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In our time- and angle-resolved photoemission spectroscopy (TrARPES) measurements

(see Appendix A), we have observed evidence for the Floquet transient electronic renormal-

ization near the edge of the valence band in black phosphorus upon below-gap pumping,

which shows strong pump polarization dependence (see Appendix B). We exclude the con-

tribution of electron-hole pairs in the band renormalization (see Appendix C). We construct

a light-induced Floquet effective k · p Hamiltonian ĤF−AC
Γ (k∥) around the Γ point in black

phosphorus based on the Floquet theory (see Appendix D and E) and give some qualita-

tive explanations of the momentum-dependent renormalization (see Appendix F). When the

pumping energy is around 160 meV, the energy shift ∆E is proportional to the below-gap

pump fluence (see Appendix G). We apply the Löwdin Partitioning approach to perform a

perturbative analysis for the evolution of ∆E with the change of pumping photon energies

in the non-resonant conditions (see Appendix H). Moreover, the origin of the unresolved

calculated anti-crossing gap is discussed in Appendix I.
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Appendix A: Methods

Single crystal growth

High quality black phosphorus single crystals were synthesized by the tin-iodine-assisted

chemical vapor transport reaction. The red phosphorus lump (Alfa Aesar, 99.999%), tin

grains (Aladdin, 99.99%), and iodine crystals (Alfa Aesar, 99.99%) were mixed in a vacuum-

sealed silica ampoule. The ampoule was heated to 400℃ within 4 hours, then slowly heated

to 600℃ within 10 hours and maintained at 600℃ for 1 day. After the reaction, the am-

poule was slowly cooled to 350℃ from 600℃ at a cooling rate of 10℃/hour. Finally, black

phosphorus single crystals were obtained after cooling to room temperature.

TrARPES measurements

The TrARPES measurements are performed using a home-bulit TrARPES systems based

on a Ti:sapphire laser amplifier with center wavelength of 800 nm, pulse energy of 1.4 mJ,

pulse duration of 35 fs and repetition rate of 10 kHz. The laser is split into two beams

to generate the pump and probe pulses respectively. The MIR pump pulses are generated

using the cascade optical parametric amplifier (OPA) and non-collinear differential frequency

generation (NDFG). The probe pulses with photon energy of 6.2 eV are generated by the

fourth harmonics generation process using three BBO crystals. The samples were cleaved

in ultrahigh vacuum chamber with base pressure better than 5 ×10−11 Torr and measured

at a temperature of 80 K. The TrARPES spectra were mainly measured along AC direction

with pump laser polarized also along AC direction except data shown in Fig. 3, which were

measured along the direction at 30◦ from the AC direction with p-pol. pump for observing

stronger sidebands and tracing the light field in time domain.

First-principles Calculation

In this study, we utilized the Vienna Ab initio Simulation Package (VASP) [1] to per-

form density functional theory (DFT) calculations in order to simulate the electronic struc-

ture of black phosphorus in the absence of laser pumping. To achieve this, we employed

the projector-augmented wave (PAW) pseudopotential [2] and the Perdew-Burke-Ernzerhof

(PBE) type exchange-correlation functional [3], using a plane-wave basis set with an energy

cutoff of 400 eV. Sampling of the Γ-centered k -point meshes was performed as 12× 12× 12

in the Brillouin zone (BZ) of the primitive cell. We relaxed the atomic positions using a

force criterion of 0.01 eV/Å and applied a convergence condition of 10−6 eV for the elec-
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tronic self-consistent loop. The van der Waals (vdW) corrections [4, 5] were incorporated

during both lattice relaxation and self-consistent electronic calculations. To calculate the

direct band gap at the Z point, we employed the Heyd-Scuseria-Ernzerhof (HSE) hybrid

functional [6], which gave a value of 0.33 eV consistent with our TrARPES experimental

observations. We also constructed the tight-binding Hamiltonian ĤTB(k) from the ab initio

calculations using the Wannier90 code [7–9].

Floquet Hamiltonian

In our TrARPES experiments, we employed a linear polarized probe pulse with a duration

of ∼ 100 fs, approximately equivalent to four optical cycles of the pump pulse [10] at photon

energy of 160 meV. During our simulations, we presumed that a non-equilibrium Floquet

band could be established within a few optical cycles, which has been previously supported

by calculations reliant on the time-dependent DFT [11, 12]. As a consequence, the conditions

for the application of the Floquet theory to evaluate the band structures of black phosphorus

under such laser pumping were deemed satisfactory.

