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Extracting quasinormal modes from compact binary mergers to perform black hole spectroscopy is
one of the fundamental pillars in current and future strong-gravity tests. Among the most remarkable
findings of recent works is that including a large number of overtones not only reduces the mismatch
of the fitted ringdown but also allows one to extract black hole parameters from a ringdown analysis
that goes well within the nonlinear merger part. At the same time, it is well understood that
several details of the ringdown analysis have important consequences for the question of whether
overtones are present or not, and subsequently, to what extent one can claim to perform black hole
spectroscopy. To clarify and tackle some aspects of overtone fitting, we revisit the clearer problem of
wave propagation in the scalar Regge-Wheeler and Pöschl-Teller potentials. This setup, which is to
some extent qualitatively very similar to the nonlinear merger-ringdown regime, indicates that using
even an approximate model for the overtones yields an improved extraction of the black hole mass at
early ringdown times. We find that the relevant parameter is the number of included modes rather
than using the correct model for the overtones themselves. These results show that some standard
tests for verifying the physical contribution of an overtone to a waveform can be misleading, and
that even in the linear case it can be difficult to distinguish the presence of an excited mode from
the fitting of non-QNM effects.

I. INTRODUCTION

The ongoing success of the LIGO-Virgo-KAGRA Col-
laboration in measuring gravitational waves from bi-
nary black hole mergers finally allows us to probe the
strong and dynamical field of general relativity (GR) [1–
4]. Among the most promising and exciting challenges
ahead lies black hole spectroscopy [5–7]. It allows for
a “fingerprint analysis” of the final object by measuring
its relaxation in terms of the emission of characteristic
quasinormal modes (QNMs) within linear perturbation
theory [8–10], after the two initial objects merged, end-
ing a very long inspiral phase. The spectrum of QNMs
in GR is fully characterized by the mass and spin of the
final Kerr black hole [11], if the assumptions of the no-
hair theorem are fulfilled [12, 13]. Therefore, any mea-
surement of frequencies and damping times that are not
in agreement with this prediction points toward funda-
mental violations in our current understanding of black
holes and compact objects.

Several recent discussions in the literature motivate us
to carefully revisit some basic paradigms and concepts
about extracting QNMs from simulations and observa-
tions, as they are the pillar of performing black hole spec-
troscopy successfully. The two most relevant aspects in
the context of this work are concerning the extraction
of QNMs from simulations (which can, in principle, be
as accurate as one desires) and from observations (which
strongly depend on detector noise). On the observational
side, there have been several works that report the ro-
bust extraction of fundamental modes [14–17]. Moreover,
there is also the claim that the first overtone has been
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measured [18], but the debate regarding the robustness
of this claim is ongoing [19–22]. Because the disagree-
ment involves, to a large extent, the correct modeling
of the noise and the detector, future observations should
resolve such problems [23–32].

On the theoretical/numerical side, a key challenge is
quantifying the time after which the nonlinear merger
can be described accurately by linear perturbation the-
ory in terms of a superposition of QNMs. It is clear
that this also plays a central role when analyzing data
from the ringdown alone. Early studies about the sig-
nificance of QNMs in the time domain in linear theory
can be found in Refs. [33, 34] and results based on the
analysis of numerical relativity simulations can be found
in Refs. [35, 36]. The importance of nonlinearity has
been further challenged by recent works demonstrating
that using a large number of QNM overtones is enough
to describe binary black hole merger events even around
the peak of the strain, see Ref. [25] and Refs. [37, 38].
These findings seem to allow QNMs to capture earlier
times of the merger-ringdown regime than is commonly
expected. While the prompt reply to such claims might
be possible overfitting, the authors have carried out sev-
eral tests, e.g., extracting the injected black hole’s mass
or modifying the QNM spectrum in the analysis, which
make their conclusions very strong. Somehow challeng-
ing this claim are recent works that address the ques-
tion of whether nonlinear features in numerical relativity
simulations can be robustly constrained when analyzing
the early ringdown, see Refs. [39–41]. In fact, in these
works it is argued that such nonlinear effects could even
be more relevant than overtones, which would be a dra-
matic change in the standard perception and application
of black hole perturbation theory.

