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Abstract

Universal relations that are insensitive to the equation of state are useful in reducing the parameter space when
measuring global quantities of neutron stars (NSs). In this paper, we reveal a new universal relation that connects
the eccentricity to the radius and moment of inertia of rotating NSs. We demonstrate that the universality of this
relation holds for both conventional NSs and bare quark stars (QSs) in the slow-rotation approximation, albeit with
different relations. The maximum relative deviation is approximately 1% for conventional NSs and 0.1% for QSs.
Additionally, we show that the universality still exists for fast-rotating NSs if we use the dimensionless spin to
characterize their rotation. The new universal relation will be a valuable tool to reduce the number of parameters
used to describe the shape and multipoles of rotating NSs, and it may also be used to infer the eccentricity or
moment of inertia of NSs in future X-ray observations.

Unified Astronomy Thesaurus concepts: Neutron stars (1108)

1. Introduction

Neutron stars (NSs) are the densest stars in the Universe,
offering a unique laboratory to study supranuclear matter and
gravity in the strong-field regime. Currently, the equation of
state (EOS) for the cores of NSs is still poorly understood.
Many EOS models with varying compositions and states of
dense matter have been developed, leading to significantly
different predictions of global properties for NSs (Lattimer &
Prakash 2001). Therefore, observed global properties of NSs,
such as the mass and the radius, can be used to constrain EOS
models.

Despite the fact that the global properties of NSs depend
sensitively on the EOS models, there exist EOS-insensitive
relations that connect various quantities of NSs. These relations
are said to be universal because they are insensitive to EOS
models to a high degree of accuracy. For instance, a universal
relation connecting the frequency and damping time of the
quadrupolar f mode to the mass and moment of inertia of NSs
was discovered by Lau et al. (2010). Yagi & Yunes (2013a)
found the famous I–Love–Q relation for slowly rotating NSs,
which links the mass, the moment of inertia, the tidal Love
number, and the spin-induced quadrupole moment. Universal
relations for NSs are of great significance in both astrophysics
and fundamental physics. By providing EOS-insensitive
connections between different quantities, these relations allow
us to extract global properties of NSs with higher accuracy, and
help us study the inverse problem of determining the EOS. The
universal relations are also a probe for nonperfect fluid inside
NSs. For instance, it has been shown that anisotropic
pressure (Yagi & Yunes 2015), strong magnetic fields (Haskell
et al. 2014), and ultrahigh elasticity (Lau et al. 2017, 2019) can
affect the global structure of NSs and potentially break the I–

Love–Q universal relation. Moreover, universal relations can
break the degeneracy between gravity theories and the
uncertainties in EOS, making NSs the ideal laboratories for
testing gravity (Shao & Yagi 2022). We refer readers to Yagi &
Yunes (2013b), Doneva & Pappas (2018), and references
therein for reviews.
The exploration of the universal relations for rotating NSs

has garnered lots of attention since the discovery of the I–
Love–Q relation. The calculations of the I–Q relation were
quickly extended to fast rotation by Doneva et al. (2013), and it
was shown that the universality of the relation is lost and
becomes increasingly EOS-dependent as the spin frequency
increases. However, Pappas & Apostolatos (2014) and
Chakrabarti et al. (2014) demonstrated that the I–Q relation
remains universal if dimensionless quantities are used to
characterize the spin amplitude instead of the spin frequency f.
Pappas & Apostolatos (2014) and Yagi et al. (2014) discovered
that the first four multipole moments of rotating NSs are
universal to some extent. This relation allows for a more
accurate description of the spacetime geometry around an NS
with fewer parameters. Additionally, Luk & Lin (2018) found
another universal relation connecting the radius and orbital
frequency of the innermost stable circular orbit (ISCO) to the
mass and spin frequency of rotating NSs.
Apart from multipoles and the ISCO, the eccentricity is

another important parameter to describe rotating NSs. The
oblateness induced by rotation has a large impact on the X-ray
emissions from the surface of X-ray pulsars. To study this
effect, Morsink et al. (2007) parameterized the oblate shape
with the compactness of NSs and discovered that the geometric
effect induced by the oblateness can rival the Doppler effect in
certain configurations. To reduce the parameter space of X-ray
modeling, Bauböck et al. (2013) derived a universal relation
between the eccentricity and the compactness of slowly
rotating NSs. AlGendy & Morsink (2014) also found an
EOS-insensitive fit of the eccentricity, using a slightly different
parameterization for the surface other than the one used in the