In this work, we derived a time-dependent tight-binding Hamiltonian utilizing the Peierls

substitution ĤTB(k) → ĤTB(k + e
ℏA(t)), which employed the vector potential A(t) =

(A0 sinωt, 0, 0) or (0, A0 sinωt, 0) of the pumping laser with the frequency ω = 2π/T . The

electric field strength are adjusted appropriately to make the calculated results comparable

with the experimental data whose values are 7.1× 107 V/m in Fig. 2, 4 and 3.4× 107 V/m

in Fig. 3.

By applying the Floquet theory, the time-dependent Schrödinger equation ĤTB(k, t)ΨF
γ (t) =

i ∂
∂t
ΨF

γ (t) with a time-periodic Hamiltonian ĤTB(k, t) = ĤTB(k, t + T ) has the following

form of the wavefunction

ΨF
γ (t) = e−iϵγtΦγ(t) (1)

where ϵγ is known as Floquet quasienergy and Φγ(t) = Φγ(t + T ) is the time-periodic

function. We then expanded Φγ(t) in Eq.(1) with respect to a complete set {um
γ } as

Φγ(t) =
∞∑

m=−∞

e−imωtum
γ (2)

then inserted Eq.(1) and Eq.(2) into the original Schrödinger equation, integrated against

einΩt on both sides of the equation and obtained the eigenvalue equation∑
m

ĤFTB
n,m (k)um

γ = ϵγu
n
γ (3)
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where ĤFTB
n,m (k) = 1

T

∫ T

0
dtĤTB(k, t)ei(n−m)ωt−mωδmn. The index γ labels eigenstates andm,

n are the Fourier mode indices. Herein, the Floquet theory transforms the time-dependent

Schrödinger equation into a static eigenvalue equation within an extended Hilbert space. We

can diagonalize ĤFTB(k) to obtain the Floquet band structure of the black phosphorus under

the laser pumping, and finally the evolution of the wavefunction in the black phosphorus

can be expanded by Floquet states as Ψ(t) =
∑

γ CγΨ
F
γ (t).

Appendix B: Pump polarization dependence of Floquet band renormalization

The impact of below-gap pumping on the Floquet band renormalization in black phospho-

rus is found to display a polarization dependence similar to that observed in near-resonance

pumping. Specifically, the pump laser which is polarized along armchair (AC) direction can

induce stronger renormalization. As shown in Fig. S1b,c, the below-gap pumping laser can

induce a remarkable band renormalization at the valence band edge, which is also supported

by the Floquet tight-binding simulations (Fig. S1d). However, as for the pumping laser

with the polarization along the zigzag (ZZ) direction, the renormalization effect is strongly

reduced (Fig. S1f-h). The observed pump polarization dependence for the band renormaliza-

tion is linked to the pseudospin degree of freedom in black phosphorus [13] and summarized

in Fig. S1i,j.

In the experiment, the pump polarization is changed while fixing the measurement direc-

tion along AC direction, as schematically illustrated in Fig. S1a,e. For these two cases, the

transmitted electric field is calculated as follows. The refractive index n is evaluated to be

3.4 from the reflectance at the photon energy of 160 meV ( 30%) [14] for both polarizations

along AC and ZZ directions. According to the Fresnel equation with the incident angle of

54◦, the transmissivity of the electronic field for AC pump (s-pol.) and ZZ pump (p-pol.)

are ts = 0.3 and tp = 0.4 respectively, so the transmitted electric field for ZZ pump is even

larger than that of AC pump. Therefore, the observed stronger renormalization for AC

pump is not caused by the transmitted electric field, but rather it is intrinsically linked to

the selection rule instead of the change of reflection. Moreover, owing to the out-of-plane

electric field component for p − pol. pump polarization, the dressed electronic states also

have contributions from the Volkov states which are light-dressed photoemission final states,

and stronger sidebands are observed due to the interference between Floquet and Volkov
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states [15]. Nevertheless, this does not change the conclusion that the light-induced change

in the electronic structure is caused by Floquet band engineering, because Volkov states do

not lead to band renormalization.
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FIG. S1. Pump polarization dependence of Floquet band renormalization a, Schematics

for experimental geometry of AC pump. b, TrARPES dispersion of black phosphorus along AC

direction with the polarization along the AC direction at the delay time of ∆t = 0. The pump

photon energy is 160 meV and the pump fluence is 500 µJ/cm2. c, The extracted dispersions at

∆t = 0 ps (red line) and corresponding data at ∆t = -1 ps (black line). d, Calculated dispersions

based on Floquet tight-binding simulations at ∆t = 0 ps (red line) and ∆t = -1 ps (black line).

e-h, Similar results as a-c but with the polarization of pumping laser along the ZZ direction.

i,j, Schematic summary of the polarization dependence of Floquet band engineering on below-gap

pumping.

