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ABSTRACT
Some analyses of the third gravitational wave catalogue released by the LIGO-Virgo-KAGRA collaboration (LVK) suggest an
excess of black holes around 15 − 20𝑀�. In order to investigate this feature, we introduce two flexible population models, a
semi-parametric one and a non-parametric one. Both make use of reversible jump Markov chain Monte-Carlo to optimise their
complexity. We also illustrate how the latter can be used to efficiently perform model selection. Our parametric model broadly
agrees with the fiducial analysis of the LVK, but finds a peak of events at slightly larger masses. Our non-parametric model
shows this same displacement. Moreover, it also suggests the existence of an excess of black holes around 20𝑀�. We assess the
robustness of this prediction by performing mock injections and running simplified hierarchical analyses on those (i.e. without
selection effects and observational uncertainties). We estimate that such a feature might be due to statistical fluctuations, given
the small number of events observed so far, with a 5% probability. We estimate that with a few hundreds of observations, as
expected for O4, our non-parametric model will be able to robustly determine the presence of this excess. It will then allow for
an efficient agnostic inference of the properties of black holes.
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1 INTRODUCTION

The total number of gravitational wave (GW) observations from
compact binaries by the LIGO-Virgo-KAGRA (LVK) collaboration
Aasi et al. (2015); Acernese et al. (2015); Akutsu et al. (2021) now
adds up to 90 Abbott et al. (2021a). Together they form the third GW
transients catalogue (GWTC-3) released by the LVK. As the number
of observation increases, we become able to infer the astrophysical
properties of GW sources not only individually but as a population.
Different astrophysical models for the formation and evolution mech-
anisms of GW sources predict different distributions of parameters
such as masses, spins or redshifts Benacquista & Downing (2013);
Postnov & Yungelson (2014); de Mink & Mandel (2016); Samsing
& Ramirez-Ruiz (2017); Gerosa et al. (2018); Tagawa et al. (2020);
Sedda et al. (2023); Giacobbo & Mapelli (2018); Wiktorowicz et al.
(2019); van Son et al. (2022); Romero-Shaw et al. (2021); Mapelli
(2021); Bouffanais et al. (2021); Inayoshi et al. (2017). Thus, infer-
ring the population of GW sources from data is a powerful tool to
constrain astrophysical models.
Focusing on binary black holes (BBHs), one of the main results

of population analyses is the growing evidence for an excess of black
holes (BHs) around 35𝑀� Abbott et al. (2021b, 2023); Tiwari (2021,
2022, 2023); Edelman et al. (2022a); Farah et al. (2023); Sadiq et al.
(2022); Ruhe et al. (2022); Callister & Farr (2023). This excess
can be interpreted as a "pile-up" of BHs before the upper mass gap
Woosley (2017);Woosley et al. (2002); Farmer et al. (2019); Talbot&

★ E-mail: atoubiana@aei.mpg.de

Thrane (2018), although it happens at lower masses than predicted by
current astrophysical models Belczynski et al. (2016);Marchant et al.
(2018); Renzo et al. (2020); Farag et al. (2022). Moreover, first hints
of correlations between parameters have started to appear Hoy et al.
(2022); Callister et al. (2021); Fishbach et al. (2021); Adamcewicz
& Thrane (2022); Bavera et al. (2022); Biscoveanu et al. (2022), e.g.,
between the effective spin and the mass ratio or between redshift
and spins. Such correlations carry the signature of the astrophysical
channels through which the binaries form. However, some of these
were not anticipated by astrophysical models, illustrating once more
how population analysis can shed light on astrophysics.
Another interesting feature is a possible excess of BHs around

15 − 20𝑀� Abbott et al. (2023); Edelman et al. (2022a); Tiwari
(2022, 2023). It has been pointed out that it could be the signature of
second generationmergers Tiwari & Fairhurst (2021); Tiwari (2022);
Mahapatra et al. (2022). However, it is statistically less significant
than the feature at around 35𝑀� Farah et al. (2023); Tiwari (2023)
and has been found by only a few of the analyses performed on
GWTC-3. Assessing the significance of this excess was the first
motivation for our study.
From a Bayesian perspective, the goal of population inference

Mandel et al. (2019); Vitale et al. (2020) is to obtain the posterior
distribution on population hyperparameters (denoted Λ) assuming
a population prior for the individual event parameters 𝑝(Θ|Λ). The
event parameters of interest, Θ, are typically the masses, the spins
and the redshift of the source. Broadly speaking, we can identify
three main approaches, differing in how 𝑝(Θ|Λ) is modelled:

• astrophysical: the distribution of parameters is obtained from as-

© 2023 The Authors

ar
X

iv
:2

30
5.

08
90

9v
2 

 [
gr

-q
c]

  2
6 

Ju
l 2

02
3
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trophysical simulations. These simulations typically output samples
from the population prior (i.e., events).

• parametric: the population prior is written as a combination of
simple functions, which depend on hyperparameters that are inferred
from the data.

• non-parametric: a more complicated and flexible functional
form for the population prior is assumed, with a variable number
of degrees of freedom. The parameters of the model have (in gen-
eral) no physical meaning.

