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ABSTRACT

We propose a model of asymmetric bosonic dark matter (DM) with self-repulsion. By adopting

the two-fluid formalism, we study different DM distribution regimes, either, fully condensed inside

the core of a star, or, otherwise, distributed in a dilute halo around a neutron star (NS). We show

that for a given total gravitational mass, DM condensed in a core leads to a smaller radius and tidal

deformability compared to a pure baryonic star. This effect may be interpreted as an effective softening

of the equation of state. On the other hand, the presence of a DM halo increases the tidal deformability

and total gravitational mass. As a result, an accumulated DM inside compact stars could mimic an

apparent softening/stiffening of strongly interacting matter EoS and constraints we impose on it at

high densities.

We limit the model parameter space by confronting the cross-section of the DM self-interaction to the

constraint extracted from the analysis of the Bullet Cluster. Furthermore, from the performed analysis

of the effect of DM particles, interaction strength, and relative DM fractions inside NSs we obtained a

rigorous constraint on model parameters. To identify its impact on NSs we consider the DM fraction

may reach up to 5%, which could be considered too high in several scenarios. Finally, we discuss several

pieces of smoking gun evidence of the presence of DM that is free from the abovementioned degeneracy

between the effect of DM and properties of strongly interacting matter. These signals could be probed

with future and ongoing astrophysical and gravitational wave (GW) surveys.

Keywords: Neutron Stars(1108) — Dark Matter(353) — Gravitational Waves(678)

1. INTRODUCTION

Since the first detection of the binary neutron star

(NS) merger, GW170817 (Abbott et al. 2017a), which

was accompanied by the observation of electromagnetic

signals originating from the same source, GRB170817A

and AT2017gfo (Abbott et al. 2017b), we have been wit-

nessing exciting breakthroughs in our understanding of

compact stars and their merger dynamics. In fact, grav-

itational wave (GW) astronomy and multi-messenger

astrophysics became new tools to extract information

about the internal structure of NSs from GW and elec-

tromagnetic observations (Bauswein et al. 2017; Annala

et al. 2018; Hinderer et al. 2019). Thus, from the com-

bination of the analyses of the GW170817 signal mea-

sured by the advanced LIGO and advanced Virgo detec-

tors, the constraint on the tidal deformability parameter

of NS matter Λ1.4 ≤ 800 was extracted (Abbott et al.

2018). The second binary NS merger event, GW190425

(Abbott et al. 2020a), provided constraints consistent

with GW170817, but due to its lower signal-to-noise ra-

tio did not deepen our knowledge about the NS Equa-

tion of State (EoS). In addition to GW observations,

also X-ray observations by NICER (Miller et al. 2019,

2021; Riley et al. 2019, 2021; Raaijmakers et al. 2020),

radio measurements of the heaviest pulsars, e.g. PSR

J0348+0432 of mass 2.01 ± 0.04 M⊙ (Antoniadis et al.

2013), PSR J0740+6620 of 2.08+0.07
−0.07 M⊙ (Fonseca et al.

2021) and optical observations of the black widow pul-

sars, e.g., PSR J1810+1744 of 2.13± 0.04 M⊙ (Romani

et al. 2021), and PSR J0952-0607 of 2.35 ± 0.17 M⊙
(Romani et al. 2022) constrain properties of NSs.

While all the mentioned analyses and models assume

that NSs are embedded in a pure vacuum and do not

contain dark matter (DM), they, indeed, could accumu-

late a sizable amount of DM in their interior and sur-

roundings. Due to high compactness, NSs can effectively
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trap DM particles, which will rapidly thermalize and be-

come accrued inside the stars, altering their properties.

The presence of DM affects the internal structure and

compactness of compact stars. Thus, as it was shown,

e.g., Ciarcelluti & Sandin (2011); Ellis et al. (2018b);

Nelson et al. (2019); Ivanytskyi et al. (2020); Das et al.

(2020) and Sagun et al. (2022), DM may either form

an extended halo or a dense core inside a NS. Depend-

ing on the mass of DM particles, their self-interaction

strength, and its relative abundance inside the star, one

of the abovementioned scenarios takes place. Since DM

halos are invisible for typical astrophysical observations,

we would see only the baryonic matter (BM) radius, in-

dependent of the fact that the outermost radius can ex-

tend further than its BM component (Karkevandi et al.

2022). On the contrary, a DM core formation will lead

to a reduction in the NS radius.

Moreover, DM will affect tidal deformability parame-

ters and the merger dynamics (Ellis et al. 2018a; Bezares

et al. 2019; Bauswein et al. 2023; Leung et al. 2022).

Nowadays, while there are studies investigating possible

alternative scenarios beyond standard compact binary

mergers described by general relativity in pure vacuum

(Abbott et al. 2019a), the models used to analyze GW

signal do not account directly for DM.

Thus, to understand the effect of DM on the co-

alescence of NSs, numerical-relativity simulations for

different DM fractions, particle mass, and interaction

strength are required. As a step in this direction, there

have been the first two-fluid 3D simulations of coalescing

binary NS admixed with DM with the following studies

of GW emission of the merger remnant, e.g. Bauswein

et al. (2023) and Emma et al. (2022). By considering

different binary masses and EoSs, Bauswein et al. (2023)

showed that the GW frequency of the orbiting DM com-

ponents scales with the compactness of NSs. Moreover,

the relations between the DM GW frequency and the

dominant post-merger GW frequency of the stellar fluid

or the tidal deformability were found, which opens a

possibility to probe the EoS effects during the binary

inspiral. Emma et al. (2022) studied the effect of mirror

DM concentrated inside the core on the deceleration of

the inspiral phase, as well as on a modification of the

ejecta and debris disk formation.

Depending on whether DM has particle-antiparticle

asymmetry, we will refer to it as asymmetric or symmet-

ric matter. Symmetric DM particles can self-annihilate

leaving a possibility of its detection via X-ray, γ-ray, or

neutrino telescopes (Kouvaris 2008). Moreover, as stud-

ied in Pérez-Garćıa & Silk (2012), self-annihilating DM

in the inner regions of NSs may have a significant im-

pact on the kinematic properties, namely, velocity kicks

and rotation patterns.

Another possible effect of DM particle annihilation

inside the NS core is related to the late-time heating,

which could be detected from observations of the sur-

face temperature of the old part of the NS population

(de Lavallaz & Fairbairn 2010; Hamaguchi et al. 2019).

Unfortunately, nowadays, our database of old NSs is still

quite limited.

Contrary to the annihilating DM, asymmetric DM will

become accumulated inside a star. Models that con-

sider such scenario should allow old NSs to exist. Espe-

cially, it is important for bosonic DM particles, which

at zero temperature could form Bose-Einstein conden-

sate (BEC) leading to the gravitational collapse of the

bosonic DM to a black hole (Kouvaris 2013a).

Light DM particles, such as axions, could contribute

as an additional cooling channel in compact stars. Thus,

in the NS core axions can be produced either in nu-

cleon bremsstrahlung or in Cooper pair breaking and

formation processes (Sedrakian 2016, 2019; Buschmann

et al. 2022), causing an alteration of the surface tem-

perature and thermal evolution of a star. In addition,

most of the existing models are constrained by the re-

sults of neutrino emission coming from the supernova

observation SN 1987A (Chang et al. 2018) and existing

NS cooling data. The results of NS merger simulations

(Dietrich & Clough 2019) show that axions produced in

nucleon-nucleon bremsstrahlung do not lead to a mea-

surable change in the emitted GW signal, ejecta mass,

as well as the temperature profile of the merger remnant.

