximal amount
of information at all times. However, in that regime, small
changes in the effective excitatory synaptic strength can
strongly change the computational properties of the network
[78]. This sensitivity of the network enables a fine-tuning of
computational properties to different tasks [79].

The model used to describe neural network activity in
terms of a branching process is relatively simplistic [80].
Nonetheless, the neural activity generated by the model is
very similar to that of cortical spike recordings as measured
by higher-order statistical measures; both the model and
the in vivo activity show similar higher-order statistics, e.g.
in the cross-correlation, power-spectral density and avalanche
size distribution (technical definitions of the higher-order
statistics given in reference [80]).

This suggests that the branching process, despite its sim-
plicity, captures the basic propagation of spiking activity in
the mammalian cortex. The core reason could be that this
type of model captures the first-order approximation to the
dynamics, thus the linear part of the activity propagation.
And apparently that linear part of the propagation of
activity seems to account for a large fraction of the network
dynamics [79,80].

The model together with the analysis of the diverse
recordings predict that, within cortical areas such as visual
cortex, prefrontal cortex and hippocampus, there is clearly
more internal recurrent propagation of activity than external
activation from other brain areas or stimuli [80] (figure 5).
In fact, only a few per cent of the activity in a cortical
area seems to originate directly from input. The vast majority
is internally generated [79,81]. That is indeed in line with
experimental probing of the impact of subcortical input
relative to ongoing activity [82]. When thinking about
dysfunction that occurs within these higher functional
areas, this theoretical framework suggests that already small
changes or mis-tuning in the effective excitatory synaptic
strength can have a major impact on the local sensitivity of
the cortical network, and hence on its information-processing
abilities [72,75].

In terms of information processing, a popular hypothesis
suggests that the cortex should operate precisely at the tran-
sition between stable and unstable dynamics [83]. At that
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Figure 5. Network properties, like sensitivity to input (blue dashed line),
diverge in the vicinity of a critical point (transition at m = mc = 1). Record-
ings of various mammals suggest consistently that cortical areas operate in a
regime close to a critical transition (green area), with a safety margin to
supercriticality (red), where activity may become instable (‘bursty’ or
highly correlated). In the regime close to criticality (green), small changes
in the control parameter m lead to major changes of the sensitivity
(green arrows). Thereby, computational properties like the sensitivity can
be tuned to task performance. The same amount of change in m hardly
incurs any change when the network is far from the transition (grey
arrow), but risks tipping over to instability if the network is too close to
the transition (black arrow). Hence, in the vicinity of the critical point, the
network may profit from sensitive tuning of its network properties to task
performance without tipping over to instability. Figure prepared by
Priesemann.
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‘critical point’, a number of computational properties are
maximized, such as the sensitivity or the correlation length.
However, maximizing these properties does not necessarily
optimize task performance in general. Interestingly, analyses
of task performance on a neuromorphic chip showed that sol-
ving the more complex version of a task profits from tuning
the network to the critical points. Surprisingly, however, for
the simple version of the task, optimal performance was
achieved when the network was tuned to a working point
farther away from that critical transition [76]. This is straight-
forward to understand if for solving the simple version of the
task the network only required integrating information over a
short time window. In that case, a longer memory timescale
in the network might corroborate performance. Hence, the
classical interpretation that criticality would optimize task
performance has to be refined—it is the complex tasks that
profit from maximized computational properties, while
more simple tasks may suffer from the variability [76,84].
Conceptually, these results might provide insight onto how
cognitive and memory tasks enrol different types of operat-
ing points or propagation regimes. If one follows that
thought, it can help to understand how this recurrent activity
perhaps ‘goes awry’ in neurodegenerative disease when the
fine-tuning of the network’s sensitivity and working point
is hampered. Combining this insight with the more detailed
scanning data (see §4 above) could provide promising ave-
nues for research.
6.2. Machine learning on multi-modal data to provide
predictive insight

As technology and science advance, researchers are presented
with the welcome challenge of an increasing amount and var-
iety of data on neurodegeneration across timescales.
Traditional analyses within disciplines remain valuable, but
approaches to combine this data from different sources
through AI and machine learning could potentially allow
this data to be applied to clinical settings and trials.

