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a b s t r a c t

Convolutional neural networks (CNNs) are one of the most successful computer vision systems to
solve object recognition. Furthermore, CNNs have major applications in understanding the nature
of visual representations in the human brain. Yet it remains poorly understood how CNNs actually
make their decisions, what the nature of their internal representations is, and how their recognition
strategies differ from humans. Specifically, there is a major debate about the question of whether CNNs
primarily rely on surface regularities of objects, or whether they are capable of exploiting the spatial
arrangement of features, similar to humans. Here, we develop a novel feature-scrambling approach
to explicitly test whether CNNs use the spatial arrangement of features (i.e. object parts) to classify
objects. We combine this approach with a systematic manipulation of effective receptive field sizes of
CNNs as well as minimal recognizable configurations (MIRCs) analysis. In contrast to much previous
literature, we provide evidence that CNNs are in fact capable of using relatively long-range spatial
relationships for object classification. Moreover, the extent to which CNNs use spatial relationships
depends heavily on the dataset, e.g. texture vs. sketch. In fact, CNNs even use different strategies
for different classes within heterogeneous datasets (ImageNet), suggesting CNNs have a continuous
spectrum of classification strategies. Finally, we show that CNNs learn the spatial arrangement of
features only up to an intermediate level of granularity, which suggests that intermediate rather
than global shape features provide the optimal trade-off between sensitivity and specificity in object
classification. These results provide novel insights into the nature of CNN representations and the
extent to which they rely on the spatial arrangement of features for object classification.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of Convolutional Neural Networks (CNNs)
as led to a revolution in the field of computer vision (Krizhevsky,
utskever, & Hinton, 2012; LeCun, Yoshua, & Geoffrey, 2015).
achine vision using CNNs has been able to rival human perfor-
ance in object recognition tasks on large-scale datasets such as

mageNet (He, Zhang, Ren, & Sun, 2016). Moreover, a series of
ecent works have shown that CNN activations can be used to
redict neural activity in the ventral stream of the primate visual
ystem known to be responsible for object recognition (Cadieu
t al., 2014; Yamins & DiCarlo, 2016; Yamins et al., 2014). There-
ore, there has been a growing interest in developing behavioral
enchmarks that evaluate similarities and differences between
NN models and human vision (Geirhos, Narayanappa, Mitzkus,
hieringer, Bethge, Wichmann, & Brendel, 2021; Geirhos, Temme,
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Rauber, Schütt, Bethge, & Wichmann, 2018; Rajalingham et al.,
2018). Crucial to the behavior of these artificial and biological
vision systems is their internal representation of objects. The
ability of humans to recognize objects based on their abstract
shapes (Baker & Kellman, 2018; Biederman & Ju, 1988; Landau,
Smith, & Jones, 1988) suggests that the internal representations
of objects in the brain must reflect the global structure of ob-
jects (Barenholtz & Tarr, 2006; Biederman, 1987). An abstract
representation of the global shape of an object requires the en-
coding of the spatial relations between the set of its local features
or parts (Barenholtz & Tarr, 2006; Biederman, 1987). Accordingly,
in order to understand the biases that govern the strategies of
CNNs performing object recognition, it is central to determine
the spatial extent of the diagnostic features CNNs use for ob-
ject recognition. Moreover, it is equally important to investigate
the role that spatial relations play in the construction of these
diagnostic features.

Recent studies have shown inconsistent conclusions regarding

the reliance of CNNs trained for object recognition on sets of
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ocal features or a global representation of objects (Baker & Elder,
022; Baker, Lu, Erlikhman, & Kellman, 2018, 2020; Brendel &
ethge, 2019; Geirhos et al., 2019; Jo & Bengio, 2017; Kubilius,
racci, & Op de Beeck, 2016; Ritter, Barrett, Santoro, & Botvinick,
017; Tartaglini, Vong, & Lake, 2022). Some studies have shown
hat CNNs trained for object recognition are biased towards sur-
ace statistical regularities (texture) (Baker & Elder, 2022; Baker
t al., 2018, 2020; Geirhos et al., 2019; Jo & Bengio, 2017). In
hese studies, CNNs were tested on image datasets that included,
or example, low-frequency filtered images (Jo & Bengio, 2017),
hape-texture cue conflict stimuli using style transfer (Gatys,
cker, & Bethge, 2016; Geirhos et al., 2019), deformed silhouettes
nd other abstract shape images (Baker & Elder, 2022; Baker et al.,
018) and simple geometric shapes (Baker et al., 2020). However,
ther studies reached different conclusions using other image
anipulations or different evaluation methods (Kubilius et al.,
016; Ritter et al., 2017; Tartaglini et al., 2022). We reckoned
hat these different conclusions may be due to the hypothesis-
riven approach resulting from the choice of the nature of the
timulus datasets and the object classes represented in them. For
his reason, we developed a framework for training and testing
NNs that enables us to inspect the shape representations of
NNs by separately controlling the granularity of CNN features
local vs. global) and the spatial relations between them. This
pproach allows us to take on the question of to what extent
he CNN architecture constrains their capacity to learn shape rep-
esentations and whether CNNs use the spatial relations among
eatures for object recognition.

Previous work has shown that grid-based image scrambling
an be used to identify brain areas sensitive to global configura-
ions of objects (Grill-Spector, Kushnir, Hendler, Edelman, Itzchak,
Malach, 1998), expressing characteristic decreases in neural

ctivity with the degree of image scrambling (Grill-Spector et al.,
998; Rainer, Augath, Trinath, & Logothetis, 2002; Vogels, 1999).
mage scrambling, however, disrupts not only the spatial relations
etween object parts but also the shape of the parts them-
elves (Margalit, Biederman, Tjan, & Shah, 2017). To disentangle
hese two effects, we developed a feature-scrambling approach
hat allows us to spatially scramble the pretrained features of
NNs with restricted effective receptive fields (ERFs) (Brendel
Bethge, 2019) without introducing the confounding factors

f an image-based scrambling approach. The ERF of a CNN is
efined as the set of all pixels that can influence the activity
f a unit in its last convolutional layer (Le & Borji, 2017). These
eatures represent diagnostic parts of the objects at the ERF level
f granularity. After that, we feed these scrambled features to
follow-up CNN that spatially integrates these features and is

rained to recognize the class of objects. Recent work suggests
hat CNNs with restricted ERF sizes can achieve a performance
imilar to regular CNNs on ImageNet (Brendel & Bethge, 2019).
owever, it remains unclear whether these models use the same
trategies as regular CNNs to solve the task. Notably, the approx-
mation of regular CNNs performance on ImageNet with CNNs
ith restricted ERFs implies that CNNs rely on a classification
trategy that pools local evidence from separate locations in the
mage without learning the spatial relations between them. This
bservation would predict, for instance, that training a follow-
p CNN on the pretrained features of a CNN with restricted ERFs
hould minimally affect performance. It would also predict that
patially scrambling the pretrained input features to the follow-
p CNN would not lead to a significant difference in performance
o training with the right spatial arrangement of the features.
n this work, we tested these predictions on different datasets
hat comprise texture-rich and texture-less images to examine
hether CNNs employ different classification strategies for dif-
erent datasets. Furthermore, we examined to what extent CNNs
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with smaller ERFs develop representations similar to CNNs with
larger ERFs. Finally, we performed a minimal recognizable con-
figuration (MIRC) analysis (Ullman, Assif, Fetaya, & Harari, 2016)
to quantify the minimal image patch sizes required by CNNs to
achieve correct classification.

