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A B S T R A C T 

Some analyses of the third gravitational wave catalogue released by the LIGO-Virgo-KAGRA collaboration (LVK) suggest an 

excess of black holes around 15 –20 M �. In order to investigate this feature, we introduce two flexible population models, a 
semiparametric one and a non-parametric one. Both make use of reversible jump Markov chain Monte-Carlo to optimise their 
complexity. We also illustrate how the latter can be used to efficiently perform model selection. Our parametric model broadly 

agrees with the fiducial analysis of the LVK, but finds a peak of events at slightly larger masses. Our non-parametric model 
shows this same displacement. Moreo v er, it also suggests the existence of an excess of black holes around 20 M �. We assess the 
robustness of this prediction by performing mock injections and running simplified hierarchical analyses on those (i.e. without 
selection effects and observational uncertainties). We estimate that such a feature might be due to statistical fluctuations, given 

the small number of events observed so far, with a 5 per cent probability. We estimate that with a few hundreds of observations, 
as expected for O4, our non-parametric model will be able to robustly determine the presence of this excess. It will then allow 

for an efficient agnostic inference of the properties of black holes. 

Key words: black hole physics – gra vitational wa ves – methods: statistical. 
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 I N T RO D U C T I O N  

he total number of gravitational wave (GW) observations from
ompact binaries by the LIGO-Virgo-KAGRA (LVK) collaboration
Aasi et al. 2015 ; Acernese et al. 2015 ; Akutsu et al. 2021 ) now
dds up to 90 (Abbott et al. 2021a ). Together they form the third
W transients catalogue (GWTC-3) released by the LVK. As the
umber of observation increases, we become able to infer the
strophysical properties of GW sources, not only individually but as
 population. Different astrophysical models for the formation and
volution mechanisms of GW sources predict different distributions
f parameters such as masses, spins or redshifts (Benacquista &
owning 2013 ; Postnov & Yungelson 2014 ; de Mink & Mandel
016 ; Inayoshi et al. 2017 ; Samsing & Ramirez-Ruiz 2017 ; Gerosa
t al. 2018 ; Giacobbo & Mapelli 2018 ; Wiktorowicz et al. 2019 ;
agawa, Haiman & Kocsis 2020 ; Bouffanais et al. 2021 ; Mapelli
021 ; Romero-Shaw et al. 2021 ; van Son et al. 2022 ; Sedda, Naoz &
ocsis 2023 ). Thus, inferring the population of GW sources from
ata is a powerful tool to constrain astrophysical models. 
Focusing on binary black holes (BBHs), one of the main results

f population analyses is the gro wing e vidence for an excess of
lack holes (BHs) around 35 M � (Tiwari 2021 ; Abbott et al. 2021b ,
023 ; Ruhe et al. 2022 ; Sadiq, Dent & Wysocki 2022 ; Tiwari 2022 ;
delman, Farr & Doctor 2022a ; Callister & Farr 2023 ; Farah et al.
023 ; Tiwari 2023 ). This excess can be interpreted as a ‘pile-up’ of
Hs before the upper mass gap (Woosley 2017 ; Talbot & Thrane
018 ; F armer et al. 2019 ; Woosle y, He ger & Weav er 2002 ), although
t happens at lower masses than predicted by current astrophysical
 E-mail: atoubiana@aei.mpg.de 
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odels (Belczynski et al. 2016 ; Marchant et al. 2018 ; Renzo et al.
020 ; Farag et al. 2022 ). Moreover, first hints of correlations between
arameters have started to appear (Callister et al. 2021 ; Fishbach et al.
021 ; Adamcewicz & Thrane 2022 ; Bavera et al. 2022 ; Bisco v eanu
t al. 2022 ; Hoy et al. 2022 ), e.g. between the ef fecti ve spin and the
ass ratio or between redshift and spins. Such correlations carry the

ignature of the astrophysical channels through which the binaries
orm. Ho we ver, some of these were not anticipated by astrophysical
odels, illustrating once more how population analysis can shed

ight on astrophysics. 
Another interesting feature is a possible excess of BHs around

5 –20 M � (Tiwari 2022 ; Edelman et al. 2022a ; Abbott et al. 2023 ;
iwari 2023 ). It has been pointed out that it could be the signature
f second generation mergers (Tiwari & Fairhurst 2021 ; Mahapatra
t al. 2022 ; Tiwari 2022 ). Ho we ver, it is statistically less significant
han the feature at around 35 M � (Farah et al. 2023 ; Tiwari 2023 ) and
as been found by only a few of the analyses performed on GWTC-3.
ssessing the significance of this excess was the first moti v ation for
ur study. 
From a Bayesian perspective, the goal of population inference

Mandel, Farr & Gair 2019 ; Vitale et al. 2020 ) is to obtain the
osterior distribution on population hyperparameters (denoted � )
ssuming a population prior for the individual event parameters
 ( � | � ). The event parameters of interest, � , are typically the
asses, the spins and the redshift of the source. Broadly speaking,
e can identify three main approaches, differing in how p ( � | � ) is
odelled: 

(i) astrophysical: the distribution of parameters is obtained from
strophysical simulations. These simulations typically output sam-
les from the population prior (i.e. events). 
© 2023 The Author(s) 
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(ii) parametric: the population prior is written as a combination of 
imple functions, which depend on hyperparameters that are inferred 
rom the data. 