The fraction of DM in the compact star interior de-

pends on different factors. Thus, DM can be captured

by NSs from the surrounding medium. Following scat-

tering processes, the kinetic energy of DM particles is

transferred to the star (Kouvaris 2013b; Bell et al. 2020,

2021), and becomes gravitationally bound with a star.

The amount of DM accrued by an ordinary accretion

throughout a stellar evolution will depend on the po-

sition of the considered NS in the Galaxy (Kouvaris

& Tinyakov 2010). As the DM density in the Galac-

tic Center is many orders of magnitude greater than in

its arms, we may expect a higher DM fraction in com-

pact stars toward the Milky Way center (Del Popolo

et al. 2020). Furthermore, NSs in globular clusters may

contain a significant amount of DM (Bertone & Fair-

bairn 2008). Moreover, we should not forget that NS is

the final stage of star’s evolution preceded by the pro-

genitor, main-sequence star, and supernova explosion

with the formation of a proto-NS. These and all other

mechanisms are discussed in detail in Karkevandi et al.

(2022). As was estimated by Ivanytskyi et al. (2020), the
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amount of accumulated DM in the most central part of

the Galaxy accrued by a spherically symmetric accretion

scenario during the main-sequence star and equilibrated

NS stages is 0.01%. However, additional scenarios could

lead to high DM factions inside compact stars, e.g., DM

production during a supernova explosion, accretion of

DM clumps formed at the early stage of the universe,

or initial star formation on a preexisting dark core. As

we are interested in identifying possible signatures on

NSs, we have concentrated our study on fractions up

to 5%, which cannot be accumulated by a spherically

symmetric DM accretion followed by thermalization via

the interaction with BM, and requires the alternative

mechanisms mentioned above.

Moreover, some local non-homogeneity of DM distri-

bution may contribute to an increase in DM fraction,

leading even to dark compact objects (Dengler et al.

2022) and dark stars (Kouvaris & Nielsen 2015; Maselli

et al. 2017).

Since DM properties are still unknown, different mod-

els have been employed, considering its fermionic (Gold-

man et al. 2013; Gresham et al. 2017; Ivanytskyi et al.

2020) and bosonic (Colpi et al. 1986; Petraki & Volkas

2013; Karkevandi et al. 2022) nature. As it was dis-

cussed by Bramante et al. (2013) to be consistent with

the observations of old NSs, bosonic DM has to be either

self-interacting, decaying, or self-annihilating. Consid-

ering asymmetric DM a repulsive self-interaction is re-

quired due to zero degeneracy pressure. At the moment

when accumulated bosonic asymmetric DM exceeds the

Chandrasekhar mass, nothing can prevent its gravita-

tional collapse and the formation of a black hole inside

the NS, which could potentially disrupt the star (Kou-

varis 2013a; Zurek 2014).

Using an analog of visible matter and the Standard

Model particles, we see that all interactions have an ex-

change character, an interaction between particles oc-

curs due to an exchange of a mediator, e.g., the inter-

action between nucleons is mediated by pions. In the

present article, we extend this approach for a dark sec-

tor by formulating a model of self-interacting asymmet-

ric bosonic DM, which includes vector interaction me-

diated by a real ω-field coupled to the scalar one. We

model DM-admixed compact stars by considering the

mixed system of two fluids with different relative frac-

tions.

The assumption of cold self-interacting DM provides a

good agreement with the large-scale structure of the uni-

verse and cosmology. It reconciles the success of the cold

DM (CDM) model with the non-observation of cuspy

density profiles of dwarf galaxies predicted by CDM N -

body simulations and known as the core-cusp problem

(Moore 1994). In comparison to an alternative mecha-

nism to flatten the central density profile by supernova-

driven episodes of gas removal, self-interacting DM is

a more favorable one (Burger et al. 2022). On the

other hand, from the observed mass profiles of galax-

ies (Ahn & Shapiro 2005) and Bullet Cluster observa-

tions (Clowe et al. 2006; Randall et al. 2008) the DM

self-interaction cross section per unit mass has an up-

per limit of σ/m <1.25 cm2 g−1 (68% confidence level).

The DM model considered in this paper is in line with

the above assumption, and therefore, provides consis-

tency with the state of the art of modern cosmology.

Moreover, below we explicitly account for the above con-

straint on σ/m in order to limit the model parameters.

An implication of the proposed EoS and tests against as-

trophysical and GW observations are performed in this

work.

The paper is organized as follows. In Section 2, we

present models for the BM and DM components, with

a detailed derivation provided in the Appendix A. Sec-

tion 3 is dedicated to the equilibrium configurations of

DM-admixed compact stars. In Section 4, we discuss

how the speed of sound and the tidal deformability are

affected by the presence of DM. In Section 5 the main

results are presented, including the constraints on mass

and interaction scale of DM particles. In Section 6, we

discuss the smoking gun signals of the presence of DM

that could be tested in the nearest future before con-

cluding in Section 7. In Appendix A, we show the full

derivation of the DM EoS, with a focus on the effective

speed of sound for a DM-admixed NS in Appendix B.

In Appendix C, we show the scan over the model pa-

rameters and the obtained constraints. Throughout the

article, we utilize a unit system in which ℏ = c = G = 1.

2. MODELS OF DARK AND BARYONIC MATTER

2.1. DM EoS

We consider the model of massive spinless DM par-

ticles carrying a conserved charge. Such particles are

described by a complex scalar field, have mass mχ and

chemical potential µχ. At sufficiently low temperatures

bosonic DM exists in the form of the BEC. In the ab-

sence of interaction such BEC has zero pressure and

is mechanically unstable against gravitational compres-

sion. We stabilize the BEC of DM by introducing repul-

sive interaction mediated by a real vector field coupled

to the scalar one. The minimal Lagrangian representing

this model is given in the Appendix A. It is equivalent

to a massive U (1) gauge theory of scalar particles, i.e.,

scalar electrodynamics with massive photons. This La-

grangian implies a Noether current corresponding to the

invariance of action with respect to global U (1) trans-
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formations. If the vector field was not a Yukawa but a

gauge one, local U (1) symmetry would also be respected

and another Noether current could be introduced (Brad-

ing & Brown 2000). Given a quantum treatment, ex-

pectation values of these two currents produce the same

conserved charge, which is not the case within the used

mean-field approximation corresponding to a classical

treatment of the vector field (see Appendix A for de-

tails). We use the Noether current resulting from global

U (1) transformations, which leave the action invariant

even at the mean-field level.

In this work, we assume the vanishing temperature

of the DM, being totally converted to the BEC. In the

considered case thermal fluctuations are suppressed and

mean-field approximation can be applied in order to de-

rive the corresponding EoS. Chemical potentials of the

BM and DM components of NS scale proportionally (for

more details see Section 3). This significantly simpli-

fies solving two coupled Tolman–Oppen- heimer–Volkoff

(TOV)–like equations for BM and DM components, as

shown by Ivanytskyi et al. (2020). Therefore, it is con-

venient to formulate the DM EoS in the grand canonical

ensemble (GCE), where µχ is an independent variable.

Appendix A includes details of the corresponding deriva-

tion for the interval of physical values of µχ ∈ [0,
√
2mχ]

performed in the locally flat spacetime, provided by

small gradients of metrics and absence of the anisotropy

issues (see Karkevandi et al. (2022) for details). The

corresponding pressure and energy density are

pχ=
m2

I

4

(
m2

χ − µχ

√
2m2

χ − µ2
χ

)
, (1)

εχ=
m2

I

4

 µ3
χ√

2m2
χ − µ2

χ

−m2
χ

 , (2)

for µχ ∈ [mχ,
√
2mχ] and pχ = εχ = 0 for µχ ∈ [0,mχ].