2. Methods

2.1. Datasets

We trained CNNs on three datasets with different feature
characteristics: the Sketchy, Animals, and ImageNet datasets. The
Sketchy dataset contains 75,471 human-drawn sketches span-
ning 125 classes (Sangkloy, Burnell, Ham, & Hays, 2016). Each
sketch is a textureless, black-and-white bitmap graphic that only
contains information about the contours of objects without any
surface proprieties, and sketches have a high degree of intra-
class variability (Fig. 1c). The Animals dataset consists of 37,322
color images spanning 50 classes (Xian, Lampert, Schiele, & Akata,
2019) (Fig. 1b). The well-known ImageNet dataset contains 1.2M
color images across 1000 classes (Deng, Dong, Socher, Li, Li, &
Fei-Fei, 2009) that span different animals and man-made artifacts.

2.2. Models

We created residual CNNs (He et al., 2016) with ERFs of vari-
able sizes ( Table 1) by changing the size of the filters of different
residual units across layers (Brendel & Bethge, 2019). The residual
CNNs consist of 4 blocks that contain 2, 3, 3, and 2 residual units,
respectively. Each residual unit consists of 3 convolutional layers:
The first and last layers always have filters of size 1 × 1 and
the filter size of the middle layer varies according to Table 1.
Adjusting the filter size of the residual units results in models
with ERFs of either 11, 23, 47, 95, or 227 pixels squared in the
last layer. We refer to these models by their ERF sizes, writing
ERF23 for a network with an ERF of size 23 × 23 pixels. Note
that since our input images are always of size 224 × 224 pixels,
only the model ERF227 has units in the last convolutional layer
with ERFs covering the entire image, before features are globally
averaged across spatial locations in the penultimate layer.

2.3. Feature-scrambling approach

For the feature-scrambling approach, we build CNN models
that are composed of two sub-networks, a base network and a
follow-up network (Fig. 1d). The base network transforms the
image to high-level feature maps of a given size by being trained
on image classification in a standalone way. These pretrained
features are then fed into a follow-up network. The follow-up
network then further transforms these feature maps in a series
of convolutional layers. Finally, features are pooled in a location-
discarding way in a global average pooling layer and then a
Softmax classification layer. This approach allows us to inde-
pendently examine the granularity of features used by CNNs for
object recognition and to determine to what extent the spatial
relations among them contribute to their performance.

We used networks with different ERFs as base networks. We
trained them separately for image classification and then de-
tached the fully connected classification layer and the global
average pooling layer of the trained network and used it with
frozen weights as the base network in our feature-scrambling
approach. Subsequently, we attached the follow-up network such
that it receives the features of the pretrained base networks as
inputs in either a scrambled or unscrambled way. Specifically, for

the unscrambled case, we passed the feature maps unchanged to
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Fig. 1. Feature scrambling during training and testing. (a, b) Example images for the Animals and Sketchy datasets, respectively. (c) CNN performance as a function
of the ERF, separately for the Sketchy and Animals datasets. (d) A schematic for the feature-scrambling approach. (e) Effects of adding the follow-up network to the
pretrained base networks either with spatial aggregation without scrambling (left), with spatial aggregation with scrambling (right), or without spatial aggregation
(middle). (f) Effect of global and local feature-scrambling on the testing performance of the base + follow-up models with spatial aggregation without scrambling.
(g) A schematic depicting the ERF of random artificial neurons in the last convolutional layer of models of different ERFs.
Table 1
Architecture details for our ResNets of different ERFs.
Blocks Residual units Feature maps Stride Filter sizes

ERF11 ERF23 ERF47 ERF95 ERF227

Block 1 2 128 2 3,3 3,5 3,5 3,5 5,5
Block 2 3 256 2 1,1,1 3,1,1 3,3,5 3,3,5 5,5,5
Block 3 3 512 2 1,1,1 1,1,1 1,1,1 3,3,3 5,5,5
Block 4 2 1024 1 1,1 1,1 1,1 1,1 5,5
the follow-up network. For the scrambled case, we generated ran-
dom indices once and used them to permute the feature vectors
across spatial locations. The follow-up network is a residual block
formed of four residual units. We differentiated between two
types of follow-up networks: with or without spatial aggregation:
(1) A follow-up network with spatial aggregation has a stride
of 2 for its first two residual units and filter size 3 × 3 for
all its residual units. (2) A follow-up network without spatial
aggregation is formed exclusively of convolutional layers with
filter size 1 × 1 and no down-sampling. In summary, for each of
our base networks (ERF11, ERF23, ERF47, ERF95, and ERF227), we
402
trained 3 models depending upon: (1) the type of the follow-up
network (with or without spatial aggregation); (2) scrambling the
features between the two sub-networks or not.

The considered models can be summarized as follows:

• Base: only the base network trained in a standalone way.
• Base + Follow-up without scrambling: the model is formed

of the pretrained base network plus the follow-up network
with spatial aggregation and without feature-scrambling.

• Base + 1 × 1 Follow-up without scrambling: the model is
formed of the pretrained base network plus the follow-up
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network without spatial aggregation and without feature-
scrambling. This model serves as a control for the signif-
icance of increasing the ERF of the model by adding the
follow-up network.

• Base + Follow-up with scrambling: the model is formed
of the pretrained base network and the follow-up network
with spatial aggregation and with global feature-scrambling
during training.

Additionally, the Base + Follow-up without scrambling mod-
els were tested while the input features to the follow-up network
were randomly scrambled either globally or locally.

2.3.1. Training
All simulations were performed using the TensorFlow library

(Abadi et al., 2015). We used stochastic gradient descent with
momentum = 0.9 to update the weights with initial learning rate
= 0.01 for the first 10 epochs followed by exponential decay for
the rest of training. For the ImageNet dataset, we trained for 50
epochs, and for the animals and Sketchy datasets, we trained for
75 epochs.

