Supplementary Information

Table of figures

<i>Figure S1:</i> Photodissociation mass spectrum over the full mass range of G ₃ measured at 401.6 eV
(BESSY II). Here, the mass window was set to see the fragment from m/z 25 to m/z 70. The dashed
blue line represents the position of the precursor ion
Figure S2: Photodissociation mass spectrum over the full mass range of G ₅ measured at 401.6 eV
(BESSY II). Here, the mass window was set to see the fragments from m/z 25 to m/z 70. The dashed
blue line represents the position of the precursor ion
Figure S3: Subtracted photodissociation mass spectrum over the full mass range of PG ₄ measured at
401.6 eV (PETRA III). The negative peaks come from the background subtraction. The dashed blue
line represents the position of the precursor ion
Figure S4: Subtracted photodissociation mass spectrum over the full mass range of G ₄ H measured at
401.6 eV (PETRA III). The negative peaks come from the background subtraction. The dashed blue
line represents the position of the precursor ion4
Figure S5: Subtracted photodissociation mass spectrum over the full mass range of G ₄ R measured at
401.6 eV (PETRA III). The negative peaks come from the background subtraction. The dashed blue
line represents the position of the precursor ion4
Figure S6: Photodissociation mass spectrum over the full mass range of G_4K measured at 401.6 eV
(BESSY II). Here, the mass window was set to see the fragment from m/z 50 to m/z 160. The dashed
blue line represents the position of the precursor ion4
Figure S7: Experimental nitrogen K-edge partial ion yield spectra of G ₅ 6
Figure S8: Experimental nitrogen K-edge partial ion yield spectra of PG ₄ 6
Figure S9: Experimental nitrogen K-edge partial ion yield spectra of G_4H 7
Figure S10: Experimental nitrogen K-edge partial ion yield spectra of G_4R 7
Figure S11: Experimental nitrogen K-edge partial ion yield spectra of G_4K 8
Figure S12: Experimental nitrogen K-edge partial ion yield spectra of G ₃ 8
Figure S13: DFT-optimized geometry of conformer 1 of G_5 (B3LYP/ZORA-TZVP)9
Figure S14: Calculated spectrum of conformer 1 of G_5 with the respective LUMOs responsible for the
main transitions9
Figure S15: DFT-optimized geometry of conformer 2 of G_5 (B3LYP/ZORA-TZVP)10
Figure S16: Calculated spectrum of conformer 2 of G ₅ with the respective LUMOs responsible for the
main transitions10
Figure S17: DFT-optimized geometry of PG ₄ (B3LYP/ZORA-TZVP)11
Figure S18: Calculated spectrum of PG_4 with the respective LUMOs responsible for the main
transitions11
Figure S19: DFT-optimized geometry of G_4H (B3LYP/ZORA-TZVP)12
Figure S20: Calculated spectrum of G_4H with the respective LUMOs responsible for the main
transitions12
Figure S21: DFT-optimized geometry of conformer 1 of G_4R (B3LYP/ZORA-TZVP)13
Figure S22: Calculated spectrum of conformer 1 of G_4R with the respective LUMOs responsible for
the main transitions
Figure S23: DFT-optimized geometry of conformer 2 of G_4R (B3LYP/ZORA-TZVP)14
Figure S24: Calculated spectrum of conformer 2 of G_4R with the respective LUMOs responsible for
the main transitions
Figure S25: DFT-optimized geometry of conformer 1 G_4K (B3LYP/ZORA-TZVP)15

Figure S26: Calculated spectrum of conformer 1 of G_4K with the respective LUMOs responsible for
the main transitions
Figure S27: DFT-optimized geometry of conformer 2 G ₄ K (B3LYP/ZORA-TZVP)16
Figure S28: Calculated spectrum of conformer 2 of G₄K with the respective LUMOs responsible for
the main transitions16
Figure S29: Calculated spectrum of GGGH1 at the N K-edge with the respective LUMOs responsible
for the main transitions17
Figure S30: Calculated spectrum of GGGH1 at the O K-edge with the respective LUMOs responsible
for the main transitions17
Figure S31: Calculated spectrum of GGGH2 at the N K-edge with the respective LUMOs responsible
for the main transitions18
Figure S32: Calculated spectrum of GGGH2 at the O K-edge with the respective LUMOs responsible
for the main transitions18
Figure S33: Experimental carbon K-edge total ion yield spectra of G_5 in black, and in red G_3 19
Figure S34: Experimental carbon K-edge partial ion yield spectra for G ₃ 19
Figure S35: Experimental carbon K-edge partial ion yield spectra for G ₅ 20
Figure S36: Experimental oxygen K-edge partial ion yield spectra of G ₃ 20
Figure S37: Experimental oxygen K-edge partial ion yield spectra of G ₅ 21

Mass spectra

Figure S1: Photodissociation mass spectrum over the full mass range of G_3 measured at 401.6 eV (BESSY II). Here, the mass window was set to see the fragment from m/z 25 to m/z 70. The dashed blue line represents the position of the precursor ion.

Figure S2: Photodissociation mass spectrum over the full mass range of G_5 measured at 401.6 eV (BESSY II). Here, the mass window was set to see the fragments from m/z 25 to m/z 70. The dashed blue line represents the position of the precursor ion.

Figure S3: Subtracted photodissociation mass spectrum over the full mass range of PG_4 measured at 401.6 eV (PETRA III). The negative peaks come from the background subtraction. The dashed blue line represents the position of the precursor ion.