The Astrophysical Journal, 954:16 (6pp), 2023 September 1 https://doi.org/10.3847/1538-4357/ace776
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-1390-5477
https://orcid.org/0000-0003-1390-5477
https://orcid.org/0000-0003-1390-5477
https://orcid.org/0000-0002-1334-8853
https://orcid.org/0000-0002-1334-8853
https://orcid.org/0000-0002-1334-8853
https://orcid.org/0000-0002-1614-0214
https://orcid.org/0000-0002-1614-0214
https://orcid.org/0000-0002-1614-0214
mailto:lshao@pku.edu.cn
http://astrothesaurus.org/uat/1108
https://doi.org/10.3847/1538-4357/ace776
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace776&domain=pdf&date_stamp=2023-08-21
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace776&domain=pdf&date_stamp=2023-08-21
http://creativecommons.org/licenses/by/4.0/


Hartle–Thorne formalism. Apart from multipoles and the
ISCO, the oblate shape is also important. In the canonical
pulse-profile modeling of X-ray pulsars, photons are emitted
from an oblate surface and assumed to propagate in a
Schwarzschild background, which is the so-called “Oblate +
Schwarzschild” (O + S) approximation. To give an analytical
formula to describe the rotation-induced oblateness, Morsink
et al. (2007) and AlGendy & Morsink (2014) parameterized the
oblate shape with the spin frequency and compactness of NSs.
Recently, Silva et al. (2021b) developed a more accurate fitting
formula compared to Morsink et al. (2007) and AlGendy &
Morsink (2014), which better describes the large deformation
of the surface for very rapid rotation. These fitting formulas can
capture the shape of NSs at a wide range of spin frequencies,
compactnesses, and EOSs (i.e., universal to some extent). In
slow rotation, Bauböck et al. (2013) also explored the universal
relation of rotating NSs. They showed that both the moment of
inertia and the surface eccentricity can be approximately
represented by a single parameter, the compactness. Frieben &
Rezzolla (2012) uncovered quasi-universal relations relating
surface distortion to spin frequency and magnetic field, which
can be used to calculate surface distortion up to significant
levels of rotation and magnetization.

In this paper, we discover a new universal relation between
the surface eccentricity and the moment of inertia for rotating
NSs. The paper is structured as follows. In Section 2, we
provide a definition of multipoles and eccentricity in the slow-
rotation approximation and present the universal relation for
both conventional NSs and quark stars (QSs). In Section 3, we
investigate the universal relation for fast-rotating NSs. A
discussion of possible applications and connections of the new
universal relation to early work is shown in Section 4.
Throughout the paper, we use geometric units with G= c= 1.

2. A New Universal Relation in the Slow-rotation
Approximation

2.1. Multipole Moments and Shape Parameters

To study the universal relation, we first give an overview of
the structures and shape parameters of slowly rotating NSs.
Following Hartle (1967) and Hartle & Thorne (1968), we
construct these stars by solving the Einstein equations
perturbatively in a slow-rotation expansion to quadratic order
in the spin. At the zeroth order in spin, we obtain the mass M
and the radius R of the nonrotating background. At the first
order in spin, we extract the angular momentum J, from which
we can define the moment of inertia I and the dimensionless
spin χ as I≡ J/Ω and χ≡ J/M2, where Ω is the angular
frequency of the rotating star. Universal relations usually
connect dimensionless quantities. The dimensionless moment
of inertia Ī is usually defined as ºI I M3¯ . At the second order
in spin, the star is deformed into an oblate shape, and we get the
spin-induced quadrupole moment Q≡− J2/M− 8KM3/5. The
parameter K depends on the EOS of NSs and equals to zero for
Kerr black holes according to the no-hair theorem. The
dimensionless quadrupole moment is defined as

cº -Q Q M3 2¯ . The I–Q relation connects the dimensionless
quantities Ī and Q̄. The exterior spacetime of a slowly rotating
NS can be fully described up to the quadratic order in spin by
the mass M, the angular momentum J, and the quadrupole
moment Q (Hartle & Thorne 1968).