(iii) non-parametric: a more complicated and flexible functional 
orm for the population prior is assumed, with a variable number of
egrees of freedom. The parameters of the model have (in general) 
o physical meaning. 

In the first approach, the hyperparameters have a clear astrophys- 
cal meaning. They are related to the parameters of the astrophysical 
imulations, for example the efficiency of energy transfer from 

he binary to the gas during the common envelope stage, or the
ranching fraction between binaries formed in isolation and those 
ormed dynamically, or parameters characterizing properties of 
rimordial BHs (Wong et al. 2021 ; Zevin et al. 2021 ; Franciolini et al.
022 ; Mould, Gerosa & Taylor 2022 ). Moreo v er, such an approach
aturally incorporates correlations between parameters. Ho we ver, 
t heavily relies on assumptions about astrophysical processes that 
re highly uncertain and has limited flexibility. Furthermore, in 
he standard way of performing population inference one needs 
o e v aluate p ( � | � ) (Mandel et al. 2019 ; Vitale et al. 2020 ), thus
equiring an additional step where the probability density function 
pdf) is estimated from samples of the population prior with the use
f neural networks or kernel density estimators (Toubiana et al. 2021 ;
ong et al. 2021 ; Zevin et al. 2021 ; Franciolini et al. 2022 ; Mould

t al. 2022 ). The parametric approach (Talbot & Thrane 2018 ; Abbott
t al. 2021b ; Abbott et al. 2023 ) partially leverages these issues, using
unctional forms for the population prior that are generic enough 
nd could describe a variety of astrophysical scenarios. This is the 
pproach used in the fiducial POWER-LAW + PEAK (PP) analysis 
f the LVK, which describes the primary mass pdf as the weighted
um of a power-law and a Gaussian (Abbott et al. 2023 ). Although
ore flexible than the astrophysical one, the parametric approach 

lso makes assumptions about the general form of the population 
rior. For instance, the fiducial LVK analysis does not allow for
xcesses of BHs, at both 20$ and 35 M �. Such assumptions are no
onger required in the non-parametric approach. The price to pay is
n increase in the number of parameters to be inferred, and the loss
f physical interpretation of those parameters. 
Ho we ver, it is precisely non-parametric models that have first

ndicated a potential excess of BHs around 15 –20 M �, in the LVK
nalysis. Additional analyses since then have also found evidence 
or such an excess (Tiwari 2022 ; Edelman et al. 2022a ; Tiwari
023 ), but not all (Ruhe et al. 2022 ; Sadiq et al. 2022 ; Callister &
arr 2023 ). A generic problem of non-parametric models is that 

he number of parameters is allowed to be arbitrarily large. Adding 
arameters generally increases the complexity of the model, but 
ight lead to ‘o v erfitting’ the data. Therefore, a compromise needs

o be found, which requires iterating o v er the model dimensionality
o find a suitable balance between the quality of the fit and the size
f the model. In this work, we propose reversible jump Markov 
hain Monte-Carlo (RJMCMC) as a tool to optimally determine 
he complexity of the model. See Rinaldi & Del Pozzo ( 2021 ) for
 different approach using Dirichlet processes. We consider two 
odels for the distribution of primary masses that take advantage of
JMCMC. A semiparametric one that is a more flexible version of

he PP model of the LVK, and a non-parametric one, representing the
df of primary masses as a piece-wise power-law (PWP) function. 
oreo v er, we illustrate how RJMCMC can be used to perform model

election, without having to perform multiple runs. 
Applying both models to GWTC-3, our semiparametric model 

a v ours ha ving a second Gaussian at ∼ 10 M � relative to the PP
odel, leading to a displacement of the peak of low-mass events. Our
on-parametric model shows more differences, in broad agreement 
ith other non-parametric analyses of the LVK. In particular, it agrees 
n the displacement of the peak at low masses, and does show some
vidence for an excess of BHs around 20 M �. We investigate the
tatistical significance of this excess under simplifying assumptions 
y performing mock injections, and estimate that there is a 5 per
ent chance that this excess is due to statistical fluctuations, when
ssuming a population compatible with the PP model. We show that
ith ∼500 events our non-parametric model will be able to reliably

nd efficiently identify such an excess. 
This paper is organized as follows. In Section 2 , we describe

he details of our analysis. We present the results of our population
nalysis on GWTC-3 in Section 3 . Then, in Section 4 , we describe
ur mock injections and comment on the significance of the excess.
inally, in Section 5, we present our general conclusions. 

 SETUP  

n this section, we will start by re vie wing the basics of hierarchical
ayesian analyses, then we comment on the advantages of RJMCMC

n population analyses and finally describe the population models we 
se. 