Appendix C: Suppressed optical absorption by below-gap pumping

First, from the optical absorption spectra, the optical absorption of black phosphorus

is largely suppressed for below-gap photoexcitation, especially at 160 meV [16]. Secondly,

analysis of the TrARPES shows that population of the CB is negligible upon below-gap
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pumping. For above-gap pumping with ℏω=370 meV, CB is clearly observed (pointed by

the red arrow in Fig. S2e), suggesting that CB is populated upon above-gap pumping as

expected. When decreasing the pump photon energy to below-gap pumping region, the

CB intensity is strongly reduced (Fig. S2b,c, see also EDC analysis in Fig. S2f). Both of

these suggest that the light-induced change upon below-gap pumping is not caused by the

electron-hole pair creation.
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FIG. S2. Population of CB for below-gap and above-gap pumping a TrARPES spectra

at the delay time of ∆t = -1 ps. b-e TrARPES spectra with different pump photon energies at

the delay time of ∆t = 1 ps. f EDCs at the Γ point extracted from the data shown in b-e. The

pump polarization is along the AC direction (s-pol.) and the probe polarization is along the ZZ

direction.

Appendix D: Effective k · p Hamiltonian around the Γ point in equilibrium

In black phosphorus, the optical absorption between the valence band maximum (VBM)

and conduction band minimum (CBM) only occurs for the pumping laser along the AC

direction [13]. This leads to the dipole matrix elements γ1 and γ2 taking the form:

γ1 = ⟨c|AC|v⟩ ≠ 0

γ2 = ⟨c|ZZ|v⟩ = 0
(4)

where |v⟩ and |c⟩ represent the electronic states at VBM and CBM around the Γ point.

According to Refs. [17, 18], the effective k · p Hamiltonian around the Γ point in the

cleaved plane of black phosphorus takes a form similar to that of monolayer black phospho-
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rus:

ĤΓ(k∥) =

Ec + ηck
2
y + νck

2
x γ1ky

γ∗
1ky Ev + ηvk

2
y + νvk

2
x

 (5)

Here, kx and ky are the momenta along the ZZ and AC directions, Ec = 0.165 eV and

Ev = −0.165 eV are the energy levels for the CBM and VBM at the Γ point, and ηc, νc, ηv

and νv are the band parameters with values of -2.519 eV·Å2
, 3.225 eV·Å2

, -1.512 eV·Å2
and

-2.982 eV·Å2
, respectively. The module value of the optical matrix element γ1 = ⟨c|AC|v⟩

is 3.691 eV·Å and γ2 = ⟨c|ZZ|v⟩ = 0.

Appendix E: The linear polarized pumping laser with AC polarization

We consider a linearly polarized pumping laser with oscillation along the AC direction

and apply the Peierls substitution, ky → ky + eA cosωt/ℏ, to obtain the time-dependent

effective k · p Hamiltonian ĤΓ(t,k∥) as

ĤΓ(t,k∥) =

Ec + ηck
2
y + νck

2
x + 2eηckyA cosωt/ℏ γ1ky + eγ1A cosωt/ℏ

γ∗
1ky + eγ∗

1A cosωt/ℏ Ev + ηvk
2
y + νvk

2
x + 2eηvkyA cosωt/ℏ


(6)

where e is the charge of electron, ℏ is the reduced Planck constant and A denotes the

vector potential of the pumping laser calculated via E0/ω. We set the electric field E0 to

7.1 × 107 V/m and the photon energy ℏω to 160 meV for the following calculations. Then

the Floquet theory is employed to obtain the Floquet matrix elements
[
ĤF−AC

Γ (k∥)
]
nm

as

[
ĤF−AC

Γ (k∥)
]
nm

=
1

T

∫ T

0

dtĤΓ(t, k∥)e
i(n−m)ωt −mℏωδmn

=

(
(Ec+ηck2y+νck2x−mℏω)δmn+

eηckyE0
ℏω (δm,n+1+δm,n−1) γ1kyδmn+

eγ1E0
2ℏω (δm,n+1+δm,n−1)

γ∗
1kyδmn+

eγ∗1E0
2ℏω (δm,n+1+δm,n−1) (Ev+ηvk2y+νvk2x−mℏω)δmn+

eηvkyE0
ℏω (δm,n+1+δm,n−1)

)
(7)

where T = 2π/ω is an optical cycle of the pumping laser.