The parameter mI has the unit of mass and controls

the interaction strength. It is proportional to the vector

meson mass mω and inversely proportional to its cou-

pling g. Thus, large mI corresponds to weak interaction

and vice versa. At a first glance, the present EoS in the

weak coupling regime paradoxically leads to an infinite

pressure due to mI → ∞. This, however, is not the case

since in the considered regime chemical potential of the

DM BEC µχ coincides with its mass mχ leading to the

vanishing of the brackets in Eqs. (1) and (2). In the case

of pχ the bracket vanishes faster than m2
I yielding to a

zero pressure ∼ m−2
I , while for εχ the bracket behaves

as ∼ m−2
I providing a finite energy density of the DM

BEC mχnχ. In the strong coupling regime, mI → 0

chemical potential of DM converges to
√
2mχ. As a re-

sult, the bracket in Eq. (1) becomes equal to m2
χ and

Figure 1. Left panel: Scaled pressure pχ/p∞ (black solid
curve), energy density εχ/p∞ (black dashed curve) and speed
of sound squared c2s,χ (red dotted curve) of DM as functions
of its chemical potential µχ given in units of mχ. Right
panel: Scaled pressure pχ/p∞ (black solid curve) and speed
of sound c2s,χ (red dotted curve) of DM as functions of scaled
energy density εχ given in units of p∞.

the pressure vanishes as m2
Im

2
χ/4. The corresponding

bracket in Eq. (2) diverges as ∼ m−2
I leading to finite

energy density
√
2mχnχ. Remarkably, weak and strong

coupling limits of the present EoS are similar, since DM

pressure vanishes in both these cases. At mI → ∞ it is

due to the absence of repulsion. The limit mI → 0 is

equivalent to the case of the massless vector field, which

does not have a nontrivial mean-field solution needed

to stiffen the EoS. Detailed analysis of the weak and

strong coupling limits of the present EoS is performed

in Appendix A.

A remarkable feature of the present EoS is that at in-

finite density its pressure is limited by the value p∞ =

m2
Im

2
χ/4. This regime is reached at µχ =

√
2mχ. Thus,

the compressibility of DM vanishes at asymptotically

high densities regardless of mχ and mI . The same con-

clusion holds for the speed of sound c2s,χ = dpχ/dεχ. In

other words, high-density configurations of bosonic DM

are gravitationally unstable at any strength of the re-

pulsive interaction. The left panel of Fig. 1 shows the

pressure, energy density, and speed of sound of the con-

sidered DM EoS as functions of the corresponding chem-

ical potential. It is worth mentioning, that the square

of the speed of sound is limited from above by the value

1/9, which is reached at µχ =
√

3/2 mχ and does not
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depend on mχ and mI . Thus, c2s,χ is bounded by quite

small values and corresponds to the soft EoS of DM.

The right panel of Fig. 1 shows this EoS as a function

of energy density.

Observational data on the colliding clusters of galaxies

1E 0657-56 (the Bullet Cluster) enable probing dynam-

ics of the DM fluid on the cosmological scale. This dy-

namic is determined by the DM self-interaction, which is

controlled by the corresponding cross section σχ. Eval-

uation of this quantity requires the invariant matrix el-

ement of scattering of two on-shell DM particles from

the initial state with three momenta k1 and k2 to the

final one with momenta k′
1 and k′

2. At the tree level,

this matrix element includes contributions from the t-

and u-channels

iM=

k1 k′
1

k2 k′
2

q

+

k1

k′
2k2

k′
1

q . (3)

These diagrams are formalized by the Feynman rules

of scalar quantum electrodynamics with massive pho-

tons. Each vertex corresponds to a factor −ig. The

annihilation of a particle with four-momentum k and

the creation of another one with four-momentum k′ in

a vertex produces the factor −kµ − k′µ, while in the

case of antiparticles, the momenta entering this factor

have the opposite signs. Wavy lines stand for the vec-

tor field propagator −igµν(q2 − m2
ω)

−1 with q being a

transferred momentum. The conservation of energy and

momentum ensures that in the t- and u-channels, which

are represented by the upper and lower graphs in Eq.

(3), squared transferred momentum coincides with the

Mandelstam variables t = (k1 − k′1)
2 = (k2 − k′2)

2 and

u = (k1 − k′2)
2 = (k2 − k′1)

2, respectively. The Lorentz

indexes µ and ν appearing in the vertexes and in the vec-

tor field propagator are dummies. With this, we arrive

at

M = g2
[
(k1 + k′1)(k2 + k′2)

t−m2
ω

+
(k1 + k′2)(k2 + k′1)

u−m2
ω

]
. (4)

In the BEC case, three momenta of the incoming and

outgoing particles vanish, which produces 4m2
χ in the

numerator of each fraction in the previous expression

and corresponds to t = u = 0. This yields M =

−8m2
χ/m

2
I and differential cross section of the DM self-

interaction dσχ/dΩ = |M|2/64π2Ecm, where Ecm =

2mχ is the center-of-mass energy of the incoming parti-

cles with k1 = k2 = 0. This differential cross section is

independent of the angle variables. Therefore, the total

one is obtained by multiplying dσχ/dΩ by 4π. Finally,

we obtain

σχ

mχ
=

2mχ

πm4
I

. (5)

Numerical simulations of the Bullet Cluster combined

with the results from X-ray, strong and weak lensing,

optical observation set an upper limit on this ratio Ran-

dall et al. (2008). Within the 68 % confidence inter-

val σχ/mχ <1.25 cm2 g−1, while assuming equal mass-

to-light ratios in the subcluster and the main cluster

prior to the merger yields even more stringent constraint

σχ/mχ <0.7 cm2 g−1. In order to keep the parameter

space of the model as wide as possible, we use a more

relaxed version of this constraint. Thus, we require

mI [MeV] > 18.24 4

√
mχ [MeV]. (6)

This requirement obviously discredits the strong cou-

pling limit mI → 0 with respect to the above cosmolog-

ical constraint on the DM self-interaction cross section.

Further analysis is limited to the region of the model

parameter space, which respects Eq. (6).

2.2. Baryon matter EoS

In order to thoroughly study the impact of DM on

compact stars made of mostly BM, we consider two EoSs

of different stiffness. One of them is the induced surface

tension (IST) EoS, formulated on the basis of the hard-

core approach. Thus, nucleons are characterized by an

effective hard-core radius that provides a short-range re-

pulsion between the particles of different species. This

part of the model was fixed from the fit of heavy-ion

collision data (Sagun et al. 2018), while the IST con-

tribution was implemented by accounting for an inter-

particle interaction at high density. The corresponding

parameters were fitted to reproduce the nuclear matter

ground-state properties, correct behavior of the nuclear

liquid-gas phase transition and its critical point (Sagun

et al. 2017) and proton flow constraint (Ivanytskyi et al.

2018). Furthermore, in Sagun et al. (2019b) the model

was generalized to describe NSs showing a big appli-

cation range of the unified IST approach Sagun et al.

(2019a). In the present work, we consider the Set B de-

scribed in detail in Sagun et al. (2020), while the crust

is modeled in a simplified way by the polytropic EoS

with adiabatic index γ = 4/3. This model parameteri-

zation reproduces GW170817 and GW190425 tidal de-

formability limit (Abbott et al. 2018, 2020a), NICER
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mass-radius measurements (Miller et al. 2019, 2021; Ri-

ley et al. 2019, 2021; Raaijmakers et al. 2020), as well

as the maximum mass constraint.

In addition, we consider the DD2 EoS (Typel &

Wolter 1999; Typel et al. 2010) with and without Λ hy-

perons. The DD2 is a mean-field relativistic nuclear

model with density-dependent couplings, whose param-

eters were fitted to the ground-state properties of nuclei.