While nonlinear effects or the starting time of the lin-
ear regime are within the realm of numerical relativ-
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ity, similar problems for QNM extraction are well-known
from linear perturbation theory and deserve some review
as they may be overlooked. The first aspect is to spell out
that even the linear regime of a ringdown is in general
not completely described by a superposition of QNMs,
e.g., in contrast to linear oscillations of a string. This is
due to QNMs not forming a complete basis, such that
the initial data evolved is not completely described by
them. A second aspect is the presence of a late-time tail
(Price tails [42, 43]), which eventually becomes the dom-
inant feature. Thus, even if one would know when the
full NR waveform is linear, one could not be sure that
it is indeed well described by a superposition of QNMs
alone. Fitting those modes in an agnostic way may thus
lead to biased results.

One popular toy model in the context of black hole
QNMs is to consider the Pöschl-Teller potential [44–46]
as an approximation for the potential that appears in
the perturbation equations. It has the well-known ad-
vantage that the spectrum of QNMs is known analyti-
cally and can be used as an approximation of those for
the Regge-Wheeler, Zerilli, or other similar potentials. In
the context of this work, it also has the interesting fea-
ture that there are no late-time tails when studying the
time domain problem [47], which limits extraction of the
fundamental mode at late times to just numerical errors.
In the same work, it was also shown that this allows one
to represent certain types of C∞ initial data as a series of
QNMs at late enough times, which is in contrast to the
Regge-Wheeler potential.

The main ingredients of our work are as follows. First,
we produce time-domain waveforms obtained by scatter-
ing Gaussian wave packets with the Pöschl-Teller poten-
tial or the scalar Regge-Wheeler potential (hereby re-
ferred to as the GR potential). Second, we deploy a
fitting scheme to extract QNMs using a certain model,
starting time, and length of the extracted waveform. As
for models, we use two different approaches, an agnostic
one, and a theory-specific one. In the agnostic model each
overtone is fitted with independent amplitude, phase, fre-
quency, and damping time. In the theory-specific model,
we consider either the Pöschl-Teller QNM spectrum or
the scalar Regge-Wheeler QNM spectrum (similarly, re-
ferred to as the GR QNM spectrum). As such, all fre-
quencies and damping times are controlled by only one
parameter, the mass, while the set of amplitudes and
phases is fitted independently.

We are able to explicitly demonstrate that including
overtones in the theory-specific models allows one to bet-
ter estimate the black hole mass at earlier starting times,
even if the wrong model is being used for the analysis.
More specifically, the relative error of the extracted mass
as a function of the starting time at early times is remark-
ably similar, depending mainly on the number of over-
tones included and only mildly on the model itself. This
raises several questions to be explored in future work;
when using more overtones for the fitting, is it possible
that one rather improves the correct fundamental mode

fit by “fitting away” the initial data traces, thus obtaining
the mass with more accuracy at earlier times? Why does
it seem that including overtones, which are more sensitive
to changes in the model (particularly their spectral sta-
bility), can improve the extraction of physical parameters
(in our case, the mass), even when incorrect overtones are
used?
This article is structured as follows. In Sec. II we out-

line the methods being used to generate our waveforms
and statistical methods to analyze them. The applica-
tion and results are then provided in Sec. III. Finally, we
summarize in Sec. IV. Throughout this work we use units
in which G = c = 1.

II. METHODS

For an introduction to QNMs we refer the interested
reader to Refs. [48, 49] for classic reviews and Refs. [50,
51] for comprehensive text books. Different types of field
perturbations around the Schwarzschild black hole can
be written in the form of a master equation,

d2

dt2
ψ(t, x)− d2

dx2
ψ(t, x) + V (x)ψ(t, x) = 0, (1)

where x is the tortoise coordinate;

x = r + 2M ln
( r

2M
− 1

)
. (2)

Here V (x) is an effective potential that describes a bar-
rier with a maximum located approximately around the
light ring 3M . In the test scalar field case (□ϕ = 0) the
potential is given by

VGR(r) =

(
1− 2M

r

)(
l(l + 1)

r2
+

2M

r3

)
. (3)

Note that the gravitational case, which can be split into
axial and polar perturbations of the metric, yields qual-
itatively similar potentials known as the Regge-Wheeler
and Zerilli potentials.
The aforementioned Pöschl-Teller potential is given by

