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Abstract

A simple procedure is given to construct curved, non-self-dual (complexified) Kähler metrics on
space-time in terms of deformations of holomorphic quadric surfaces in flat twistor space. Imposing
Lorentzian reality conditions, the Schwarzschild, Kerr, and Plebański-Demiański space-times (among
others) are derived as examples of the construction.

1 Introduction

Twistor theory constitutes a remarkable approach to the description of the complex structure of space-
time [1, 2, 3, 4]. Motivated by the fact that the celestial sphere of any event in Minkowski space has a
natural complex structure and is thus a Riemann sphere CP

1 (cf. [5]), the space-time manifold emerges
as the moduli space of CP1’s (‘twistor lines’) in twistor space. These lines are holomorphic, which implies
that our intuition about lines and their intersection in R3 continues to hold in twistor space, and allows
to define the conformal structure of space-time by intersection of lines. Gravitation, in the twistor view,
should correspond to deformations of the flat twistor structure. Penrose’s non-linear graviton construction
[2] shows that this holds true for self-dual (or half-flat) curved space-times.

If a geometry admits a twistor space and, in addition, it has some further special structure, this extra
structure is often holomorphically encoded in the twistor space. For example, in Riemannian geometry,
Pontecorvo showed [6] that a Kähler metric in the conformal structure of a conformally half-flat 4-
manifold corresponds to a holomorphic section of (the square root of) the anti-canonical bundle of the
twistor space, with two zeros on each twistor line. This can also be understood in terms of a holomorphic
surface that intersects each twistor line at two points.

Self-dual curvature is a strong restriction for general relativity, as it implies (conformally) flat space-
time. In this note, inspired by Pontecorvo’s construction and by the non-linear graviton, we describe a
variation of the twistor construction that produces non-self-dual (complexified) Kähler metrics on space-
time as deformations of holomorphic quadric surfaces in flat twistor space. Part of the basic intuition is
that two points define a line; this carries over to twistor space since everything is holomorphic (the two
points in question being the intersection points of twistor lines with the quadric; see below). Imposing
Lorentzian reality conditions, we show that the general Plebański-Demiański class of space-times [7, 8],
which includes the standard black hole metrics of general relativity such as Schwarzschild, Kerr, etc., is
recovered by this construction.

2 Twistor quadrics and Kähler metrics

2.1 Preliminaries

We start off by introducing some basic definitions to set our conventions. Let (M, g) be a 4-dimensional,
orientable Riemannian or Lorentzian manifold. We also allow complexified geometries. We say that a
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(1, 1) tensor J is an almost-complex structure if it satisfies J2 = −I and its (±i)-eigenspaces T± have the
same rank. We say that J is, in addition, compatible with g if it holds g(J ·, J ·) = g(·, ·); in this case we
refer to (g, J) as an almost-Hermitian structure. The (±i)-eigenspaces T± of J split the tangent bundle
as T+ ⊕ T−. We say that J is integrable, and is thus a complex structure, if T± are both involutive
under the Lie bracket, i.e. [T±, T±] ⊂ T± (for both signs). If this is satisfied and J is also compatible
with g, then (g, J) is a Hermitian structure.

Given an almost-Hermitian structure, the fundamental 2-form is defined by κ(·, ·) = g(J ·, ·). The 2-
form κ and J are compatible in the sense that κ(J ·, J ·) = κ(·, ·). Note that any two of g, J, κ determines
the third; in particular, given compatible κ, J , the metric g is determined by g(·, ·) = κ(·, J ·). Finally, we
say that the geometry is (complexified) Kähler if (g, J) is Hermitian and dκ = 0. In this case, κ is also
referred to as the symplectic form.

Concerning reality conditions, one can show that given an almost-Hermitian structure, the fundamen-
tal 2-form is an eigenform of the Hodge star operator, so it is self-dual (SD) or anti-self-dual (ASD). In
Riemann signature, (A)SD 2-forms are real, whereas in Lorentz signature they are complex. Therefore,
the tensor J is real-valued in Riemann signature, and complex-valued in Lorentz signature. Lorentzian
Kähler geometry was thoroughly investigated by Flaherty [9].