Observationally, some observation of a rotating NS depends
on the geometry of its surface. We use the eccentricity es to
describe the oblate shape of an NS,
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where Req and Rp are the equatorial and polar radii in a specific
coordinate. In the Hartle–Thorne coordinate, the isodensity
surface at radial coordinate r in the nonrotating star is displaced
to

x x q + +r r r r P cos 20 2 2( ) ( ) ( ) ( )

in the rotating configuration, where ξ0 and ξ2 are spherical and
quadrupole displacements, respectively, and qP cos2 ( ) is the
Legendre polynomial. Combining Equations (1)–(2), we get
the surface eccentricity in the Hartle–Thorne coordinate as

x= -e R R3 . 3HT 2
1 2[ ( ( ) )] ( )

Equation (2) describes the isodensity surface in a particular
coordinate system. By embedding the isodensity surface into a
three-dimensional flat space (denoted by r

*

, θ
*

, f
*

), Hartle &
Thorne (1968) found an invariant parameterization of the
oblate surface. To the second order of the spin, the desired
surface is a spheroid with

q x
x q

= +
+ + -

r r r

r r v r h r P cos . 4
0

2 2 2 2

* *

*

( ) ( )
{ ( ) [ ( ) ( )]} ( ) ( )

Here v2 and h2 are metric functions at the second order in spin.
The eccentricity of the stellar surface embedded in flat space is
then given by

x= - - +e v R h R R R3 , 52 2 2
1 2

* { [ ( ) ( ) ( ) ]} ( )

where the superscript “*” denotes the eccentricity observed in
the flat space.

2.2. A Universal Relation for the Eccentricity of NSs

The universal relation that we discovered connects the
quantity es/RΩ and the dimensionless moment of inertia Ī .
Similar to the I–Q relation (Yagi & Yunes 2013a) and the
three-hair relation for the multipole moments (Yagi et al. 2014),
the normalization factors M and R are quantities of the
nonrotating background in the slow-rotation approximation.
For convenience, we define a dimensionless radius, º WR Rˆ .
We have verified that the universal relation exists for both the
eccentricity in the Hartle–Thorne coordinate, eHT, and the
eccentricity of the embedding surface, e*. In the following, we
use e* to illustrate the results.
We first study the universal relation for conventional NSs.

Our selection of realistic EOSs includes BSK21 (Goriely et al.
2010), AU (Wiringa et al. 1988), HLPS (Hebeler et al. 2013),
PAL1 (Prakash et al. 1988), APR (Akmal et al. 1998),
SLy4 (Douchin & Haensel 2001), MS0 (Mueller & Serot 1996),
and ENG (Engvik et al. 1994). As shown in Figure 1, these
models cover a wide range in the mass–radius diagram of static
NSs, and all of them have a maximal NS mass larger than
2Me. Although the very stiff EOSs MS0 and PAL1 have been
ruled out by the tidal deformability from GW170817 (Abbott
et al. 2017), we include them to demonstrate that the
universality exists for a large family of EOSs.
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Our universal relation is described with great accuracy by

å=
=

e

R
a Iln , 6
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k

k

0

3
*
ˆ ( ¯) ( )

where akʼs are fitting coefficients with a0=− 0.855572,
a1= 2.185502, a2=− 0.428061, and a3= 0.051177. Note
that we use the dimensionless moment of inertia I 100¯ ,
which corresponds to M 0.5Me for selected models. We
define the relative deviation to Equation (6) as

D =
-e R e R

e R
. 7fit

fit

* *

*

ˆ ( ˆ)
( ˆ)

( )

As shown in Figure 2, the relative deviation to the universal
relation is smaller than 1% for selected models of EOSs. NSs
with M 1Me are more relevant for astrophysics, and, in this
case, the dimensionless moment of inertia I 30¯ for selected
EOS models, and the universal relation takes a simpler form,

= +
e

R
I0.11418 1.04115 ln . 8*

ˆ
¯ ( )

The relative deviation to this relation is less than ∼1%.
For QSs, we use the phenomenological MIT bag model to

describe the quark matter. This model assumes a nearly equal
number of u, d, and s quarks and a small fraction of electrons
confined within a bag of vacuum energy density B (Farhi &
Jaffe 1984; Witten 1984). We account for the mass of the s
quark, ms, and include the quark–gluon interaction to the
lowest order in αc= g2/4π. To investigate the universal
relation for QSs, we employ six different EOSs with varying
combinations of ms, αc, and B in Table 1. The resulting mass–
radius relation is displayed in Figure 1.