In the first approach, the hyperparameters have a clear astrophysi-
cal meaning. They are related to the parameters of the astrophysical
simulations, for example the efficiency of energy transfer from the
binary to the gas during the common envelope stage, or the branch-
ing fraction between binaries formed in isolation and those formed
dynamically, or parameters characterising properties of primordial
BHs Zevin et al. (2021); Wong et al. (2021); Franciolini et al. (2022);
Mould et al. (2022). Moreover, such an approach naturally incorpo-
rates correlations between parameters. However, it heavily relies on
assumptions about astrophysical processes that are highly uncertain
and has limited flexibility. Furthermore, in the standard way of per-
forming population inference one needs to evaluate 𝑝(Θ|Λ) Mandel
et al. (2019); Vitale et al. (2020), thus requiring an additional step
where the probability density function (pdf) is estimated from sam-
ples of the population prior with the use of neural networks or kernel
density estimators Zevin et al. (2021); Wong et al. (2021); Franci-
olini et al. (2022); Mould et al. (2022); Toubiana et al. (2021). The
parametric approach Talbot & Thrane (2018); Abbott et al. (2021b,
2023) partially leverages these issues, using functional forms for the
population prior that are generic enough and could describe a variety
of astrophysical scenarios. This is the approach used in the fiducial
POWER-LAW+PEAK (PP) analysis of the LVK, which describes
the primary mass pdf as the weighted sum of a power-law and a
Gaussian Abbott et al. (2023). Although more flexible than the astro-
physical one, the parametric approach also makes assumptions about
the general form of the population prior. For instance, the fiducial
LVK analysis does not allow for excesses of BHs at both 20𝑀�
and 35𝑀� . Such assumptions are no longer required in the non-
parametric approach. The price to pay is an increase in the number
of parameters to be inferred and the loss of physical interpretation of
those parameters.
However, it is precisely non-parametric models that have first in-

dicated a potential excess of BHs around 15 − 20𝑀� in the LVK
analysis. Additional analyses since then have also found evidence for
such an excess Edelman et al. (2022a); Tiwari (2022, 2023), but not
all Sadiq et al. (2022); Ruhe et al. (2022); Callister & Farr (2023).
A generic problem of non-parametric models is that the number
of parameters is allowed to be arbitrarily large. Adding parameters
generally increases the complexity of the model but might lead to
"overfitting" the data. Therefore, a compromise needs to be found,
which requires iterating over the model dimensionality to find a suit-
able balance between the quality of the fit and the size of the model.
In this work, we propose reversible jumpMarkov chain Monte-Carlo
(RJMCMC) as a tool to optimally determine the complexity of the
model. See Rinaldi &Del Pozzo (2021) for a different approach using
Dirichlet processes. We consider two models for the distribution of
primarymasses that take advantage of RJMCMC.A semi-parametric
one that is a more flexible version of the PP model of the LVK, and
a non-parametric one, representing the pdf of primary masses as a
piece-wise power-law function. Moreover, we illustrate how RJM-
CMC can be used to perform model selection without having to
perform multiple runs.

Applying both models to GWTC-3, our semi-parametric model
favours having a second Gaussian at ∼ 10𝑀� relative to the PP
model, leading to a displacement of the peak of low-mass events. Our
non-parametric model shows more differences, in broad agreement
with other non-parametric analyses of theLVK. In particular, it agrees
on the displacement of the peak at low masses and does show some
evidence for an excess of BHs around 20𝑀� . We investigate the
statistical significance of this excess under simplifying assumptions
by performingmock injections, and estimate that there is a 5% chance
that this excess is due to statistical fluctuations, when assuming a
population compatible with the PP model. We show that with ∼
500 events our non-parametric model will be able to reliably and
efficiently identify such an excess.
This paper is organised as follows. In Sec. 2, we describe the details

of our analysis. We present the results of our population analysis on
GWTC-3 in Sec. 3. Then, in Sec. 4 we describe our mock injections
and comment on the significance of the excess. Finally, in Sec. 5 we
present our general conclusions.

2 SETUP

In this section, we will start by reviewing the basics of hierarchical
Bayesian analyses, then we comment on the advantages of RJMCMC
in population analyses and finally describe the population models we
use.

2.1 Hierarchical Bayesian framework

Assuming a population prior 𝑝(Θ|Λ), we can write the number den-
sity of events as:

d𝑁
dΘ

(Λ) = 𝑁 (Λ)𝑝(Θ|Λ), (1)

such that 𝑁 (Λ) is the total number of events during the observation
period 𝑇obs predicted by the population model. Inference on Λ is
performed within a hierarchical Bayesian framework. Given a set
of 𝑁𝑜𝑏𝑠 observed data, {𝑑𝑖}, the posterior on the hyperparameters
governing the population is Mandel et al. (2019); Vitale et al. (2020):

𝑝(Λ|{𝑑𝑖}) ∝ 𝜋(Λ)𝑒−b (Λ)𝑁 (Λ)
𝑁𝑜𝑏𝑠∏
𝑖=1

∫
d𝑁
dΘ

(Λ) 𝑝(Θ|𝑑𝑖)
𝜋𝑃𝐸 (Θ) dΘ, (2)

where 𝑝(Θ|𝑑𝑖) is the single event posterior, 𝜋𝑃𝐸 (Θ) is the prior used
for parameter estimation, 𝜋(Λ) is the prior on the hyperparameters
and b (Λ) is the selection function. The latter measures the fraction
of events from the population that we expect to observe for a given
value of Λ:

b (Λ) =
∫ ∫

𝑑 detectable
𝑝(𝑑 |Θ)𝑝(Θ|Λ)d𝑑dΘ. (3)

The integral over 𝑑 is performed only over the detectable datasets. It
defines the probability of detecting such an event from the population
characterised by the hyperparameters Λ. A handy way to compute
the selection function for a variety of population models is to first
perform an injection campaign, generating mock events with realistic
noise and running the detection pipelines used during operational
runs to determine if they are detectable. The selection function is
then computed via Monte-Carlo integration:

b (Λ) = 1
𝑁𝑎𝑙𝑙

∑︁
Θ𝑖 detected

𝑝(Θ𝑖 |Λ)
𝜋∅ (Θ𝑖)