Figure S4: Subtracted photodissociation mass spectrum over the full mass range of G_4 H measured at 401.6 eV (PETRA III). The negative peaks come from the background subtraction. The dashed blue line represents the position of the precursor ion.

Figure S5: Subtracted photodissociation mass spectrum over the full mass range of G_4R measured at 401.6 eV (PETRA III). The negative peaks come from the background subtraction. The dashed blue line represents the position of the precursor ion.

Figure S6: Photodissociation mass spectrum over the full mass range of G_4K measured at 401.6 eV (BESSY II). Here, the mass window was set to see the fragment from m/z 50 to m/z 160. The dashed blue line represents the position of the precursor ion.

Mass	G₅/G₃	PG₄	G₄H	G₄R	G₄K
28	$C_2H_4^+/CH_2N^+$				
29	CHO⁺				
30	G				
31	CH₃O⁺				
42	C ₂ H ₄ N ⁺				
43	CHNO ⁺				
45	COOH ⁺				
55	C ₂ NOH ⁺	C ₂ NOH ⁺			
56	C ₂ NOH ₂ ⁺	C ₂ NOH ₂ ⁺			
67					C ₅ H ₇ ⁺
68		[P-2H]⁺			
70		Р		C ₄ H ₈ N ⁺	
71		[P+H]⁺		C ₄ H ₇ O ⁺	
72				$C_4H_{10}N^+$	
81			$C_4H_5N_2^+$		
82			$C_4H_6N_2^+$		
83			$C_4H_7N_2^+$		
84					$C_5H_{10}N^+$
85				C ₃ H ₃ NO ₂ ⁺	
87			a ₂	C₄H ₉ NO⁺/a ₂	a ₂
88				$C_4H_{10}NO^+$	
93			$C_5H_5N_2^+$		
110			$C_5H_8N_3^+$		
112				$C_5H_{10}N_3^+$	
115			GG/b ₂	GG/b ₂	GG/b ₂
131					y ₁ -NH ₃
147					у 1

Table S1: Attribution of the fragments observed during our study for each peptide.

Experimental nitrogen K-edge partial ion yield spectra

Figure S7: Experimental nitrogen K-edge partial ion yield spectra of G₅.

Figure S8: Experimental nitrogen K-edge partial ion yield spectra of PG₄.

Figure S9: Experimental nitrogen K-edge partial ion yield spectra of G_4H .

Figure S10: Experimental nitrogen K-edge partial ion yield spectra of G_4R .

Figure S11: Experimental nitrogen K-edge partial ion yield spectra of G₄K.

Figure S12: Experimental nitrogen K-edge partial ion yield spectra of G₃.

Molecular orbitals and structures

G5 Conformer 1

Figure S13: DFT-optimized geometry of conformer 1 of G_5 (B3LYP/ZORA-TZVP).

Figure S14: Calculated spectrum of conformer 1 of G_5 with the respective LUMOs responsible for the main transitions.

Conformer 2

Figure S15: DFT-optimized geometry of conformer 2 of G_5 (B3LYP/ZORA-TZVP).

Figure S16: Calculated spectrum of conformer 2 of G_5 with the respective LUMOs responsible for the main transitions.

 PG_4

Figure S17: DFT-optimized geometry of PG_4 (B3LYP/ZORA-TZVP).

Figure S18: Calculated spectrum of PG_4 with the respective LUMOs responsible for the main transitions.

Figure S19: DFT-optimized geometry of G_4H (B3LYP/ZORA-TZVP).

Figure S20: Calculated spectrum of G_4H with the respective LUMOs responsible for the main transitions.

Conformer 1

Figure S21: DFT-optimized geometry of conformer 1 of G_4R (B3LYP/ZORA-TZVP).

Figure S22: Calculated spectrum of conformer 1 of G_4R with the respective LUMOs responsible for the main transitions.

 $G_4 R$

Figure S23: DFT-optimized geometry of conformer 2 of G_4R (B3LYP/ZORA-TZVP).

Figure S24: Calculated spectrum of conformer 2 of G_4R with the respective LUMOs responsible for the main transitions.

Figure S25: DFT-optimized geometry of conformer 1 G_4K (B3LYP/ZORA-TZVP).

Figure S26: Calculated spectrum of conformer 1 of G_4K with the respective LUMOs responsible for the main transitions.

Conformer 2

Figure S27: DFT-optimized geometry of conformer 2 G_4K (B3LYP/ZORA-TZVP).

Figure S28: Calculated spectrum of conformer 2 of G_4K with the respective LUMOs responsible for the main transitions.

Figure S29: Calculated spectrum of GGGH1 at the N K-edge with the respective LUMOs responsible for the main transitions.

Figure S30: Calculated spectrum of GGGH1 at the O K-edge with the respective LUMOs responsible for the main transitions.

Figure S31: Calculated spectrum of GGGH2 at the N K-edge with the respective LUMOs responsible for the main transitions.

Figure S32: Calculated spectrum of GGGH2 at the O K-edge with the respective LUMOs responsible for the main transitions.

NEXAMS spectra of G_5 and G_3 at the C K-edge

Figure S33: Experimental carbon K-edge total ion yield spectra of G_5 in black, and in red G_3 .

Figure S34: Experimental carbon K-edge partial ion yield spectra for G₃.

Figure S35: Experimental carbon K-edge partial ion yield spectra for G₅.

Figure S36: Experimental oxygen K-edge partial ion yield spectra of G₃.

Figure S37: Experimental oxygen K-edge partial ion yield spectra of G_5 .