The relation between e R*
ˆ and Ī is different from that of

NSs, but it is still universal and can be well fitted by

å=
=

e

R
b Iln , 9

k
k

k

0

4
*
ˆ ( ¯) ( )

with coefficients b0=− 1.499749, b1= 2.911859,
b2=− 0.749237, b3= 0.137057, and b4=− 0.007801.

Interestingly, the deviation from the universal relation for
QSs is much smaller than that for NSs, with a relative deviation
of less than ∼0.1%, as shown in the lower panel of Figure 2.
For QSs in our study, the condition for M 1Me corresponds
to I 20¯ . Within this range, the universal relation can be
approximated by a simpler fitting formula,

= - + -
e

R
I0.043372 1.210546 ln 0.470579 . 10*

ˆ ( ¯ ) ( )

The relative deviation from this fitting formula is less
than ∼0.3%.
Compared to the parameterization in Bauböck et al. (2013),

the new universal relation that we propose incorporates an extra
parameter, namely the moment of inertia, in addition to the
parameters R, M, and Ω. But the new universal relation is much
tighter than that of Bauböck et al. (2013).

3. Universal Relation for Fast-rotating NSs

Fast rotation is relevant for submillisecond pulsars, nascent
NSs after supernovae, and NSs formed in binary NS mergers.
Rapid rotation causes NSs to develop a more obvious oblate
shape. In this section, we explore the universal relation for

Figure 1. The mass–radius relation for selected EOS models of NSs (solid) and
QSs (dashed). The 1σ regions of the mass measurements of PSR J0348+0432
(Antoniadis et al. 2013) and PSR J0740+6620 (Fonseca et al. 2021) are
illustrated.

Figure 2. The e R*
ˆ–Ī universal relation for slowly rotating models. The upper

panel shows the fitted universal relations for both NSs and QSs. The middle
(lower) panel presents the relative deviation for NSs (QSs).

Table 1
Parameters for QSs in the MIT Bag Model

Model B(MeV fm−3) ms(MeV) αc

SQM1 80 100 0
SQM2 80 50 0.1
SQM3 70 150 0
SQM4 70 50 0.3
SQM5 60 0 0
SQM6 60 100 0.4
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rapidly rotating NSs using the RNS code developed by
Stergioulas & Friedman (1995).

The RNS code uses a quasi-isotropic coordinate system to
represent the line element of the stationary axisymmetric
spacetime,

q f w
q

=- + -
+ +

n n

x n

-

-

ds e dt B r e d dt

e dr r d

sin

, 11

2 2 2 2 2 2 2 2

2 2 2 2

( )
( ) ( )( )

where ν, B, ω, and ξ are metric functions that depend on r and
θ. Assuming a perfect fluid and uniform rotation, we obtain the
stellar structure and spacetime metric. The conserved angular
momentum J can be computed from a volume integration over
the matter field. The moment of inertia I and the dimensionless
spin have the same definition as before. The quadrupole
moment Q can be obtained from the asymptotic expansion of
the metric functions. The surface eccentricity is formally given
by Equation (1), with the eccentricity, and equatorial and polar
radii defined in the quasi-isotropic coordinate. We use the
notation ei to denote the eccentricity in the quasi-isotropic
coordinate. The surface eccentricity is formally given by
Equation (1), with the eccentricity ei, equatorial radius R i

eq, and

polar radius R i
q defined in the quasi-isotropic coordinate. Note

that, unlike in the slow-rotation approximation, the normal-
ization factor M is the mass for the rotating configuration,
and º WR R i

eq
ˆ .