2.2 Twistor space

Let CM denote complexified Minkowski space, with complexified inertial coordinates tc, xc, yc, zc and
flat holomorphic metric η = dt2c − dx2

c − dy2c − dz2c . Introduce double null coordinates uc, vc, wc, w̃c by
uc =

1√
2
(tc + zc), vc =

1√
2
(tc − zc), wc =

1√
2
(xc + iyc), w̃c =

1√
2
(xc − iyc). Twistor space is the manifold

PT = CP3\CP1, and it is related to space-time via the incidence relation
(

Z0

Z1

)

= i

(

uc wc

w̃c vc

)(

Z2

Z3

)

(1)

where we use homogeneous coordinates Zα = (Z0, Z1, Z2, Z3) on CP
3 (the CP

1 removed corresponding
to Z2 = Z3 = 0). The twistor correspondence (1) is non-local. Fixing Zα ∈ PT, the set of space-time
points satisfying (1) is a totally null 2-surface in CM, called ‘α-surface’. Fixing (uc, vc, wc, w̃c) ∈ CM, the
set of Zα satisfying (1) is a (holomorphic, linearly embedded) Riemann sphere Lx

∼= CP1, which is called
‘twistor line’. Space-time is the moduli space of twistor lines in PT, and twistor space is the moduli space
of α-surfaces in CM. Inhomogeneous local coordinates for twistor space are given by the equations that
define α-surfaces, that is (putting ζ = Z3/Z2, in a region with Z2 6= 0)

ω0 = uc + ζwc, ω1 = w̃c + ζvc, ζ. (2)

For fixed (uc, vc, wc, w̃c) and variable ζ, these three quantities describe a twistor line in PT. For fixed
(ω0, ω1, ζ) and variable (uc, vc, wc, w̃c), (2) describe an α-surface in CM.

Twistor space is fibered over CP1, being the total space of the fiber bundle O(1)⊕O(1) → CP1. Here,
O(−1) is the tautological line bundle over CP1, and O(k) = O(−1)∗⊗k (k > 0). The base of the fibration
has homogeneous coordinates Z2, Z3, or inhomogeneous coordinate ζ, and the fibers have coordinates
Z0, Z1. Each fiber has an O(2)-valued symplectic structure µ = dZ0 ∧ dZ1. All of this is valid for flat
space-times. One of the main ideas in twistor theory is that gravitation, namely curved space-times,
should correspond to deformations of twistor structures. Penrose showed [2] that this is true for half-
flat space-times: he proved that an ASD, Ricci-flat, complex space-time corresponds to a 3-dimensional
complex manifold PT obtained as a deformation of PT that preserves the fibration PT → CP

1 and the
fiberwise symplectic structure µ.

2.3 Quadrics

In a Riemannian setting, twistor space can also be defined as the space of almost-complex structures
compatible with a 4-dimensional Riemannian conformal structure. This space coincides with the (6-real-
dimensional) projective spin bundle, which can be shown to be a complex 3-manifold (the twistor space
PT ) if and only if the conformal structure is ASD.

In this context, one may ask what a Kähler metric in the conformal structure corresponds to in
twistor space. This was studied by Pontecorvo [6], who showed that a (necessarily scalar-flat) Kähler
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metric corresponds to a preferred (global, holomorphic) section of K
−1/2
PT which vanishes at two points in

each twistor line, where K
−1/2
PT is the square-root of the anti-canonical line bundle of PT . We can see this

by first noticing that the bundle K
−1/2
PT restricted to a twistor line is O(2). Hitchin showed in [10, Section

2] that the space H0(PT ,O(k)) of global, holomorphic sections of O(k) can be identified with ker(Tk),

where Tk is the valence-k twistor operator. This implies that a section χ of K
−1/2
PT corresponds to a

valence-2 twistor-spinor, or Killing spinor. The requirement that χ vanishes at two points in each twistor
line means that the Killing spinor is non-degenerate. Using then [11, Lemma 2.1], this corresponds to a
conformal Kähler structure on space-time.