Herein, we just consider the lowest-order contributions of light-matter interaction within

the framework of Floquet theory. By truncating the time-independent Floquet effective k ·p
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Hamiltonian ĤF−AC
Γ (k∥) in Eq. 7 to m,n = {−1, 0, 1}, we obtain its form as

ĤF−AC
Γ (k∥)

=


Ec+ηck2y+νck2x+ℏω γ1ky

eηckyE0
ℏω

eγ1E0
2ℏω 0 0

γ∗
1ky Ev+ηvk2y+νvk2x+ℏω eγ∗1E0

2ℏω
eηvkyE0

ℏω 0 0
eηckyE0

ℏω
eγ1E0
2ℏω Ec+ηck2y+νck2x γ1ky

eηckyE0
ℏω

eγ1E0
2ℏω

eγ∗1E0
2ℏω

eηvkyE0
ℏω γ∗

1ky Ev+ηvk2y+νvk2x
eγ∗1E0
2ℏω

eηvkyE0
ℏω

0 0
eηckyE0

ℏω
eγ1E0
2ℏω Ec+ηck2y+νck2x−ℏω γ1ky

0 0
eγ∗1E0
2ℏω

eηvkyE0
ℏω γ∗

1ky Ev+ηvk2y+νvk2x−ℏω


(8)

Moreover, to obtain Floquet bands along the AC direction (kx = 0) and ZZ direction

(ky = 0), we perform numerical simulations based on the Floquet effective k · p Hamiltonian

ĤF−AC
Γ (k∥) in Eq. 8 and the light-induced Floquet transient renormalization is shown in

Fig. S3. The calculated results are consistent with those obtained from the Floquet tight-

binding model.

a b

FIG. S3. Theoretical calculation of Floquet band structure. The Floquet band struc-

tures along (a) AC direction and (b) ZZ direction from the Floquet effective k · p Hamiltonian

ĤF−AC
Γ (k∥) in Eq. 8 are shown in black lines. The pump polarization is along the AC direction

and the Fermi level is set as zero.
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Appendix F: Insight of the momentum-dependent renormalization

In order to give some qualitative explanations of the momentum-dependent renormal-

ization upon below-gap pumping in our experiment, we first calculate the energy shift ∆E

for the valence band edge around Γ point along the AC direction as shown in Fig. S4. We

can clearly observe that ∆E strongly depends on the momentum. Generally speaking, this

phenomenon could be roughly understood based on the perturbation theory. For semicon-

ductors such as black phosphorous, the band dispersions are parabolic for the conduction

band (CB) edge and valence band (VB) edge. Away from the band minimum of a direct-gap

semiconductor (e.g., Γ point in black phosphorous), the energy difference between CB and

VB, Eg(k) = Ec(k)−Ev(k) = Eg + (mc −mv)k
2 becomes larger, where Eg is the band gap

at the Γ point, mc(v) is the effective mass for CB and VB edges, and k is the momentum.

Based on the perturbation theory, the energy renormalization ∆E(k) should be inversely

proportional to Eg(k) approximately. Therefore, away from the Γ point, Eg(k) becomes

larger and ∆E(k) becomes smaller.

-0.1 0.1
ky(Å 1)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E 
(e

V)

FIG. S4. The energy shift ∆E for the valence band edge around Γ point. Herein, we fix

E0 = 7.1× 107 V/m and ℏω = 0.16 eV. The largest band shift can be observed at the Γ point.

Moreover, the off-diagonal block terms of the Floquet effective Hamiltonian in Eq. 8,

which correspond to the light-matter interactions, are ky-dependent and highly anisotropic
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(see γ1-dependent terms). Considering that the band shift ∆E results from these off-diagonal

terms, we can conclude that the orbital characters of the valence and conduction bands

together with the crystal symmetry in black phosphorous strongly affect the momentum-

dependent band renormalization in black phosphorous.