.1 Hierarchical Bayesian framework 

ssuming a population prior p ( � | � ), we can write the number
ensity of events as: 

d N 

d � 

( � ) = N ( � ) p( � | � ) , (1) 

uch that N ( � ) is the total number of events during the observation
eriod T obs predicted by the population model. Inference on � is
erformed within a hierarchical Bayesian frame work. Gi ven a set
f N obs observed data, { d i } , the posterior on the hyperparameters
o v erning the population is (Mandel et al. 2019 ; Vitale et al. 2020 ): 

( � |{ d i } ) ∝ π ( � ) e −ξ ( � ) N( � ) 
N obs ∏ 

i= 1 

∫ 
d N 

d � 

( � ) 
p( � | d i ) 
πPE ( � ) 

d �, (2) 

here p ( � | d i ) is the single event posterior, πPE ( � ) is the prior used
or parameter estimation, π ( � ) is the prior on the hyperparameters,
nd ξ ( � ) is the selection function. The latter measures the fraction
f events from the population, that we expect to observe for a given
alue of � : 

( � ) = 

∫ ∫ 
d detectable 

p ( d| � ) p ( � | � )d dd �. (3) 

he integral over d is performed only over the detectable data sets. It
efines the probability of detecting such an event from the population
haracterized by the hyperparameters � . A handy way to compute
he selection function for a variety of population models is to first
erform an injection campaign, generating mock events with realistic 
oise, and running the detection pipelines used during operational 
uns to determine if they are detectable. The selection function is
hen computed via Monte-Carlo integration: 

( � ) = 

1 

N all 

∑ 

� i detected 

p( � i | � ) 

π∅ ( � i ) 
, (4) 

here π∅ ( � ) is the prior used to perform the injections, N all is
he total number of injection performed, and the sum runs only
 v er the parameters that lead to detectable events. We marginalize
MNRAS 524, 5844–5853 (2023) 
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 v er the statistical uncertainty in ξ ( � ), coming from the Monte-
arlo estimation following the method in Farr ( 2019 ). We compute

he selection function using the injection campaign performed by
he LVK Collaboration ( 2021a , b ), and applying the same criteria
escribed in appendix A of Abbott et al. ( 2023 ), for the detectability
f an event. Finally, we evaluate the posterior on � , via Monte-Carlo
ntegration: 

( � |{ d i } ) ∝ 

π ( � ) 

ξ ( � ) N obs 

N obs ∏ 

i 

∑ 

� j ∼p( � | d i ) 

1 

πPE ( � j ) 

d N 

d � 

( � ) 

∣∣∣∣
j 

, (5) 

here it is assumed that we use the same number of samples for
ach event. We retain the same 69 BBH events with false alarm rate
elow 0.25 yr −1 , and use the same parameter estimation samples for
hose as Abbott et al. ( 2023 ). These are provided in the public data
elease of the GW Open Science Center LVK Collaboration ( 2021a ,
 ). Finally, we apply the criteria on the number of ef fecti ve samples
escribed in appendix B of Abbott et al. ( 2023 ). 
In equation ( 5 ), we use the proportionality symbol, instead of

he equality one, because we have omitted numerical factors that
epend on the observed data { d i } , but not on � , i.e. the individual
 vent e vidences and the o v erall model evidence. These factors are
nimportant when the goal is to obtain the posterior distribution on
 , but the o v erall model evidence is usually required to perform
odel selection. Assuming equal a priori probability for the models
e want to compare, the ratio between evidences gives the Bayes’

actor between models. As we will describe next, RJMCMC allows
s to bypass evidence computation, and returns the Bayes’ factor
ithout any extra cost. 

.2 Reversible jump MCMC 

JMCMC (Green 1995 ) is a powerful method that explores the
arameter space while allowing its dimensionality to vary. This is
chieved by proposing not only changes in the parameters of the
urrent model, but also the addition or removal of model parameters.
s an example, imagine we have a datastream containing an unknown
umber of signals of known shape. RJMCMC allows the number of
ources in the datastream to be estimated, while also estimating
heir parameters. It returns a posterior distribution on the number
f sources present in the datastream. This is needed when the data
tream from a detector may contain many signals simultaneously,
uch as LISA and the ‘global fit’ problem (Littenberg et al. 2020 ;
ittenberg & Cornish 2023 ; Katz et al.(in preparation)). RJMCMC
an also be used to perform model selection: in this example, the ratio
f the number of samples containing n 1 sources, to the number of
amples containing n 2 sources, gives the ratio between the evidences
f the two hypotheses. In this work we use the ERYN implementation
f RJMCMC Karnesis et al. ( 2023a , b ). For more details on the
athematics and methods used in RJMCMC within ERYN , we refer

he reader to Karnesis et al. ( 2023a ). We have also implemented
ur code for graphics processing units (GPUs) to speed up the
omputation. The results presented in this work take in average 4 d
o run on a GPU. 

In the context of population analysis, RJMCMC is useful for many
urposes. First, it allows us to explore more flexible combinations
o describe the population prior. For instance, we can consider an
xtended PP model, where the number of Gaussians is free to vary.
e can also let the presence of a power-law component be decided

y the data, allowing for 0 or 1 (or even more) power-laws while
ampling. Finally, we can perform model selection between having
 broken power-law or a simple power-law, letting the number of
NRAS 524, 5844–5853 (2023) 
ach component be 0 or 1, and jumping between them. For non-
arametric models, the number of parameters required is related
o the complexity of the pdf being fitted. Increasing the number
f parameters is tempting, but might lead to ‘o v erfitting’ of the
ata and finding spurious features, and of course leads to a more
omplicated posterior to be sampled. Moreo v er, one usually has to
ry different configurations, performing runs for different numbers of
arameters until the best compromise is found, based on the evidence.
JMCMC alleviates this burden by letting the number of parameters
e a free parameter and providing a posterior o v er it. In this sense,
he complexity of the model is chosen by the data. 