In complexified flat space-time, we can also describe Pontecorvo’s construction in terms of holomorphic
quadric surfaces in flat twistor space PT. The space H0(CP1,O(k)) consists of degree k homogeneous

polynomials in C2. Thus, a section χ of K
−1/2
PT

, when restricted to a twistor line, is of the form

χ = Aζ2 + 2Bζ + C (3)

for some A,B,C, where we are using an inhomogeneous coordinate ζ on CP
1. We can then think of χ

as a holomorphic quadratic function χ(Zα) = QαβZ
αZβ for some symmetric Qαβ . The expression (3)

follows after using the incidence relation (1), which also shows that A = A(vc, wc), B = B(uc, vc, wc, w̃c)
and C = C(uc, w̃c). The zero set of χ is a holomorphic quadric, Q = {Zα ∈ PT |χ(Zα) = 0}. From Kerr’s
theorem [1], the surface Q corresponds to a shear-free, null geodesic congruence in CM. The condition
that χ vanishes at two points in each twistor line Lx is the same as saying that Lx intersects Q at two
points, corresponding to the two roots ζ± of the quadratic polynomial (3), that is χ = A(ζ− ζ+)(ζ− ζ−),
where ζ± = (−B ±

√
B2 −AC)/A. We allow, however, the possibility of twistor lines where the roots

coincide; these correspond to caustics in the ray congruence on space-time (and will later correspond to
curvature singularities for the curved, non-self-dual metric we will construct). Importantly, the quadric
is divided into two regions in twistor space:

Q = A+ ∪ A−, (4)

where A± can be described in local coordinates by any two of (see (2))

ω0
± = uc + ζ±wc, ω1

± = w̃c + ζ±vc, ζ±, (5)

or by any function of them. For fixed + or −, the three coordinates in (5) are functionally dependent
as a consequence of the quadric equation χ(ω0

±, ω
1
±, ζ±) = 0. A simple example to illustrate this (and to

have in mind in general) is a product of planes, that is, a quadric given by Qαβ = A+
(αA

−
β) for some fixed

A±
α . The two regions in (4) are in this case two planes A± = {Zα|A±

αZ
α = 0}, and the roots coincide in

the twistor line corresponding to the intersection of the planes, see e.g. [12, Fig. 6-11].
Since, generically, a twistor line Lx intersects Q at two points, and since two points define a unique

line through them, the two intersection points can also be used to characterise the twistor line Lx. In
other words, varying the line Lx, the intersection points serve as a coordinate system on space-time.
Given local holomorphic coordinates on A± (obtained e.g. from (5)), say zA± with A = 0, 1, the pair
(zA+, z

A
−) is the desired coordinate system on CM. The complex structure J induced on space-time from

the quadric Q can then be shown to be

J = i(∂zA

+
⊗ dzA+ − ∂zA

−
⊗ dzA−) (6)

where the Einstein summation convention is assumed. The tensor (6) is compatible with the Minkowski
metric. In particular, the vectors ∂zA

±
are null. In fact, the construction so far is conformally invariant.