, (4)
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Optimised complexity population models with RJMCMC. 3

where 𝜋∅ (Θ) is the prior used to perform the injections, 𝑁𝑎𝑙𝑙 is the
total number of injection performed and the sum runs only over the
parameters that lead to detectable events. We marginalise over the
statistical uncertainty in b (Λ) coming from the Monte-Carlo estima-
tion following the method in Farr (2019). We compute the selection
function using the injection campaign performed by the LVK LIGO
Scientific Collaboration and Virgo Collaboration and KAGRA Col-
laboration (2021a,b) and applying the same criteria described in
appendix A of Abbott et al. (2023) for the detectability of an event.
Finally, we evaluate the posterior on Λ via Monte-Carlo integration:

𝑝(Λ|{𝑑𝑖}) ∝
𝜋(Λ)

b (Λ)𝑁𝑜𝑏𝑠

𝑁𝑜𝑏𝑠∏
𝑖

∑︁
Θ 𝑗∼𝑝 (Θ |𝑑𝑖)

1
𝜋𝑃𝐸 (Θ 𝑗 )

d𝑁
dΘ

(Λ)
����
𝑗

, (5)

where it is assumed that we use the same number of samples for each
event. We retain the same 69 BBH events with false alarm rate below
0.25𝑦𝑟−1 and use the same parameter estimation samples for those
as Abbott et al. (2023). These are provided in the public data release
of the Gravitational Wave Open Science Center LIGO Scientific
Collaboration and Virgo Collaboration and KAGRA Collaboration
(2021a,b). Finally, we apply the criteria on the number of effective
samples described in appendix B of Abbott et al. (2023).
In Eq. 5, we use the proportionality symbol instead of the equality

one because we have omitted numerical factors that depend on the
observed data {𝑑𝑖}, but not on Λ, i.e., the individual event evidences
and the overall model evidence. These factors are unimportant when
the goal is to obtain the posterior distribution on Λ, but the overall
model evidence is usually required to perform model selection. As-
suming equal a priori probability for the models we want to compare,
the ratio between evidences gives the Bayes’ factor between models.
As we will describe next, RJMCMC allows us to bypass evidence
computation and returns the Bayes’ factor without any extra cost.

2.2 Reversible jump MCMC

RJMCMC Green (1995) is a powerful method that explores the
parameter space while allowing its dimensionality to vary. This is
achieved by proposing not only changes in the parameters of the cur-
rent model, but also the addition or removal of model parameters. As
an example, imagine we have a datastream containing an unknown
number of signals of known shape. RJMCMC allows the number
of sources in the datastream to be estimated while also estimating
their parameters. It returns a posterior distribution on the number
of sources present in the datastream. This is needed when the data
stream from a detector may contain many signals simultaneously,
such as LISA and the "global fit" problem Littenberg & Cornish
(2023); Littenberg et al. (2020); Katz, Karnesis, Korsakova & Gair
(Katz et al.). RJMCMC can also be used to perform model selection:
in this example, the ratio of the number of samples containing 𝑛1
sources to the number of samples containing 𝑛2 sources gives the
ratio between the evidences of the two hypotheses. In this work we
use the Eryn implementation of RJMCMC Karnesis et al. (2023a,b).
For more details on the mathematics and methods used in RJMCMC
within Eryn, we refer the reader to Karnesis et al. (2023a). We have
also implemented our code for GPUs to speed up the computation.
The results presented in this work take in average 4 days to run on a
GPU.
In the context of population analysis, RJMCMC is useful for many

purposes. First, it allows us to explore more flexible combinations
to describe the population prior. For instance, we can consider an
extended PP model where the number of Gaussians is free to vary.
We can also let the presence of a power-law component be decided

by the data, allowing for 0 or 1 (or even more) power-laws while
sampling. Finally, we can perform model selection between having a
broken power-law or a simple power-law, letting the number of each
component be 0 or 1 and jumping between them. For non-parametric
models, the number of parameters required is related to the complex-
ity of the pdf being fitted. Increasing the number of parameters is
tempting but might lead to “overfitting” of the data and finding spu-
rious features and of course leads to a more complicated posterior to
be sampled.Moreover, one usually has to try different configurations,
performing runs for different numbers of parameters until the best
compromise is found, based on the evidence. RJMCMC alleviates
this burden by letting the number of parameters be a free parameter
and providing a posterior over it. In this sense, the complexity of the
model is chosen by the data.

2.3 Population models

As in Abbott et al. (2023), the event parameters used to perform the
population inference are the source-frame mass of the primary 𝑚1,
the mass ratio 𝑞 ≤ 1, the spin magnitudes 𝜒1 and 𝜒2, the angles
between the BH spins and the orbital angular momentum of the
binary (tilt angles), \1 and \2, and the redshift of the source, 𝑧. We
assume the number density to be separable:

d𝑁
dΘ

(Λ) = d𝑁
d𝑚1

(Λ𝑚1 )𝑝(𝑞 |𝑚1,Λ𝑞 ,Λ𝑚1 )𝑝(𝜒1 |Λ𝜒)𝑝(𝜒2 |Λ𝜒)

𝑝(\1, \2 |Λ\ )𝑝(𝑧 |Λ𝑧). (6)

and focus onmodelling the primarymass number density, d𝑁d𝑚1 (Λ𝑚1 ).
We describe next the different possibilities that we explore for it. As
for the remaining parameters (mass ratio, spins and redshift) we use
the same model as the fiducial analysis in Abbott et al. (2023), which
we describe in App. A.