.3 Population models 

s in Abbott et al. ( 2023 ), the event parameters used to perform the
opulation inference are the source-frame mass of the primary m 1 ,
he mass ratio q ≤ 1, the spin magnitudes χ1 and χ2 , the angles
etween the BH spins, and the orbital angular momentum of the
inary (tilt angles), θ1 and θ2 , and the redshift of the source, z. We
ssume the number density to be separable: 

d N 

d � 

( � ) = 

d N 

d m 1 
( � m 1 ) p( q| m 1 , � q , � m 1 ) p ( χ1 | � χ ) p ( χ2 | � χ ) 

p( θ1 , θ2 | � θ ) p( z| � z ) . (6) 

nd focus on modelling the primary mass number density, d N 
d m 1 

( � m 1 ).
e describe next the different possibilities that we explore for it. As

or the remaining parameters (mass ratio, spins and redshift), we use
he same model as the fiducial analysis in Abbott et al. ( 2023 ), which
e describe in Appendix A . 

.3.1 Semiparametric model 

e consider an e xtended v ersion of the PP model of the LVK, with
wo main differences: we let the number of Gaussians vary, and,
nstead of requiring the power-law component to be present, we
llow for either one power-law, or one broken power-law, or none.
e label this model FLEXIBLE POWER-LAW + GAUSSIANS

FPG). The m 1 number density can be written: 

d N 

d m 1 
( � m 1 ) = S( m 1 , m min , δm 

) ×[ 

N G ∑ 

i= 0 

λG 

i G ( m 1 , μi , σi ) + λPL 
1 ∑ 

i= 0 

PL ( m 1 , m min , m max , α) 

+ λBPL 
1 ∑ 

i= 0 

BPL ( m 1 , m min , m max , m break , α1 , α2 ) 

] 

, (7) 

here N G is the maximum number of Gaussians allowed a priori,
 ( m , μ, σ ) is a Gaussian distribution, centred around μ of width
, PL is a power-law, and BPL is a broken power-law, defined in
quations ( 8 ) and ( 9 ) below. S ( m , m min , δm ) is the smoothing function
ntroduced in Talbot & Thrane ( 2018 ), which we giv e e xplicitly in
ppendix A , and δm defines a scale o v er which the m 1 pdf goes

moothly to zero. The po wer-law and broken po wer-law are defined
s: 

L ( m 1 , m min , m max , α) = 

{
N m 

−α
1 , if m min ≤ m 1 ≤ m max ; 

0 otherwise , 

(8) 

BP L ( m 1 , m min , m max , m b re ak , α1 , α2 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

N m 

−α1 
1 

(
1 + 

m 1 
m b re ak 

)α1 −α2 

if m min ≤ m 1 ≤ m max ; 
0 otherwise , 

(9) 
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Table 1. Range of the priors on the hyperparameters of the FPG model. We assume uniform priors in the 
provided ranges. 

Parameter λ μ σ m min m max m break α δm 

Range 0–10 5 2–100 M � 1–10 M � 2–10 M � 30–100 M � 2–100 M � 1.1–10 0.5–10 

Figure 1. Comparison between the m 1 pdf from which we draw events (black line) and the inferred distribution with our non-parametric model. The solid 
coloured lines show the mean and the dashed coloured lines delimit the 90 per cent confidence interval for different numbers of injections. The injected pdf 
is typically within the 90 per cent confidence interval. The injection pdf is given by the PP model with λG = 5.4, λPL = 63.6, μ = 31 . 8 M �, σ = 2 . 8 M �, 
m min = 3 . 6 M �, m max = 99 . 4 M �, α = 3.5, and δm = 1 . 7 M �. 
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here in both cases N is the appropriate normalization factor. Note 
hat, in the case α1 = α2 , we reco v er the simple power-law. In
quation ( 7 ), it is understood that the i = 0 case corresponds to the
bsence of the component. For instance, we can have two Gaussians
ith or without a power-law, or just a broken power-law and so on

nd so forth. The only restrictions are that we must have at least one
omponent and that we cannot have the power-law and the broken 
ower-law simultaneously. In any of these cases we set the likelihood 
o zero. 

In equation ( 7 ), the amplitudes λs are related to the number of
vents in each component. Strictly speaking there is not equality 
ecause of the smoothing function S ( m , m min , δm ), but this is a small
orrection. To a v oid cases where a component is added with very
mall amplitude, we use a flat prior on the λ’s. We also use flat priors
or the remaining hyperparameters characterising the m 1 distribution, 
ith ranges given in Table 1 . The prior on the number of Gaussians,
ower-law and broken-power-law is also taken to be flat. For all other
opulation hyperparameters we use the same priors as in Abbott et al.
 2023 ). 

.3.2 Non-parametric models 

n our non-parametric model, we describe the m 1 number density as
 PWP function. We write � m 1 = { x i , v i } n , where v i is the value of
he pdf at a knot x i , and n is the total number of knots. The number
ensity at any point is obtained by interpolation: 

d N 

d � 

( � ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

v i 

(
m 1 
x i 

) log ( v i+ 1 /v i ) 
log ( x i+ 1 /x i ) 

, 

if x 1 < ... < x i ≤ m 1 < x i+ 1 < ... < x n ; 
0 if m 1 < x 1 or m 1 > x n . 

(10) 
his is equi v alent to assuming that log 
(

d N 
d � 

( � ) 
)

is a piece-wise linear
unction of log ( m 1 ). 