The Kähler structure is obtained from the symplectic form, which can be shown to be

κ =
i

(B2 −AC)3/2
[Aduc ∧ dw̃c −B(duc ∧ dvc + dwc ∧ dw̃c) + Cdwc ∧ dvc] (7)

(A,B,C are defined in (3)). One can show this using, for example, the Penrose transform for spin 1, with
the twistor function f(Zα) = [χ(Zα)]−2. In terms of quadric coordinates zA±, the symplectic form (7) is

κ = κAB̃dz
A
+ ∧ dzB− , κAB̃ = κ(∂zA

+
, ∂zB

−
). (8)

Indices A, B̃, ... are numerical and take values 0, 1 (and again Einstein summation is used). The distinction
between an index ‘B’ and an index ‘B̃’ is only intended to remind that they are associated to the two
different halves of the quadric, and in equations like (8) they are summed over as usual.
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3 Deformed quadrics and non-self-dual Kähler metrics

Consider a holomorphic quadric Q in twistor space, which is arbitrary except for the assumption that,
generically, twistor lines intersect Q at two points, so that the quadric is divided into two regions A± as
in (4). Choose holomorphic coordinates zA± on A±. We now introduce a “deformed” quadric as

Q = A+ ∪ A−, (9)

where A+ and A− are the level sets of the four functions żA+ and żA− defined by

żA+ = zA+, żA− = zA− + fA(zB+ , zB−) (10)

for some functions fA, such that dż0+ ∧ dż1+ ∧ dż0− ∧ dż1− 6= 0. Although one half of the quadric remains
“undeformed”, A+ = A+, the other half A− is deformed to A− and Q is, in general, not inside twistor
space (a point in A− is not in twistor space, since it does not correspond to an α-surface in CM). We
also note that in order to get a non-trivial construction, the functions fA must depend on both zA+ and
zA−, otherwise (10) would just be a diffeomorphism on the quadric. Although our construction is inspired
by the non-linear graviton, the sense in which (9) is a deformed quadric does not seem to be the same as
the complex-structure-deformations of twistor theory.

Recalling that the complex structure on space-time induced by the original quadric is given by (6),
we associate the deformed quadric to a new complex structure:

J̇ = i(∂żA

+
⊗ dżA+ − ∂żA

−
⊗ dżA−). (11)

This is an integrable almost-complex structure on the (complexified) space-time manifold, but it is not
Hermitian: it is not compatible with the Minkowski metric. In particular, unlike the undeformed quadric,
the new vectors ∂żA

+
are not null (they are linear combinations of ∂zA

+
and ∂zA

−
). We then interpret the

deformation (10) of the quadric as a deformation of the conformal structure on space-time: new conformal
structures are introduced by requiring that their null cones contain ∂żA

±
.

This requirement alone, however, does not fix a metric. In order to do this, we must ask additional
conditions on the deformations (10). To this end, we choose to restrict to quadric deformations that
preserve the symplectic structure induced on space-time, κ. In some sense, we can take inspiration
for this restriction from the non-linear graviton, where the twistor deformations preserve the fiberwise
symplectic structure (which allows to reconstruct the space-time metric); however, this is not the same
since we are here dealing with a symplectic structure on space-time (not on twistor space). Regardless,
the symplectic-form-preserving condition allows to fix a metric:

g(X,Y ) := κ(X, J̇Y ), (12)

for all vectors X,Y , where the symmetry property of this map follows from requiring κ and J̇ to be
compatible, which in turn is the same as requiring ∂żA

±
to be null. The metric (12) is then

g = 2gAB̃dż
A
+ ⊙ dżB− , (13)

where gAB̃ = g(∂żA

+
, ∂żB

−
). As before, all indices here are numerical, see below eq. (8) for our conventions.

A calculation shows that the deformations (10) preserve the symplectic structure κ if and only if the
functions gAB̃ and fA satisfy

gAC̃

(

δCB +
∂fC

∂zB−

)

= iκAB̃, (14a)

ǫACgAB̃

∂fB

∂zC+
= 0, (14b)

where the four functions κAB̃ are defined in (8). The functions gAB̃ in (13) can then be computed from
eq. (14a) (by inverting the matrix inside the brackets on the left), and the deformation functions fA are
not completely arbitrary but are restricted by the condition (14b).