During training, for non-square images, we first cropped the
central square portion of the image with the shortest dimension
of the image to keep the aspect ratio of the objects constant
before resizing the images to 256 × 256 pixels. We then applied
inimal data augmentation in the form of random right and left
orizontal flipping of the images, followed by random cropping of
24 × 224-pixel patches used for training. During testing, after
entrally cropping the images, we resized them to 256 × 256
ixels, and then we cropped the central 224 × 224-pixel patch.

.4. Representational similarity analysis (RSA)

We used RSA to investigate the representations of the CNNs
f different ERFs (Nili et al., 2014). To avoid the results being
iased to the number of classes in each dataset, we sampled
0 random classes from each dataset (the lowest number of
lasses in the three datasets). Then we sampled 8 random images
rom each class for a total of 400 images, ran them through
ll the models of different ERFs, and extracted the activations
f the last convolutional layer of each residual unit (n = 10),
he global average pooling layer (GAP) and the Softmax layer.
or the Sketchy and Animals datasets, we averaged the layers’
DMs across 5 repetitions of random initialization. We created
he representation dissimilarity matrix (RDM) for each layer by
omputing the pairwise correlation distance for its activations
400 × 400 matrix). Next, we computed a second-order RDM
or all the layers of the models (60 × 60 matrix) by computing
he correlation distance between the upper triangle of the layers’
DMs. For visualization purposes, we used multi-dimensional
caling (MDS) to reduce the dimensionality of the second-order
DM to two dimensions.

.5. Minimal recognizable configurations analysis (MIRC)

We adopted the MIRC analysis (Ullman et al., 2016) previously
sed for humans for CNNs. MIRC analysis is a recursive process
hat search for the smallest image patches that still yield a correct
lassification result. MIRC analysis starts with a given, correctly
lassified image of class c . Starting from the whole image as
ne patch, four descendant patches are created from each patch.
ach descendant batch spans 75% of the height and width of
he patch at the previous level starting from one of the four
orners (Fig. 4a). Each patch is then upsampled using bilinear
nterpolation to 224 × 224 pixels to match the input size of
he models. The recursive subdivision process continues for each
403
patch as long as the patch is still correctly classified as belonging
to class c . Subdivision stops once the classification of a patch is no
longer correct. This process defines a tree structure and the leaves
of the tree are the MIRCs. The level of a leaf node in the tree is
referred to as the level of the MIRC it represents. By construction,
the higher the MIRC level, the smaller the patch of the image used
for classification.

3. Results

3.1. Feature scrambling during training and testing

We trained CNNs of different ERF sizes on three different
datasets: the Sketchy (Sangkloy et al., 2016), the Animals (Xian
et al., 2019) (Fig. 1a–b), and the ImageNet (Deng et al., 2009)
dataset. Example ERFs of five models are shown in Fig. 1g. We
note that the ERF is a theoretical upper limit on the set of pixels
that can activate a given unit, and that not all pixels of the ERF
necessarily activate the corresponding deep unit, depending on
connection weights. We found that CNN performance increased
with ERF size for both the Sketchy and Animal datasets, with
a visible saturation for larger ERFs. However, CNN performance
depended more strongly on the ERF size for the Sketchy dataset
than for the Animals dataset (Fig. 1c). Because changing the
filter sizes across models will also induce changes in the num-
ber of trainable parameters in the models and consequentially
their expressive capacity, we performed a control experiment in
which we created wide networks with small ERFs but matched
the number of parameters of the network with the largest ERF
(ERF227). We found a slight increase in accuracy, but the models
still showed a substantial reduction in performance compared to
the corresponding network with a large ERF (Fig. A.1).

The dependence of the classification performance on ERF size
suggests that the network’s ERF has a major impact on ob-
ject recognition, especially for textureless datasets such as the
Sketchy dataset. One explanation for the observed performance
increase could be that CNNs with large ERFs can learn to exploit
relatively large-scale features, which are especially important
for texture-less datasets. However, the comparison between net-
works with large ERFs and small ERFs does not yet provide direct
evidence that CNNs with large ERFs rely on large-scale shape
features. For example, it is possible that the pooling in large
ERFs does not take into account the spatial configuration among
the features. Instead, the network might just accumulate local
evidence in a different manner than networks with smaller ERFs.
This reasoning suggests that in order to investigate the network’s
sensitivity to the spatial configuration of features, it is necessary
to distort (i.e. scramble) the spatial arrangement of features and
then test the impact of this distortion. Importantly, this scram-
bling should be done at the level of the network features rather
than at the image level, as the latter often leads to confounding
high-contrast image artifacts. Specifically, we took the following
approach:

(1) We trained a network with a small ERF size on an object
recognition task. We call this the base CNN, which was not further
modified.

(2) We then trained a follow-up network, which received
input from the last convolutional layer of the pretrained base
CNN. These pretrained input features represent diagnostic fea-
tures of certain granularity depending on the ERF of the base CNN
i.e. object parts at different scales. The follow-up network has an
ERF that covers the entire image. We observed that adding the
follow-up network led to an increase in performance compared
to the base network. Consistent with the ERF survey experiment
(Fig. 1c), the increase in performance was relatively small for the
ImageNet and Animals datasets but was large for the Sketchy
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ataset for base networks with smaller ERFs (Fig. 1e, left panel).
bsolute performances are shown in Fig. A.2.
(3) To rule out the possibility that the observed performance

ncrease for such stacked networks was just caused by increasing
he depth of the model by appending the follow-up network,
e trained a follow-up network that consisted only of 1 × 1
onvolutions without strides to prevent spatial aggregation. We
bserved only a slight increase in accuracy for all datasets (Fig. 1e
iddle), which shows that spatial aggregation of inputs was
rucial for the observed performance boost (Fig. 1e left).
(4) To examine whether the spatial configuration of features

attered, we trained the same follow-up networks after spatially
crambling the features in the last convolutional layer of the base
etwork. We used a fixed spatial permutation (i.e. scrambling) of
hese features that was constant during training. We observed a
maller increase in performance for the Sketchy dataset for ERFs
1 and 23 (Fig. 1e right). Furthermore, no further increase in ac-
uracy could be observed for the Animals and ImageNet datasets
n this case (Fig. 1e right). Taken together, these findings suggest
hat CNNs can learn to utilize the configuration of spatially distant
eatures when constructing more complex features in subsequent
ayers, especially for datasets in which shape is expected to be
ritical for object classification.
(5) As a complementary approach to the fixed scrambling