VPT(x) =
V0

cosh2(α(x− x0))
, (4)

where V0, α, and x0 are chosen such that the maximum of
the Pöschl-Teller potential coincides with the one of the
studied potential (here the GR potential), as well as their
second derivatives in the tortoise coordinate (for explicit
calculations, see Refs. [45, 46]). A Fourier decomposition
of Eq. (1) and suitable boundary conditions then leads
to the QNMs as a set of complex frequencies; but in
the following we are interested in the evolution of initial
data in the time domain in the spirit of Vishveshwara’s
pioneering analysis [52].
In this work we solve Eq. (1) numerically via a finite

difference scheme (in particular, a central in time and
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FIG. 1. Waveforms generated from the same Gaussian initial
data evolved in the Pöschl-Teller potential (green) and GR
potential (orange). The shaded area indicates a typical fit
interval, starting at t0 − tpeak, and ending at T − tpeak. Note
that the time has been shifted to align both waveforms at
their respective peak time tpeak, which introduced a relative
shift with respect to the simulation time (not shown).

central in space scheme):

ψi
j = 2ψi−1

j − ψi−2
j +

∆t2

∆x2
(
ψi−1
j+1 − 2ψi−1

j + ψi−1
j−1

)
−∆t2 ψi−1

j Vj . (5)

Here ψi
j = ψ(ti, xj), Vj = V (xj) and ∆t and ∆x are the

temporal and spatial resolutions respectively. Our initial
data consists of incoming Gaussian wave packets,

ψ(0, x) = Ae−
(x−30M)2

2d2 , ψt(0, x) = ψx(0, x), (6)

with an amplitude A comparable to the maximum of the
potential and widths d comparable to the width of the
potential. Outgoing boundary conditions are imposed
(although boundaries are chosen at a distance such that
possible reflections will not contaminate the observed
waveforms). We record the waveform ψ(t) = ψ(t, R) at
extraction radius R. We perform convergence tests for
the code, vary the extraction radius R, consider wave-
forms generated from different initial data with different
widths d, and also the impact of temporal-spatial reso-
lution and length of different waveforms for our analysis.
We found that these parameters did not qualitatively al-
ter the results presented below. Figure 1 shows the wave-
forms generated in this way, which we use in the following
analysis.

The extraction of QNMs is handled by fitting the nu-
merical ψ(t) in different ways as follows. In all models we
first choose a starting time for the fit t0, and a final time
T . In the agnostic model (AG) we then assume that the
entire signal after the starting time can be written as

ψAG(t− tpeak) =

N−1∑
n=0

AAG
n exp

(
− ωAG

i,n (t− tpeak)
)

× sin
(
ωAG
r,n (t− tpeak) + ϕAG

n

)
, (7)

where tpeak is defined as the maximum value of |ψ(t)|.
Here each mode n is characterized by an independent
amplitude AAG

n , phase ϕAG
n , and complex mode frequency

ωAG
n = ωAG

r,n + iωAG
i,n , for a total of 4N fitted parameters.

For the theory-specific model the waveform is given by

ψTS(t− tpeak) =

N−1∑
n=0

ATS
n exp

(
− ωTS

i,n(M)(t− tpeak)
)

× sin
(
ωTS
r,n(M)(t− tpeak) + ϕTS

n

)
,

(8)

where the theory-specific model (TS) either stands for
GR or Pöschl-Teller (PT). Here the free parameters for a
given mode n are the amplitude ATS

n and phase ϕTS
n . Fur-

thermore, the mass M is also a fitted parameter, which
uniquely determines the complex mode frequencies for all
n; hence, the GR/PT models have 2N + 1 fitted param-
eters. For the GR potential we use the publicly available
data for the QNM spectrum provided in Refs. [7, 49], and
use the fact that Mω is constant. For the theory-specific
model of the Pöschl-Teller potential the QNM spectrum
ωPT can be obtained analytically as [44–46]

ωPT =

(
V0 −

α2

4

)1/2

+ iα

(
n+

1

2

)
. (9)

The best-fit values of a given model are obtained by
using the Python optimize curve fit library. To perform
these fits one has to specify the prior ranges for the fitted
parameters. We found that for sensible choices such that
the fit does not survey too large a range, our results were
agnostic to this choice. Furthermore, our recovered best-
fit parameters never rail against the boundaries of the
priors. To compare our results with those of Ref. [25] we
define a similar mismatch function

M(h1, h2) = 1− ⟨h1, h2⟩√
⟨h1, h1⟩ ⟨h2, h2⟩

, (10)

where

⟨h1, h2⟩ =
∫ T

t0

h1(t)h2(t)dt. (11)