2.3.1 Semi-parametric model

We consider an extended version of the PP model of the LVK, with
two main differences: we let the number of Gaussians vary, and,
instead of requiring the power-law component to be present, we allow
for either one power-law, or one broken power-law, or none. We label
this model FLEXIBLE POWER-LAW+GAUSSIANS (FPG). The
𝑚1 number density can be written:

d𝑁
d𝑚1

(Λ𝑚1 ) = 𝑆(𝑚1, 𝑚𝑚𝑖𝑛, 𝛿𝑚) ×[
𝑁𝐺∑︁
𝑖=0

_𝐺𝑖 𝐺 (𝑚1, `𝑖 , 𝜎𝑖) + _𝑃𝐿
1∑︁
𝑖=0

𝑃𝐿 (𝑚1, 𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 , 𝛼)

+ _𝐵𝑃𝐿
1∑︁
𝑖=0

𝐵𝑃𝐿 (𝑚1, 𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 , 𝑚𝑏𝑟𝑒𝑎𝑘 , 𝛼1, 𝛼2)
]

(7)

where 𝑁𝐺 is the maximum number of Gaussians allowed a priori,
𝐺 (𝑚, `, 𝜎) is a Gaussian distribution centred around ` of width 𝜎,
𝑃𝐿 is a power-law and 𝐵𝑃𝐿 is a broken power-law, defined in Eqs. 8
and 9 below. 𝑆(𝑚, 𝑚min, 𝛿𝑚) is the smoothing function introduced
in Talbot & Thrane (2018), which we give explicitly in App. A, and
𝛿𝑚 defines a scale over which the 𝑚1 pdf goes smoothly to zero. The

MNRAS 000, 1–10 (2023)
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Parameter _ ` 𝜎 𝑚𝑚𝑖𝑛 𝑚𝑚𝑎𝑥 𝑚𝑏𝑟𝑒𝑎𝑘 𝛼 𝛿𝑚

Range 0 − 105 2-100 𝑀� 1-10 𝑀� 2-10 𝑀� 30-100 𝑀� 2-100 𝑀� 1.1-10 0.5-10

Table 1. Range of the priors on the hyperparameters of the FLEXIBLE POWER-LAW+GAUSSIANS model. We assume uniform priors in the provided ranges.

Figure 1. Comparison between the 𝑚1 pdf from which we draw events (black line) and the inferred distribution with our non-parametric model. The solid
coloured lines show the mean and the dashed coloured lines delimit the 90% confidence interval for different numbers of injections. The injected pdf is typically
within the 90% confidence interval. The injection pdf is given by the PP model with _𝐺 = 5.4, _𝑃𝐿 = 63.6, ` = 31.8𝑀� , 𝜎 = 2.8𝑀� , 𝑚𝑚𝑖𝑛 = 3.6𝑀� ,
𝑚𝑚𝑎𝑥 = 99.4𝑀� , 𝛼 = 3.5, 𝛿𝑚 = 1.7𝑀� .

Figure 2. Posterior distribution on the number of knots for each of the curves
shown in Fig. 1. Increasing the number of events barely increases the number
of knots required to represent the pdf.

power-law and broken power-law are defined as:

𝑃𝐿 (𝑚1, 𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 , 𝛼) =
{

N𝑚−𝛼
1 , if 𝑚𝑚𝑖𝑛 ≤ 𝑚1 ≤ 𝑚𝑚𝑎𝑥 ;

0 otherwise,

(8)

𝐵𝑃𝐿 (𝑚1, 𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 , 𝑚𝑏𝑟𝑒𝑎𝑘 , 𝛼1, 𝛼2) =


N𝑚

−𝛼1
1

(
1 + 𝑚1

𝑚𝑏𝑟𝑒𝑎𝑘

)𝛼1−𝛼2
if 𝑚𝑚𝑖𝑛 ≤ 𝑚1 ≤ 𝑚𝑚𝑎𝑥 ;
0 otherwise,

(9)

where in both cases N is the appropriate normalisation factor. Note
that in the case 𝛼1 = 𝛼2 we recover the simple power-law. In Eq. 7,
it is understood that the 𝑖 = 0 case corresponds to the absence of the
component. For instance, we can have two Gaussians with or without
a power-law, or just a broken power-law and so on and so forth.
The only restrictions are that we must have at least one component
and that we cannot have the power-law and the broken power-law
simultaneously. In any of these cases we set the likelihood to zero.
In Eq. 7, the amplitudes _s are related to the number of events in

each component. Strictly speaking there is not equality because of
the smoothing function 𝑆(𝑚, 𝑚min, 𝛿𝑚), but this is a small correc-
tion. To avoid cases where a component is added with very small
amplitude, we use a flat prior on the _’s. We also use flat priors for
the remaining hyperparameters characterising the 𝑚1 distribution,
with ranges given in Table 1. The prior on the number of Gaussians,
power-law and broken-power-law is also taken to be flat. For all other
population hyperparameters we use the same priors as in Abbott et al.
(2023).

2.3.2 Non-parametric models

In our non-parametric model, we describe the 𝑚1 number density
as a PIECE-WISE POWER-LAW (PWP) function. We write Λ𝑚1 =

{𝑥𝑖 , 𝑣𝑖}𝑛, where 𝑣𝑖 is the value of the pdf at a knot 𝑥𝑖 , and 𝑛 is the
total number of knots. The number density at any point is obtained
by interpolation:

d𝑁
dΘ

(Λ) =


𝑣𝑖

(
𝑚1
𝑥𝑖

) log(𝑣𝑖+1/𝑣𝑖 )
log(𝑥𝑖+1/𝑥𝑖 ) ,

if 𝑥1 < ... < 𝑥𝑖 ≤ 𝑚1 < 𝑥𝑖+1 < ... < 𝑥𝑛;
0 if 𝑚1 < 𝑥1 or 𝑚1 > 𝑥𝑛 .