To study universal relations for rapidly rotating NSs, it is
necessary to use a suitable parameter to characterize their spin
amplitude. As demonstrated by Doneva et al. (2013), if one
uses the spin frequency f as the parameter, the I–Q relation for
fast-rotating NSs is lost. Similarly, the universal relation that
we discovered also breaks down for fixed spin frequencies.
However, Pappas & Apostolatos (2014) and Chakrabarti et al.
(2014) found that the I–Q relation is still universal for fast-
rotating NSs if one chooses dimensionless spin parameters such
as χ, Mf, and Rf, instead of the dimensionful f. Inspired by their
work, we use χ to characterize the spin amplitude and find that
the e Ri

ˆ–Ī relation for both conventional NSs and strange QSs
is still universal.

According to Lo & Lin (2011), the maximum value of the
dimensionless spin parameter χ for NSs rotating at the
Keplerian frequency is about 0.7 for various EOS models.
This limit is nearly independent of the mass of the NS if the
mass is larger than 1Me. However, for QSs in the MIT bag
model, the spin parameter can be larger than unity and does not
have a universal upper limit. Its value also depends strongly on
the bag constant and the mass of the star. Therefore, in
Figure 3, we display three representative cases with χ= 0.4
and 0.6 for conventional NSs. The relative deviation from the
universal relation is less than ∼1%. The cases for QSs with
χ= 0.6 and χ= 0.8 are shown in Figure 4, and the relative
deviation is of the order of 0.1%, which is again much tighter
than conventional NSs. Therefore, we generate data points in
the regime 0.2� χ� 0.6 for NSs and 0.2� χ� 0.8 for QSs.

In Figure 3, we show the universal relation for both NSs and
QSs with χ= 0.6. The relative errors are of the order of 0.3%.
More explicitly, the e Ri

ˆ–Ī relation with a dependence on χ
can be fitted by

å c= 
e

R
Ilog , 12

i j
ij

i ji

,
ˆ

¯ ( )

where the numerical coefficientsij for NSs and QSs are given
in Table 2. The maximum relative errors of the fitting formula
are of the order of 1% for NSs and 0.3% for QSs. In Figure 4,
we present the surfaces described by the fitting formula
Equation (12). For a given χ and Ī , the value of e Ri

ˆ for QSs is
always larger than that for NSs. At the maximum mass limit,
the two surfaces become closest.
In our study, we have defined the eccentricity in the quasi-

isotropic coordinate system, where the radial coordinate r
corresponds to the isotropic Schwarzschild coordinate in the
limit of zero spin. However, Morsink et al. (2007), AlGendy &
Morsink (2014), and Silva et al. (2021b) define the eccentricity
differently. We know that circles centered about the symmetric
axis have circumference pr2 ¯, where r̄ is related to r and θ by

q q q q= =n q-r e B r r r r, sin , sin . 13r
c

,¯ ( ) ( ) ( )( )

Figure 3. The e Ri ˆ–Ī universal relation for fast-rotating models with the
dimensionless spin χ = 0.6. The upper panel shows the fitted universal
relations for both NSs and QSs. The middle (lower) panel presents the relative
deviation for NSs (QSs).

Figure 4. The surface of the fitting formula Equation (12) for NSs (blue) and
QSs (red). Models of NSs and QSs fall on two well-defined surfaces.
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Here rc corresponds to the Schwarzschild coordinate in the
limit of zero spin. By using rc, the equatorial and polar radii can
be defined as

q
p

q= = = =R r R R r R,
2

, , 0 , 14c
c

i c
c

i
eq eq p p⎛

⎝
⎞
⎠

( ) ( )

where R c
eq is the circumferential radius of the star in the

equatorial plane. Then the surface eccentricity ec can be
obtained from Equation (1).

We have found that the universality still holds for the
eccentricity ec, but its relation differs from that of ei.
Specifically, for given EOS families and a fixed value of Ī ,
the value of e Ri

ˆ is larger than e Rc
ˆ. To compare the universal

relations for these two eccentricities, we have included an
example in Figure 5. The figure shows the e Ri

ˆ–Ī and e Rc
ˆ–Ī

relations for NSs and QSs at χ= 0.5, which highlights the
differences of the universal relations for these two
eccentricities.