We assume a log-flat prior on the { v i } n and on the { x i } n , and
 flat prior on the number of knots. In principle, the range of the
rior on the position of the knots is determined by the minimum
nd maximum m 1 sample o v er all ev ents. Howev er, because there
re very few samples above 100 M � (less than 0 . 5 per cent of the
otal samples), and those are sparsely distributed, we find that letting
he knots take values abo v e 100 M � leads to spurious features. In
act, abo v e 100 M �, the determination of the population posterior is
lmost completely driven by the selection function. Therefore, we 
ake 100 M � as the upper limit for the position of the knots. 

We illustrate our method by generating mock injections compat- 
ble with the PP population inferred by the LVK, and reco v ering
he pdf with our non-parametric model. We consider an increasing 
umber of events: 69, as in the current data set, 200 and 500. The
atter two define a realistic range for the number of BBHs, we expect
o have observed after the fourth operational run (O4). For simplicity,
n this illustrative case we do not include either selection effects or
easurement errors. In Fig. 1 , we compare the reco v ered pdfs to

he pdf from which the mock injections are drawn. The injected pdf
ypically lies within the 90 per cent confidence interv al, sho wing
hat our method is able to properly infer it. Moreo v er, increasing the
umber of events does not lead to a dramatic increase in the number
f knots used for interpolation, as can be seen in Fig. 2 . Thus, the
umber of free parameters of our model remains reasonable as the
ize of the data set increases. We have performed such injections
or 200 sets of hyperparameters drawn from the LVK posterior and
roduced pp-plots, by computing to which quantile of the reco v ered
istribution do the quantiles of the observed set of events correspond.
e obtain diagonal pp-plots, reinforcing our confidence that our non- 

arametric model can be used to infer LVK-like populations. 
MNRAS 524, 5844–5853 (2023) 
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Figure 2. Posterior distribution on the number of knots for each of the curves 
shown in Fig. 1 . Increasing the number of events barely increases the number 
of knots required to represent the pdf. 
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One of the non-parametric models used by the LVK is the POWER-
AW + SPLINE (PS) Edelman et al. ( 2022b ), which models the
umber density as: 

d N 

d � 

( � ) ∝ S( m 1 , m min , δm 

) PL ( m 1 , m min , m max , α) e f ( m 1 |{ f i } ) , (11) 

here f ( m 1 | { f i } ) is a cubic spline function and the { f i } are the values
f this function at fixed knots, spaced log-uniformly. The number of
nots was fixed to 20. Our PWP model differs from the PS by: (i) not
ssuming an underlying power-law shape, and (ii) letting the number
nd the position of knots vary. Notice that both models are able to
epresent a simple power-law function. 

 INFERENCE  O N  G W T C 3  

e apply both our PWP and FPG models to the LVK data. As
escribed in Section 2.1 , for ease of comparison, we consider exactly
he same events and the same samples as in the LVK analyses Abbott
t al. ( 2023 ). The inferred volumetric rates as a function of m 1 are
hown in Fig. 3 , where they are compared to the fiducial LVK result.
e recap how the volumetric rate is derived from the number density

n Appendix B . 
The FPG model is in reasonable agreement with the LVK result,

ith the most noticeable difference at low masses. Regarding the
ower-la w v ersus broken power-la w comparison, the former is mildly
a v oured, with a Bayes’ factor of 1.671 ± 0.003. Ho we ver, in the
roken power-law case, the posterior distribution is nearly flat in
 break and is concentrated around α1 = α2 , reducing to a simple
ower -law. Thus, the fa v oured configuration is a power-law with
 Gaussians, with a (43 . 49 ± 0 . 15) per cent probability, relative to
ll possible combinations. The second best is a power-law with 3
aussians, at (23 . 91 ± 0 . 11) per cent probability . Finally , we find
nly a (8 . 5 ± 0 . 07) per cent probability of having only Gaussians.
n the preferred configuration, we find a Gaussian at ∼35 M � and
nother at ∼10 M �. As a consequence, the FPG model predicts a peak
f events slightly displaced to larger masses compared to the fiducial
VK analysis. As commented abo v e and illustrated in Fig. 5 , there is
lso some support for a third Gaussian around 65 M �, leading to the
bserv ed e xcess at high masses. Ho we ver, we note that the y -axis is
n log-scale, which exaggerates the size of this effect. Finally, we do
ot find evidence for an excess around 20 M �. The result shown in
ig. 5 is summed o v er all possible model component combinations,
ith relative probabilities obtained from sampling. 
NRAS 524, 5844–5853 (2023) 
Our non-parametric model shows more differences with respect
o the PP analysis. Its prediction resembles more the ones returned
y the FLEXIBLE MIXTURES and PS models of Abbott et al.
 2023 ). We compare the results of the latter to ours in Fig. 4 and in
ig. 6 , we show the posterior distribution on the number of knots
or the PWP model. The PWP model agrees with the FPG and the
S models on the position of the main peak, but predicts a more
ronounced shape. Such a peak is typically expected for binaries
hat form in isolation (Giacobbo & Mapelli 2018 ; Wiktorowicz et al.
019 ; Son et al. 2022 ). Together, these results suggest that the PP
odel is not flexible enough to capture these fine features. The PWP

lso reco v ers a secondary maximum around 35 M �. It is slightly
hifted to lower masses compared to the FPG, PP, and PS models,
ut the 90 per cent confidence intervals still have a broad o v erlap
n this re gion. Re garding the original goal of our analysis, the PWP
odel does suggest an excess of BHs around 20 M �, as indicated