Here t0 and T have the same meaning as introduced
earlier, and we have omitted a customary complex con-
jugation on h2, as all of our waveforms are real. To be
confident that curve fitting does not get stuck in a local
minimum, we repeated the optimization 50 times with
random initial parameters within reasonable prior ranges
and selected the parameters yielding the smallest mis-
match. This was also repeated for different numbers of
repetitions, yielding consistent results. To be close to the
setup of Ref. [25] we also set T = 90M + tpeak, although
in their work it refers to the total mass of the system and
in our case only to the remnant mass. The dependence of
the overall results on the choice of T had been explored
by treating it as a free parameter. Besides at very late
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times, when the tail dominates over the QNM contribu-
tions, the precise choice of T does not play a significant
role, as long as at least a few QNM oscillation times are
captured. Finally, the relative error of the black hole
mass is defined as

δM =
|Mrec −Minj|

Minj
, (12)

where Mrec is the reconstructed mass and Minj the in-
jected one, the mass-parameter entering the potential V
in Eqs. (3) and (4) used in our numerical solutions.

III. APPLICATION AND RESULTS

As a first application we study the QNM fitting of
Gaussian wave packets scattered at the Pöschl-Teller po-
tential. We fit the numerical waveform with the AG, PT
and GR models at different order N , and compute the
mismatches between the original data and each fit. This
procedure is repeated for many different starting times
t0 of the fit interval.

Our results are summarized in Fig. 2. The top panel
shows the mismatch as a function of the beginning of the
fit interval. All three N = 1 models yield similar results
for the mismatch after the peak of the signal through-
out most of the ringdown. Furthermore, it is remarkable
that for small t0 − tpeak the two theoretical models at
the same N perform similarly. Only at later times the
(correct) PT model outperforms the GR model. Overall
the GR models reach mismatches ∼ 10−6, while the PT
models reach ∼ 10−8. Note that at very late times the
agnostic model AG2 yields the smallest mismatch and
even outperforms the theoretical models with multiple
modes. We expect that numerical inaccuracies on such
a small level are better described by the AG2 model due
to its larger number of free parameters and independent
QNMs.

The bottom panel of Fig. 2 shows the relative error of
the mass δM , as a function of the corresponding starting
times. Since one cannot extract a mass from the ag-
nostic models, we only compare the theory-specific mod-
els. As was the case for the mismatch, it is evident
that the dependence at earlier times lies mainly in the
number of modes used, and less so in the specific model
being used. Somewhat surprisingly, for the same num-
ber of modes and early beginning of the fitting interval
(0 ≲ t0 − tpeak ≲ 10 . . . 20M , depending on N), the GR
model recovers the mass slightly better. Then, the num-
ber of used modes determines at what time the GR model
plateaus toward a value of around 10−2. This is expected,
because the fundamental modes of the two models agree
with each other only to percent level.

As a second application, we repeat the previous anal-
ysis using a waveform produced with the GR potential.
Our results are summarized in Fig. 3 revealing similari-
ties as well as differences to Fig. 2, as we will now discuss:
Regarding the mismatch we find a very similar behavior

FIG. 2. Results for a waveform generated using the Pöschl-
Teller potential. We apply the PT and GR model with N =
1 . . . 3 modes, as well as the agnostic model with N = 1 or
N = 2 modes. Top panel: mismatch M as a function of
starting time of the fit. Bottom panel: relative error δM of
the recovered black hole mass as a function of starting time
of the fit.

until around t0 − tpeak ∼ 10 . . . 20M . For later starting
times of the fit, the mismatches of all models are com-
parable (M ∼ 10−5) and even increase slowly. This is
a clear indication of tail contributions, which limits the
validity of the QNM expansion of the waveform.

We now turn to the recovery of the mass in the PT and
GR fits, shown in the lower panel of Fig. 3. For early start
times, PT and GR models at the same order N recover
the mass comparably well. The PT models then level
off at a relative error δM ∼ 10−2 owing to the different
fundamental mode frequency of the PT model, compared
to the analyzed GR waveform. The GR models recover
the mass about 1 order of magnitude better. However,
despite the GR model employing the correct frequencies
of the QNM modes for the analyzed GR waveform, mass
recovery levels off at a few ×10−3, presumably due to the
presence of waveform tails.