uring training, we also performed random feature scrambling
uring testing. As before, the scrambling was again done at the
ast convolutional layer of the base network. As predicted, we
bserved a general decrease in the accuracy of the models with
patial aggregation (base + follow-up) when the features were
lobally scrambled during testing (Fig. 1f left). This effect de-
ended strongly on the dataset, with a relatively weak effect
or the Animals dataset and a very strong effect for the Sketchy
ataset. Moreover, the performance reduction was particularly
ronounced for models with small ERFs that exclusively encode
ocal features of fine granularity before the scrambling is done. It
s worth noting that this effect cannot be simply explained by
he type of the dataset (sketches versus natural images) since
he reduction in performance varied substantially between the
nimals and ImageNet datasets, even though both consist of
atural images.
(6) As a control, we also performed a ‘‘local’’ scrambling, in

hich the features were scrambled only at neighboring locations.
he reduction in performance with local scrambling was much
eaker compared to global scrambling, indicating that the loss
f performance with global scrambling is due to the distortion
f the global configuration of the features, not the confounding
ffects of the scrambling process itself.
Together, these results highlight the importance of the granu-

arity of features and their spatial configurations for object recog-
ition, especially for datasets in which texture is less informative.
n other words, models with larger ERF can extract more coarse-
rained features, which are more diagnostic for the object class,
.e. have higher accuracy and are less susceptible to scrambling.
hese coarse-grained features are diagnostic on their own and do
ot need to be spatially integrated to construct more complex
eatures in subsequent layers (the follow-up network). However,
he granularity of these features differs between datasets.

.2. Variability of classification strategies between classes in Ima-
eNet

Depending on the dataset, we observed different effects of
RF sizes and feature scrambling on network classification per-
ormance. Changing the ERF size had the weakest effect on per-
ormance for the Animals dataset and the strongest effect for
he sketches dataset, with ImageNet in between (Fig. 1e left).
404
The strongest effect of feature scrambling was observed on the
Sketchy dataset, followed by ImageNet and then the Animals
dataset, which was least affected by feature scrambling (Fig. 1f
left). These findings can be explained by the image statistics in
the different datasets. Two extremes are given by the Animals
and Sketchy dataset: While images in the Animals dataset can
already be classified using local textural features, pictures in
the Sketchy dataset require the integration of spatially distant
features for classifications. For ImageNet, the classification may
allow for different class-specific strategies (e.g., animals vs. man-
made artifacts). To test the hypothesis that CNNs use different
classification strategies for different ImageNet classes, we used
the feature-scrambling approach described above. As a measure
of how CNN classification performance is affected by global fea-
ture scrambling, we consider the scrambling ratio as the ratio of
class f 1 scores before and after scrambling. A high scrambling
ratio indicates that a class is not sensitive to feature scrambling
(which we call scrambling-insensitive), and a low value indicates
sensitivity to scrambling (which we call scrambling-sensitive).
This ranks the classes according to their sensitivity to the global
spatial feature configuration in the last CNN layer of the base
network (Fig. 2a-c). For this analysis, we only considered classes
that the model reliably classified before scrambling (f 1 > 0.75).

As hypothesized, the least scrambling-sensitive classes pre-
dominantly express characteristic surface patterns (texture) such
as the rapeseed, brain coral, and zebra classes (Fig. 2a and b in
blue for base models ERF11 and ERF23 respectively). Scrambling-
sensitive classes, on the other hand, were not found to express
such characteristics textures, such as the water tower, electric
locomotive, and horse cart classes (Fig. 2a and b in yellow for base
models ERF11 and ERF23 respectively). We hypothesized that the
variability in scrambling sensitivity was due to the intrinsic prop-
erties of the classes and their performance at low ERFs, rather
than to the scrambling operation itself. In fact, we found that
classes with high scrambling sensitivity only exhibited this high
sensitivity for models with small ERFs (Fig. 2c right). However,
the scrambling sensitivity of classes was found to be mostly
independent of ERF size (Fig. 2c left). To confirm that this effect is
a consequence of the heterogeneity of the ImageNet dataset and
not the ordering process, we repeated the same analysis for the
Animals dataset and did not observe such substantial variability
in the scrambling ratios among classes, e.g., for the base model
ERF11, scrambling ratios ranged from 0.05 to 0.91 and from
0.61 to 0.96 for ImageNet and Animals datasets respectively. We
furthermore found that the set of the least scrambling-sensitive
classes is mostly consistent across models (Fig. 2d left). This is
in contrast to the set of the most scrambling-sensitive classes
(Fig. 2d right). Thus, the performance of scrambling-sensitive
classes depends more on the models’ ERFs and, therefore, relies
on features of coarser granularity.

Therefore, we hypothesized that the scrambling ratio should
predict the performance increase from the ERF11 to the ERF227
network (Fig. A.2), as well as the performance increase obtained
by adding the follow-up network to the pretrained base net-
work (Figs A.2 and Fig. 1e). Indeed, the performance increase for
ERF227 compared to ERF11 and ERF23 was greater for scrambling
-sensitive than for scrambling-insensitive classes (Fig. 2e). Specif-
ically, the performance (f 1 score) of the model ERF227 on the
20 most scrambling-sensitive classes was higher than that of all
other models (ERF11, ERF23, ERF47, and ERF95) in a statistically
significant way according to the Wilcoxon signed-rank test. In
contrast, for the 20 least scrambling-sensitive classes, the perfor-
mance of the ERF227 model was only significantly higher than
the models ERF11, ERF23, and ERF47, but not ERF95. Similarly,
the performance increase caused by the addition of a follow-
up network was larger for scrambling-sensitive classes than for
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Fig. 2. (a, b) The 20 least (in blue) and most (in yellow) scrambling-sensitive ImageNet classes for the models ERF11 (a) and ERF23 (b). (c) Scrambling ratios of
the 20 least (left) and most (right) scrambling-sensitive ImageNet classes for models of different ERFs. High and low values of the scrambling ratio indicate that
feature-scrambling has minor and major effects on class performance, respectively. (d) Number of the intersecting classes for the 20 least (left) and most (right)
scrambling-sensitive ImageNet classes among models of different ERFs. (e) f 1 performance scores of ImageNet classes for ERF11 and ERF23 models against ERF227
odel. In blue and yellow are respectively the least and most scrambling-sensitive classes. (f) f 1 performance scores of ImageNet classes for the base model vs. base
odel after adding the follow-up network. In blue and yellow are respectively the least and most scrambling-sensitive classes.
crambling-insensitive classes (Fig. 2f). In particular, increasing
he ERF of the models by adding the follow-up network led to
statistically significant increase in the performance of the 20
ost scrambling-sensitive classes for the models ERF11, ERF23,
RF47, and ERF95. For the 20 least scrambling-sensitive classes,
t only led to a statistically significant increase in performance for
he models ERF11 and ERF23.