Machine learning can help by enabling early prediction
while imposing the least invasive and costly tests. By dis-
tinguishing patients that remain in a stable phase of
cognitive impairment from those where the condition wor-
sens, machine learning can also help overcome the issue of
misdiagnosis or ‘misclassification’. Clinical misdiagnosis is
common as it is often qualitative, or semi-quantitative at
best, often relying on arbitrary cut-off points. Machine learn-
ing can provide data-driven decision thresholds that are
optimized to minimize misdiagnosis rates. Additionally,
machine learning systems can fuse multi-modal high-dimen-
sional data, a process that is beyond human capabilities. This
includes the possibility of assessing confounders such as
comorbidities. Overall, machine learning holds out the
promise of more precision, transparency and clarity, thereby
enabling a truly predictive medicine.
6.3. Three-phase framework to model prediction with
machine learning

There is a three-phase machine learning approach that is
proving valuable to overcoming misclassification. The first
phase extracts features that are highly predictive of changes
in cognition, while the second uses a machine learning
algorithm to make reliable and robust predictions. The
third phase involves moving away from binary classifications
to a trajectory modelling approach to reduce the risk of
misclassification.

Using this approach, an interdisciplinary research team
from Cambridge is using baseline structural imaging data
from about 500 individuals from the ADNI dataset (table 1)
to derive a grey matter density score which is predictive of
changes in memory. The grey matter score in combination
with beta-amyloid and APOE ϵ4 was used to build the
machine learning model (phase 2) which was then proven
to reliably predict change in cognition (that is, memory
scores) in an independent dataset (figure 6). Another test of
its reliability was its ability to distinguish two classes of
people based on biological markers: beta-amyloid and
APOE4.

To move away from the binary classification (phase 3) the
group have used a trajectory modelling approach which cre-
ates a prototype for stable health and then derives distances
from this prototype for every individual, not only in terms
of how far away people are from a stable prototype but
also the rate of decline. For this trajectory modelling
approach, biological data provide more sensitivity than cog-
nitive data, while for the class-based discriminations the
performance is similar for both types of data. This trajectory
modelling approach is validated by inputting data on a sep-
arate group from the ADNI dataset and showing the model
accounts for 46% of the variance in rate of memory decline
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[84]. The model was also able to predict accumulation of
regional levels of tau in the brain over time [85].

This approach can be used to stratify patients into differ-
ent groups which could be useful in clinical trials or
interventions working on specific pathways. For clinical
trials this approach could potentially reduce sample size by
nearly a third [85]. The plans for the future are to use these
approaches to build AI-enabled clinical decision support sys-
tems that help clinicians assign the right patients at the right
time to the right diagnostic pathway. This in turn will
improve patient well-being by reducing the requirement for
invasive and expensive diagnostic tests and by guiding
more precise selection for clinical trials.
6.4. Top-down computational models for understanding
disease progression

The increasing number of studies that are collecting longi-
tudinal multi-modal data, including MRI and PET images,
genetics, cognitive tests, CSF and blood biomarkers are
enabling researchers to unleash the power of computer
science to unravel the complexities of neurodegenerative dis-
eases. These data-driven approaches work alongside
neurological and biological domain knowledge to enable
researchers to construct models capable of simultaneously
estimating the pathophysiological cascade of disease and
the time axis of this trajectory, as well as subtypes thereof.
Some of these statistical models are inspired by physics
while others directly use the tools of physics.