In summary: the result of this construction is a new metric (13)-(14) on space-time that is generically
curved, non-(A)SD, and automatically (complexified) Kähler.
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4 Black holes

Consider the holomorphic quadric Q ⊂ PT given as the zero set of the following quadratic function:

χ(Zα) = Z0Z3 − Z1Z2. (15)

On twistor lines, this adopts the form (3) with A = wc, B = 1
2 (uc − vc), C = −w̃c (we are omitting an

irrelevant overall factor of i coming from (1)). The roots are then easily computed to be

ζ± =
−zc ± rc
xc + iyc

, rc :=
√

x2
c + y2c + z2c . (16)

In some sense, we could say that ζ+ and ζ− are “related” by a complexified antipodal map: if ζ̃± =
(−zc ± rc)/(xc − iyc), then ζ+ = −1/ζ̃−. Twistor lines with rc = 0 intersect Q only once; the Kähler
structure on CM is not well-defined at these points. The symplectic form (7) is

κ =
i

r3c
[xc(dtc ∧ dxc + idyc ∧ dzc) + yc(dtc ∧ dyc + idzc ∧ dxc) + zc(dtc ∧ dzc + idxc ∧ dyc)] . (17)

Recalling (4) and (5), we choose the following quadric coordinates z0±, z
1
± on A±:

z0± = ω0
±, z1± = i√

2
log(±ζ±). (18)

We now impose reality conditions: we take the real Lorentzian slice in CM defined by

tc = t, xc = x, yc = y, zc = z − ia (19)

where t, x, y, z are all real, and a is a real parameter. The function rc in (16) is complex: we denote by
r its real part, so that (from the definition of rc) we must have rc = r − iaz/r. Let us introduce a real
coordinate system (r, p, ϕ) related to Cartesian coordinates (x, y, z) by

x+ iy =
√

(r2 + a2)(1 − p2)eiϕ, z = rp (20)

(where we assume p2 < 1). The symplectic form (17) and the quadric coordinates (18) become

κ =
i

(r − iap)2
[

dt ∧ d(r − iap)− dϕ ∧ (a(1 − p2)dr − i(r2 + a2)dp)
]

, (21)

z0± = 1√
2
[t± (r − iap)], z1± = 1√

2

[

ϕ±
(

− arctan(a/r)− i
2 log

(

1+p
1−p

))]

. (22)

After some calculations, we find the components κAB̃ in (8) to be κ00̃ = ir−2
c , κ01̃ = 0 = κ10̃, κ11̃ =

−ir−2
c (r2 + a2)(1 − p2), where r2c = (r − iap)2.
Following the prescription (10), we now deform the quadric given by (15) to a new quadric Q =

A+ ∪ A− according to

żA+ = zA+, żA− = zA− +RA(r) + PA(p), (23)

for arbitrary functions RA(r), PA(p), where r = r(zB+ , zB−) and p = p(zB+ , zB−) are given by inverting the
relations (22). A calculation shows that the symplectic-form-preserving requirement (14b) reduces to

(r2 + a2)
∂R1

∂r
− a

∂R0

∂r
= 0, a(1 − p2)

∂P 1

∂p
− ∂P 0

∂p
= 0 (24)

so the functions R0, R1 and P 0, P 1 in (23) are not independent but are related by this condition. The
new metric on space-time is given by (13), (14a), and, as mentioned, it is curved, non-(A)SD, and
(complexified) Kähler. Furthermore, it turns out that this simple prescription already identifies the
Plebański-Demiański class [7, 8]: to see this, we define four functions T(t, r, p),Φ(ϕ, r, p),∆r(r),∆p(p) by

T := t+ 1√
2
(R0(r) + P 0(p)), Φ := ϕ+ 1√

2
(R1(r) + P 1(p)), (25)

∆r := (r2 + a2)
(

1− 1√
2
∂R0

∂r

)−1

, ∆p := ia(1− p2)
(

ia+ 1√
2
∂P 0

∂p

)−1

. (26)
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After some lengthy calculations, the new metric (13), (14a) is

g =
1

r2c

[

(∆r − a2∆p)

Σ
dT2 +

2a[(r2 + a2)∆p − (1− p2)∆r)

Σ
dTdΦ

+
[a2(1− p2)2∆r − (r2 + a2)2∆p]

Σ
dΦ2 − Σ

∆r
dr2 − Σ

∆p
dp2

]

,

(27)

where Σ := r2 + a2p2. By choosing a specific form for ∆r,∆p, this is the Kähler metric associated to the
Plebański-Demiański space-time [13].