.3. Representation similarity analysis

Next, we investigated the role of ERF size on the classifica-
ion strategies used by CNNs. We used representation similarity
nalysis (RSA) (Nili et al., 2014) to test whether CNNs of different
RF sizes develop comparable representations, reflecting similar
r different classification strategies (Fig. 3a–c; see Section 2).
or each layer, we computed a representation dissimilarity ma-
rix (RDM) by computing the pairwise correlation distance on
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the activations resulting from different images. We then com-
puted the dissimilarity (using the pairwise correlation distance)
of the RDMs between all layers of all models, thus indicating
the similarity of the representations between different layers of
different models. To facilitate visualization, we employed multi-
dimensional scaling to reduce the dimensionality of the RDM so
that each point in the 2-d space represents a layer in a model and
connected the layers of each model with a solid line of a different
color (Fig. 3a). We observed that models with comparable ERFs
are closer in the low dimensional space (Fig. 3a), indicating that
the distances among the corresponding layers of the models
depend on the models’ ERF.

To further investigate whether CNNs with small ERFs use
classification strategies similar to those of standard CNNs with
large ERFs, we correlated the RDMs for all models with the RDM
for the ERF 227 model. Specifically, we computed the variance
explained (R2) between the RDMs of the ERF227 model and the
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Fig. 3. (a) Representation trajectories for five CNNs with different ERFs trained on 3 different datasets. For the Sketchy and Animals datasets, we averaged the
layers’ RDMs (Representational Dissimilarity Matrices) of 5 training iterations of each model of a certain ERF size before computing the second-order RDM of all
layers. LC: last convolutional layer. GAP: Global Average Pooling layer. ERF number indicates the classification layer of the corresponding model. (b) Each column
shows three examples from the ImageNet dataset for three bird classes. (c) RDMs of the global average pooling (GAP) and Softmax layers for the models ERF11 and
ERF227 computed separately on the 20 least and most feature-scrambling sensitive ImageNet classes as estimated using the ERF11 model and the feature-scrambling
approach. We sampled 20 images randomly from each class so each RDM is 400 × 400 (better viewed digitally). (d) The amount of explained variance (R2) by the
GAP and Softmax layers’ RDMs of models with different restricted ERFs in the RDMs of the ERF227 model. (e) The amount of explained variance (R2) by the GAP
and Softmax layers’ RDMs of models with different restricted ERFs after adding the follow-up network in the RDMs of the ERF227 model. (f) Percentage change
in the amount of explained variance by RDMs of models with different restricted ERFs in the RDMs of the ERF227 model after adding the follow-up network that
increases the ERF of the models to cover the whole image. (g) The distributions of the difference in explained variance by ERF11 model RDMs in ERF227 model RDMs
between scrambling-sensitive and scrambling-insensitive classes. RDMs were computed by randomly sampling images separately from the scrambling-sensitive and
scrambling-insensitive classes. The number of repetitions is 100.
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DMs of the models with smaller ERFs (Fig. 3d). This was done
eparately for the Global Average Pooling (GAP) and Softmax
ayers for the three datasets. For both GAP and Softmax, we
bserved a gradual increase in the amount of explained variance
ith ERF size, i.e., models with small ERFs are more dissimilar to
he ERF227 model. Moreover, the amount of explained variance
epended on the dataset: The Sketchy dataset had the lowest
mount of explained variance for models with small ERF, followed
y ImageNet and the Animals datasets. This result agrees with the
ifferences between datasets in terms of the models’ classification
erformance (Fig. 1e). We repeated the same analysis after adding
he follow-up networks to the base models, which in each case
ncreased the ERF to cover the whole image (e.g. 235 pixels2

or ERF11 base model) (Fig. 3e). We noticed an increase in the
mount of explained variance after adding the follow-up network,
specially on the Sketchy dataset and for the models with small
RFs (Fig. 3f). Again, there was only a minor and intermediate in-
rease for the animals and ImageNet databases, respectively. This
upports the notion that CNNs can deploy different classification
trategies depending on their ERF.
Furthermore, according to our feature-scrambling analysis,

NN classification strategies should also differ among object
lasses even within the same model. Therefore, we hypothe-
ized that the explained variance between ERF11 and ERF227
hould differ between the scrambling-sensitive and scrambling-
nsensitive classes. In particular, we expected that the explained
ariance should be smaller for scrambling-sensitive classes be-
ause, for those classes, one expects more spatial integration.
or that purpose, we selected the 20 most and least scrambling-
ensitive classes of the ImageNet dataset as determined by our
eature-scrambling approach for the base model ERF11 (Fig. 2a),
andomly selected 20 images from each class, passed them
hrough the models ERF11 and ERF227, computed the RDMs of
he GAP and Softmax layers for each model (ERF11, ERF227)
nd condition (scrambling-sensitive, scrambling-insensitive) sep-
rately (Fig. 3c). We repeated the process 100 times and each
ime we calculated the variance explained in model ERF227 RDMs
y model ERF11 RDMs for both conditions. We subtracted the
ariance explained in the condition of the scrambling-insensitive
lasses from the variance explained in the condition of the
crambling-sensitive classes to create a distribution of the differ-
nce in the variance explained by model ERF11 in model ERF227
etween the scrambling-sensitive and scrambling-insensitive
lasses (Fig. 3g). Indeed, we observed the expected difference
Fig. 3g). Additionally, by visual inspection, the difference be-
ween the RDMs of the models ERF11 and ERF227 calculated on
he scrambling-sensitive classes is especially pronounced in the
ff-diagonal part of the matrix, which represents the similarity
mong the inter-class pairs of images (Fig. 3c left two columns).
e hypothesized that the reason behind this difference is that the
RF11 model extracts lower-level features that are not indicative
f a specific class, but rather shared among multiple classes. For
xample, we observe these blocks of low dissimilarity in Fig. 3c
most lower left panel) between the class jacamar and the classes
ee-eater and hummingbird, which have shared color and local
eatures (Example samples of each of the three classes are shown
n Fig. 3b). Together, these results further support our conclusion
hat the granularity of features used by CNNs (which in terms
re determined by their ERF sizes) plays a crucial role in their
bility to perform object recognition. Moreover, the granularity
f the CNN features is determined not only by its ERF but also
y the statistics of the images in the datasets, separately for
ach class. Although more coarse-grained features can be more
eliable for object recognition, they are only exploited by CNNs
hen needed e.g. the Sketchy dataset and scrambling-sensitive

lasses in ImageNet. This agrees with the simplicity bias in CNNs
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(and more generally all neural networks) when trained with a
gradient-based learning rule: Networks tend to become selective
to the easiest (and most local) features that allows them to solve
the classification task at hand.