We now turn to the question of how well our model fits
recover the expected QNM frequencies. The frequencies
from a fit are a powerful diagnostic tool: if one can re-
cover modes agnostically, one can check if the recovered
spectrum matches a theory predicted one. To address
this question we show the corresponding best-fit results
for t > tpeak for the PT injection in Fig. 4, and for the
GR injection in Fig. 5. In the left panels of each figure
we show the PT, GR or AG QNMs obtained using their
respective one mode (top), two modes (middle), or three
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FIG. 3. Results for a waveform generated using the GR poten-
tial. We apply the PT and GR model with N = 1, 2, 3 modes,
as well as the agnostic model with N = 1 or N = 2 modes.
Top panel: mismatch M as a function of starting time mi-
nus peak time of the waveform. Bottom panel: relative
error δM of the black hole mass as a function of starting time
minus peak time of the waveform. At t0− tpeak ≳ 10 . . . 20M ,
the fits are limited by waveform tails.

modes (bottom) versions, while the right panels show
the convergence of the individual modes in each fit. We
also show the exact QNMs for each model for M = 1
for comparison. Because the complex QNM frequencies
of the PT and GR model are completely determined by
one parameter (M , which converges at least on percent
level), we find comparable and robust convergence for
the PT and GR QNMs. However, in the AG model,
where the QNMs are varied completely independent of
their real/imaginary part and mode number, the conver-
gence is much less stable.

The AG1 models (top panels of Figs. 4 and 5) explore
a larger part of the plane, and the AG2 models (middle
panels of Figs. 4 and 5) even more so. For the GR in-
jection, AG2 even exhibits divergent frequencies, see the
middle panel of Fig. 5.

We remark that the n = 0 mode frequency of all mod-
els agrees very well with the QNM of the injected model.
This is expected, because the fundamental QNM fre-
quency is the most significant feature to fit. Recovery of
the correct fundamental QNM frequency, combined with
the fact that this frequency differs by ∼ 1% between the
PT and GR potential, explains the bias in the underly-
ing mass if the wrong model is used for an injection, as
displayed in Figs. 2 and 3: The fit arrives at the incorrect
mass, to achieve the correct frequency. This bias in the

mass also manifests itself in the small shift of the n = 1
and n = 2 QNM frequencies when the wrong model is
used to analyze the injection. Our conclusion is that the
n = 0 fundamental mode is robustly recovered across fit-
ting models, while their different overtone structures lead
to very different fitted overtones. Note that due to the
simple mass dependence of the PT and GR QNMs, their
reconstruction is much more constrained for all overtones.
As a final aspect of our analysis we now turn to the fit-
ted amplitudes and phases. These parameters depend on
the initial conditions of our numerical evolutions, and are
therefore not as fundamental as the QNM frequencies.
However, if a given QNM has been clearly found in the

signal during fitting, the corresponding amplitude and
phase should be constant. This should at least be ex-
pected qualitatively toward later times, when additional
overtones not included in our fits have sufficiently de-
cayed. In addition, the GR waveform has the added com-
plexity of the presence of the Price tail. In Figs. 6 and
Fig. 7 we show the fitted amplitudes A0 and A1 for the
fundamental mode (n = 0, top panels) and the n = 1
mode (bottom panels) for the PT and GR waveform, re-
spectively. For n = 0 the amplitude can be robustly
constrained, within small uncertainties relating to which
model has been used. For n = 1 and the PT injection
one can also find a stable mode (Fig. 6), at least for in-
termediate times, but much less so for the GR injection
(Fig. 7). Further emphasis on the dependence of num-
ber of overtones can be seen in the top panels, where the
n = 0 amplitude value is reached at earlier times when
more modes are included.
We note that the amplitudes A2 are extremely unstable

and not informative in all cases; therefore, we have not
provided them. The results for the phases are qualita-
tively very similar and shown in the Appendix. Overall,
the findings of nonconstant amplitudes and phases sug-
gest that only the n = 0 mode, and potentially the n = 1
mode for the PT case, can be robustly inferred from the
data.