(10)

MNRAS 000, 1–10 (2023)



Optimised complexity population models with RJMCMC. 5

Figure 3. Comparison of the volumetric rate as a function of 𝑚1 predicted by the PP (in black), the FPG (in orange) and the PWP (in blue) models. Full lines
indicate the mean and dashed lines the 90% confidence interval of each model. The FPG model is in good agreement with the PP one, except for a displacement
of the peak towards slightly larger masses. This comes from favouring a second Gaussian at ∼ 10𝑀� in addition to the one at ∼ 35𝑀� , as shown in Fig. 1. As
for the PWP model, it shows more deviations from the PP model. In particular, it agrees with the FPG model concerning the shift of the peak, favouring an even
more pronounced peak, and suggests an excess of BHs around 20𝑀� , as also suggested by some previous analyses Abbott et al. (2023); Edelman et al. (2022a);
Tiwari (2022, 2023).

This is equivalent to assuming that log
(
d𝑁
dΘ (Λ)

)
is a piece-wise

linear function of log(𝑚1).

We assume a log-flat prior on the {𝑣𝑖}𝑛 and on the {𝑥𝑖}𝑛 and
a flat prior on the number of knots. In principle, the range of the
prior on the position of the knots is determined by the minimum and
maximum 𝑚1 sample over all events. However, because there are
very few samples above 100𝑀� (less than 0.5% of the total samples)
and those are sparsely distributed, we find that letting the knots take
values above 100𝑀� leads to spurious features. In fact, above 100𝑀�
the determination of the population posterior is almost completely
driven by the selection function. Therefore, we take 100𝑀� as the
upper limit for the position of the knots.

We illustrate ourmethod by generatingmock injections compatible
with the PP population inferred by the LVK, and recovering the pdf
with our non-parametric model. We consider an increasing number
of events: 69, as in the current dataset, 200 and 500. The latter two
define a realistic range for the number of BBHs we expect to have
observed after the fourth operational run (O4). For simplicity, in
this illustrative case we do not include either selection effects or
measurement errors. In Fig. 1, we compare the recovered pdfs to
the pdf from which the mock injections are drawn. The injected pdf
typically lies within the 90% confidence interval, showing that our
method is able to properly infer it. Moreover, increasing the number
of events does not lead to a dramatic increase in the number of knots
used for interpolation, as can be seen in Fig. 2. Thus, the number of
free parameters of our model remains reasonable as the size of the
dataset increases. We have performed such injections for 200 sets of
hyperparameters drawn from the LVK posterior and produced pp-
plots by computing to which quantile of the recovered distribution
do the quantiles of the observed set of events correspond. We obtain
diagonal pp-plots, reinforcing our confidence that our non-parametric
model can be used to infer LVK-like populations.

One of the non-parametricmodels used by the LVK is the POWER-
LAW+SPLINE (PS) Edelman et al. (2022b), which models the num-

ber density as:

d𝑁
dΘ

(Λ) ∝ 𝑆(𝑚1, 𝑚𝑚𝑖𝑛, 𝛿𝑚)𝑃𝐿 (𝑚1, 𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 , 𝛼)𝑒 𝑓 (𝑚1 | { 𝑓𝑖 }) ,

(11)

where 𝑓 (𝑚1 |{ 𝑓𝑖}) is a cubic spline function and the { 𝑓𝑖} are the
values of this function at fixed knots, spaced log-uniformly. The
number of knots was fixed to 20. Our PWP model differs from the
PS by: (i) not assuming an underlying power-law shape, (ii) letting
the number and the position of knots vary. Notice that both models
are able to represent a simple power-law function.

3 INFERENCE ON GWTC3

We apply both our PWP and FPG models to the LVK data. As
described in Sec. 2.1, for ease of comparison, we consider exactly
the same events and the same samples as in the LVK analyses Abbott
et al. (2023). The inferred volumetric rates as a function of 𝑚1 are
shown in Fig. 3, where they are compared to the fiducial LVK result.
We recap how the volumetric rate is derived from the number density
in App. B.
The FPG model is in reasonable agreement with the LVK re-

sult, with the most noticeable difference at low masses. Regarding
the power-law versus broken power-law comparison, the former is
mildly favoured, with a Bayes’ factor of 1.671 ± 0.003. However, in
the broken power-law case, the posterior distribution is nearly flat in
𝑚𝑏𝑟𝑒𝑎𝑘 and is concentrated around 𝛼1 = 𝛼2, reducing to a simple
power-law. Thus, the favoured configuration is a power-law with 2
Gaussians, with a (43.49±0.15)% probability relative to all possible
combinations. The second best is a power-law with 3 Gaussians, at
(23.91 ± 0.11)% probability. Finally, we find only a (8.5 ± 0.07)%
probability of having only Gaussians. In the preferred configuration,
we find a Gaussian at ∼ 35𝑀� and another at ∼ 10𝑀� . As a conse-
quence, the FPG model predicts a peak of events slightly displaced
to larger masses compared to the fiducial LVK analysis. As com-
mented above and illustrated in Fig. 5, there is also some support for
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[t]

Figure 4. Same as Fig. 3 for the comparison between the PS (grey) and PWP (blue) models. Both models agree on the location of the peak at low masses, with
our model predicting a more peaked shape. They also agree on the location of the secondary peaks. The uncertainty in our model is larger, in particular around
20𝑀� due to less a priori asusmptions, e.g., we don’t assume an underlying power-law shape.