Appendix G: Pump fluence dependence of Floquet band renormalization

The TrARPES spectra at ∆t = 0 with different pump fluence are shown in Fig. S5a-

h. Extracting the dispersions and energy distribution curves (EDCs) at the Γ point, we

can observe that the band renormalization becomes larger with the higher pump fluence

(Fig. S5i, j). Furthermore, the energy shift ∆E of Floquet band renormalization for valence

band edge at the Γ point scales linearly with the pump fluence shows overall consistent with

the linear dependence (the red dashed line in Fig. S5k) as predicated by the perturbative

analysis for ∆E with low energy and small pump fluence in Appendix H.

Appendix H: Löwdin Partitioning for Floquet effective k ·p Hamiltonian ĤF−AC
Γ (k∥)

In this part, we focus on the evolution of the energy shift ∆E at the Γ point with the

change of photon energy ℏω upon below-gap pumping, where ∆E is defined as the difference

between the VBM before and after laser pumping. The Floquet effective k · p Hamiltonian

ĤF−AC
Γ at the Γ point under a AC pumping has the form

ĤF−AC
Γ =



Ev + ℏω eγ∗
1E0

2ℏω 0 0 0 0

eγ1E0

2ℏω Ec 0 0 eγ1E0

2ℏω 0

0 0 Ev
eγ∗

1E0

2ℏω 0
eγ∗

1E0

2ℏω

0 0 eγ1E0

2ℏω Ec − ℏω 0 0

0
eγ∗

1E0

2ℏω 0 0 Ev − ℏω 0

0 0 eγ1E0

2ℏω 0 0 Ec + ℏω


=

 Ĥ4×4
Γ V

V † Ĥ2×2

 (9)

This Hamiltonian is derived by rearranging the order of matrix elements of ĤF−AC
Γ in Eq. 8

with kx = ky = 0. Then we focus on the 4 × 4 Hamiltonian Ĥ4×4
Γ in the upper block of

ĤF−AC
Γ in Eq. 9. Using the Löwdin perturbation [19] up to the second-order correction, we
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FIG. S5. Pump fluence dependence of Floquet band renormalization a-h, the TrARPES

spectra with different pump fluence at the delay time of ∆t = 0 with the pump photon energy of

160 meV. The red dashed lines and gray dotted lines indicate the extracted dispersions at ∆t = 0

ps and the energy level of the Γ point at ∆t = -1 ps. i, j, Extracted dispersions and EDCs at the

Γ point using the data in a-h. k, Extracted the energy shift of band renormalization as a function

of pump fluence. The error bars of the energy shift ∆E are extracted from the fitting results and

the horizontal error bar of the pump fluence is defined by the actual fluctuation in the experiment

with the ratio of 10%.

obtain the light-dressed effective Hamiltonian for Ĥ4×4
Γ as


Ev + ℏω eγ∗

1E0

2ℏω 0 0

eγ1E0

2ℏω Ec +
e2|γ1|2E2

0

4ℏ2ω2(ℏω+Eg)
0 0

0 0 Ev − e2|γ1|2E2
0

4ℏ2ω2(ℏω+Eg)

eγ∗
1E0

2ℏω

0 0 eγ1E0

2ℏω Ec − ℏω

 (10)
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where Eg = Ec − Ev = 0.33 eV is the band gap of black phosphorus in equilibrium. Diago-

nalizing the Hamiltonian in Eq. 10, we obtain the energy shift ∆E as

∆E =

√
(e2|γ1|2E2

0)
2
+
(
4ℏ2ω2

(
E2

g − ℏ2ω2
))2

+ 8e2|γ1|2E2
0ℏ2ω2(Eg + ℏω)(3Eg + ℏω)

8ℏ2ω2(Eg + ℏω)

+
e2|γ1|2E2

0 + 4ℏ2ω2(ℏ2ω2 − E2
g )

8ℏ2ω2(Eg + ℏω)

(11)

Then we diagonalize the Hamiltonian ĤF−AC
Γ (see Eq. 9) with different pumping photon

energies and compare with ∆E obtained from Eq. 11. As shown in Fig. S6, these results are

consistent, providing evidence for the validity of the Löwdin partitioning approach.

H

Γ

F-AC
● Löwdin partitioning

0.16 0.2 0.25 0.33
0.02

0.03

0.04

0.05

0.06

ℏω (eV)

Δ
Ε
(e
V
)

FIG. S6. Comparison of the Löwdin partitioning approach for the energy shift. Blue

line for ∆E from the numerical diagonalization of the Hamiltonian ĤF−AC
Γ and dotted red line for

∆E from the Löwdin partitioning approach.