3.4. Minimal recognizable configurations (MIRCs) analysis

The results so far suggest that CNNs recognize objects based on
features that vary in their granularity depending on the dataset
and the object class. For datasets and object classes that have
relatively little or no texture information, CNNs can learn to
construct diagnostic features of coarser granularity from more
fine-grained features by exploiting the spatial relations between
them. This raises the following questions: (1) What is the spatial
extent of these coarse features and spatial relations learned by
CNNs? (2) What is the advantage of more coarse-grained fea-
tures over more fine-grained features for object recognition? The
feature-scrambling results shown above indicate that even for the
Sketchy dataset, increasing the ERF of the base models beyond
47 × 47 had a limited effect on performance. This result suggests
that the features required for reliably recognizing objects are still
predominantly local, i.e., they span maximally about 4%–5% of the
image.

To further test the reliability of the features utilized by models
of different ERFs and visualize them in the image space, we
performed a MIRC analysis. MIRC analysis tests the ability of the
models to categorize images based on localized image patches
by searching for the minimal (i.e. smallest) feature configurations
in the image that are still correctly recognizable by the models.
We searched for the MIRCs of each image in the test dataset of
the Sketchy and Animals datasets, and randomly sampled one-
third of the images in the test dataset of the ImageNet dataset.
For each image, we cropped 75% of the image starting from
each corner so that each image yields 4 descendants (Fig. 4a).
We then upsampled each descendent crop to the original image
size (224 × 224) and used the model to predict its object class.
We repeated the process for each descendant that was correctly
classified by the model until we reached the image that was
correctly identified by the model but had no correctly classified
descendants. This image was declared a MIRC and its level in the
search tree defines its size, i.e. the deeper (higher) the level, the
smaller the image patch.

In Fig. 4b, we show examples of MIRCs generated from three
different images for the zebra class from the three datasets and
their deepest MIRCs that have the highest classification probabil-
ities using the ERF227 and ERF11 models. These examples show
that on the one hand, the ERF227 model was able to classify the
image with high classification probability by relying exclusively
on relatively local features, i.e. the zebra’s face or stripes. On the
other hand, the ERF11 model required larger image patches for
successful classification, especially on the Sketchy dataset. This
seems to indicate that the model with the larger ERF actually
requires a much smaller part of the image to reach the correct
classification as compared to the model with the smaller ERF.

To verify whether this finding holds in general, we computed
the histograms of the deepest MIRC levels for each image for all
datasets and models (Fig. 4c–e). We observed for the base models
a dependence between ERF size and maximal MIRC levels, i.e., the
larger the ERF size of the CNN, the higher its maximal MIRC
levels (i.e. a smaller part of the image was sufficient to classify)
(Fig. 4c). By contrast, networks with smaller ERFs typically cover
a larger part of the image or the entire image for classification.
We found this dependence to be dataset-specific. The difference
between ERF227 and ERF11 was largest for the Sketchy dataset
and smallest for the Animals dataset. The difference between
ERF227 and models with smaller ERFs was reduced after adding
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Fig. 4. (a) Illustration of the MIRC procedure. Each image patch yields four descendants. Each descendant is a 75% crop starting from one of the four image patch
corners. Each green numbered descendant patch corresponds to the red equivalently numbered corner of the parent patch (See Section 2.5). (b) Example MIRCs for
three different images (first row) of the zebra class from three datasets (Sketchy, ImageNet, and Animals) for the models ERF227 (second row) and model ERF11
(third row). The MIRCs shown are the MIRCs with the highest probability (confidence) among the MIRCs of the highest level of that image. (c, d, e) Distribution of
the maximum MIRC level for each correctly classified image in the test dataset for the Sketchy, ImageNet, and Animals datasets, respectively for the base networks
of different ERF sizes (c), after adding the follow-up network without scrambling (d), and after adding the follow-up network with the spatial scrambling of its input
features (e). For the Sketchy and Animals datasets, the histograms are averaged over 5 training iterations. The shaded area represents the standard deviation. The
high frequency of images with MIRCs of level 10 in the Animals dataset is because of the images that belong to the classes that the models usually predict when
the correct class cannot be identified.
the follow-up network without spatially scrambling the features
(Fig. 4d). However, the difference was not affected when a follow-
up network was added after spatially scrambling the features
during training (Fig. 4e). The effect of feature-scrambling on the
distribution of the levels of MIRCs demonstrates the different
strategies CNNs can employ for object recognition. On the one
hand, spatial integration of features without scrambling led the
follow-up networks to be able to construct and be selective
to more reliable coarse-grained features than the base models.
408
Subsequently, these models (base + follow-up) had smaller MIRCs
than their base models. On the other hand, spatially scram-
bling the features before feeding them to the follow-up networks
prevented them from exploiting the spatial relations between
the features to construct more reliable coarse-grained features.
Therefore, the follow-up networks were only able to learn the set
of more fine-grained features that correlates with the target class.
Subsequently, these models retained the relatively large-sized
MIRCs of their base models.
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To visualize the features required for recognizing a certain
class, we obtained latent representations for all MIRCs of all im-
ages of a given class using the model. We then used the k-means
algorithm to group the latent representations into 5 clusters. In
Fig. A.3, we show examples for the horse and eyeglasses classes
of the Sketchy dataset for the model ERF227. For each cluster, we
show the eight MIRCs that are the closest to the cluster center
and originate from distinct images. We observe that each cluster
is composed of MIRCs that represent visually similar features. For
example, we observe clusters representing hair, the side view of
the head, and leg features for the horse class Fig. A.3. For the
eyeglasses class, we can identify a cluster containing double-lined
frames, one for thin frames, and one for reflective glass features.

4. Discussion

Despite the exceptional performance of CNNs in object recog-
nition tasks (He et al., 2016; Krizhevsky et al., 2012), the nature
of their representations is still poorly understood. One aspect of
the learned object representations in CNNs is whether they are
capable of encoding the global shape of objects. Global shape rep-
resentations describe objects in the form of both their diagnostic
features and the spatial arrangement of these features (Baren-
holtz & Tarr, 2006; Biederman, 1987) in contrast to models in
which the presence of these features can serve alone as evidence
for object identity without encoding the spatial relations between
them (Edelman, 1993; Wallis & Rolls, 1997). There exists a wide
range of visual features e.g. contours, textures, colors, or object
parts. We used features of pretrained CNNs of restricted ERFs to
represent the diagnostic local features (Brendel & Bethge, 2019).
By comparing the two conditions of training a follow-up network
on top of these local features either with or without scrambling of
the spatial locations of the features, we could assess the amount
of additional information that CNNs can extract by exploiting the
spatial relations between features. Moreover, by examining the
MIRCs of CNNs, we were able to evaluate the spatial extent of
spatial relations learned by CNNs for object recognition.