Figure 5. Posterior distribution on the number of Gaussians for our FPG
model. The model favours having 2 Gaussians: one at ∼ 35𝑀� and another
at ∼ 10𝑀� . It also has some support for a third Gaussian around 65𝑀� .

Figure 6. Posterior distribution on the number of knots for our PWP model.

a third Gaussian around 65𝑀� , leading to the observed excess at high
masses. However, we note that the y-axis is in log-scale, which exag-
gerates the size of this effect. Finally, we do not find evidence for an
excess around 20𝑀� . The result shown in Fig. 5 is summed over all
possible model component combinations, with relative probabilities
obtained from sampling.

Our non-parametric model shows more differences with respect to
the PP analysis. Its prediction resembles more the ones returned by
the FLEXIBLE MIXTURES and POWER-LAW+SPLINE models
of Abbott et al. (2023). We compare the results of the latter to ours in
Fig. 4 and in Fig. 6, we show the posterior distribution on the number
of knots for the PWPmodel. The PWPmodel agreeswith the FPGand
the PS models on the position of the main peak, but predicts a more
pronounced shape. Such a peak is typically expected for binaries that
form in isolation Giacobbo & Mapelli (2018); Wiktorowicz et al.
(2019); van Son et al. (2022). Together, these results suggest that the
PP model is not flexible enough to capture these fine features. The
PWP also recovers a secondarymaximum around 35𝑀� . It is slightly
shifted to lower masses compared to the FPG, PP and PS models, but
the 90% confidence intervals still have a broad overlap in this region.
Regarding the original goal of our analysis, the PWP model does
suggest an excess of BHs around 20𝑀� , as indicated by the peak in
the mean and the upper boundary of the 90% confidence interval, in
broad agreement with the PS prediction. We stress however that the
uncertainty of the PWP model in this region is very large, and the
inferred distribution is also compatible with not having a peak around
20𝑀� . We attribute the larger uncertainty of our model with respect
to the PS as due to the fact it makes fewer a priori assumptions,
e.g., we do not assume that the underlying function is a power-law.
Similarly, the difference in the volumetric rate before the peak is
likely due to the underlying assumption on the shape of the𝑚1 pdf in
the PS model. Given the small number of observations, this excess at
20𝑀� suggested by our model could be due to statistical fluctuations.
In order to investigate this possibility, we perform a series of mock
injections.
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Figure 7. Examples of a mock injection catalogue with 69 events where statistical fluctuations lead to erroneously thinking that there in an excess of BHs around
20𝑀� . The same happens around 80𝑀� .

4 INFERENCE ON MOCK DATA

Firstly, we want to assess how likely it is that we find a spurious peak-
like feature between 13𝑀� and 25𝑀� in the distribution inferred
with our PWP model when the underlying population does not have
such a feature. This range is motivated by the results of Mahapatra
et al. (2022) that show that BBHs with primary mass in this range
likely contain at least one second generation BH. We decide on the
presence of a peak-like feature by looking for a local maximum in
the mean of the inferred pdf. We refer to Farah et al. (2023) for
an analysis of the statistical significance of other noticeable features
in the 𝑚1 distribution. We draw 200 sets of hyperparameters from
the LVK PP posterior and for each of those we simulate datasets
of 69, 200 and 500 events. The latter two define a realistic range
for the number of BBH observations we expect by O4. Then, we
analyse the generated events with our non-parametric model and
count the fraction of realisations in which we find a peak between
13𝑀� and 25𝑀� in the inferred distribution. Since we only want
to get a rough idea of the significance of the peak observed in the
LVK data, to speed up computations we do not account for selection
effects nor measurement errors. We find that the probability to find a
peak between 13𝑀� and 25𝑀� is:

• 0.04 ± 0.01 with 69 events
• 0.02 ± 0.01 with 200 events
• < 0.005 with 500 events

We show in Fig. 7 an example where applying our PWP model
to a dataset of 69 events leads to erroneously thinking there is an
excess of BHs around 20𝑀� . We show in gray the histogram of
events. Although the underlying population has no local maximum
around 20𝑀� , statistical fluctuations lead to an excess of events in
this region, driving the erroneous inference. In this example, the same
happens around 80𝑀� . Thus, the false-alarm probability for detect-
ing an excess between 13𝑀� and 25𝑀� with our non-parametric
model after observing 69 events is roughly 5%, but virtually null
after 500 events. When analysing these same datasets with the FPG
model, none of the cases shows a peak between 13𝑀� and 25𝑀� .
At high masses, where the events are more sparsely distributed, it is
common for our non-parametric model to show spurious peaks, due
to fitting for isolated events, as illustrated in Fig. 7. This problem

does not concern the range we are interested in, between 13𝑀� and
25𝑀� , which is in the bulk of distribution and where the events are
more continuously distributed.