IV. CONCLUSIONS

It is quite intuitive that adding overtones to a ringdown
analysis reduces the mismatch, in particular at earlier
times. It is also clear that a mere reduction in mismatch
is not a sufficient criterion to conclude the actual presence
of overtones, since introducing a model with additional
parameters will generally allow for a better fit. However,
the observation in Ref. [25] that it is possible to extract
the correct black hole mass even at very early times by
using many overtones suggests that it is significant. This
was carefully investigated in Ref. [25] by allowing some of
the overtone QNMs to deviate from their Kerr prediction,
which resulted in finding that the extracted mass was
further away from the correct one.
In our analysis, we have studied a simplified setup that

is completely within linear perturbation theory to reduce
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FIG. 4. Analysis of a PT waveform using different fitting models. The top left panel shows the QNM frequencies recovered
when fitting only one mode (N = 1). The small markers indicate the recovered QNM frequencies for fits that start at different
t − tpeak, as indicated by the shading along with the horizontal axis of the top right panel. The vertical axis of the top
right panel shows the relative difference of the recovered QNM frequency to the fundamental mode of the PT waveform. This
fundamental mode is also plotted with the large square in the top left panel. The middle panels and the bottom panels show
the analogous results when fitting N = 2 and N = 3 modes, respectively, with the first overtone colored red and the second
overtone colored green. For reference, the left panels also indicate the QNM frequencies of a GR waveform as large circles.
Note that because the PT QNM frequencies are all proportional to the mass (which is fitted), all the PT QNM frequencies
have the same relative errors and lie on top of each other in the right panels.

some of the extra complexities that arise in a full BH ring-
down, e.g., when in the ringdown does linear perturba-
tion theory become a good approximation. Specifically,
we study wave propagation in the GR and Pöschl-Teller
potentials, for which the QNM spectrum is known to very
high accuracy and is well understood. In both cases, the
QNMs can be modeled as a function of only the black
hole mass, while the amplitude and phase of each in-
cluded mode have been treated as free parameters. Here,
explicit results for amplitudes and phases depend on the
choice of the initial data and conclusions need thus to be
understood with some caution.

As one part of our analysis, we have recovered the

known result (e.g. Ref. [24]) that including overtones
reduces the mismatch at early times. This is not a novel
finding but a remarkable reminder that the full non-
linear analysis faces qualitatively similar problems. In
Refs. [53, 54] the idea of using additional modes to clean
NR signals in the context of a Bayesian analysis has been
introduced and successfully demonstrated.

The unexpected result of our work is that both theory-
specific models, scalar Regge-Wheeler and Pöschl-Teller,
perform extremely similarly in the way that they allow
for improved estimation of the black hole mass at earlier
times. Here most strikingly, it is only mildly dependent
on the used model to produce the ringdown signal. Ap-
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FIG. 5. Analysis of a GR waveform using different fitting models. This figure has the same structure as Fig. 4, but for the
GR waveform injection. Note that for the N=2 agnostic fit, the first overtone could not be identified reliably, and so the fit
diverges away at late times.

plying one model to the other signal and vice versa yields
very similar results at early and intermediate times, and
the ultimate dependence is in the number of overtones
included.

Of course, one must be aware that the Pöschl-Teller
approximation gives accurate estimates for the funda-
mental mode and the imaginary parts of the first few
overtones, but the overtones’ real parts deviate further
with increasing overtone number; see the location of the
larger markers in the bottom panels of Fig. 5. The devi-
ations in the QNM frequencies (especially in the funda-
mental n = 0 mode) manifest themselves in the fact that
using the wrong model at late times results in a plateau-
ing percent level relative error for the mass, while the
correct model yields a further decreasing relative error.

By investigating the robustness of the QNMs obtained
by fitting the different models, as well as the fitted am-
plitudes and phases, we conclude that only the n = 0
mode can be robustly recovered. Already for n = 1, it

is less straightforward to assess the presence of the over-
tone in the waveform. It is likely to be present in the
PT waveform, but more difficult to quantify in the GR
waveform.

The takeaway message from our analysis, which calls
for future studies, should be that including even a rather
crude model for the overtones at early times is indeed
useful for an earlier extraction of the black hole mass.
Its limitations only become relevant if the signal can be
studied at late enough times, when the asymptotic value
gets biased and converges toward a wrong value. While
the latter can certainly be done within a purely numer-
ical study, contemporary data analysis of real events is
limited by moderate signal-to-noise ratio, and it is thus
much harder to differentiate between different models.
Because overtones are particularly sensitive to possible
deviations of the Schwarzschild/Kerr space-time or mod-
ified dynamics (see, e.g., Refs. [55–57]) it is crucial to
robustly infer them from future observations.
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FIG. 6. Amplitudes recovered when fitting the PT wave-
form. The top panel shows the recovered amplitude of the
fundamental mode for fits starting at t0− tpeak for all models.
The bottom panel shows the amplitude of the n = 1 mode
for those models that include this mode.