Hyperons have been included in several works. In the

present study, the density dependence of the hyperon

couplings to the σ, ω and ρ mesons are considered to

be the same as one of the nucleons. For the ϕ coupling,

the density dependence of the ω meson is considered.

The couplings of the σ meson to the Λ and Ξ have been

taken from Fortin et al. (2017) and Fortin et al. (2020),

respectively, and have been fitted to the binding energy

of Λ and Ξ hypernuclei. The coupling to the Σ hyperon

was chosen so that the Σ potential in symmetric nuclear

matter is +30 MeV, see Gal et al. (2016) for a discussion.

For the vector mesons, the quark model predictions are

used,

gωΛ = gωΣ =
2

3
gωN , gωΞ =

1

3
gωN ,

gϕΛ = gϕΣ = −
√
2

3
gωN , gϕΞ = −2

√
2

3
gωN .

Finally, the effective ρ-meson coupling is determined by

the product of the hyperon isospin with the ρ meson-

nucleon coupling. The DD2 EoS without Λ hyperons

reproduces the maximum mass constraint (Mmax =

2.4M⊙) and NICER data, while Λ1.4 is 700. At the same

time, the DD2 EoS with Λ hyperons gives the maximum

mass of 2M⊙. Further on the DD2 EoS with Λ hyperons

will be referred as the DD2Λ.

The complete NS EoS contains, besides the core EoS,

the BPS EoS Baym et al. (1971) for the outer crust,
and the inner crust was calculated within a Thomas-

Fermi calculation taking DD2 as the underlying model

and allowing for the appearance of several geometries as

discussed in Grill et al. (2014). The inner crust EoS has

been published in Fortin et al. (2016).

3. MIXED SYSTEM OF TWO COMPONENTS

We assume no interaction between DM and BM, ex-

cept through gravity. This assumption is fully justified

by the latest constraints coming from the DM direct

detection experiments and Bullet Cluster (Clowe et al.

2006; Randall et al. 2008), showing that the DM-BM

cross section is many orders of magnitude lower than

the typical nuclear one, σχ ∼ 10−45 cm2 ≪ σN ∼
10−24 cm2.

Therefore, the stress-energy tensors of both compo-

nents are conserved separately, leading to the system

of the TOV equations with split components (Oppen-

heimer & Volkoff 1939; Tolman 1939)

dpi
dr

= − (ϵi + pi)(Mtot + 4πr3ptot)

r2 (1− 2Mtot/r)
, (7)

which describes the relativistic hydrostatic equilibrium

of a DM-admixed NS. In Eq. (7), the subscript index

refers both to the BM and DM, i.e., i = B,D, while

ptot ≡ pB + pχ and M(r) are the total pressure and

gravitational mass enclosed inside a sphere of radius r,

respectively,

Mi(r) = 4π

∫ r

0

εi(r
′)r′2dr′. (8)

Using Eq. (8), we define the total gravitational mass

as the sum of the two components, Mtot = MB(RB) +

MD(RD), where the radii Ri are evaluated using the

zero-pressure condition at the surface

pi(Ri) = 0. (9)

After having the total mass of the system, it is possible

and convenient to write the fraction of the accumulated

DM as

fχ =
MD

Mtot
. (10)

It is worth noting, that we refer to the micro-

scopic/thermodynamic DM parameters as χ, while the

macroscopic ones have an index D.

It is easy to obtain directly from Eq. (7) the relation

between the chemical potentials of the BM and DM. In

fact, Ivanytskyi et al. (2020) showed that

d lnµB

dr
=

d lnµχ

dr
= −Mtot + 4πr3ptot

r2(1− 2Mtot/r)
, (11)

which yields the conclusion that the two chemical po-

tentials are proportional to each other. The value their

ratio attains in the center of the star is the proportion-

ality constant, which can be used to simplify the model

µχ =

(
µχ

µB

)
r=0

µB . (12)

By solving the TOV Eq. (7) with the boundary condi-

tions and accounting for the relation between both com-

ponents from Eq. (12), we calculate the M-R relations

for DM-admixed NSs for different values of DM frac-

tions fχ, particle’s mass mχ, and the interaction scale

mI . To better understand the impact of each parameter

we consider light and heavy DM particles with mχ=100

MeV and mχ=1000 MeV (see the left column of Fig. 2).

Moreover, to address our ignorance of the EoS for bary-

onic component we studied the effect of DM on the soft
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Figure 2. Left column: total gravitational mass of the DM-admixed NS as a function of its visible radius R obtained for
mχ=100 MeV, mI=250 MeV (upper panel) and mχ=1000 MeV, mI=1000 MeV (lower panel). Black solid, dashed-dotted, and
dotted curves correspond to pure BM stars described by the IST EoS, DD2 EoS, and DD2 EoS with hyperons. Red, blue, and
green colours depict relative DM fractions equal to 1%, 3%, and 5%, correspondingly. Green, gray, and teal bands represent 1σ
constraints on mass of PSR J0348+0432 (Antoniadis et al. 2013), PSR J1810+1744 (Romani et al. 2021), and PSR J0952-0607
(Romani et al. 2022). Pink and beige contours show the NICER measurements of PSR J0030+0451 (Miller et al. 2019; Riley
et al. 2019), while orange and blue contours depict the PSR J0740+6620 measurements (Miller et al. 2021; Riley et al. 2021).
LIGO-Virgo observations of GW170817 (Abbott et al. 2018) and GW190425 (Abbott et al. 2020a) binary NS mergers are shown
in blue and magenta. Middle column: energy density profiles for the BM (dotted curves) and DM (dashed curves) components
are shown for the DD2 EoS. The solid black curve represents the profile for pure BM 1.4 M⊙ NS, while the other profiles were
sampled to have the same total gravitational mass. The upper panel is obtained for mχ=100 MeV, mI=250 MeV and the lower
one for mχ=1000 MeV, mI=1000 MeV. Right column: the same as on the middle column, but for the IST EoS.

IST EoS, depicted as a solid black curve on the left pan-

els of Fig. 2, as well as on the stiff DD2Λ EoS (dotted

black curve) and DD2 EoS (dashed-dotted black curve).

The chosen EoSs represent different sides of mass and

radius region allowed by the recent astrophysical, GW,

and nuclear physics constraints, and therefore, provide

good coverage of BM parameters. As it can be seen, the

DD2Λ EoS (dotted black curve) and DD2 EoS coincide

until ∼ 1.4 M⊙, a point where the onset of hyperons

happens. Further, hyperon production softens the EoS

leading to a smaller total maximum mass and star’s ra-

dius.

The left panels of Fig. 2 show the effect of DM with

different relative fractions inside a star on its mass and

radius. Thus, we see a reduction of Mmax and radius of

stars for larger DM fractions caused by a DM core for-

mation. In fact, the formation of more compact objects

for an outside observer would look like a softening of

the BM EoS. This degeneracy between the effect of DM

and possible change of the strongly interacting matter

properties at high density will be discussed in Section 6.

Due to the fact that in the considered model at

µχ →
√
2mχ energy density diverges at finite pressure,

DM falls under the Schwarzschild radius forming a black
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hole. It takes place for the high-mass stars for which the

DM chemical potential in the center reaches the limit

(see the upper left panel of Fig. 2).

The panels on the middle and right columns of Fig. 2

demonstrate the split energy density profiles of DM

(dashed curves) and BM (dotted curves). The solid

black curve depicts the energy density profile for the

1.4 M⊙ star. The profiles for DM-admixed NSs are

shown for stars with the same total gravitational mass

as the pure BM NS. As the onset of hyperons occurs

after 1.4M⊙, two formulations of the DD2 EoS give the

same prediction for the matter distribution inside the

stars. Therefore, in Fig. 2 we show profiles only for the

DD2 EoS.