Next, we want to estimate under which circumstances we can
confidently detect the presence of the peak around 20𝑀� . For the
same 200 samples from the LVK population, we define 50 new
populations by adding a Gaussian of mean 19𝑀� and width 2𝑀�
with increasing weight. For this purpose we define the normalised
fraction 𝑓𝑖 = _𝑖/

∑
𝑖 _𝑖 , where the sum runs over the amplitudes of all

components. In practicewe grid the fraction 𝑓𝐺19 logarithmically from
10−3 to 1 and redistribute the weight that was initially in the power-
law between the Gaussian at 19𝑀� and the power-law. The weight of
the Gaussian at∼ 35𝑀� remains the same. This simplistic procedure
is driven by the idea that if there is an additional peak around 20𝑀� ,
it has been "swallowed" by the power-law component. One might
also expect that the inferred power-law index is actually smaller than
it should, i.e., the power-law is less steep in order to accommodate the
excess. However, this effect should be small and we are looking for a
rough estimate of the detectability of an excess around 20𝑀� , so we
do not account for it. Once again we draw sets of 69, 200 and 500
events from each of these populations, and analyse them both with
the PWP and with the FPG model. Fig. 8 shows the probability of
finding a peak between 13𝑀� and 25𝑀� as a function of the weight
of the Gaussian around 19𝑀� with each model. At small weights,
we recover the false-alarm probability discussed above. As expected,
the chances of detecting an excess increase as the weight increases.
With 500 events, our non-parametric model will reliably indicate if
the excess is truly physical, with higher probability than the FPG
model. From this plot, we also see that it is not surprising that the
latter does not find the putative excess of BHs in the current LVK
data, since it requires large weights to identify it with only 69 events.
On this same figure, the solid blue curve shows the probability of
detecting a peak with the non-parametric model and not with the
semi-parametric one when observing 69 events, as it the case for the
GWTC-3 dataset. Under the hypothesis that the BBH population is
compatible with the ones used to perform the mock injections, this
can be interpreted as a likelihood for the observed datum that one fit
finds a peak and the other does not. Constructing a posterior from
this likelihood and a flat prior on 𝑓𝐺19 , we estimate that 𝑓

𝐺
19 ≥ 0.08
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Figure 8. Probability of detecting a peak between 13𝑀� and 25𝑀� as a
function of the weight of the Gaussian at 19𝑀� , for both the FPG and the
PWP model, considering an increasing number of events. At small weights,
the probability matches the false-alarm probability. The bumpy aspect at
small weights is due to low statistics in this region, but the general trend
is clear. Curves interrupted somewhere over the x-range go to 0. The solid
blue curve shows the probability of detecting a peak with the non-parametric
model and not with the semi-parametric one for 69 events, as it is the case
for the GWTC-3 dataset. The vertical lines show the lower bounds on 𝑓 𝐺

19 at
68% and 90% credibility, obtained by treating this curve as a likelihood, as
described in the text.

at 90% credibility and 𝑓𝐺19 ≥ 0.14 at 68% credibility. These are the
values indicated with vertical lines. From the value at which the full
line curve goes to 0, we deduce in addition that 𝑓𝐺19 . 0.5.
Compared to the full analysis of Sec. 3, our mock studies do not

take into account the presence of selection effects and measurement
uncertainties in individual events. We expect the latter to smooth out
the mass distribution, making fine features harder to detect. Thus,
we might be slightly overestimating the detectability of peaks by our
methods. Measurement uncertainties would also smooth out sharp
features like the one seen in Fig. 7. Selection effects would make
the distribution of observed events different to the astrophysical one.
For instance, events in the peak around 10𝑀� would be harder to
detect compared to events with mass 20𝑀� or 35𝑀� . On average,
we could expect this to decouple from the statistical fluctutations we
investigated in the first part of this section, and not have too much im-
pact on our conclusions regarding the detectability of spurious peaks.
Quantities like the position of the peaks and the "excess probability"
in these peaks would in turn be affected, but these are not the focus
of our investigation. On the other hand, selection effects would make
it easier to identify real excesses around 20𝑀� for a fixed number of
observed events.

5 CONCLUSION

Capturing distinctive features in the population of BBHs is crucial
to discriminate between astrophysical models. Astrophysically moti-
vated priors are useful to directly constrain physical parameters, but
lack flexibility when the population includes unanticipated structure.
In this paper we have proposed two flexible models for the distri-
bution of primary masses and applied them to GWTC-3. A crucial
ingredient of our method is RJMCMC, which allows the complex-
ity of the model to be chosen by data as well as to perform model
selection. With these models in hand, we have assessed the statisti-
cal significance of the excess of events around 15 − 20𝑀� found by
some of the population analyses performed on GWTC-3 Abbott et al.

(2023); Edelman et al. (2022a); Tiwari & Fairhurst (2021), but not
all Sadiq et al. (2022); Ruhe et al. (2022); Callister & Farr (2023).

Our first model is an extended and more flexible version of the
POWER-LAW+PEAKmodel of theLVK,where the number ofGaus-
sians is free to vary and we can choose between having a power-law,
a broken power-law or none. It illustrates how RJMCMC can be
used to perform model selection, allowing to choose between a va-
riety of models at once, instead of running them individually and
comparing the evidences afterwards. We have found that the current
data favours having a power-law component with two Gaussians:
one around 35𝑀� and another around 10𝑀� . As a consequence, it
predicts a peak of events at slighlty higher masses than in the fidu-
cial LVK analysis. There is also mild support for a third Gaussian at
∼ 65𝑀� , but it has small significance in the current data. Further-
more, it is disfavoured to have only Gaussians. Finally, we find no
sign for a break in the slope of the power-law, but this might change
as the number of observations increases. Moreover, more elaborated
combinations of parametric functions could be considered in order
to fully take advantage of the flexibility offered by RJMCMC.