Because the accuracy of the extracted mass clearly im-
proves at earlier times, even when the wrong model is
used, one may ask whether including the overtones is ef-
fectively removing the non-QNM contributions related to
the initial data. In this case, it is questionable whether
one can assign a physical significance to higher overtones,
or rather understand them as an effective way to improve
the parameter estimation by reducing the non-QNM con-
tent of the signal originating from the initial data in the
linear case or even nonlinear parts in the full problem.
Indeed, by verifying that the overtones’ amplitudes and
phases vary as a function of the starting time, one should
be convinced that those are not, at least not as antici-
pated, a real feature in the waveform. This, however,
does not mean that overtones are not being excited. In
fact, there is no universal argument why rather generic
initial data should not excite them. Our findings are
rather questioning whether standard methods and tests
are sufficient to robustly quantify to what extent fitted
overtones correspond to physically excited ones.

In the final stage of our work a very comprehen-
sive analysis on overtone fitting has been presented in
Ref. [58]. It reports similar findings for some of our main
points, although it is not for the Pöschl-Teller poten-
tial. Among the different types of ringdown fits that
are studied is also a hybrid model, which assumes that
some modes are determined by a theory-specific predic-
tion, while some modes are agnostic. While our work
focuses on the linear case, Ref. [58] also applies ringdown

FIG. 7. Amplitude recovered when fitting the GR waveform.
Data plotted as in Fig. 6.

fitting to numerical relativity waveforms and shows that
nonlinear mode effects can become important as well.
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[37] P. Mourier, X. Jiménez Forteza, D. Pook-Kolb, B. Krish-

nan, and E. Schnetter, Phys. Rev. D 103, 044054 (2021),
arXiv:2010.15186 [gr-qc].

[38] X. J. Forteza and P. Mourier, Phys. Rev. D 104, 124072
(2021), arXiv:2107.11829 [gr-qc].

[39] L. Sberna, P. Bosch, W. E. East, S. R. Green,
and L. Lehner, Phys. Rev. D 105, 064046 (2022),
arXiv:2112.11168 [gr-qc].

[40] M. H.-Y. Cheung et al., Phys. Rev. Lett. 130, 081401
(2023), arXiv:2208.07374 [gr-qc].

[41] K. Mitman et al., Phys. Rev. Lett. 130, 081402 (2023),
arXiv:2208.07380 [gr-qc].

[42] R. H. Price, Phys. Rev. D 5, 2419 (1972).
[43] R. H. Price, Phys. Rev. D 5, 2439 (1972).
[44] B. Mashhoon, in 3rd Marcel Grossmann Meeting on the

Recent Developments of General Relativity (1982).
[45] V. Ferrari and B. Mashhoon, Phys. Rev. Lett. 52, 1361

(1984).
[46] V. Ferrari and B. Mashhoon, Phys. Rev. D 30, 295

(1984).
[47] H. R. Beyer, Commun. Math. Phys. 204, 397 (1999),

arXiv:gr-qc/9803034.
[48] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2,

2 (1999), arXiv:gr-qc/9909058.
[49] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant.

Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc].
[50] M. Maggiore, Gravitational Waves. Vol. 1: Theory and

Experiments, Oxford Master Series in Physics (Oxford
University Press, 2007).

[51] M. Maggiore, Gravitational Waves. Vol. 2: Astrophysics
and Cosmology (Oxford University Press, 2018).

[52] C. V. Vishveshwara, Nature 227, 936 (1970).
[53] S. Ma, K. Mitman, L. Sun, N. Deppe, F. Hébert, L. E.
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Appendix A: Additional material for the phases
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for the PT injection in Fig. 8 and for the GR injection
in Fig. 9. Note that during the fitting we consider the
range [0, 2π]; however we have “unwrapped” the values
here for clearer presentation.
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FIG. 8. Fitted phases of the different models when injecting
the PT waveform. Top: the n = 0 mode amplitude ϕ0.
Bottom: The n = 1 mode amplitude ϕ1.

FIG. 9. The same description as in Fig. 8 but for the GR
waveform injection.
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