It has recently been reported that CNN representations may be
mostly local (Baker et al., 2020; Brendel & Bethge, 2019) and con-
sequently more biased toward object surface regularities (Geirhos
et al., 2019; Jo & Bengio, 2017) than the global form of objects.
This led to the hypothesis that they might not be capable of
representing spatial relationships among features (Baker & Elder,
2022; Baker et al., 2018). In contrast to conclusions drawn in
other works, our analysis allows us to provide the following more
nuanced view: (1) We provide evidence that CNNs are capable of
using relatively long-range spatial relationships for object clas-
sification, especially for textureless datasets (such as sketches).
This finding is supported by several analyses, including a new
scrambling approach in which we perturbed spatial relations be-
tween features within the CNN, and a systematic investigation of
how CNN performance is impacted by different effective receptive
field sizes. (2) We show that CNNs use different strategies for
different datasets, rather than one unified strategy (e.g. pooling
evidence based on local texture). Notably, we found that classifi-
cation strategies can vary even between classes within the same
dataset. These strategies differ in the granularity of the features
used and in the degree of reliance on the spatial relations be-
tween them. This suggests that there is a continuous spectrum of
CNN strategies, ranging from exclusive reliance on local features
(insensitive to spatial relations, found for example for the Animals
dataset and the scrambling-insensitive classes in ImageNet) to a
stronger reliance on spatial relations (for example for the Sketchy
dataset and the scrambling-sensitive classes in ImageNet). (3)
We furthermore show to what extent spatial relations among
features are used by CNNs to perform object recognition tasks. In
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particular, we provide evidence that the spatial arrangement of
features is used only to construct features up to an intermediate
level of granularity. That is, we did not find evidence of spatial
integration in CNNs that allows them to capture the global shape
of the objects in the datasets tested.

One possible explanation for a bias towards local features is
the locality of the convolution operation (Baker et al., 2020).
However, our finding that CNNs learned features of intermediate
granularity for classification agrees with another possible expla-
nation, namely that a bias to local features and not to global
shape is a consequence of the optimization process for object
classification (Malhotra, Dujmović, Hummel, & Bowers, 2022).
Specifically, from an information-theoretic perspective, features
of intermediate granularity are the most informative for image
classification tasks (Ullman, Vidal-Naquet, & Sali, 2002). The idea
is that, on the one hand, very complex features could be highly
diagnostic because their presence gives high confidence about
the class identity. However, on the other hand, these complex
features may not be sufficiently sensitive (i.e. they do not ex-
ist in each exemplar) to be generalizable across exemplars of
an object class. By contrast, very simple features would gen-
eralize better, but in addition would also lead to more false
positives (i.e. lower specificity). Thus, features of intermediate
complexity can provide an optimal trade-off between sensitivity
and specificity (Ullman et al., 2002). Interestingly, it has been
shown that randomly initialized CNNs display an increase in
the representational structure similarity from early to late layers
between different levels of abstraction of visual stimuli (photos,
drawings, and sketches) (Singer, Seeliger, Kietzmann, & Hebart,
2022). However, after training CNNs on ImageNet, they showed
a drop in the representational structure similarity in later layers
after peaking in the intermediate layers which consequently led
to lower classification performance on drawings and sketches.
These results show that the optimization process and not the
CNN architecture steers the representations to be biased to more
local features that are optimal for solving its objective function.
Along the same lines, prepending regular CNNs with a fixed non-
trainable bank of Gabor filters led to better out-of-distribution
generalization to line drawings, silhouettes, robustness to noise
corruptions (Evans, Malhotra, & Bowers, 2022) and adversar-
ial attacks (Dapello, Marques, Schrimpf, Geiger, Cox, & DiCarlo,
2020). These findings further suggest that similar to the sketchy
dataset, limiting the amount of surface information through the
Gabor filters led the CNNs to depend on more coarse-grained
features that were more robust to pixel corruptions and more
generalizable to different visual domains.

The bias towards local features can also be related to the
idea of simplicity bias of neural networks, which states that neu-
ral networks preferentially extract the simplest features needed
to solve a given task (Malhotra, Evans, & Bowers, 2020; Shah,
Tamuly, Raghunathan, Jain, & Netrapalli, 2020). Consistent with
this explanation, our MIRC analysis showed that models with
small ERFs that by design are only capable of extracting simpler
fine-grained features require larger patches of images for correct
object recognition (because they have lower specificity). In con-
trast, models with larger ERFs that are capable of extracting more
coarse-grained and more specific features were able to assign
objects to their corresponding correct classes based on smaller
image patches. Therefore, our results suggest that optimization
for object recognition is unlikely to yield bias to the global shape
of objects, even if the models have the capacity to learn it.
A similar principle may hold for human vision, as it has been
shown that in humans shape bias can be task- and context-
dependent (Cimpian & Markman, 2005; Diesendruck & Bloom,
2003; Yoshida & Smith, 2003).

Our results have major implications for the ongoing discus-
sion concerning shape and texture representation in CNNs, and
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hether certain biases exist. There is little consensus about the
xtent to which CNNs are texture- or shape-biased. Some studies
ave suggested that CNNs are shape-biased (Kubilius et al., 2016;
itter et al., 2017; Tartaglini et al., 2022), whereas others have
uggested that CNNs are strongly texture-biased (Baker & Elder,
022; Baker et al., 2018, 2020; Geirhos et al., 2019). Here, instead
f using a shape-texture dichotomy to understand the nature of
NN representations, we have used the dichotomy of local vs.
lobal features. We argue that this dichotomy is useful for two
easons: (1) It can be quantified without specific interpretations
f what constitutes texture or shape, as we showed with our
eature-scrambling approach. In fact, our approach does not test
pecific assumptions about the nature of the representations be-
ause we do not perform specific image manipulations to provide
vidence for either texture or shape bias. Rather, we manipulate
he network architecture and the spatial arrangement of the
epresentations to determine the locality of the features. (2) It
s flexible in that it allows local features to be both shape-like or
exture-like. This means that the shape-texture dichotomy only
aps partially to the global-local dichotomy. For example, this
ichotomy is able to account for the existence of highly diagnostic
hape features of fine granularity that are highly specific and
ensitive (e.g., the nose of a dog). Indeed, when ranking Ima-
eNet classes according to their scrambling sensitivity, it is not
lways obvious that the scrambling-sensitive classes would map
o shape classes as would be intuitively expected. A possible ex-
lanation for previous inconsistent findings with respect to shape
nd texture is that the respective studies made very specific
anipulations that did not generalize beyond these examples. For
xample, the texture bias observed in CNNs trained on ImageNet
hen tested on shape-texture cue conflict stimuli (Geirhos et al.,
019) was significantly reduced when the background of the
mages was removed (Tartaglini et al., 2022). Our findings suggest
n explanation for these observations, in that the fine-grained
texture) features are less reliable than the more coarse-grained
shape) features, and therefore need to cover a large portion of
he image to be diagnostic. Removing them from the background
educed their predictive power and led CNNs to be more shape-
iased (Tartaglini et al., 2022) (on this specific test set). Another
xample is that many studies used silhouette stimuli to test shape
ias in CNNs (Baker & Elder, 2022; Geirhos et al., 2019; Kubilius
t al., 2016) and reached different conclusions. However, they
sed different datasets containing different classes. According to
ur results, this is expected since CNNs employ different classi-
ication strategies per object class and consequently will lead to
ariable classification performances on silhouette stimuli if the
lasses are different.
Given that CNN models are currently used as models of brain