For heavy bosons a compact DM core is formed, which

is seen from the high values of the ϵD, being an order of

magnitude above ϵB (see the middle and right panels of

the low row isn Fig. 2). Furthermore, the ϵD drops to

zero at radius ∼2 km corresponding to the size of a DM

core.

For the DM fraction 5% and mχ = 100 MeV, mI =

250 MeV (see the middle upper panel of Fig. 2) a DM

halo is formed with the radius of 13.0 km.

4. TIDAL DEFORMABILITY OF DM-ADMIXED

NSS

The tidal deformability parameter λ quantifies the

response of an object to a static external quadrupo-

lar tidal field Eij by relating it to a quadrupolar mo-

ment Qij = −λEij . For a given stellar configuration of

the total mass Mtot and radius R this tidal deforma-

bility can be expressed through the Love number k2
as λ = 2k2R

5/3 and is commonly mapped to the di-

mensionless Λ = λ/M5
tot (Hinderer 2008). In the two-

component case, R should be understood as the out-
ermost radius, i.e., R = RB in the DM core scenario

and R = RD in the DM halo one. The Love number is

defined through the solution of an ordinary differential

equation (ODE) appearing as a leading order expan-

sion of the Einstein equations with a metric perturbed

by the external gravitational field (Regge & Wheeler

1957). The microscopic properties of matter are en-

coded into this ODE through the change of total pres-

sure ptot ≡ pB + pχ caused by perturbation of the total

energy density εtot ≡ εB + εχ. This change is quanti-

fied by the derivative dptot/dεtot. In the barotropic one-

fluid case, this derivative represents the corresponding

speed of sound. In the two-fluid case, the speed of sound

derivation as dptot/dεtot is mathematically identical to

the expression obtained by Das et al. (2022). There-

fore, in what follows, we refer to it as the effective speed

of sound of the two-fluid system. It can be expressed

through the speed of sound of baryonic c2s,B and dark

c2s,χ components as

c2s,eff = ηc2s,B + (1− η)c2s,χ (13)

with η ∈ [0, 1]. The lower and upper edges of this inter-

val correspond to the cases of pure DM and BM, respec-

tively. Appendix B provides the derivation of Eq. (13)

and parameter η. This expression demonstrates that the

effective speed of sound lies between the ones of pure

components.

In Fig. 3 we show the effective speed of sound for dif-

ferent ξ =
µχ

µB
values, as well as the speed of sound for

pure BM and DM components. A relation between the

parameters ξ and η is given in Eq. (B3) in Appendix

B. The upper panel of Fig. 3 indicates how the effective

speed of sound behaves with DM accumulated in a core

of a compact star. Note, that it is in between the speed

of sound values for pure components. On the lower panel

of Fig. 3 we see that the effective speed of sound follows

the BM, and only in the outer crust the DM component

stars dominate, which is related to a halo configuration.

As can be seen in Fig. 4, for the given total gravita-

tional mass DM condensed in a core leads to a smaller

tidal deformability parameter compared to a pure bary-

onic star. A similar effect has been shown in Fig. 2 for

the radius. For a distant observer, these effects will be

perceived as an effective softening of the EoS. On the

other hand, the presence of a DM halo leads to a signif-

icant increase in the outermost radius that goes beyond

the BM component, an increase of the tidal deformabil-

ity parameter, and consequent effective stiffening of the

EoS. The considered IST, DD2, and DD2Λ EoSs make

us conclude that the soft EoS, being on the lower limit

of the GW170817 90% CL region (see the magenta area

in Fig. 4), provides a stringent constraint on a DM core

scenario, while the stiff EoS, being on the upper border

of it, allows much higher DM fractions, and disfavors

an extended halo configuration. This degeneracy be-

tween the effect of DM and strongly interacting matter

properties at high densities possesses limitations on DM

detection, except for several DM smoking guns that are

going to be discussed in Section 6. Despite it, we have

to be aware of the fact that observational data on com-

pact stars could be affected by accumulated DM and,

consequently, constraints we put on strongly interacting

matter at high densities.

5. RESULTS

To study an interplay between boson mass and the

interaction scale, as well as to put constraints on the

DM fraction, we perform a scan over those parameters

for the IST EoS (upper row), DD2 EoS (middle row),
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Figure 3. The effective speed of sound for a mixture of BM
and DM as a function of total energy density. Upper panel:
the curves were obtained for mχ=750 MeV and mI=250
MeV, which represents a DM core configuration. Lower
panel: the same as on the upper panel, but for mχ=100
MeV and mI=250 MeV illustrating a DM halo configura-
tion. The horizontal line at low densities corresponds to the
polytropic EoS for the crust.

and DD2Λ EoS (bottom row) for fixed DM fractions of

1%, 3%, and 5% (see Fig. 5 in Appendix C). The color

maps represent the total maximum gravitational mass

of DM-admixed NSs. The white curve on each panel

corresponds to Mmax = 1.4 M⊙, whereas the red curve

represents Mmax = 2.0 M⊙. In the case 2.0 M⊙ con-

figurations are not reachable, we indicate 1.9 M⊙ stars
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Figure 4. Tidal deformability as a function of total grav-
itational mass calculated for pure BM stars (black curves)
and DM-admixed NSs with relative DM fractions 1%, 3%,
and 5%, in red, blue, and green, correspondingly. Solid,
dash-dotted and dotted curves represent the IST EoS, DD2
EoS, and DD2Λ EoS. The colors and symbols coincide with
the ones used in Fig. 2 for a better comparison. The fig-
ure is obtained for mχ=1000 MeV, mI=1000 MeV. Green,
gray, and teal bands represent 1σ constraints on mass of PSR
J0348+0432 (Antoniadis et al. 2013), PSR J1810+1744 (Ro-
mani et al. 2021), and PSR J0952-0607 (Romani et al. 2022).
The magenta area visualizes the constraints obtained from
GW170817 (Abbott et al. 2018).

with a green curve. As one can see from the upper row

on Fig. 5, the increase of the DM fraction narrows the

range of the values of the interaction scale mI consistent

with the masses of the heaviest known pulsars. On the

other hand, the existence of the high-mass stars with a

significant amount of heavy DM requires low values of

the interaction scale.

We see the same dependence between mχ and mI val-

ues. In fact, lower mI ≡ mω/g values correspond to

the higher coupling constant g or, equivalently, stronger

repulsion between the DM particles. The IST EoS for

any DM fraction is always in agreement with the tidal

deformability constraint, independently of mχ and mI

(see the upper row in Fig. 5). At the same time, only

for 1% and 3% of DM the total maximum mass of DM-

admixed NSs can reach 2.0 M⊙. Thus, to simultane-

ously reproduce 2.0 M⊙ and GW170817 tidal deforma-

bility constraints the boson mass and interaction scale

are restricted to the values shown in yellow. The shaded

areas correspond to the non-allowed regions of param-
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eters that cannot simultaneously provide the heaviest

pulsars and GW constraints.

For 3% and 5% of DM the DD2 EoS reproduces both

constraints in a wide range of parameters disfavouring

megaelectronvolt mass range of bosonic DM with low

values of the interaction strength. The black curve in the

middle and bottom rows of Fig. 5 depicts the GW170817

tidal deformability constraint Λ̃1.36 = 720 (Abbott et al.

2019b) above which the model is consistent with the

GW170817 merger. The dashed area corresponds to a

non-allowed range of parameters, including 1% of DM

for the DD2 EoS. For the DD2Λ EoSs there are no mI

and mχ values that simultaneously reproduce the heav-

iest pulsars and GW constraints. In fact, only one of

these criteria was reproduced for considered values of

DM fractions. This is directly related to the fact that at

the onset of Λ hyperons the EoS becomes softer in addi-

tion to the DM softening effect in a core configuration.