To facilitate the subsequent perturbative analysis, we can make an order of magnitude

estimation of terms shown in Eq. 11. In the setting of our experiments, e2|γ1|2E2
0 ≃ 6.87×

10−4 (eV )4 is estimated to be much small than
√

8e2|γ1|2E2
0ℏ2ω2(Eg + ℏω)(3Eg + ℏω) and

4ℏ2ω2(E2
g − ℏ2ω2) around 10−3 (eV )4. So we can simplify ∆E in Eq. 11 by neglecting the

13



term e2|γ1|2E2
0 and obtain the energy shift ∆E as

∆E ≃

√(
4ℏ2ω2

(
E2

g − ℏ2ω2
))2

+ 8e2|γ1|2E2
0ℏ2ω2(Eg + ℏω)(3Eg + ℏω) + 4ℏ2ω2(ℏ2ω2 − E2

g )

8ℏ2ω2(Eg + ℏω)

=

√
4ℏ2ω2

(
E2

g − ℏ2ω2
)2

+ 2e2|γ1|2E2
0(Eg + ℏω)(3Eg + ℏω) + 2ℏω(ℏ2ω2 − E2

g )

4ℏω(Eg + ℏω)

=

√
1

4
(Eg − ℏω)2 +

e2|γ1|2E2
0(3Eg + ℏω)

8ℏ2ω2(Eg + ℏω)
+

1

2
(ℏω − Eg)

(12)

When the photon energy is small (ℏω ≪ Eg), we can apply Eg

E2
g−ℏ2ω2 ≃ 1

Eg−ℏω and 1
Eg−ℏω ≃

1
Eg
(1 + ℏω

Eg
). So the behavior of ∆E can be estimated as

∆E ≃
√

1

4
(Eg − ℏω)2 +

e2|γ1|2E2
0(3Eg+ℏω)

8ℏ2ω2(Eg+ℏω)

Eg − ℏω
+

1

2
(ℏω − Eg)

=
e2|γ1|2E2

0

8ℏ2ω2 (Eg − ℏω)
+

e2|γ1|2E2
0Eg

4ℏ2ω2
(
E2

g − ℏ2ω2
)

≃ e2|γ1|2E2
0

8ℏ2ω2 (Eg − ℏω)
+

e2|γ1|2E2
0

4ℏ2ω2 (Eg − ℏω)

≃ 3e2|γ1|2E2
0

8ℏωEg

(
1

ℏω
+

1

Eg

)
(13)

As depicted by the dashed green line in Fig. S7, a decrease in photon energy ℏω results

in a corresponding increase in the magnitude of the energy shift ∆E.

When the photon energy is approaching to band gap (ℏω → Eg), we estimate the behavior

of ∆E as

∆E ≃ 1

4

(
ℏω(ℏω − Eg)

2

e|γ1|E0

+
2e|γ1|E0

ℏω
+ 2(ℏω − Eg)

)
(14)

As shown by the dashed red line in Fig. S7, an increase in photon energy ℏω closed to the

band gap Eg results in an increase in the magnitude of the energy shift ∆E.
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Löwdin partitioning ℏω≪Eg ℏω→Eg

0.16 0.2 0.25 0.33
0.02

0.03

0.04

0.05

0.06

ℏω (eV)

Δ
E
(e
V
)

FIG. S7. Comparison of perturbative results for the energy shift. The blue curve for ∆E

derived from the Löwdin partitioning approach, dashed green (red) line for the perturbative results

for ∆E as the photon energy approaches 0.16 eV (the gap Eg).

Appendix I: Unresolved anti-crossing gap

In
te

ns
ity

 (a
. u

.)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0
E-EF (eV)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0
E-EF (eV)

-0.6 -0.4 -0.2 0.0
E-EF (eV)

25 meV 80 meV60 meV

FIG. S8. Simulated EDC with different splitting sizes of 25, 60, and 80 meV. The FWHM of a

single Lorentz peak (red and blue curves) is set to 100 meV similar to the experimental results.

The splitting of 25 meV is too small to resolve.

We note that the anti-crossing gaps off the Γ point show up in the calculation in

Fig. 4g,h,i,k of the main text, which are too small to be resolved in our TrARPES mea-
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surement due to the band broadening (∼100 meV) from the sample and instrumentation

limitation. As shown in the simulated EDC in Fig. S8, a separation of two peaks by 25

meV is too subtle to be resolved experimentally, when the peak width is 100 meV.
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