ctivity, specifically for the ventral stream of the visual system,
hich is believed to be responsible for object recognition (Cadieu
t al., 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;
amins & DiCarlo, 2016; Yamins et al., 2014), it is important
o understand the representations they develop and how they
eviate from the brain. Although humans rely mostly on com-
lex shape cues for object recognition (Landau et al., 1988),
ecent evidence has shown that the categorical organization of
he entire ventral stream can be explained by mid-level features
hat do not include intact objects and do not convey any se-
antic information (Ayzenberg & Behrmann, 2022; Henderson,
arr, & Wehbe, 2023; Jagadeesh & Gardner, 2022; Long, Yu, &
onkle, 2018). Moreover, albeit it is likely that humans rely
n more than one mechanism to object recognition (Peissig &
arr, 2007; Smith, 2009), some of these mechanisms might only
epend on patchy diagnostic local features (Ullman, Sali, & Vidal-
aquet, 2001) especially given the fact that humans are capable
f recognizing familiar objects from local image patches (Ull-
an et al., 2016) and these image patches evoke responses in
410
higher-order category-selective visual areas (Holzinger, Ullman,
Harari, Behrmann, & Avidan, 2019). Furthermore, it has been
reported that human children’s ability to recognize objects based
on their global shape begins to develop only at 18–24 months
of age (Pereira & Smith, 2009; Yee, Jones, & Smith, 2012). Before
that, they are capable of recognizing objects based solely on
their local features. In general, it has been shown that catego-
rization of objects in humans relies on combinations of different
perceptual and high-level semantic mental object representa-
tions constructed to model human similarity judgments (Hebart,
Zheng, Pereira, & Baker, 2020). These results bear a resemblance
to our findings of the heterogeneity of CNNs classification strate-
gies across different datasets and different classes in ImageNet.
The heterogeneity of CNN classification strategies across datasets
also agrees with the observations in the literature that CNNs
trained for object recognition rely on higher and wider distribu-
tions of spatial frequencies than CNNs trained on face recognition
and consequently exhibited less robustness to blurring (Jang &
Tong, 2021) and it is believed that humans recognize faces holis-
tically as a whole in contrast to objects that can be recognized as a
set of independent features (Grand, Mondloch, Maurer, & Brent,
2004; Tanaka & Simonyi, 2016). Our results, therefore, provide
additional evidence for the hypothesis that features of intermedi-
ate granularity which are optimal for object recognition (Ullman
et al., 2001, 2002) could be shared between CNNs and the ventral
stream of the visual cortex (Henderson et al., 2023; Jagadeesh &
Gardner, 2022; Long et al., 2018).

In summary, we showed here that although CNNs do not
exploit global shape representations to perform object recogni-
tion, they can learn to utilize distributed feature constellations if
this is required for solving the object classification task at hand.
Looking ahead, we hypothesize that developing new tasks and
objective functions to train CNNs instead of object recognition
might lead to biases more aligned with humans. Reinforcement
learning (RL) is a candidate objective function because it has
been suggested that manual exploration may be a key factor
in the development of shape bias in children (Pereira, James,
Jones, & Smith, 2010; Soska & Johnson, 2008) and it has been
shown that action planning using RL leads to divergent represen-
tation than supervised and unsupervised learning (Lindsay, Merel,
Mrsic-Flogel, & Sahani, 2021). Moreover, neural agents that are
trained to communicate efficiently i.e. be optimal on the trade-
off between informativity and complexity of the messages used
were shown to exhibit shape bias (Portelance, Frank, Jurafsky,
Sordoni, & Laroche, 2021). Future investigations of such novel
objective functions can not only lead to more effective biases and
representations in such networks but also shed more light on how
the observed human biases emerge.

5. Conclusions

We provide evidence that CNNs have the capacity to learn the
spatial relations between features for object recognition. Specif-
ically, the spatial arrangement of features is exploited by CNNs
to build more coarse-grained features that are more reliable for
object classification. Notably, the capacity of CNNs to learn the
spatial arrangement of features varies according to the dataset
and according to the class within the same dataset. We noticed,
however, that CNNs employ the spatial configuration of features
to build more coarse-grained features only up to an intermedi-
ate degree of granularity and do not exploit the global shape
of objects. The reason for this is that features of intermediate
granularity are more likely to be optimal in the trade-off between
sensitivity and specificity i.e. generalizable and yet reliable.
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Fig. A.1. A control experiment in which we trained a wide model that has a small ERF (11 pixels), while matching the number of parameters of the model with
the largest ERF (227 pixels). The numbers shown in the figure are the ERF of the corresponding models in pixels.
Fig. A.2. (a): Classification accuracy for CNN models of different ERFs under different training conditions of the feature-scrambling approach (Fig. 1d). (b): Classification
ccuracy of the base models with spatial aggregation without scrambling under different testing conditions (global and local scrambling).
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Appendix

Controlling for the number of parameters of the mod-
els. We performed a control analysis to verify that the perfor-
mance differences observed in our study among CNNs of different
ERFs can be attributed indeed to their ERFs and not the number
of model parameters. We trained a wider model of small ERF
(11 × 11 pixels) but with matched the number of parameters
to the model with the largest ERF (227 × 227 pixels). For both
the Animals and Sketchy datasets, we observed a slight increase
in the classification performance of the models by increasing
the number of parameters. However, a small ERF model with a
large number of parameters did not reach the performance of the
model with the largest ERF, indicating the importance of the ERF
to the models’ performance. Furthermore, for the Sketchy dataset,
the performance of the wider model with ERF = 11 × 11 did
not even reach the performance of the regular model with ERF
= 15 × 15 pixels. This is in line with our other results show-
ing the reliance of the performance of CNNs on their ERF size,
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Fig. A.3. Clustering of all the MIRCs of the horse (a) and eyeglasses (b) classes (Sketchy dataset) in the representational space of the model ERF227 Each panel shows
the eight closest MIRCs, generated from unique test images, in the representational space to the center of one cluster.
especially for the Sketchy dataset. Note that in the manuscript,
we included several additional controls, e.g. scrambling during
training, a 1 × 1 follow-up network, and local scrambling, which
further show the importance of ERF size.
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