From this analysis, we can conclude that, contrary

to the stiff BM EoS (the DD2 EoS, as an example),

the soft BM EoS (the IST EoS, as an example) pro-

vides a weaker limit on DM particle mass and interac-

tion strength. This is related to the fact that the pure

baryonic DD2 or DD2Λ EoSs are on the upper border

of the Λ1.4 constraint from GW170817. Any decrease

in Λ1.4 due to a DM core will not violate this condition,

whereas a small DM halo configuration will do it. As can

be seen in Fig. 4, the IST EoS is located on the lower

limit of the magenta area favoring a halo formation.

It is worth noting that this result is obtained under

the assumption of a similar DM fraction in all galaxies.

As a matter of fact, an application of the GW170817

tidal deformability result and multi-messenger data as a

universal constraint on the amount of DM is question-

able. Each galaxy could be characterized by a different

DM profile, as well as have local DM inhomogeneities.

Strictly speaking, GW170817 probes an amount of DM

only in a part of the NGC 4993, the host galaxy for

this particular merger. Therefore, a larger sample size

of NS-NS and NS-BH mergers is required to constrain

the DM properties.

Due to current uncertainties of the BM EoS at high

density, we cannot discriminate between the effect of

DM and the properties of BM. As it will be discussed in

the following Section 6, we expect a higher DM fraction

inside compact stars toward the Galactic Center. If so,

the compact star population would follow the scenarios

presented from the left to right panels on Fig. 5, i.e.,

from low to high DM fraction.

6. DISCUSSIONS

As described above, there are various effects of DM on

compact stars. A natural question arises: how we can

narrow down the proposed DMmodels and constrain the

DM properties using NSs? Can compact stars provide

a smoking gun evidence for the presence of DM? There

are several different approaches:

(i) By measuring the mass, radius, and moment of

inertia of NSs with few-percent accuracy. Nowadays,

NICER (Miller et al. 2019; Raaijmakers et al. 2020;

Miller et al. 2021; Raaijmakers et al. 2021) and in the

near future ATHENA (Cassano et al. 2018), eXTP (in ’t

Zand et al. 2019), and STROBE-X (Ray et al. 2019) are

expected to measure M and R of NSs with a high ac-

curacy. Using the synthetic data for the STROBE-X

telescope, and assuming two NSs of the same mass and

BM EoS, Rutherford et al. (2023) concluded that a mea-

surement of radii with a 2% accuracy would be enough

to draw a conclusion about the presence of DM in star’s

interior. However, the existence of the deconfinement

phase transition in a core would exhibit in the same

way, leading to a degeneracy between the effect of DM

and the phase transition. The main drawback of this

approach is that the effect of DM could mimic the soft-

ening/stiffening of BM at high density and vice versa.

Current uncertainties of the baryonic EoS do not allow

discrimination of two effects. In addition, radio tele-

scopes, e.g., MeerKAT (Bailes et al. 2018), SKA (Watts

et al. 2015), and ngVLA (Bower et al. 2018) plan to in-

crease radio pulsar timing and discover Galactic Center

pulsars. A mass reduction of NSs toward the Galactic

Center or variation of mass, radius, and moment of in-

ertia in different parts of the Galaxy could shed light

on the amount of accumulated DM in compact stars.

In fact, we could see a paucity of old millisecond pul-

sars in the Galactic Center either due to light extinction

on dust, or the collapse of DM-admixed NSs into black

holes after exceeding the Schwarzschild limit (Bramante

& Linden 2014).

(ii) By performing binary numerical-relativity simula-

tions and kilonova ejecta for DM-admixed compact stars

for different DM candidates, mass of particles, interac-

tion strength, and fractions with the further comparison

to GW and electromagnetic signals. The smoking gun

of the presence of DM could be a supplementary peak

in the characteristic GW spectrum of NS mergers (El-

lis et al. 2018a), exotic waveforms (Giudice et al. 2016),

modification of the kilonova ejecta, or the presence of

a strong oscillation mode in the waveforms during the

post-merger stage (Bezares et al. 2019). The next gen-

eration of GW detectors, i.e., the Cosmic Explorer (CE)

(Mills et al. 2018) and Einstein Telescope (ET) (Punturo
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et al. 2010) will open another perspective of detection

of post-merger regimes and probing an internal compo-

sition of compact stars.

(iii) By detecting a new feature in the binary Love

relation (Yagi & Yunes 2016). Thus, as it was shown

in Fig. 3, DM could produce a bump, or any other ir-

regular behavior, in the effective speed of sound that

would affect the binary Love relation. Similar, as it was

demonstrated for the strongly interacting matter by Tan

et al. (2022). This mark may be revealed by the next

generation of GW detectors that are planned to have the

measurement precision of δΛ ∼ 5 for a GW170817-like

event.

(iv) By detecting objects that go in contradiction

with our understanding. A potential candidate for

DM-admixed NS could be the secondary component of

GW190814 (Abbott et al. 2020b). While likely being

a black hole (Essick & Landry 2020; Tews et al. 2021),

this compact object with the mass of ∼ 2.6 M⊙ raised

debates about its nature (Tsokaros et al. 2020) as a pure

baryon matter EoS would not be able to explain a com-

pact star of ∼ 2.6 M⊙. Hence, if not being a black hole,

the compact object would have to be supplemented ei-

ther with exotic degrees of freedom, such as hyperons

and/or quarks (Tan et al. 2020; Dexheimer et al. 2021),

an early deconfinement phase transition (Ivanytskyi &

Blaschke 2022), very fast rotation (Zhang & Li 2020),

or extra stiffening of the EoS at high densities (Fattoyev

et al. 2020). An alternative explanation of this puzzle

would be a DM-admixed NS (Di Giovanni et al. 2022),

which could also explain a formation of a black hole of

so low mass as a collapsed DM-admixed NS (Bramante

& Linden 2014).

The recently announced measurement of the central

compact object within the supernova remnant HESS

J1731-347 (Doroshenko et al. 2022) is another object

that puzzles our understanding. This lightest and small-

est compact star ever observed could be explained as a

NS admixed with DM (Sagun et al. 2023).

(v) Modification of the pulsar pulse profile due to the

extra light-bending (Miao et al. 2022) and/or gravita-

tional microlensing in the case of the existence of a dark

halo.

(vi) Modification of the cooling rate of compact stars

(de Lavallaz & Fairbairn 2010; Hamaguchi et al. 2019;

Ángeles Pérez-Garćıa et al. 2022; Buschmann et al.

2022). We want to note, that this effect is the most

inaccurate among the abovementioned ones. Thus,

NSs need to have a well-measured surface luminosity

and age. In addition to it, uncertainties related to

particle composition, EoS, magnetic field, superfluid-

ity/superconductivity, NS masses, the chemical compo-

sition of an atmosphere, etc., could wash out an effect of

DM. Old NSs are less affected by the mentioned effects,

as a photon cooling stage starts to dominate over a neu-

trino cooling stage that is very sensitive to a particle

composition and superfluidity/superconductivity (Page

et al. 2004). The magnetic field is also expected to be

unimportant for old isolated NSs. Therefore, a possible

heating mechanism of NSs due to DM annihilation could

be probed by increasing statistics on observational data

of old NSs.