y the peak in the mean and the upper boundary of the 90 per cent
onfidence interval, in broad agreement with the PS prediction. We
tress ho we ver that the uncertainty of the PWP model in this region
s very large, and the inferred distribution is also compatible with not
aving a peak around 20 M �. We attribute the larger uncertainty of
ur model with respect to the PS as due to the fact it makes fewer
 priori assumptions, e.g. we do not assume that the underlying
unction is a power-law . Similarly , the difference in the volumetric
ate before the peak is likely due to the underlying assumption on
he shape of the m 1 pdf in the PS model. Given the small number of
bservations, this excess at 20 M � suggested by our model could be
ue to statistical fluctuations. In order to investigate this possibility,
e perform a series of mock injections. 

 I NFERENCE  O N  M O C K  DATA  

irstly, we want to assess how likely it is that we find a spurious
eak-like feature between 13 and 25 M � in the distribution inferred
ith our PWP model when the underlying population does not have

uch a feature. This range is moti v ated by the results of Mahapatra
t al. ( 2022 ), that show that BBHs with primary mass in this range
ikely contain at least one second generation BH. We decide on the
resence of a peak-like feature by looking for a local maximum in
he mean of the inferred pdf. We refer to Farah et al. ( 2023 ) for an
nalysis of the statistical significance of other noticeable features
n the m 1 distribution. We draw 200 sets of hyperparameters from
he LVK PP posterior, and for each of those we simulate data sets
f 69, 200, and 500 events. The latter two define a realistic range
or the number of BBH observations we expect by O4. Then, we
nalyse the generated events with our non-parametric model and
ount the fraction of realizations, in which we find a peak between
3 and 25 M � in the inferred distribution. Since we only want to get a
ough idea of the significance of the peak observed in the LVK data,
o speed up computations we do not account for selection effects
or measurement errors. We find that the probability to find a peak
etween 13 and 25 M � is: 

(i) 0.04 ± 0.01 with 69 events 
(ii) 0.02 ± 0.01 with 200 events 
(iii) < 0.005 with 500 events 

We show in Fig. 7 an example, where applying our PWP model
o a data set of 69 events leads to erroneously thinking there is an
xcess of BHs around 20 M �. We show in grey the histogram of
vents. Although the underlying population has no local maximum
round 20 M �, statistical fluctuations lead to an excess of events
n this region, driving the erroneous inference. In this example, the
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Figure 3. Comparison of the volumetric rate as a function of m 1 predicted by the PP (in black), the FPG (in orange), and the PWP (in blue) models. Full 
lines indicate the mean and dashed lines the 90 per cent confidence interval of each model. The FPG model is in good agreement with the PP one, except for a 
displacement of the peak towards slightly larger masses. This comes from fa v ouring a second Gaussian at ∼ 10 M �, in addition to the one at ∼35 M �, as shown 
in Fig. 1 . As for the PWP model, it shows more deviations from the PP model. In particular, it agrees with the FPG model concerning the shift of the peak, 
fa v ouring an even more pronounced peak, and suggests an excess of BHs around 20 M �, as also suggested by some previous analyses (Tiwari 2022 ; Edelman 
et al. 2022a ; Abbott et al. 2023 ; Tiwari ( 2023 ). 

Figure 4. Same as Fig. 3 , for the comparison between the PS (grey) and PWP (blue) models. Both models agree on the location of the peak at low masses, with 
our model predicting a more peaked shape. They also agree on the location of the secondary peaks. The uncertainty in our model is larger, in particular around 
20 M � due to less a priori asusmptions, e.g. we don’t assume an underlying power-law shape. 
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ame happens around 80 M �. Thus, the false-alarm probability for
etecting an excess between 13 and 25 M �, with our non-parametric
odel after observing 69 events is roughly 5 per cent, but virtually

ull after 500 events. When analysing these same data sets with the
PG model, none of the cases shows a peak between 13 and 25 M �.
t high masses, where the events are more sparsely distributed, it is

ommon for our non-parametric model to show spurious peaks, due 
o fitting for isolated events, as illustrated in Fig. 7 . This problem
oes not concern the range we are interested in, between 13 and
5 M �, which is in the bulk of distribution, and where the events are
ore continuously distributed. 
Next, we want to estimate under which circumstances we can 

onfidently detect the presence of the peak around 20 M �. For the
ame 200 samples from the LVK population, we define 50 new
opulations by adding a Gaussian of mean 19 M � and width 2 M �,
ith increasing weight. For this purpose we define the normalized 

raction f i = λi / 
∑ 

i λi , where the sum runs o v er the amplitudes of all
omponents. In practice we grid the fraction f G 

19 logarithmically from 

0 −3 to 1, and redistribute the weight that was initially in the power-
aw between the Gaussian at 19 M � and the power-law. The weight of
he Gaussian at ∼35 M � remains the same. This simplistic procedure
s driven by the idea that if there is an additional peak around 20 M �,
t has been ‘swallowed’ by the power-law component. One might 
lso expect that the inferred power-law index is actually smaller than
t should, i.e. the power-law is less steep in order to accommodate
he excess. Ho we ver, this ef fect should be small and we are looking
MNRAS 524, 5844–5853 (2023) 
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Figure 5. Posterior distribution on the number of Gaussians for our FPG 

model. The model fa v ours ha ving 2 Gaussians: one at ∼35 M � and another 
at ∼10 M �. It also has some support for a third Gaussian around 65 M �. 