We emphasise that the definitions (25)-(26) are introduced only to recover the familiar form (27): all
necessary information about the metric (27) is already contained in the deformed quadric (23).

As an example, put first R1 = P 0 = P 1 = 0 and then a = 0 (so that ∆p reduces to 1 − p2), define
cos θ := p and f(r) := ∆r/r

2; then (27) multiplied by r2 is the (real, ordinary) Schwarzschild metric if
one sets ∆r = r2 − 2Mr. Similarly, the Reissner-Nördstrom metric, and cosmological versions, etc., are
obtained by choosing different functions ∆r. Space-time points with r = 0, corresponding to twistor lines
intersecting the undeformed quadric Q ⊂ PT only once, are curvature singularities.

As another example, put P 0 = P 1 = 0. Defining cos θ := p, and setting ∆r = r2 − 2Mr + a2,
the metric (27) multiplied by r2c is the (real) Kerr metric. The Kerr-Newman metric corresponds to
∆r = r2 − 2Mr + a2 +Q2, and to obtain the cosmological versions one must include non-trivial P 0, P 1.
Twistor lines intersecting Q only once are those with rc = 0, which is the same as r = 0 = cos θ and
correspond to ring singularities.

5 Final remarks

The particular quadric (15) used in the derivation of the Plebański-Demiański space-time can be given
some sort of physical interpretation, by writing it as QαβZ

αZβ and noticing that Qαβ is the angular-
momentum twistor corresponding to a static, spin-less particle at rest in a complex space-time. In fact,
the Penrose transform can be used here to show that the associated twistor functions produce the spin
2 field of linearized black holes [3]. This idea has been revived in recent interesting work on scattering
amplitudes, see e.g. [14]. Our construction shows, however, that the exact non-linear solutions are
associated to a deformation of the quadric (which is not inside twistor space), in line with the general
twistor philosophy that curved space-times should correspond to deformed twistor structures.

The approach in this work has been to take a complexified space-time as a starting point, and then
recover real slices by the imposition of (Lorentzian) reality conditions. This is why we needed to consider
only one quadric (15) to recover different space-times. If, on the contrary, we assume from the beginning
that tc, xc, yc, zc in (1) are real, then the quadrics for (say) Schwarzschild and Kerr are different. Also, we
have chosen to work with the form of the Plebański-Demiański space-time given in [8], as this allows to
recover standard black holes in a straightforward manner. If we wish to work with the original Plebański-
Demiański coordinates [7], one possibility is to start from a twistor quadric different from (15). The
corresponding quadric is χ = Z0Z1 + cZ2Z3, as was found by Haslehurst and Penrose [15].

There are many open questions concerning our construction that we believe deserve further investiga-
tion. Can any (Riemannian or Lorentzian) Kähler metric be obtained by this procedure? In particular,
the Chen-Teo instanton [16]? Also, the Einstein equations in the non-linear graviton are automatically
encoded in the deformed twistor space; how are field equations encoded in the deformations considered in
this work? It would also be desirable to obtain a more intrinsic (i.e. not coordinate dependent) approach
to the deformations. Finally, “non-integrable” deformations of the quadric might be related to black hole
perturbation theory, since metric perturbations constructed from the Teukolsky equations still possess
one family (but not two) of α-surfaces [17].

Acknowledgements. I would like to thank S. Aksteiner and L. Andersson for discussions. The author
gratefully acknowledges the support of the Alexander von Humboldt foundation.
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