7. CONCLUSIONS

We proposed a model of bosonic DM represented by a

complex scalar field coupled to the vector one through

the covariant derivative, which is equivalent to scalar

electrodynamics with massive photons. The model de-

scribes DM existing in the form of BEC with repulsive

interaction. Pressure of the present EoS saturates at

asymptotically high densities leading to the vanishing

speed of sound and compressibility at this regime. From

the thermodynamic requirements, the chemical poten-

tial of DM existing as such BEC is limited to the inter-

val µχ ∈ [mχ,
√
2mχ], with mχ being the DM particle

mass. In the weak and strong coupling limits, this inter-

val shrinks to its lower and upper bounds, respectively,

while pressure vanishes even at any density. This spec-

tacular feature of the present model makes its weak and

strong coupling limits qualitatively similar and requires

further clarification.

At the same time, the strong coupling limit is shown

to be inconsistent with the Bullet Cluster cosmological

data. Confronting the model prediction on the cross sec-

tion of the DM self-interaction to the results of numeri-

cal simulations and observations allowed us to constrain

the interaction scale mI from below depending on the
DM particle mass mχ.

DM-admixed compact stars were modeled by consid-

ering the mixed system of two fluids with different rel-

ative fractions. The performed derivation of the effec-

tive speed of sound for a two-fluid system allowed us

to calculate the tidal deformability parameter for com-

pact stars admixed with different amounts of DM. We

argue that the one-fluid approach cannot be applied to

a mixed system of several components with the different

proper speed of sound values.

To account for a discrepancy related to the baryonic

component the soft IST EoS and stiffer DD2 EoS with

and without hyperons were considered. For different

DM particle’s mass, its relative fraction, and interaction

scale we found the conditions of DM core formation. We

argue that in the framework of the considered model

only a small DM halo is possible, with the outermost
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radius around twice the baryonic one. However, the

total maximum gravitational mass of this configuration

is below 2 M⊙.

We performed a thorough analysis of the effect of DM

particle mass in the 100-1000 MeV mass range and self-

interacting scale on maximum total gravitational mass

and tidal deformabilities of NSs for several fixed DM

fractions. We found that for 1%, 3% of DM for the

IST EoS and 3%, 5% of DM for the DD2 EoS the

model can simultaneously reproduce the heaviest pul-

sars and GW170817 tidal deformability constraint. The

obtained allowed region of boson mass mχ and interac-

tion scalemI for a fixed DM fraction shows an anticorre-

lated dependence between these parameters, i.e., a high

mχ value favors a low mI value. For the DD2Λ EoS

no allowed region of parameters was found due to the

inability to simultaneously reproduce both constraints.

The considered DM fractions up to 5% were chosen

to demonstrate the effects on compact star properties,

and as it was discussed in the Introduction, are higher

than could be accumulated by Bondi accretion. While

up-to-date calculations are based on the interaction be-

tween DM and BM, the self-interaction of DM could lead

to enhanced DM accretion, hence the DM fraction here

proposed. However, we leave this for future studies.

In Section 6, we discussed the possible smoking gun

signatures of DM in compact stars that could be probed

in the near future, e.g., alteration of maximum total

gravitational mass and radius of compact stars as a func-

tion of a distance from the Galactic Center; modifica-

tion of the surface temperature (an additional heating

or cooling mechanism) of NSs towards the Galactic Cen-

ter; lack of old millisecond pulsars in the Galactic center;

the presence of supplementary peak(s) in the GW signal

from NS-NS and/or NS-BH mergers, exotic waveform,

or modification of the kilonova ejecta; gravitational-

lensing effect or alteration of the pulsar pulse profile due

to the extra light bending in a dark halo. Moreover, such

objects as a secondary component of the GW190814

event and central compact object within the supernova

remnant HESS J1731-347 challenge the existing models

of compact stars and black holes, offering the possibility

of these objects being a DM-admixed NS.

We argue that compact stars and their mergers pro-

vide a novel sensitive indirect method of detection and

constraining the DM properties. Based on the per-

formed analysis it is clear that the present data analysis

of X-ray, radio, and GW observations without account-

ing for an accumulated DM could miss a valuable piece

of information as well as give an incorrect prediction

about the strongly interacting matter properties at high

density.
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APPENDIX

A. LAGRANGIAN MODEL OF THE DM EOS

Here, we derive the DM EoS, presented with Eqs. (1) and (2), and we analyze it in the weak and strong coupling

regimes. The minimal Lagrangian describing the chosen model of DM should include mass and kinetic terms of the

complex scalar χ and real vector ωµ fields, which are coupled through the covariant derivative Dµ = ∂µ − igωµ with

g being the corresponding Yukawa coupling constant. Thus, we start with

L = (Dµχ)
∗Dµχ−m2

χχ
∗χ− ΩµνΩ

µν

4
+

m2
ωωµω

µ

2
, (A1)

where mχ and mω are masses of the scalar and vector fields, respectively, and Ωµν = ∂µων − ∂νωµ. Before going

further we would like to discuss the Neother current resulting from the Lagrangian (A1)

jµ = i

[
χ∗ ∂L

∂(∂µχ∗)
− χ

∂L
∂(∂µχ)

]
= i [χ∗Dµχ− χ(Dµχ)∗] = i(χ∗∂µχ− χ∂µχ∗) + 2gωµχ∗χ. (A2)

This current is equivalent to the one corresponding to local U(1) symmetry of L (Brading & Brown 2000). The density

of conserved charge associated to the DM particles is obtained by averaging the zeroth component of this current. The
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second term in the expression for jµ vanishes under such averaging, since it includes an odd number of creation and

annihilation operators of the vector field. Thus, nχ = ⟨j0⟩ = i⟨χ∗∂0χ−χ∂0χ∗⟩. This relation is artificially violated in

the case when ωµ is treated classically, e.g., within the mean-field approximation. This discrepancy can be removed

by using the Noether current resulting from the invariance with respect to global U (1) transformation (Brading &

Brown 2000)

jµ = i(χ∗∂µχ− χ∂µχ∗). (A3)

Below we use this expression for the DM four current.

Within the mean-field approximation operator of the vector field in this Lagrangian is replaced by its constant

expectation value. This value can be obtained from the corresponding Euler-Lagrange equation

(∂2 +m2
ω + 2g2χ∗χ)ωµ − ∂µ∂νων + gjµ = 0. (A4)

In the hydrostatic case only the zeroth component of the DM four-current attains nonzero mean value being nothing

else as the DM particle number density nχ, i.e., ⟨jµ⟩ = ηµ0nχ with ηµν standing for the Minkowski metric tensor.

Replacing ωµ by its constant mean value we eliminate derivatives of the vector field in Eq. (A4). Furthermore, we

replace χ∗χ by the scalar field condensate ⟨χ∗χ⟩ and DM current by its mean value. Thus, the Euler-Lagrange equation

of the vector field under the mean-field approximation can be given a form of

⟨ωµ⟩ = ηµ0ω with ω = − gnχ

m2
ω + 2g2⟨χ∗χ⟩

. (A5)

At finite particle number densities, DM has finite chemical potentials µχ, which serves as a Lagrange multiplier in

L+ µχj
0 ensuring that mean value of j0 coincides with nχ. Inserting Eq. (A5) into Eq. (A1), one gets

L+ µχj
0 = ∂µχ

∗∂µχ−M2
χχ

∗χ+ νχj
0 +

m2
ωω

2

2
. (A6)

The first three terms on the right-hand side of this equation represent free quasi-particles with the effective mass and

chemical potential defined as

M2
χ≡m2

χ − g2ω2, (A7)

νχ≡µχ + gω, (A8)

respectively. At zero temperature these bosonic quasi-particles condense to zero mode with ⟨χ∗χ⟩ = ζ2 and ζ being an

amplitude of this mode. This BEC contributes to the DM pressure ζ2(ν2χ −M2
χ) (see, e.g., chapter 2.4 of Kapusta &

Gale (2006)). The last term in Eq. (A6) does not include any dynamical variables, and therefore, simply renormalizes

the pressure, which becomes

pχ = ζ2(ν2χ −M2
χ) +

m2
ωω

2

2
. (A9)

Mean value of the vector field defined by Eq. (A4) maximizes the pressure. The same is the case for ζ, i.e.,
∂pχ

∂ω =
∂pχ

∂ζ = 0. These conditions should be supplemented with a definition of the DM particle number density given by the

thermodynamic identity nχ =
∂pχ

∂µχ
yielding the following system of equations, which should be solved in order to find

ω and ζ and construct the DM EoS:

2gζ2(νχ + gω) +m2
ωω = 0, (A10)

2ζ(ν2χ −M2
χ) = 0, (A11)

nχ = 2ζ2νχ. (A12)

Before solving this system, we want to demonstrate that it is consistent with Eq. (A5). For this we formally express

νχ from Eq. (A12) and insert the result to Eq. (A10) yielding gnχ + (2g2ζ2 +m2
ω)ω = 0. Then, replacing ζ2 by ⟨χ∗χ⟩

this relation can be written in the desired form.