Figure 6. Posterior distribution on the number of knots for our PWP model. 
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or a rough estimate of the detectability of an excess around 20 M �,
o we do not account for it. Once again we draw sets of 69, 200, and
00 events from each of these populations, and analyse them both
ith the PWP and with the FPG model. Fig. 8 shows the probability
f finding a peak between 13 and 25 M � as a function of the weight
f the Gaussian around 19 M �, with each model. At small weights,
e reco v er the false-alarm probability discussed abo v e. As e xpected,

he chances of detecting an excess increase as the weight increases.
ith 500 events, our non-parametric model will reliably indicate if

he excess is truly physical, with higher probability than the FPG
odel. From this plot, we also see that it is not surprising that the

atter does not find the putative excess of BHs in the current LVK
ata, since it requires large weights to identify it with only 69 events.
n this same figure, the solid blue curve shows the probability of
etecting a peak with the non-parametric model and not with the
emiparametric one, when observing 69 events, as it the case for the
WTC-3 data set. Under the hypothesis that the BBH population is

ompatible with the ones used to perform the mock injections, this
an be interpreted as a likelihood for the observed datum that one fit
nds a peak, and the other does not. Constructing a posterior from

his likelihood and a flat prior on f G 

19 , we estimate that f G 

19 ≥ 0 . 08
t 90 per cent credibility and f G 

19 ≥ 0 . 14 at 68 per cent credibility.
hese are the values indicated with vertical lines. From the value
t which the full line curve goes to 0, we deduce in addition that
 

G 

19 � 0 . 5. 
Compared to the full analysis of Section 3 , our mock studies do not

ake into account the presence of selection effects and measurement
ncertainties in individual ev ents. We e xpect the latter to smooth out
NRAS 524, 5844–5853 (2023) 
he mass distribution, making fine features harder to detect. Thus,
e might be slightly o v erestimating the detectability of peaks by our
ethods. Measurement uncertainties would also smooth out sharp

eatures like the one seen in Fig. 7 . Selection effects would make
he distribution of observed e vents dif ferent to the astrophysical one.
 or instance, ev ents in the peak around 10 M � would be harder to
etect compared to events with mass 20 or 35 M �. On average, we
ould expect this to decouple from the statistical fluctutations we
nvestigated in the first part of this section, and not have too much
mpact on our conclusions regarding the detectability of spurious
eaks. Quantities like the position of the peaks and the ‘excess
robability’ in these peaks would in turn be affected, but these are
ot the focus of our investigation. On the other hand, selection effects
 ould mak e it easier to identify real excesses around 20 M �, for a
xed number of observed events. 

 C O N C L U S I O N  

apturing distinctive features in the population of BBHs is crucial
o discriminate between astroph ysical models. Astroph ysically mo-
i v ated priors are useful to directly constrain physical parameters,
ut lack flexibility, when the population includes unanticipated
tructure. In this paper, we have proposed two flexible models for
he distribution of primary masses, and applied them to GWTC-3.
 crucial ingredient of our method is RJMCMC, which allows the

omplexity of the model to be chosen by data, as well as to perform
odel selection. With these models in hand, we have assessed the

tatistical significance of the excess of events around 15 –20 M �,
ound by some of the population analyses performed on GWTC-3
Tiwari & Fairhurst 2021 ; Edelman et al. 2022a ; Abbott et al. 2023 ),
ut not all (Ruhe et al. 2022 ; Sadiq et al. 2022 ; Callister & Farr 2023 ).

Our first model is an extended and more fle xible v ersion of the PP
odel of the LVK, where the number of Gaussians is free to vary,

nd we can choose between having a power-law, a broken power-law
r none. It illustrates how RJMCMC can be used to perform model
election, allowing to choose between a variety of models at once,
nstead of running them individually and comparing the evidences
fterwards. We have found that the current data fa v ours ha ving a
ower-law component with two Gaussians: one around 35 M �, and
nother around 10 M �. As a consequence, it predicts a peak of events
t slighlty higher masses than in the fiducial LVK analysis. There is
lso mild support for a third Gaussian at ∼65 M �, but it has small
ignificance in the current data. Furthermore, it is disfa v oured to have
nly Gaussians. Finally, we find no sign for a break in the slope of
he power -law, b ut this might change as the number of observations
ncreases. Moreo v er, more elaborated combinations of parametric
unctions could be considered in order to fully take advantage of the
exibility offered by RJMCMC. 
Ne xt, we hav e proposed a non-parametric model representing

he m 1 pdf as a PWP function. We infer the position of the knots
nd the value of the pdf at those knots, but also the number of
nots, thanks to the RJMCMC. The complexity of our model is not
re-determined, but it is decided by data. This model shows a few
ifferences with respect to the PP model, in particular it agrees with
ur semiparametric model regarding the displacement of the low-
ass peak, and also suggests an excess of BHs, around 20 M �. It

s in better agreement with the PS model of the LVK. Ho we ver,
y performing mock-injections under simplifying assumptions (i.e.
egelcting selection effects and measurement uncertainties), we
ave found that there is roughly a 5 per cent chance that the
eak at 20 M � is due to statistical fluctuations, when assuming a
opulation compatible with the LVK PP analysis. With 500 events
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Figure 7. Examples of a mock injection catalogue with 69 events, where statistical fluctuations lead to erroneously thinking that there in an excess of BHs 
around 20 M �. The same happens around 80 M �. 