One of the earliest data-driven approaches to modelling
neurodegenerative disease progression was the event-based
model [86]. This learns a discrete sequence, and uncertainty
in the sequence, of cumulative abnormality—from only
cross-sectional data. An early application of the event-based
model fused multi-modal data from CSF markers, atrophy,
cognition and brain volume changes into a uniquely fine-
grained patient staging system that also predicted the conver-
sion from mild cognitive impairment to Alzheimer’s disease
[87]. Updated versions expand the models’ applicability to
include the personalized discriminative event-based model
[88] and the kernel density estimation event-based model
[89], with applications including typical and atypical Alzhei-
mer’s disease [86,88,89], multiple sclerosis [90], Huntington’s
disease [91], Parkinson’s disease [92] and frontotemporal
dementia [93]. The subtype and stage inference (SuStaIn) algor-
ithm [94] combines unsupervised learning with pseudo-time
disease progression modelling to automatically estimate
disease progression subtypes, with early applications unravel-
ling heterogeneity in Alzheimer’s, frontotemporal dementia
[94,95] and predicting clinical trial treatment response in
multiple sclerosis [96].

There are also continuous-time versions of data-driven
disease progression models. These exploit the power of
Gaussian processes and other self-modelling regression
approaches [97–100] to simultaneously estimate a disease
trajectory and latent disease-time score that correlate with
cognitive status and are predictive of future decline in
Alzheimer’s [101].
6.5. Bottom-up models of brain connectivity-based
pathology spreading to generate insight into
disease mechanisms

Neurodegenerative diseases are increasingly seen as network
disorders where brain connectivity plays an important role
[102]. Connectivity models in the brain such as a network dif-
fusion model [103] and epidemic spreading model [104] aim
to predict the spread of pathogenic proteins and downstream
pathology that is measurable (from the top, down) to provide
insight into the underlying mechanisms (bottom-up) of
neurodegenerative diseases.

Physics has a long history of using multi-scale modelling
to understand complex systems. Converging evidence
suggests that we currently have an opportunity (if not an
obligation) to develop such approaches in our attempts to
unravel the mysteries of neurodegenerative diseases. In
short, to marry top-down models of disease phenomena,
with bottom-up models of disease mechanisms, such as
brain connectivity-based models. This includes leveraging
machine learning and AI to improve predictions of where
and when pathology will occur, which can also be
informed by selective vulnerability of brain regions, and
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biologically informed microscale models of protein misfold-
ing [90,105,106]. It is clear that techniques from physics and
mathematics play a key role in linking the bottom-up
mechanistic models to the top-down phenomenological
models [107] guided by domain knowledge.
publishing.org/journal/rsif
J.R.Soc.Interface

20:20220406
7. Conclusion
This review provides a range of examples of how interdisci-
plinary research, particularly approaches from the physical
and mathematical sciences, are contributing to understanding
neurodegenerative disease of the brain. Developments in
technology are also improving the capacity to collect more
precise data and develop novel fluid, scanning and digital
biomarkers. New platforms and modelling techniques are
enabling the analysis of complex and multi-modal data,
and these analyses are enabling a more informed approach
to the design and conduct of clinical trials, which are based
on a deeper understanding of underlying mechanisms.

A greater emphasis on interdisciplinary approaches is
enabling some novel reframing of problems which, perhaps,
in the past became rather polarized, such as phenotypic
versus mechanistic measures and top-down versus bottom-
up approaches. Of course, none of this is an entirely new
way of working but rather an increased enthusiasm for the
iterative gathering and testing of insights from a range of
different disciplines, which may lead to a better understand-
ing of underlying disease mechanisms.

As with all scientific endeavour, the development of
medical science inevitably takes twists and turns—and
occasional dead ends—on its journey to develop new under-
standing of disease. Interdisciplinary research is integral to
negotiating this journey and entails overcoming barriers
that may be preventing research from gaining useful and
different perspectives. Now is a valuable time to take note
of the range and impact of interdisciplinary approaches that
have already contributed to the field, and consider how to
foster those that are emerging, in order to ensure that we har-
ness their strengths. In so doing, we will address the ‘Grand
Challenge’ of neurodegenerative diseases of the brain in a
manner that is both scientifically rewarding and most likely
to deliver real clinical impact.
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