Next, we have proposed a non-parametric model representing the
𝑚1 pdf as a piece-wise power-law function. We infer the position
of the knots and the value of the pdf at those knots, but also the
number of knots, thanks to the RJMCMC. The complexity of our
model is not pre-determined, but it is decided by data. This model
shows a few differences with respect to the POWER-LAW+PEAK
model, in particular it agrees with our semi-parametric model re-
garding the displacement of the low-mass peak and also suggests
an excess of BHs around 20𝑀� . It is in better agreement with the
POWER-LAW+SPLINE model of the LVK. However, by perform-
ing mock-injections under simplifying assumptions (i.e. negelcting
selection effects and measurement uncertainties), we have found that
there is roughly a 5% chance that the peak at 20𝑀� is due to sta-
tistical fluctuations when assuming a population compatible with
the LVK POWER-LAW+PEAK analysis. With 500 events the false-
alarm probability is nearly zero. Moreover, when analysing mock-
populations that do have an excess at 20𝑀� , our model canmore eas-
ily find it than our FLEXIBLE POWER-LAW+GAUSSIANS model.
As the number of events increases, additional features in the 𝑚1
distribution might appear. Hierarchical mergers could lead to a se-
ries of regularly spaced peaks with decreasing amplitude Tiwari &
Fairhurst (2021); Tiwari (2022). Detecting more massive events such
as GW190521 Abbott et al. (2020) will inform us on the mass-gap,
and whether there is a dearth of events in this region, as predicted by
models. Our non-parametric model would be able to capture these
features without any a priori modelling of the signature of these
effects on the 𝑚1 distribution, proving a powerful tool to better un-
derstand astrophysics.

In this work we have assumed the population prior to be separable
in the event parameters, primary mass, mass ratio, spins and redshift.
However, finding correlations between parameters would increase
our ability to discriminate between astrophysical scenarios. Different
approaches have already been explored Hoy et al. (2022); Callister
et al. (2021); Fishbach et al. (2021); Adamcewicz & Thrane (2022);
Bavera et al. (2022); Biscoveanu et al. (2022); Ray et al. (2023), with
some of them yielding first hints of correlations. With the increase in
the number of events, such fine features will becomemore prominent.
It is therefore the natural next step for us to extend out method to
multi-dimensional distributions.
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APPENDIX A: POPULATION PRIORS

We describe the models used for the single event parameters other
than the primary mass, these are the same as in the fiducial analysis
of Abbott et al. (2023). For the mass ratio, we assume a power-law
distribution:

𝑝(𝑞 |𝑚1,Λ𝑞) ∝ 𝑞𝛽𝑆(𝑞𝑚1, 𝑚𝑚𝑖𝑛, 𝛿𝑚) (A1)

with

𝑆(𝑚1, 𝑚𝑚𝑖𝑛, 𝛿𝑚) =


0; if 𝑚1 < 𝑚𝑚𝑖𝑛

[ 𝑓 (𝑚1 − 𝑚𝑚𝑖𝑛, 𝛿𝑚) + 1]−1

if 𝑚𝑚𝑖𝑛 ≤ 𝑚1 ≤ 𝑚𝑚𝑖𝑛 + 𝛿𝑚;
1; if 𝑚1 > 𝑚𝑚𝑖𝑛 + 𝛿𝑚,

(A2)

and

𝑓 (𝑚, 𝛿𝑚) = 𝑒
𝛿𝑚
𝑚

+ 𝛿𝑚
𝑚−𝛿𝑚 . (A3)

In the PWP model, we do not use the smoothing function, and
impose a sharp cut-off:

𝑝(𝑞 |𝑚1,Λ𝑞)
{
0; if 𝑞𝑚1 < 2
∝ 𝑞𝛽 ; otherwise.

(A4)

We assume a common Beta-dsitribution for the spins magnitude:

𝑝(𝜒 |Λ𝜒) = Beta(𝛼𝜒 , 𝛽𝜒). (A5)

As for their orientation, we model the joined distribution of the
cosines of the tilt angles as a mixture between a two-dimensional
Gaussian of width 𝜎𝑡 , centred at 0 and truncated at -1 and 1, and a
two-dimensional flat distribution between -1 and 1.:

𝑝(cos(\1), cos(\2) |Λ\ ) =Z𝐺𝑡 (cos(\1), cos(\2), 0, 𝜎𝑡 )
+ (1 − Z)𝑈 (−1, 1) (A6)

Finally, we assume that the rate of BBHs evolves with redshift as
R(𝑧) = (1 + 𝑧)^ , which leads to the pdf on 𝑧:

𝑝(𝑧 |Λ𝑧) ∝ (1 + 𝑧)^−1 d𝑉𝑐
d𝑧

, (A7)

where 𝑉𝑐 is the comoving volume.
The priors for 𝛽, 𝑚𝑚𝑖𝑛, 𝛿𝑚, Z , 𝜎𝑡 and ^ are taken to be flat. For

𝛼𝜒 and 𝛽𝜒 , we assume the prior on the mean `𝜒 and the variance 𝜎2𝜒
of the Beta-distribution to be flat, subject to the condition 𝛼𝜒 > 1,
𝛽𝜒 > 1.

APPENDIX B: VOLUMETRIC RATE

The number density can be transformed into a volumetric rate by
taking its ratio with the observed space-time volume 𝑉𝑇obs, defined
as:

𝑉𝑇obs = 𝑇obs

∫ 𝑧max

0

1
1 + 𝑧

d𝑉𝑐
𝑑𝑧

R(𝑧) d𝑧 (B1)

We take 𝑧max = 2.3 and use the value of 𝑇obs provided in the public
data released along Abbott et al. (2023). Finally,

dR
d𝑚1

(Λ) = 1
𝑉𝑇obs

d𝑁
d𝑚1

(Λ). (B2)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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