4. Discussion

The relation between e Rs
ˆ and Ī adds a new tight universal

relation to the known ones. Here, es is the surface eccentricity
formally defined in Equation (1) without assigning a specific
coordinate system. In our paper, it includes es

HT, es*, and es˜ ,
which are eccentricities defined in different coordinate systems.
The effect of gauge choice on the eccentricity is very small. All
of these eccentricities satisfy the universal relation very well.
The universal relation between e Rs

ˆ and Ī adds a new tight
universal relation to the known ones. Here, es is the surface
eccentricity formally defined in Equation (1), including eHT, e*,
ei, and ec in our work. It is important to note that these different
definitions of eccentricity lead to different universal relations.
Since the I–Q relation (Yagi & Yunes 2013a; Chakrabarti et al.
2014) connects Ī to Q̄, and the three-hair relation (Pappas &
Apostolatos 2014; Yagi et al. 2014) connects Q̄ to two other
higher-order multipoles, the relation between e Rs

ˆ and these
normalized multipole moments is also universal. Combined
with the I–Love relation (Yagi & Yunes 2013a), we have a
universal relation between e Rs

ˆ and the dimensionless tidal
Love number. Moreover, the universal relation between the f-
mode oscillation and Ī (Lau et al. 2010) helps us connect e Rs

ˆ
to the frequency and damping time of the quadrupolar f mode.

Universal relations are a powerful tool to reduce modeling
uncertainties and infer NS parameters. As we discussed before,

the eccentricity of rotating NSs is observable and is an
important input for X-ray modeling. The oblateness induced by
rotation at frequencies above 300 Hz produces a geometric
effect that has imprints in the pulse profile of X-ray
pulsars (Morsink et al. 2007). For some emission configura-
tions, the oblateness effect can rival the Doppler effect. As a
result, the effects of oblateness need to be taken into account
when measuring the radii of NSs from rotationally broadened
atomic lines (Baubock et al. 2013).
On one hand, our new universal relation reduces the number

of parameters used to describe the shape and multipoles of
rotating NSs. On the other hand, the new universal relation can
be used to infer the eccentricity of NSs if the mass, radius, spin
frequency, and moment of inertia are inferred in future X-ray
observations. The new universal relation we obtained can be
used to help infer NS properties. For example, if future X-ray
observations can measure the eccentricity and radius of pulsars,
one can use the universal relation to forecast the moment of
inertia of NSs with similar masses and use the I–Love relation
to test gravity (Silva et al. 2021a). Conversely, if the moment of
inertia is obtained through observations of, say, the double
pulsar system (Lattimer & Schutz 2005; Hu et al. 2020; Kramer
et al. 2021) or gravitational waves from a binary NS
inspiral (Lau et al. 2010), our universal relation can be
employed to improve the inference of the radii of NSs through
X-ray observations.
For very rapid rotation, deviations from a simple ellipse

become potentially important. Currently, telescopes such as
NICER observe only slowly rotating NSs, for which approx-
imating the shape as an ellipse is accurate enough. However, if
NICER or similar telescopes were to observe highly rapidly
rotating pulsars, the full shape function for the surface would
be required. Previous studies, such as Morsink et al. (2007),
AlGendy & Morsink (2014), and Silva et al. (2021b), have
parameterized the oblate shape of NSs using the spin frequency
and compactness as parameters. In comparison to these works,
our newly discovered universal relation incorporates an
additional parameter, the moment of inertia, and only focuses
on the eccentricity of the star. In the future, it is necessary to
extend our framework to accurately fit the shape of the star at

Table 2
Numerical Coefficients for the Two-parameter Fitting Formula Equation (12)

i = 0 1 2 3

Coefficients for neutron stars

i0 2.149039 −0.146205 −1.867329 5.65915
i1 1.23962 2.21818 0.942935 −2.87271
i2 −0.165024 −2.63504 2.28603 −2.53576
i3 0.158013 1.04597 −1.80829 2.23285

Coefficients for quark stars

i0 0.98273 −5.06930 12.9114 5.65915
i1 4.29319 16.3498 −48.8296 30.4711
i2 −3.12737 −12.9528 50.1446 −37.8440
i3 1.30675 3.27539 −16.5473 13.8336

Figure 5. The e Ri ˆ–Ī and e Rc ˆ–Ī relations for NSs (blue) and QSs (red). Here
we take the dimensionless spin χ = 0.5.

5
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all latitudes, especially when interpreting the observations of
rapidly rotating NSs.
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