Figure 8. Probability of detecting a peak between 13 and 25 M � as a function 
of the weight of the Gaussian at 19 M �, for both the FPG and the PWP model, 
considering an increasing number of events. At small weights, the probability 
matches the false-alarm probability. The bumpy aspect at small weights is 
due to low statistics in this region, but the general trend is clear. Curves 
interrupted somewhere o v er the x-range go to 0. The solid blue curve shows 
the probability of detecting a peak with the non-parametric model, and not 
with the semiparametric one for 69 events, as it is the case for the GWTC-3 
data set. The vertical lines show the lower bounds on f G 

19 at 68 per cent and 
90 per cent credibility, obtained by treating this curve as a likelihood, as 
described in the text. 

t
m  

m  

i
H
w
D  

2  

o
m  

m  

p
 

i

r
i
D
2  

e  

2  

t  

m  

o

A

T  

t
C
b
a
U
N
L
A
t
G
d
F
b
J
b
(
J
a
S

D

T  

L  

(  

A

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/4/5844/7232537 by M
PI G

ravitational Physics user on 26 Septem
ber 2023
he false-alarm probability is nearly zero. Moreo v er, when analysing 
ock-populations that do have an excess at 20 M �, our model can
ore easily find it than our FPG model. As the number of events

ncreases, additional features in the m 1 distribution might appear. 
ierarchical mergers could lead to a series of regularly spaced peaks 
ith decreasing amplitude (Tiwari & Fairhurst 2021 ; Tiwari 2022 ). 
etecting more massi ve e vents such as GW190521 (Abbott et al.
020 ) will inform us on the mass-gap, and whether there is a dearth
f events in this region, as predicted by models. Our non-parametric 
odel would be able to capture these features without any a priori
odelling of the signature of these effects on the m 1 distribution,

roving a powerful tool to better understand astrophysics. 
In this work, we have assumed the population prior to be separable

n the event parameters, primary mass, mass ratio, spins, and 
edshift. Ho we ver, finding correlations between parameters would 
ncrease our ability to discriminate between astrophysical scenarios. 
ifferent approaches have already been explored (Callister et al. 
021 ; Fishbach et al. 2021 ; Adamcewicz & Thrane 2022 ; Bavera
t al. 2022 ; Bisco v eanu et al. 2022 ; Hoy et al. 2022 ; Ray et al.
023 ), with some of them yielding first hints of correlations. With
he increase in the number of events, such fine features will become

ore prominent. It is therefore the natural next step for us to extend
ut method to multidimensional distributions. 
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PPENDI X  A :  P O P U L AT I O N  P R I O R S  

e describe the models used for the single event parameters other
han the primary mass, these are the same as in the fiducial analysis
f Abbott et al. ( 2023 ). For the mass ratio, we assume a power-law
istribution: 

( q| m 1 , � q ) ∝ q βS( qm 1 , m min , δm 

) , (A1) 

ith 

( m 1 , m min , δm 

) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0; if m 1 < m min 

[ f ( m 1 − m min , δm 

) + 1] −1 

if m min ≤ m 1 ≤ m min + δm 

; 
1; if m 1 > m min + δm 

, 

(A2) 

nd 

 ( m, δm 

) = e 
δm 
m + 

δm 
m −δm . (A3) 

In the PWP model, we do not use the smoothing function, and
mpose a sharp cut-off: 

( q| m 1 , � q ) 

{
0; if qm 1 < 2 
∝ q β ; otherwise . 

(A4) 

We assume a common Beta-dsitribution for the spins magnitude: 

( χ | � χ ) = Beta ( αχ , βχ ) . (A5) 

s for their orientation, we model the joined distribution of the
osines of the tilt angles as a mixture between a two-dimensional
aussian of width σ t , centred at 0, and truncated at −1 and 1, and a

wo-dimensional flat distribution between −1 and 1.: 

( cos ( θ1 ) , cos ( θ2 ) | � θ ) = ζG t ( cos ( θ1 ) , cos ( θ2 ) , 0 , σt ) 

+ (1 − ζ ) U ( −1 , 1) . (A6) 

inally, we assume that the rate of BBHs evolves with redshift as
 ( z) = (1 + z) κ , which leads to the pdf on z: 

( z| � z ) ∝ (1 + z) κ−1 d V c 

d z 
, (A7) 
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here V c is the comoving volume. 
The priors for β, m min , δm , ζ , σ t , and κ are taken to be flat. For αχ

nd βχ , we assume the prior on the mean μχ and the variance σ 2 
χ of

he Beta-distribution to be flat, subject to the condition αχ > 1, βχ

 1. 

PPENDIX  B:  VO LUMETRIC  R AT E  

he number density can be transformed into a volumetric rate by 
aking its ratio with the observed space–time volume VT obs , defined 
s: 

 T obs = T obs 

∫ z max 

0 

1 

1 + z 

d V c 

d z 
R ( z ) d z (B1) 
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e take z max = 2.3 and use the value of T obs provided in the public
ata released along Abbott et al. ( 2023 ). Finally, 

d R 

d m 1 
( � ) = 

1 

V T obs 

d N 

d m 1 
( � ) . (B2) 
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