In the BEC, amplitude of the bosonic zero mode is ζ ̸= 0. Therefore, Eq. (A11) requires νχ = Mχ, which can be

solved with respect to the vector field as

ω =
−µχ ±

√
2m2

χ − µ2
χ

2g
. (A13)
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From this condition we immediately conclude that physical values of the DM chemical potential are limited to the

range −
√
2mχ ≤ µχ ≤

√
2mχ. At positive µχ BEC is constituted by the DM particles, while negative µχ corresponds

to antiparticles. For definiteness in this work, we consider the case of the DM particles, which is equivalent to requiring

µχ ≥ 0. Eq. (A13) ensures that the first term in Eq. (A9) vanishes and DM pressure pχ ∝ ω2. At zero nχ this pressure

should vanish provided by ω = 0. At non-negative chemical potential of DM this condition can be fulfilled only at

µχ = mχ if the sign “+” is chosen in Eq. (A13). In order to obtain the DM particle number density we first express

ζ2 from Eq. (A10) and then insert the result into Eq. (A12). Thus, at µχ ∈ [mχ,
√
2mχ] the DM EoS becomes

pχ=
1

4

(
mω

g

)2 (
m2

χ − µχ

√
2m2

χ − µ2
χ

)
, (A14)

nχ=
1

2

(
mω

g

)2 µ2
χ −m2

χ√
2m2

χ − µ2
χ

, (A15)

while at µχ ∈ [0,mχ] one gets pχ = 0 and nχ = 0. It is seen from these expressions that vector field mass mω and

coupling g do not enter the DM EoS independently but appear as the ratio mI ≡ mω/g, which is a relevant parameter.

With this notation and thermodynamic identity εχ = µχnχ − pχ we arrive at Equations (1) and (2).

The weak and strong coupling limits of the present EoS are obtained at g → 0 and g → ∞, respectively. This

corresponds to mI → ∞ and mI → 0. In order to consider these limits we treat the DM particle density as an

independent quantity. For this we first write Eq. (A15) as a quadratic equation for
√
2m2

χ − µ2
χ and solve it as

√
2m2

χ − µ2
χ =

√
m2

χ +
n2
χ

m4
I

− nχ

m2
I

. (A16)

This solution allows us to express µχ and expand it up to the leading order in m−2
I or m2

I

µχ =

mχ +
nχ

m2
I
+O

(
m−4

I

)
, mI → ∞

√
2mχ − m3

χm
4
I

8
√
2n2

χ

+O
(
m8

I

)
, mI → 0.

(A17)

From this we conclude that in the weak coupling limit chemical potential of DM converges to the smallest value of the

BEC interval µχ ∈ [mχ,
√
2mχ], while in the strong coupling limit it converges to the largest value. This conclusion

holds for any nχ. The DM pressure behaves as

pχ =
m2

I

8

(
µχ −

√
2m2

χ − µ2
χ

)2

=


n2
χ

2m2
I
+O

(
m−4

I

)
, mI → ∞

m2
χm

2
I

4 +O
(
m4

I

)
, mI → 0.

(A18)

where on the second step
√
2m2

χ − µ2
χ was approximated by mχ−nχ/m

2
I at mI → ∞, while at mI → 0 it was neglected

compared to µχ. In both of the considered limits the pressure vanishes leading to the energy density mentioned in

Subsection 2.1.

B. EFFECTIVE SPEED OF SOUND OF TWO-FLUID SYSTEM

In order to calculate c2s,χ we notice that in the GCE pressure and energy density of each component are functions

of the corresponding chemical potential. With this we can write

c2s,tot =
dptot
dεtot

=

∂pB

∂µB
+

∂pχ

∂µχ

dµχ

dµB

∂εB
∂µB

+
∂εχ
∂µχ

dµχ

dµB

=

∂εB
∂µB

c2s,B +
∂εχ
∂µχ

dµχ

dµB
c2s,χ

∂εB
∂µB

+
∂εχ
∂µχ

dµχ

dµB

, (B1)

where on the last step we used identities c2s,B = ∂pB

∂µB

/
∂εB
∂µB

and c2s,χ =
∂pχ

∂µχ

/ ∂εχ
∂µχ

in order to express derivatives of the

pressures of two components with respect to the corresponding chemical potentials. This expression can be given the

form of Eq. (13) with η defined as

η =
∂εB
∂µB

[
∂εB
∂µB

+
∂εχ
∂µχ

dµχ

dµB

]−1

, (B2)
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The thermodynamic identities nB = ∂pB

∂µB
and εB = µBnB − pB can be used in order to obtain ∂εB

∂µB
= µB

∂nB

∂µB
. We

similarly obtain
∂εχ
∂µχ

= µχ
∂nχ

∂µχ
. Within stellar interiors chemical potential of two components scale proportionally to

each other (Ivanytskyi et al. 2020). This allows us to conclude that
dµχ

dµB
=

µχ

µB
= ξ. Thus, Eq. (B2) becomes

η =
∂nB

∂µB

[
∂nB

∂µB
+ ξ2

∂nχ

∂µχ

]−1

. (B3)

Mechanical stability of BM and DM requires ∂nB

∂µB
> 0 and

∂nχ

∂µχ
, respectively. In this case η by construction is limited

to the interval η ∈ [0, 1]. The lower edge of this interval η = 0 is obtained at µB = 0, which corresponds to the absence

of BM. On the other hand, the case of pure BM is obtained at µχ = 0 yielding η = 1.
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C. SCAN OVER BOSON MASS AND THE INTERACTION SCALE

Figure 5. Upper row: Parameter space in the mI − mχ plane calculated for the IST EoS and different values of DM
fraction, 1% (left panel), 3% (middle panel), 5% (right panel). The color represents the total maximum gravitational mass of
DM-admixed NSs. The white, and red curves correspond to stars with the total maximum gravitational mass equal to 1.4 M⊙,
and 2 M⊙, respectively. For a DM fraction 5% (see the right panel) the maximum mass do not reach 2 M⊙, thus, we show
1.9 M⊙ configurations in green. Shaded areas correspond to the non-allowed regions of parameters, whereas simultaneously the
astrophysical and GW constraints are not fulfilled. Middle row: The same as on the upper row, but calculated for DD2 EoS.
The tidal deformability constraint Λ̃1.36 = 720 (90% credible interval) is shown as a black curve. All the area above this curve
is consistent with the GW170817 tidal deformability constraint (Abbott et al. 2019b). The 1% DM case is not consistent with
the tidal deformability constraint for all values of mI and mχ. Lower row: The same as on the middle and upper rows, but
calculated for DD2Λ EoS.
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